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Finite energy QCD sum rules involving both inverse- and positive-moment integration kernels are

employed to determine the bottom-quark mass. The result obtained in the MS scheme at a reference scale

of 10 GeV is �mbð10 GeVÞ ¼ 3623ð9Þ MeV. This value translates into a scale-invariant mass �mbð �mbÞ ¼
4171ð9Þ MeV. This result has the lowest total uncertainty of any method, and is less sensitive to a number

of systematic uncertainties that affect other QCD sum rule determinations.
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I. INTRODUCTION

With the availability of new cross-section data on eþe�
annihilation into hadrons from the BABAR collaboration
[1], the bottom-quark mass was determined recently with
unprecedented precision using inverse-moment QCD sum

rules [2]. The result in the MS scheme at a reference scale
of 10 GeV is

�mbð10 GeVÞ ¼ 3610ð16Þ MeV: (1)

However, as was subsequently pointed out Ref. [3], this
result relies on the assumption that perturbative QCD
(PQCD) is already valid at the end point of the BABAR
data, i.e.

ffiffiffi

s
p ¼ 11:21 GeV, where s is the squared energy.

This assumption might be questionable, as the prediction
of PQCD for the R ratio does not agree with the experi-
mentally measured value at this point. This QCD sum rule
result was also shown to depend significantly on this
assumption. Hence, further reductions in the error of the
bottom-quark mass using QCD sum rules will depend on
the ability to control this systematic uncertainty. One way
of achieving this would be for a new experiment to extend
the BABAR measurement into a region where PQCD is
unquestionably valid. In this paper, we follow another
approach based entirely on theory. We use a finite energy
QCD sum rule with integration kernels involving both
inverse and positive powers of the energy, as employed
recently to determine the charm-quark mass [4]. We also
exploit the freedom offered by Cauchy’s theorem to reduce
the dependence of the quark mass on the above systematic
uncertainty. This is achieved by using integration kernels
that reduce the contributions in the region

ffiffiffi

s
p ’ 11:21 GeV

to
ffiffiffiffiffi

s0
p

, where there is no data and the onset of PQCD at

s ¼ s0 has to be assumed. As a benefit, this procedure
reduces also the continuum contribution relative to the
well-known � narrow resonances.

II. THEORETICAL BACKGROUND

We consider the vector current correlator

���ðq2Þ ¼ i
Z

d4xeiqxh0jTðV�ðxÞV�ð0ÞÞj0i
¼ ðq�q� � q2g��Þ�ðq2Þ; (2)

where V�ðxÞ ¼ �bðxÞ��bðxÞ, and bðxÞ is the bottom-quark

field. Cauchy’s residue theorem in the complex s-plane
(� q2 � Q2 � s) implies that

Z s0

0
pðsÞ 1

�
Im�ðsÞds

¼ � 1

2�i

I

Cðjs0jÞ
pðsÞ�ðsÞdsþ Res½�ðsÞpðsÞ; s ¼ 0�;

(3)

where pðsÞ is an arbitrary Laurent polynomial, and

Im�ðsÞ ¼ 1

12�
RbðsÞ; (4)

with RbðsÞ the standard R ratio for bottom production. The
power-series expansion of �ðsÞ for large and spacelike s
can be calculated in PQCD and has the form

�ðsÞjPQCD ¼ e2b
X

n¼0

�

�sð�2Þ
�

�

n
�ðnÞðsÞ; (5)

where eb ¼ 2=3 is the bottom-quark electric charge, and

�ðnÞðsÞ ¼ X

i¼0

�

�m2
b

s

�

i
�ðnÞ

i : (6)

Here, �mb � �mbð�Þ is the quark mass in the MS scheme at
the renormalization scale �. The order O½�2

sð �m2
b=sÞi� re-

sults for i ¼ 1; . . . ; 6 have been calculated in Ref. [5], with
new results up to O½�2

sð �m2
b=sÞ30� obtained recently [6]. At

order O½�3
s�, �ð3Þ

0 and �ð3Þ
1 are known [7], and the loga-

rithmic terms in �ð3Þ
2 may be found in Ref. [8]. The
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constant term in �ð3Þ
2 is not known exactly but has been

estimated using Padé approximants [9] and the
Mellin-Barnes transform [10]. At order O½�4

s�, the exact

logarithmic terms in �ð4Þ
0 and �ð4Þ

1 were determined in

Refs. [11,12], while the constant terms are not yet known.
Given that these constant terms will contribute to sum rules
with kernels containing powers s�1 and s0, respectively,
for consistency, we shall not include any five-loop order
expressions. However, we find that if all known five-loop
order terms are taken into account, the mass of the bottom-
quark only changes by roughly 0.03%, which is about a
tenth of the accuracy of this determination. The Taylor
series expansion of �ðsÞ about s ¼ 0 is usually cast in the
form

�ðsÞjPQCD ¼ 3e2b
16�2

X

n�0

�Cnz
n; (7)

where z � s=ð4 �m2
bÞ. The coefficients �Cn can be expanded

in powers of �sð�Þ as
�Cn¼ �Cð0Þ

n þ�sð�Þ
�

ð �Cð10Þ
n þ �Cð11Þ

n lmÞ

þ
�

�sð�Þ
�

�

2ð �Cð20Þ
n þ �Cð21Þ

n lmþ �Cð22Þ
n l2mÞ

þ
�

�sð�Þ
�

�

3ð �Cð30Þ
n þ �Cð31Þ

n lmþ �Cð32Þ
n l2mþ �Cð33Þ

n l3mÞþ . . . ;

(8)

where lm � lnð �m2
b=�

2Þ. Up toOð�2
sÞ, the coefficients up to

n ¼ 30 of �Cn are known [13,14]. There is also a subleading
contribution of order Oð�2

sð �mc= �mbÞ2Þ [15] affecting the

coefficient �Cð20Þ
n in Eq. (8), as well as QED corrections.

The former contributes around �1:0 MeV, and the latter
roughly �2:0 MeV to the result for �mbð10 GeVÞ. Finally,
there is a nonperturbative contribution to �ðsÞ from the
gluon condensate, but it has been found to be completely
negligible [16]. We fully agree, and thus confirm this
result. For the strong running coupling, we use the
Particle Data Group [17] value �sðmZÞ ¼ 0:1184ð7Þ,
which corresponds to �sð10 GeVÞ ¼ 0:1792ð16Þ.

III. EXPERIMENTAL INPUT

In order to evaluate the left-handed side of Eq. (3), one
needs to use experimental input. First, there are the four
narrow � resonances, and we calculate their contribution
to Eq. (3) using the zero-width approximation

Rres
b ¼ X

i

9�Mi�i

�2
EMðsÞ

�ðs�M2
i Þ; (9)

where i ¼ 1; � � � ; 4, corresponding to�ð1SÞ,�ð2SÞ,�ð3SÞ,
and�ð4SÞ. We use the masses and widths from the Particle
Data Group [17]. The widths are ��ð1SÞ ¼ 1:340ð18Þ keV,
��ð2SÞ ¼ 0:612ð11Þ keV, ��ð3SÞ ¼0:443ð8Þ keV, and

��ð4SÞ ¼ 0:272ð29Þ keV. Given that the widths of the

�ð1SÞ,�ð2SÞ, and�ð3SÞwere obtained at the same experi-
mental facility, we will assume their uncertainties to be
correlated. The masses are M�ð1SÞ ¼ 9:46030ð26Þ GeV,
M�ð2SÞ ¼ 10:02326ð31Þ GeV, M�ð3SÞ ¼ 10:3552ð5Þ GeV,
andM�ð4SÞ ¼ 10:5794ð12Þ GeV. Finally, we use the effec-
tive electromagnetic couplings from Ref. [16]. The BABAR
Collaboration [1] has performed direct measurements ofRb

in the continuum threshold region between 10.62 GeV and
11.21 GeV. There is also data on the full ratio R in the
bottom-quark region by the CLEO Collaboration [18], dat-
ing back to 1985. Subsequently, a later CLEOmeasurement
in 1998 [19], at a single energy, s ’ 10:53 GeV2, gives a
total R ratio roughly 30% lower than the 1985 data in this
region. Since this discrepancy remains unresolved, we shall
use here only the BABAR data. As was pointed out in
Ref. [2], these BABAR data cannot be used directly in sum
rules, such as, e.g., Eq. (3), for the following reasons. First,
the initial-state radiation and the radiative tail of the �4S

resonance must be removed. Second, the vacuum polariza-
tion contributionmust be taken into account.We follow this
procedure, as detailed in Ref. [2], to correct theBABAR data
with results shown in Fig. 1. The high-energy expansion of
�ðsÞ, given in Eq. (5), is only formally guaranteed to
converge above

ffiffiffi

s
p ¼ 4 �mbð�Þ � 15 GeV, due to nonpla-

nar diagrams having cuts starting there. Above this value,
the high-energy expansion is an almost perfect approxima-
tion to the full analytic PQCD result [20]. Therefore, we
shall always choose

ffiffiffiffiffi

s0
p

> 4 �mbð�Þ in Eq. (3) so that it is

safe to use the high-energy expansion of�ðsÞ in the contour
integral. Between the end point of the data (

ffiffiffi

s
p ¼

11:21 GeV) and
ffiffiffiffiffi

s0
p

> 4 �mbð�Þ, we will use the best avail-
able PQCD prediction of RbðsÞ, obtained from the Fortran
program RHAD [20]. We consider this as data input, even
though it stems from theory. The RHAD [20] prediction of
RbðsÞ is shown in Fig. 1. The first uncertainties affecting the
bottom-quark mass are due to the uncertainty in the strong
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FIG. 1. The corrected BABAR data [1] and the PQCD predic-
tion (solid black line) obtained using RHAD [20].
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coupling�s ð��sÞ, the uncertainty in the experimental data
(�EXP), and our limited knowledge of PQCD (��). The
last was estimated by varying the renormalization scale
� ¼ 10 GeV by �5 GeV, running the mass calculated at
this scale back to � ¼ 10 GeV and then taking the maxi-
mum difference. The second set is systematic uncertainties
stemming from the fact that the PQCD prediction for RbðsÞ
does not agreewith the experimentally determined values at
the end point of the data (

ffiffiffi

s
p ¼ 11:21 GeV), as can be seen

from Fig. 1. Two possibilities for this discrepancy were
considered in Ref. [3]:

(i) Option A: The BABAR data are correct, but PQCD
only starts at higher energies, say at

ffiffiffi

s
p ¼ 13 GeV.

Use then a linear interpolation between

REXP
b ð11:21 GeVÞ ¼ 0:32 and RPQCD

b ð13 GeVÞ ¼
0:377, rather than the prediction from RHAD.

(ii) Option B: The PQCD prediction from RHAD is
correct, but the BABAR data are incorrect, perhaps
affected by an unreported systematic error. In this
case, multiply all the data by a factor of 1.21 to
make the data consistent with PQCD. In addition to
these two options, we wish to consider a third
possibility.

(iii) Option C: The BABAR data are correct, and PQCD
starts at

ffiffiffi

s
p ¼ 11:21 GeV. However, the PQCD

prediction of RHAD is incorrect. The motivation
for this option is that the exact analytical form of

RPQCD
b is only known up to one-loop level. At order

Oð�2
sÞ, already the full analytic result has to be

reconstructed using Padé approximants to patch
together information about �ðsÞ obtained at

ffiffiffi

s
p ¼

0,
ffiffiffi

s
p ¼ 2 �mbð�Þ, and ffiffiffi

s
p ! �1. Both the Padé

method and the reliance on PQCD results obtained
at threshold (

ffiffiffi

s
p ¼ 2 �mbð�Þ) could introduce unac-

counted for systematic errors. As a measure of the
dependence of the method on the prediction of

RPQCD
b ðsÞ up to s0 (chosen to be large enough so

that the high-energy expansion becomes a rigorous

prediction), we use RPQCD
b ðsÞ calculated using the

high-energy expansion. The prediction of RPQCD
b at

ffiffiffi

s
p ¼ 11:21 GeV using the high-energy expansion
is also closer to the experiment than the prediction
obtained using RHAD.

IV. CHOICE OF INTEGRATION KERNELS

To minimize the dependence of results for the bottom-
quark mass on option A and option C, the contribution

from the region
ffiffiffi

s
p � ffiffiffiffiffi

s�
p � 11:21 GeV to

ffiffiffiffiffi

s0
p

should be

quenched. This can be achieved by borrowing from the
method of Ref. [21], where a Legendre polynomial was
used to minimize the contribution of the then-poorly-
known continuum threshold region. We choose here a
Legendre-type Laurent polynomial, i.e. we consider linear
combinations of powers of s chosen from the set
S ¼ fs�3; s�2; s�1; 1; sg. Inverse powers higher than s�3

lead to a deterioration of the convergence of PQCD, in-
troducing large uncertainties from changes in the renor-
malization scale � and the strong coupling �s (see also
Ref. [22]). We only use positive powers up to s1, as higher
powers emphasize unknown Oð�3

sÞ terms in the high-
energy expansion. The optimal order of the Legendre-
type Laurent polynomial was found to be 3 or 4. First, let
us consider the order-3 case, and let

pðsÞ � P ði;j;kÞ
3 ðs; s0Þ ¼ Aðsi þ Bsj þ CskÞ; (10)

subject to the global constraint

Z s0

s�
P ði;j;kÞ

3 ðs; s0Þs�nds ¼ 0; (11)

where n 2 f0; 1g, i; j; k 2 f�3;�2;�1; 0; 1g, and i, j, k
are all different. The above constraint determines the

TABLE I. Results for �mbð10 GeVÞ, using kernels pðsÞ selected for producing the lowest uncertainty. Results from the kernels pðsÞ ¼
s�3 and pðsÞ ¼ s�4 used in Refs. [2,3] are given here for comparison. The errors are from the experiment (�EXP), the strong coupling
(��s), and variation of the renormalization scale by �5 GeV around � ¼ 10 GeV (��). These sources were added in quadrature to
give the total uncertainty (�TOTAL). The option uncertainties �A, �B, and �C are the differences between �mbð10 GeVÞ obtained
with and without option A, B, or C. As in Refs. [2,3], these are not added to the total uncertainty and are listed only for comparison
purposes.

Uncertainties (MeV) Options A, B, and C (MeV)

pðsÞ �mbð10 GeVÞ ffiffiffiffiffi

s0
p ðGeVÞ �EXP ��s �� �TOTAL �A �B �C

s�3 3612 1 9 4 1 10 20 �17 16

s�4 3622 1 7 5 10 13 12 �12 8

P ð�3;�1;0Þ
3 ðs0; sÞ 3623 16 6 6 2 9 1 �6 0

P ð�3;�1;1Þ
3 ðs0; sÞ 3623 16 6 6 2 9 2 �7 0

P ð�3;0;1Þ
3 ðs0; sÞ 3624 16 7 6 2 9 2 �7 0

P ð�1;0;1Þ
3 ðs0; sÞ 3625 16 8 5 4 10 4 �12 0

P ð�3;�1;0;1Þ
4 ðs0; sÞ 3623 20 6 6 3 9 0 �4 0
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constants B and C. The constant A is an arbitrary overall
normalization which cancels out in the sum rule Eq. (3).
The reason for the presence of the integrand s�n above is
that the behavior of RbðsÞ in the region to be quenched
resembles a monotonically decreasing logarithmic func-
tion. Hence, an inverse power of s optimizes the quench-
ing. As an example, taking s0 ¼ ð16 GeVÞ2 (and A ¼ 1),
we find

P ð�3;�1;0Þ
3 ðs; s0Þ ¼ s�3 � ð1:02	 10�4 GeV�4Þs�1

þ 3:70	 10�7 GeV�6; (12)

with s in units of GeV2. There are ten different kernels

P ði;j;kÞ
3 , and the spread of values obtained for �mb using this

set of different kernels will be used as a consistency check
on the method. Outside the interval s 2 ½s�; s0�,
P ði;j;kÞ

3 ðs; s0Þ will blow up, which leads to a suppression

of the continuum-threshold region relative to the
well-measured � resonances. This will minimize the de-
pendence of the results on option B. Hence, this kernel
minimizes all three sources of systematic uncertainty. The

fourth-order Laurent polynomial P ði;j;k;rÞ
4 ðs; s0Þ is also de-

fined by the constraint Eq. (11), but with n 2 f0; 1; 2g.
There are also five different kernels P ði;j;k;rÞ

4 ðs; s0Þ. In gen-

eral, the higher the order n of P n, the better the control
over the systematic errors. However, the price to pay is a
reduction in the rate of convergence of PQCD, though this
convergence can be improved by increasing s0. In the
Appendix we give explicit expressions for the various
kernels used in Table I.

V. RESULTS AND CONCLUSIONS

We considered a total of 15 different kernels pðsÞ used in
Eq. (3), 10 from the class of kernels P ði;j;kÞ

3 ðs; s0Þ, and 5

from the class P ði;j;k;rÞ
4 ðs; s0Þ. All these are similarly con-

structed [i.e they obey Eq. (11)], and hence have a similar
ability to reduce the dependence of the bottom-quark mass
on options A, B, and C. They do, however, place very
different emphasis on theory. In particular, if, say,

P ði;j;kÞ
3 ðs; s0Þ only included inverse powers of s, then almost

the entire right-hand side of Eq. (3) would emanate from the
residue, and hence from the low energy expansion of

PQCD. If, however, P ði;j;kÞ
3 ðs; s0Þ were composed of only

positive powers of s, then only the high-energy expansion
of PQCD would enter the right-hand side of Eq. (3).
Different kernels can therefore lead to significantly differ-
ent dependencies on the renormalization scale �. Our
philosophy is to choose those kernels producing the lowest
total uncertainty. The results from these are displayed in
Table I. We also plot in Fig. 2 the range of values for
�mbð10 GeVÞ obtained using all of the 10 kernels in the

classP ði;j;kÞ
3 ðs; s0Þ, as a function of s0. Remarkably, between

12 GeV<
ffiffiffiffiffi

s0
p

< 28 GeV, all of the masses obtained using

all 10 kernels from the classP ð�3;�1;0Þ
3 ðs;s0Þ fall in the range

3621 MeV 
 �mbð10 GeVÞ 
 3625 MeV. Our method
gives a consistent result even in the region

ffiffiffiffiffi

s0
p

<
4 �mbð�Þ � 15 GeV, where the high-energy expansion
used in the contour integral in Eq. (3) is not guaranteed to
converge. Using, rather, the 5 kernels in the class

P ði;j;k;rÞ
4 ðs; s0Þ and varying s0 in the range 18 GeV<

ffiffiffiffiffi

s0
p

<
70 GeV, all of the masses thus obtained lie in the interval
3620 MeV 
 �mbð10 GeVÞ 
 3626 MeV. These results
show a great insensitivity of our method on the parameter
s0 and also on which powers of s are used to construct

P ði;j;kÞ
3 ðs; s0Þ and P ði;j;k;rÞ

4 ðs; s0Þ. This in turn demonstrates

the consistency between the high- and low-energy expan-
sions of PQCD. For our final result, we choose the optimal

kernel P ð�3;�1;0Þ
3 ðs0; sÞ to obtain

�mbð10 GeVÞ ¼ 3623ð9Þ MeV; (13)

�mbð �mbÞ ¼ 4171ð9Þ MeV: (14)

This result is fully consistent with the latest lattice value
�mbð10 GeVÞ ¼ 3617ð25Þ MeV [24]. It is also consistent
with a previous QCD sum rule precision determination
[2,3] giving �mbð10 GeVÞ ¼ 3610ð16Þ MeV. Apart from
our novel QCD sum rule approach, the inputs in
Refs. [2,3] are almost identical to ours, with the exception
of their use of kernels of the form pðsÞ ¼ s�n, n 2
f2; 3; 4; 5g and the use of a value of the strong coupling
with a larger uncertainty. Their final result was obtained
using pðsÞ ¼ s�3, which can be seen from Table I as being
far more sensitive to possible systematic uncertainties aris-
ing from options A, B, and C. They also determined �mb

using pðsÞ ¼ s�4, for which they obtained �mbð10 GeVÞ ¼
3619ð18Þ MeV. This value is closer to our result, which
may not be surprising, given that it is less sensitive to
options A, B, and C than pðsÞ ¼ s�3, although not as

15 20 25
3610

3615

3620

3625

3630

3635

s0 GeV

m
b

10
G

eV
M

eV

FIG. 2. The values of �mbð10 GeVÞ, obtained for different
values of s0 and using the 10 different kernels in the class

P ði;j;kÞ
3 ðs0; sÞ. All results lie within the shaded region.
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insensitive as using our kernels. In conclusion, we have
discussed here a finite energy QCD sum-rule method with
integration kernels involving inverse and positive powers of
the squared energy. The result for the bottom-quark mass
has a lower total uncertainty and is far less sensitive than the
popular inverse moment method to the three systematic
uncertainties identified earlier, i.e. options A, B, and C. It
should be appreciated from Table Ithat the results in
Eqs. (13) and (14) are independent of the PQCD prediction
from RHAD in the region between

ffiffiffi

s
p ’ 11:21 GeV and

ffiffiffi

s
p ¼ 4 �mbð�Þ.
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APPENDIX

Up to an overall constant, the integration kernels
P nðs; s0Þ can be obtained from Eq. (11). For complete-
ness, we list below the explicit expressions for all the

polynomials used in Table I, at the corresponding values
of s0. First, for s0 ¼ ð16 GeVÞ2,
P ð�3;�1;0Þ

3 ðs; s0Þ ¼ s�3 � ð1:015	 10�4 GeV�4Þs�1

þ 3:694	 10�7 GeV�6; (A1)

P ð�3;�1;1Þ
3 ðs; s0Þ ¼ s�3 � ð6:875	 10�5 GeV�4Þs�1

þ ð1:000	 10�9 GeV�8Þs; (A2)

P ð�3;0;1Þ
3 ðs; s0Þ ¼ s�3 � 7:767	 10�7 GeV�6

þ ð3:103	 10�9 GeV�8Þs; (A3)

P ð�1;0;1Þ
3 ðs; s0Þ ¼ s�1 � 0:01129 GeV�2

þ ð3:059	 10�5 GeV�4Þs: (A4)

Next, for s0 ¼ ð20 GeVÞ2,
P ð�3;�1;0;1Þ

3 ðs; s0Þ ¼ s�3 � ð1:4668	 10�4 GeV�4Þs�1

þ 8:781	 10�7 GeV�6

� ð1:381	 10�9 GeV�8Þs: (A5)
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[16] J. H. Kühn, M. Steinhauser, and C. Sturm, Nucl. Phys.
B778, 192 (2007).

[17] K. Nakamura et al. (Particle Data Group), J. Phys. G 37,
075021 (2010).

[18] D. Besson et al., Phys. Rev. Lett. 54, 381 (1985).
[19] R. Ammar et al., Phys. Rev. D 57, 1350 (1998).
[20] R. V. Harlander and M. Steinhauser, Comput. Phys.

Commun. 153, 244 (2003).
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