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This paper reports the evaluation of the tenth-order QED contribution to the lepton g� 2 from the

gauge-invariant set of 2072 Feynman diagrams, called Set IV, which are obtained by inserting a second-

order lepton vacuum-polarization loop into 518 eighth-order vertex diagrams of four-photon exchange

type. The numerical evaluation is carried out by the adaptive-iterative Monte Carlo integration routine

VEGAS using the FORTRAN codes written by the automatic code-generating algorithm GENCODEN. Some of

the numerical results are confirmed by comparison with the values of corresponding integrals that have

been obtained previously by a different method. The result for the mass-independent contribution of the

Set IV to the electron g� 2 is �7:7296ð48Þð�=�Þ5. There is also a small mass-dependent contribution to

the electron g� 2 due to the muon loop: �0:01136ð7Þð�=�Þ5. The contribution of the tau-lepton loop is

�0:000 093 7ð104Þð�=�Þ5. The sum of all these contributions to the electron g� 2 is �7:7407ð49Þ�
ð�=�Þ5. The same set of diagrams enables us to evaluate the contributions to the muon g� 2 from the

electron loop, muon loop, and tau-lepton loop. They add up to �46:95ð17Þð�=�Þ5.
DOI: 10.1103/PhysRevD.85.033007 PACS numbers: 13.40.Em, 06.20.Jr, 12.20.Ds, 14.60.Cd

I. INTRODUCTION

The anomalous magnetic moment g� 2 of the electron
has played the central role in testing the validity of quan-
tum electrodynamics (QED) as well as the standard model.
On the experimental side, the latest measurement of
ae � ðg� 2Þ=2 by the Harvard group has reached the
precision of 0:24� 10�9 [1,2]:

aeðHV08Þ¼ 1159652180:73ð0:28Þ�10�12 ½0:24 ppb�:
(1)

The theoretical prediction thus far consists of QED correc-
tions of up to the eighth order [3–5], direct evaluation of
hadronic corrections [6–12] and electroweak corrections
scaled down from their contributions to the muon g� 2
[13–15]. To compare the theory with the measurement (1),
we also need the value of the fine structure constant �
determined by a method independent of g� 2. The best
value of such an � available at present is one obtained from
the measurement of h=mRb, the ratio of the Planck constant
and the mass of Rb atom, combined with the very precisely
known Rydberg constant and mRb=me: [16]

��1ðRb10Þ ¼ 137:035 999 037ð91Þ ½0:66 ppb�: (2)

With this � the theoretical prediction of ae becomes

aeðtheoryÞ
¼ 1 159 652 181:13ð0:11Þð0:37Þð0:02Þð0:77Þ � 10�12;

(3)

where the first, second, third, and fourth uncertainties come
from the calculated eighth-order QED term [5], a crude
tenth-order estimate [17], the hadronic and electroweak
contributions, and the fine structure constant (2), respec-
tively. The theory (3) is in good agreement with the
experiment (1):

aeðHV08Þ � aeðtheoryÞ ¼ �0:40ð0:88Þ � 10�12; (4)

proving that QED (standard model) is in good shape even
at this very high precision.
An alternative and more sensitive test of QED is to

calculate � from the experiment and theory of g� 2,
both of which have very high precision, and compare it
with ��1ðRb10Þ. The experiment and theory of the elec-
tron g� 2 leads

��1ðae08Þ¼ 137:035999085ð12Þð37Þð2Þð33Þ ½0:37 ppb�;
(5)

where the first, second, third, and fourth uncertainties come
from the eighth-order QED term, the tenth-order estimate,
the hadronic and electroweak contributions, and the mea-
surement of aeðHV08Þ, respectively.
Although the uncertainty of ��1ðae08Þ in (5) is almost a

factor of two smaller than that of��1ðRb10Þ, it is not a firm
factor since it depends on the estimate of the tenth-order
term, which is only a crude guess [17]. For a more stringent
test of QED, it is obviously necessary to evaluate the actual
value of the tenth-order term. To meet this challenge we
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launched several years ago a systematic program to evalu-
ate the complete tenth-order term [18–20].

The tenth-order QED contribution to the anomalous
magnetic moment of an electron can be written as

að10Þe ¼
�
�

�

�
5½Að10Þ

1 þ Að10Þ
2 ðme=m�Þ þ Að10Þ

2 ðme=m�Þ

þ Að10Þ
3 ðme=m�;me=m�Þ�; (6)

where the electron-muon mass ratio me=m� is

4:836 331 66 ð12Þ � 10�3 and the electron-tau mass ratio
me=m� is 2:875 64 ð47Þ � 10�4 [17]. In the rest of this
article the factor ð�=�Þ5 will be suppressed for simplicity.

The contribution to the mass-independent term Að10Þ
1 can

be classified into six gauge-invariant sets, further divided
into 32 gauge-invariant subsets depending on the nature of
closed lepton loop subdiagrams. Thus far, the numerical
results of 29 gauge-invariant subsets, which consist of
3856 vertex diagrams, have been published [3,21–27].
Five of these 29 subsets were also known analytically
[28,29]. They are in good agreement with our calculations.

In this paper we report the result of evaluation of Að10Þ
1

from the set, called Set IV, which consists of 2072
Feynman diagrams. Section II outlines our formulation of
Feynman-parametric integrals of Set IV. Section III
presents the residual renormalization formula, which sum-
marizes the result of derivation described in detail in
Appendix A. Numerical results for several cases of mass
dependence are described in Secs. IV, V, and VI.
Section VII discusses the results obtained in this paper.

II. CONSTRUCTION OF
FEYNMAN-PARAMETRIC INTEGRALS

All 2072 diagrams of Set IV can be derived from the 518
eighth-order diagrams of four-photon-exchange type [30],
called Group V, by inserting a second-order vacuum-
polarization loop in the photon lines of Group V diagrams
in all possible ways. In practice, we have therefore to deal
with only 518 diagrams. This can be reduced further to the
47 self-energy-like diagrams of Fig. 1 as follows.
Let�� be the sum of 7 vertex diagrams that are obtained

from any self-energy-like diagram �ðpÞ of Fig. 1 by in-
serting a magnetic vertex�� in all possible ways. The set of
these vertex diagrams, taking account of doubling due to
time-reversal, represents the original 518 vertex diagrams.
The next step is to rewrite this �� as

��ðp; qÞ ’ �q�
�
@��ðp; qÞ

@q�

�
q¼0

� @�ðpÞ
@p�

(7)

for small q, with the help of the Ward-Takahashi (WT)
identity, where p� q=2 and pþ q=2 are the 4-momenta
of incoming and outgoing lepton lines and ðp� q=2Þ2 ¼
ðpþ q=2Þ2 ¼ m2. The g� 2 term is projected out from
the right-hand side of Eq. (7).
The properties of the Feynman-parametric integrals cor-

responding to the diagrams of Fig. 1 have been studied and
described in detail in [5]. Each diagram G of Fig. 1 is
represented by a momentum integral using the Feynman-
Dyson rule. Introducing Feynman parameters z1; z2; . . . ; z7
for the electron propagators and za, zb, zc, zd
for the photon propagators, we carry out the momentum

M01 M02 M03 M04 M05 M06 M07

M08 M09 M10 M11 M12 M13 M14

M15 M16 M17 M18 M19 M20 M21

M22 M23 M24 M25 M26 M27 M28

M29 M30 M31 M32 M33 M34 M35

M36 M37 M38 M39 M40 M41 M42

M43 M44 M45 M46 M47

FIG. 1. The eighth-order Group V diagrams. The solid line represents the electron propagating in a weak, constant, magnetic field.
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integration analytically using a home-made program writ-
ten in FORM [31], which gives an integral of the form

MG ¼
��1

4

�
4
3!
Z
ðdzÞG

�
1

3

�
E0 þ C0

U2V3
þ E1 þ C1

U3V2
þ � � �

�

þ
�
N0 þ Z0

U2V4
þ N1 þ Z1

U3V3
þ � � �

��
; (8)

where En, Cn, Nn and Zn are functions of Feynman pa-
rameters. The subscript n of En, etc., indicates that it is the
n-contraction terms of diagonalized loop momenta and
proportional to the product of n factors of Bij ’s. The

‘‘symbolic’’ building blocks Ai, Bij, Cij, for i; j ¼
1; 2; . . . ; 7 are also functions of Feynman parameters. U
is the Jacobian of transformation from the momentum
space variables to Feynman parameters. V is obtained by
combining denominators of all propagators into one with
the help of Feynman parameters. It has a form common to
all diagrams of Fig. 1:

V ¼ X7
i¼1

zið1� AiÞm2
i þ

Xd
k¼a

zk�
2
k; (9)

where mi and �k are the rest masses of electron i and
photon k, respectively. Ai is the scalar current defined by

Ai ¼ 1� 1

U

X7
j¼1

zjBij; for i ¼ 1; 2; . . . ; 7; (10)

and

ðdzÞG ¼ Y
i2G

dzi�

�
1� X

i2G

zi

�
: (11)

See, for example, [32] for definitions of Bij and Cij. The

form of Ai as a function of Feynman parameters depends
on the structure of an individual diagram. However, as is
shown in Eq. (9), the expression of V in terms of Ai is
identical for all diagrams of Fig. 1. An individual diagram
of Fig. 1 will be denoted as MG and their assembly will be

collectively denoted as M8.
We have developed two independent sets of numerical

programs ofMG based on theWT-summed amplitudes. The

first formulation was developed in 1970s and given in [33].
The second formulation used the automation code
GENCODEN [19,20]. The unrenormalized amplitudes and

the UV-subtraction terms are the same in both formulations,

but the IR-subtractions are slightly different in two formu-
lations. The detail of UV- and IR-subtraction terms in the
second formulation is briefly described in Sec. III. After
taking account of the difference in two formulations, the
equivalence of two formulations is established [20]. Once
we have the correct programs of the eighth-order Group V
diagrams, the insertion of a vacuum-polarization loop is an
easy task to carry out. Figure 2 shows a typical self-energy-
like diagram of the tenth-order Set IV.
As is well-known, the insertion of a vacuum-polarization

loop in an internal photon line can be expressed as a
superposition of massive vector particle propagators. In
other words, all we have to do is to replace the mass square
�2 of one of the photons in Eq. (9) by pðtÞ:

�2 ! pðtÞ � 4m2
vp

1� t2
; (12)

wheremvp is the mass of the fermion forming the vacuum-

polarization loop, to multiply the resulting eighth-order
integral with the spectral function

	2ðtÞ ¼ t2

1� t2

�
1� 1

3
t2
�
; (13)

and to integrate over the interval 0 � t < 1.
This is easy to implement in the second formulation

[19,20] since the function V is unambiguously identifiable.
Unfortunately, in the first formulation [33], it is difficult to
implement this procedure for some diagrams because the
‘‘denominator function V’’ was used to replace parts of
numerators in order to reduce the size of integrands and
accelerate the computing speed. For this reason, it is diffi-
cult to apply Eqs. (12) and (13) to these integrals. Thus,
direct comparison of two methods is feasible only for those
of Set IV diagrams in which the function V can be clearly
distinguished from other terms of the numerator. We there-
fore report here only the results of the second formulation.
Since the equivalence of two methods has been well estab-
lished [5], this does not diminish the reliability of our
numerical results.

III. RESIDUAL RENORMALIZATION

In our approach based on numerical integration, the
integrals of individual diagrams must be made convergent
before they are integrated numerically. This is achieved in
the following manner.

M47

+

M47,P2

+ +

FIG. 2. The eighth-order diagram M47 of Group V and the tenth-order diagram M47;P2 of Set IV. The diagram M47;P2 represents the
sum of diagrams obtained by inserting a second-order vacuum-polarization loop into each of four photon lines of the eighth-order
diagram M47.
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Suppose the integral MG has a UV divergence arising

from a subdiagram S. Then we construct another integral
KSMG by applying a K-operation, which identifies and

extracts the UV-divergent part of MG by a simple power

counting rule. This integral has the following properties:
(i) It has the same domain of integration and the same

UV divergence as MG. Thus it subtracts the UV

divergence of the latter point-by-point in the domain
of integration.

(ii) If S is a vertex diagram, K-operation KS on MG

factorizes exactly into the product of lower-order
quantities as

K SMG ¼ LUV
S MG=S : (14)

If S is a self-energy diagram, K-operation KS on
MG turns exactly into the sum of two terms of the

form

K SMG ¼ �mUV
S MG=Sði�Þ þ BUV

S MG=Sði0Þ: (15)

Here LUV
S , BUV

S , and �mUV
S are UV-divergent parts

of the renormalization constants LS, BS , and �mS .

MG=S is the magnetic moment corresponding to the

diagram G=S obtained by shrinking the subdiagram
S of G to a point. See [32] for further details.

An IR divergence of MG arises from a subdiagram T
that is the reduced diagram T � G=S of a self-energy
subdiagram S of the diagram G. In this case we run into
two kinds of IR divergence. One arises when a self-energy
subdiagram S behaves as a self-mass term. The standard
mass-renormalization on G subtracts �mSMG=Sði�Þ
from MG while KS operation of Eq. (15) subtracts

�mUV
S MG=Sði�Þ. Thus, after subtraction by theKS operation,

we are left with ð�mS � �mUV
S ÞMG=Sði�Þ, which has a linear

IR divergence because of divergent MG=Sði�Þ, except when
�mS ¼ �mUV

S . The easiest way to deal with this problem is

to subtract �mS entirely instead of only �mUV
S . We call this

R-subtraction, which is incorporated in GENCODEN.
The other IR divergence occurs when a self-energy-

like subdiagram S behaves as a magnetic moment am-
plitude. The remaining diagram T can be mimicked by
a vertex diagram by shrinking the subdiagram S to a
point. This divergence is only logarithmic and the sub-
traction term can be constructed by applying the

TABLE I. Contributions of diagrams M01;P2; . . . ;M24;P2 of Set IV to ae for ðl1l2Þ ¼ ðeeÞ. The
multiplicity nF is the number of vertex diagrams represented by the integral and is incorporated
in the numerical value. The first 50 iterations are carried out using 1� 108 sampling points per
iteration. The integrations are continued with 1� 109 sampling points per iteration and iterated
as given in the second number of the fifth column. The integrals M12;P2, M16;P2, and M18;P2 are

evaluated with quadruple precision. All other integrals are evaluated with double precision.

Integral nF Value (Error) including nF Sampling per iteration No. of iterations

M01;P2 28 �0:509 62ð38Þ 1� 108, 1� 109 50, 180

M02;P2 56 0.060 41(98) 1� 108, 1� 109 50, 200

M03;P2 28 0.829 28(60) 1� 108, 1� 109 50, 200

M04;P2 56 1.497 37(126) 1� 108, 1� 109 50, 360

M05;P2 56 0.130 36(46) 1� 108, 1� 109 50, 180

M06;P2 56 �1:084 60ð94Þ 1� 108, 1� 109 50, 220

M07;P2 56 �1:178 02ð48Þ 1� 108, 1� 109 50, 180

M08;P2 56 �1:415 81ð121Þ 1� 108, 1� 109 50, 360

M09;P2 56 �0:011 71 95ð Þ 1� 108, 1� 109 50, 360

M10;P2 56 �0:816 12 107ð Þ 1� 108, 1� 109 50, 360

M11;P2 28 0.768 73(48) 1� 108, 1� 109 50, 200

M12;P2 28 �1:631 37 37ð Þ 1� 108, 1� 109 50, 5

M13;P2 56 �2:353 59 45ð Þ 1� 108, 1� 109 50, 200

M14;P2 56 0.685 64(83) 1� 108, 1� 109 50, 200

M15;P2 56 0.461 55(43) 1� 108, 1� 109 50, 200

M16;P2 56 1.763 95(111) 1� 108, 1� 109 50, 25

M17;P2 56 3.290 90(120) 1� 108, 1� 109 50, 340

M18;P2 56 �0:052 73 53ð Þ 1� 108, 1� 109 50, 5

M19;P2 28 �1:403 73 6ð Þ 1� 108, 1� 109 50, 180

M20;P2 56 0.856 32(43) 1� 108, 1� 109 50, 180

M21;P2 28 0.360 89(5) 1� 108, 1� 109 50, 180

M22;P2 56 �0:743 60 46ð Þ 1� 108, 1� 109 50, 180

M23;P2 56 �1:120 08 90ð Þ 1� 108, 1� 109 50, 200

M24;P2 56 0.870 63(59) 1� 108, 1� 109 50, 200
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I-subtraction IT on the UV-finite amplitude MG, which is

shown to factorize as [20]

I TMG ¼ LR
T
MS; (16)

where LR
T

is the part of the vertex renormalization

constant LT that remains after all UV-divergent pieces
are subtracted out.

These operations, carried out for all divergent subdia-
grams of the unrenormalized integral MG, create a UV-

finite and IR-finite integral �MG. For a full account of

these operations see [19,20].
Since this scheme is different from the standard on-the-

mass-shell renormalization, it is necessary to make an
adjustment, called residual renormalization, which ac-
counts for the difference of the standard renormalization
and the UV-divergent (and IR-divergent) parts generated
by K-operation (and I/R-subtractions).

The residual renormalization terms of individual dia-
grams must then be summed up over all diagrams involved.
As the order of perturbation increases the total number of
terms contributing to the residual renormalization in-
creases rapidly so that it will become harder and harder
to manage. Fortunately, the sum of all residual terms can be
expressed concisely in terms of magnetic moments and
finite parts of renormalization constants of lower orders,

whose structure is closely related to that of the standard
on-the-mass-shell renormalization. This observation ena-
bles us to obtain the sum of residual renormalization terms
of all integrals starting from the expression of the standard
renormalization. This approach is described in detail in
Appendix A for the eighth-order g� 2 after simpler cases
of fourth- and sixth-orders are described for illustration of
our method.
Since diagrams of Set IVare obtained from the magnetic

moment contribution M8 of 518 eighth-order vertices of
four-photon-exchange type by inserting a second-order

TABLE II. Contributions of diagrams M25;P2; . . . ;M47;P2 of Set IV to ae for ðl1l2Þ ¼ ðeeÞ. The
multiplicity nF is the number of vertex diagrams represented by the integral and is incorporated
in the numerical value. All integrals are evaluated with double precision.

Integral nF Value (Error) including nF Sampling per iteration No. of iterations

M25;P2 28 �0:696 52ð25Þ 1� 108, 1� 109 50, 180

M26;P2 28 �0:432 10ð51Þ 1� 108, 1� 109 50, 200

M27;P2 56 1.120 35(87) 1� 108, 1� 109 50, 200

M28;P2 56 0.783 12(94) 1� 108, 1� 109 50, 240

M29;P2 28 1.495 00(92) 1� 108, 1� 109 50, 200

M30;P2 28 �0:850 74ð95Þ 1� 108, 1� 109 50, 200

M31;P2 28 2.297 81(13) 1� 108, 1� 109 50, 180

M32;P2 56 �2:675 78ð35Þ 1� 108, 1� 109 50, 180

M33;P2 28 �0:960 21ð6Þ 1� 108, 1� 109 50, 180

M34;P2 56 �0:967 04ð34Þ 1� 108, 1� 109 50, 180

M35;P2 56 �0:796 99ð36Þ 1� 108, 1� 109 50, 180

M36;P2 56 1.171 39(41) 1� 108, 1� 109 50, 180

M37;P2 28 0.709 94(13) 1� 108, 1� 109 50, 180

M38;P2 28 0.247 72(29) 1� 108, 1� 109 50, 200

M39;P2 56 �0:830 00ð30Þ 1� 108, 1� 109 50, 180

M40;P2 56 �0:499 07ð47Þ 1� 108, 1� 109 50, 200

M41;P2 28 �1:083 44ð71Þ 1� 108, 1� 109 50, 200

M42;P2 28 0.576 12(76) 1� 108, 1� 109 50, 200

M43;P2 28 �1:074 51ð41Þ 1� 108, 1� 109 50, 200

M44;P2 56 1.919 47(60) 1� 108, 1� 109 50, 200

M45;P2 28 0.011 51(37) 1� 108, 1� 109 50, 200

M46;P2 28 �0:588 88ð73Þ 1� 108, 1� 109 50, 200

M47;P2 28 �0:102 58ð65Þ 1� 108, 1� 109 50, 200

TABLE III. Residual renormalization constants needed for the

calculation of að10Þe ½Set IVðeeÞ�. Notations are those of Eq. (17).

Integral Value (error) Integral Value (error)

�M6;P2 1.014 060(30) �M6 0.425 820(14)

�M4;P2 �0:106 707 � � � �M4 0:030 833 � � �
M2;P2 0:015 687 � � � M2 0.5

�LB6;P2 0.351 54(93) �LB6 0.100 86(77)

�LB4;P2 �0:114 228 17ð Þ �LB4 0.027 930(27)

��m4;P2 0.679 769(15) ��m4 1.906 340(21)

�LB2;P2 0:063 399 � � � �LB2 0.75

�L2� ;P2 �0:023 531 � � � �L2� �0:75
�B2�;P2 0:047 062 � � � �B2� 1.5
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vacuum-polarization subdiagram in all possible ways, the
residual renormalization term of the Set IV is readily
derived from that of the residual renormalization term of
M8. Namely, insertion of a closed loop of the lepton l2 in

the internal photon lines of Group V diagrams of lepton l1
given in Eq. (A35) in all possible ways leads to the renor-
malized contribution of Set IV to the lepton g� 2 of the
form:

Að10Þ½SetIVðl1l2Þ�¼�Mðl1l2Þ
8;P2 �5�Mðl1l2Þ

6;P2 �LB2�5�M6�LB
ðl1l2Þ
2;P2 þ�Mðl1l2Þ

4;P2 ð�3�LB4þ9ð�LB2Þ2Þ
þ�M4ð�3�LBðl1l2Þ

4;P2 þ18�LB2�LB
ðl1l2Þ
2;P2 ÞþMðl1l2Þ

2;P2 ð��LB6þ6�LB4�LB2�5ð�LB2Þ3Þ
þM2ð��LBðl1l2Þ

6;P2 þ6�LBðl1l2Þ
4;P2 �LB2þ6�LB4�LB

ðl1l2Þ
2;P2 �15ð�LB2Þ2�LBðl1l2Þ

2;P2 Þ
þMðl1l2Þ

2;P2 ��m4ð4�L2� þ�B2� ÞþM2��m
ðl1l2Þ
4;P2 ð4�L2� þ�B2� ÞþM2��m4ð4�Lðl1l2Þ

2�;P2þ�Bðl1l2Þ
2�;P2Þ; (17)

where superscripts such as ðl1l1Þ and ðl2l2Þ are omitted for
terms which are independent of rest mass. See Appendix A
for the explanation of notations.

�Mðl1l2Þ
8;P2 is the sum of 74 WT-summed integrals en-

hanced by the insertion of vacuum-polarization-loop.
Each of these 74 integrals is finite by our construction.

Individual terms of residual renormalization are also UV-
and IR-finite by construction. Equation (17) thus maintains

that Að10Þ½Set IVðl1l2Þ�, which represents the quantity renor-
malized in the standard manner, can be expressed as the
sum of completely finite quantities, each of which can thus
be integrated by numerical means.

TABLE IV. Contributions of diagrams M01;P2; . . . ;M24;P2 of Set IV to ae for ðl1l2Þ ¼ ðemÞ.
The multiplicity nF is the number of vertex diagrams represented by the integral and is
incorporated in the numerical value. The integral M12;P2 is evaluated with quadruple precision.

All other integrals are evaluated with double precision.

Integral nF Value (Error) including nF Sampling per iteration No. of iterations

MðemÞ
01;P2 28 0.000 759(3) 1� 107, 1� 108 100, 20

MðemÞ
02;P2 56 0.000 205(8) 1� 107, 1� 108 100, 20

MðemÞ
03;P2 28 0.001 757(6) 1� 107, 1� 108 100, 20

MðemÞ
04;P2 56 0.001 170(15) 1� 107, 1� 108 100, 20

MðemÞ
05;P2 56 0.000 197(7) 1� 107, 1� 108 100, 20

MðemÞ
06;P2 56 �0:001 845 12ð Þ 1� 107, 1� 108 100, 20

MðemÞ
07;P2 56 �0:001 866 5ð Þ 1� 107, 1� 108 100, 20

MðemÞ
08;P2 56 0.000 922(11) 1� 107, 1� 108 100, 20

MðemÞ
09;P2 56 �0:001 077 16ð Þ 1� 107, 1� 108 100, 20

MðemÞ
10;P2 56 �0:001 316 9ð Þ 1� 107, 1� 108 100, 20

MðemÞ
11;P2 28 0.000 310(3) 1� 107, 1� 108 100, 20

MðemÞ
12;P2 28 0.000 822(1) 1� 107 20

MðemÞ
13;P2 56 �0:001 434 8ð Þ 1� 107, 1� 108 100, 20

MðemÞ
14;P2 56 0.000 301(10) 1� 107, 1� 108 100, 20

MðemÞ
15;P2 56 0.000 141(5) 1� 107, 1� 108 100, 20

MðemÞ
16;P2 56 0.000 920(8) 1� 107, 1� 108 100, 20

MðemÞ
17;P2 56 0.002 263(14) 1� 107, 1� 108 100, 20

MðemÞ
18;P2 56 0.000 285(4) 1� 107, 1� 108 100, 20

MðemÞ
19;P2 28 �0:001 671 1ð Þ 1� 107, 1� 108 100, 20

MðemÞ
20;P2 56 0.000 738(12) 1� 107, 1� 108 100, 20

MðemÞ
21;P2 28 0.000 210(1) 1� 107, 1� 108 100, 20

MðemÞ
22;P2 56 0.000 880(8) 1� 107, 1� 108 100, 20

MðemÞ
23;P2 56 0.000 105(27) 1� 107, 1� 108 100, 20

MðemÞ
24;P2 56 0.000 371(11) 1� 107, 1� 108 100, 20
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TABLE V. Contributions of diagramsM25;P2; . . . ;M47;P2 of Set IV to ae for ðl1l2Þ ¼ ðemÞ. The
multiplicity nF is the number of vertex diagrams represented by the integral and is incorporated
in the numerical value. All integrals are evaluated with double precision.

Integral nF Value (Error) including nF Sampling per iteration No. of iterations

MðemÞ
25;P2 28 �0:001 089 4ð Þ 1� 107, 1� 108 100, 20

MðemÞ
26;P2 28 0.000 247(3) 1� 107, 1� 108 100, 20

MðemÞ
27;P2 56 0.001 937(15) 1� 107, 1� 108 100, 20

MðemÞ
28;P2 56 0.000 000(8) 1� 107, 1� 108 100, 20

MðemÞ
29;P2 28 0.000 786(10) 1� 107, 1� 108 100, 20

MðemÞ
30;P2 28 0.000 014(4) 1� 107, 1� 108 100, 20

MðemÞ
31;P2 28 0.001 088(3) 1� 107, 1� 108 100, 20

MðemÞ
32;P2 56 �0:002 282 9ð Þ 1� 107, 1� 108 100, 20

MðemÞ
33;P2 28 0.000 774(1) 1� 107, 1� 108 100, 20

MðemÞ
34;P2 56 �0:001 448 7ð Þ 1� 107, 1� 108 100, 20

MðemÞ
35;P2 56 0.000 296(8) 1� 107, 1� 108 100, 20

MðemÞ
36;P2 56 0.001 241(8) 1� 107, 1� 108 100, 20

MðemÞ
37;P2 28 0.000 421(3) 1� 107, 1� 108 100, 20

MðemÞ
38;P2 28 0.000 563(3) 1� 107, 1� 108 100, 20

MðemÞ
39;P2 56 0.000 892(5) 1� 107, 1� 108 100, 20

MðemÞ
40;P2 56 0.000 409(3) 1� 107, 1� 108 100, 20

MðemÞ
41;P2 28 0.000 775(7) 1� 107, 1� 108 100, 20

MðemÞ
42;P2 28 0.000 079(4) 1� 107, 1� 108 100, 20

MðemÞ
43;P2 28 0.000 246(11) 1� 107, 1� 108 100, 20

MðemÞ
44;P2 56 0.000 546(10) 1� 107, 1� 108 100, 20

MðemÞ
45;P2 28 0.000 117(2) 1� 107, 1� 108 100, 20

MðemÞ
46;P2 28 0.000 674(8) 1� 107, 1� 108 100, 20

MðemÞ
47;P2 28 0.000 203(4) 1� 107, 1� 108 100, 20

TABLE VI. Residual renormalization constants needed for the calculation of the mass-
dependent contributions from Set IV diagrams. Notations are those of Eq. (17).

Integral Value (error) Integral Value (error)

�MðemÞ
6;P2 0.000 721 65(94) �MðemÞ

4;P2 �0:000 018 910ð26Þ
MðemÞ

2;P2 0.000 000 519 762(21)

�LBðemÞ
6;P2 0.000 705(12) �LBðemÞ

4;P2 �0:000 079 83ð10Þ
��mðemÞ

4;P2 0.000 255 64(5) �LBðemÞ
2;P2 0.000 009 405 25(83)

�LðemÞ
2� ;P2 �0:000 000 779 612ð11Þ �BðemÞ

2� ;P2 0.000 001 559 224(19)

�MðmeÞ
6;P2 5.374 0(45) �MðmeÞ

4;P2 �0:628 832 � � �
MðmeÞ

2;P2 1:094 258 � � �
�LBðmeÞ

6;P2 1.4763(33) �LBðmeÞ
4;P2 �0:308 75 32ð Þ

��mðmeÞ
4;P2 11.151 39(32) �LBðmeÞ

2;P2 1.885 733(16)

�LðmeÞ
2� ;P2 �1:641 436 54ð Þ �BðmeÞ

2� ;P2 3.282 872(107)

�MðmtÞ
6;P2 0.038 01(14) �MðmtÞ

4;P2 �0:001 641 9ð18Þ
MðmtÞ

2;P2 0.000 078 067 4(31)

�LBðmtÞ
6;P2 0.023 97(29) �LBðmtÞ

4;P2 �0:004 155 7ð45Þ
��mðmtÞ

4;P2 0.015 483(25) �LBðmtÞ
2;P2 0.000 831 107(75)

�LðmtÞ
2� ;P2 �0:000 117 097 0ð15Þ �BðmtÞ

2� ;P2 0.000 234(1)

TENTH-ORDER QED LEPTON ANOMALOUS MAGNETIC . . . PHYSICAL REVIEW D 85, 033007 (2012)

033007-7



We should like to emphasize that Eq. (17) is analytically
exact and involves no approximation as far as the subtrac-
tion term factorizes exactly as in Eqs. (14)–(16).

IV. NUMERICAL EVALUATION OF Að10Þ
1 ½Set IV�

�M�;P2, which is made UV-finite by K-operation and

IR-finite by I/R-subtractions, is integrated numerically by
the adaptive Monte Carlo integration routine VEGAS [34].
The result for ðl1l2Þ ¼ ðeeÞ are listed in Tables I and II.
Auxiliary quantities needed for carrying out the residual
renormalization are listed in Table III. Notations are those
of Eq. (17). Substituting these quantities in Eq. (17) we
obtain

Að10Þ
1 ½Set IVðeeÞ� ¼ �7:7296ð48Þ: (18)

V. NUMERICAL EVALUATION OF Að10Þ
2 ðme=m�Þ

AND Að10Þ
2 ðme=m�Þ

Once FORTRAN programs for mass-independent
contributions are obtained, it is straightforward to evaluate
the contribution of mass-dependent terms such as

Að10Þ
2 ðme=m�Þ. We simply have to choose an appropriate

rest mass for the loop fermion l2. The result for

Að10Þ
2 ðme=m�Þ is listed in Tables IV and V. From these

Tables and the additional data listed in Table VI we obtain

Að10Þ
2 ½Set IVðemÞ� ¼ �0:011 36ð7Þ: (19)

We have also computed the contribution of tau-particle

loop Að10Þ
2 ðme=m�Þ, which we give without details:

Að10Þ
2 ½Set IVðetÞ� ¼ �0:000 093 7ð502Þ: (20)

TABLE VII. Contributions of diagrams M01;P2; . . . ;M24;P2 of Set IV to a� for ðl1l2Þ ¼ ðmeÞ.
The multiplicity nF is the number of vertex diagrams represented by the integral and is
incorporated in the numerical value. The integrals M12;P2, M16;P2, and M18;P2 are evaluated

with quadruple precision. All other integrals are evaluated with double precision.

Integral nF Value (Error) including nF Sampling per iteration No. of iterations

MðmeÞ
01;P2 28 �0:3695 130ð Þ 1� 108, 1� 109 80, 48

MðmeÞ
02;P2 56 �8:2232 308ð Þ 1� 108, 1� 109 80, 140

MðmeÞ
03;P2 28 �3:9866 230ð Þ 1� 108, 1� 109 80, 80

MðmeÞ
04;P2 56 46.4292(587) 1� 108, 1� 109 80, 156

MðmeÞ
05;P2 56 19.8039(105) 1� 108, 1� 109 80, 48

MðmeÞ
06;P2 56 �11:6148 211ð Þ 1� 108, 1� 109 80, 80

MðmeÞ
07;P2 56 �0:5583 129ð Þ 1� 108, 1� 109 80, 72

MðmeÞ
08;P2 56 �48:8777 420ð Þ 1� 108, 1� 109 80, 130

MðmeÞ
09;P2 56 4.8172(310) 1� 108, 1� 109 80, 140

MðmeÞ
10;P2 56 18.2915(459) 1� 108, 1� 109 80, 156

MðmeÞ
11;P2 28 21.3377(299) 1� 108, 1� 109 80, 100

MðmeÞ
12;P2 28 �56:9676 174ð Þ 1� 108, 1� 109 50, 20

MðmeÞ
13;P2 56 �61:8038 142ð Þ 1� 108, 1� 109 80, 48

MðmeÞ
14;P2 56 21.1472(238) 1� 108, 1� 109 80, 80

MðmeÞ
15;P2 56 7.6399(138) 1� 108, 1� 109 80, 72

MðmeÞ
16;P2 56 62.9548(414) 1� 108, 1� 109 50, 35

MðmeÞ
17;P2 56 62.8236(412) 1� 108, 1� 109 80, 156

MðmeÞ
18;P2 56 �44:1911 207ð Þ 1� 108, 1� 109 50, 30

MðmeÞ
19;P2 28 �12:0571 14ð Þ 1� 108, 1� 109 80, 40

MðmeÞ
20;P2 56 9.2817(84) 1� 108, 1� 109 80, 48

MðmeÞ
21;P2 28 4.3590(12) 1� 108, 1� 109 80, 40

MðmeÞ
22;P2 56 �2:9342 105ð Þ 1� 108, 1� 109 80, 48

MðmeÞ
23;P2 56 �44:4314 185ð Þ 1� 108, 1� 109 80, 72

MðmeÞ
24;P2 56 19.3965(175) 1� 108, 1� 109 80, 72
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The contribution of the muon loop (19) is about 0.13%
of the electron loop contribution (18), while the contribu-
tion of the tau-lepton loop (20) is much smaller than the
uncertainty of (18) and hence completely negligible at
present.

VI. CONTRIBUTION TO THE MUON g� 2

The muon g� 2 also receives contributions from the Set
IV. The contributions coming from the electron loop
ðl1l2Þ ¼ ðmeÞ are listed in Tables VII and VIII. Auxiliary
quantities needed to carry out the residual renormalization
are listed in Table VI. From these quantities we obtain

Að10Þ
2 ½Set IVðmeÞ� ¼ �38:79ð17Þ: (21)

We also obtained the contribution of the tau-lepton loop

Að10Þ
2 ðme=m�Þ. The result is listed in Tables IX and X. From

these Tables and the additional data listed in Table VI we
obtain

Að10Þ
2 ½Set IVðmtÞ� ¼ �0:4357ð25Þ: (22)

Including the mass-independent contribution (18), the total
contribution to the muon g� 2 amounts to

Að10Þ
2 ½Set IVðmeþmmþmtÞ� ¼ �46:95ð17Þ: (23)

VII. DISCUSSION

Since the reliability of the eighth-order term M8 is
crucial for the validity of our work on the Set IV, let us
sketch briefly how we established the validity of M8. See
[5] for detailed accounts. Our approach was to evaluate the
diagrams contributing toM8 in two independent ways. The
first method is to apply the scheme formulated more than
30 years ago [33]. The revised numerical evaluation by this
formulation was reported recently [4,5]. The second ap-
proach relies on the FORTRAN codes written by the auto-
matic code-generator GENCODEN [19,20]. This method
treats the self-mass-renormalization terms and IR-
divergent terms differently from the first method so that
they can be regarded as practically independent of each
other. Comparison of the results of these two methods
revealed that the first one had a subtle inconsistency in

TABLE VIII. Contributions of diagrams M25;P2; . . . ;M47;P2 of Set IV to a� for ðl1l2Þ ¼ ðmeÞ.
The multiplicity nF is the number of vertex diagrams represented by the integral and is
incorporated in the numerical value. All integrals are evaluated with double precision.

Integral nF Value (Error) including nF Sampling per iteration No. of iterations

MðmeÞ
25;P2 28 �1:1481 73ð Þ 1� 108, 1� 109 80, 40

MðmeÞ
26;P2 28 �13:5725 177ð Þ 1� 108, 1� 109 80, 80

MðmeÞ
27;P2 56 11.5108(246) 1� 108, 1� 109 80, 80

MðmeÞ
28;P2 56 36.5100(394) 1� 108, 1� 109 80, 156

MðmeÞ
29;P2 28 36.4212(298) 1� 108, 1� 109 80, 88

MðmeÞ
30;P2 28 �43:6751 402ð Þ 1� 108, 1� 109 80, 156

MðmeÞ
31;P2 28 35.5470(22) 1� 108, 1� 109 80, 40

MðmeÞ
32;P2 56 �30:7686 60ð Þ 1� 108, 1� 109 80, 40

MðmeÞ
33;P2 28 �14:3283 11ð Þ 1� 108, 1� 109 80, 40

MðmeÞ
34;P2 56 8.1123(66) 1� 108, 1� 109 80, 40

MðmeÞ
35;P2 56 �7:2638 65ð Þ 1� 108, 1� 109 80, 40

MðmeÞ
36;P2 56 3.4147(87) 1� 108, 1� 109 80, 48

MðmeÞ
37;P2 28 7.8206(24) 1� 108, 1� 109 80, 40

MðmeÞ
38;P2 28 �16:2525 81ð Þ 1� 108, 1� 109 80, 48

MðmeÞ
39;P2 56 �7:6445 78ð Þ 1� 108, 1� 109 80, 40

MðmeÞ
40;P2 56 2.8190(158) 1� 108, 1� 109 80, 72

MðmeÞ
41;P2 28 �25:7775 194ð Þ 1� 108, 1� 109 80, 72

MðmeÞ
42;P2 28 26.5040(291) 1� 108, 1� 109 80, 88

MðmeÞ
43;P2 28 �29:8520 100ð Þ 1� 108, 1� 109 80, 48

MðmeÞ
44;P2 56 37.4608(173) 1� 108, 1� 109 80, 72

MðmeÞ
45;P2 28 9.7351(173) 1� 108, 1� 109 80, 72

MðmeÞ
46;P2 28 8.3999(213) 1� 108, 1� 109 80, 80

MðmeÞ
47;P2 28 �22:4101 284ð Þ 1� 108, 1� 109 80, 104
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the handling of some IR-subtraction terms. Correcting this
error we now have two independent evaluations of M8

which agree with each other within the precision of nu-
merical integration [5].

Although we have not shown the analytic equivalence of
the two methods directly, we are fully convinced that they
are indeed equivalent by proving that they agree to 13 or 14
digits (in double precision) at all arbitrarily chosen points
in the domain of integration. Only last few digits disagree
due to difference in rounding off.

The validity of integrals of Set IV relies on the fact that
two versions of M8 agree completely with each other. As
was noted in Sec. II we actually used only the second
version of M8 to build integrals of tenth-order diagrams
of Set IV, because of a technical problem in the first
version. However, we are convinced that the integrals of
Set IV are indeed bug-free.

As is seen from (21) the contribution of Set IV to the
muon g� 2 is sizable, which is not unexpected. This is

because the order of magnitude of the contribution of the
dominant ðmeÞ term can be readily estimated, noting that
the leading lnðm�=meÞ term is determined by the charge

renormalization procedure. This leads to

Að10Þ
2 ½Set IVðmeÞ� � 4K2a

ð8Þ
e ½GroupV� � �31:0 (24)

where the factor 4 comes from the number of virtual

photon lines of að8Þe ½GroupV� into which a vacuum-

polarization loop can be inserted, að8Þe ½GroupV� ’
�2:179ð3Þ [4,5], and the enhancement factor [3]

K2 � 2
3 lnðm�=meÞ � 3:6: (25)

The value (24) may be regarded as a fair approximation
to (21).
By now we have evaluated the complete set of tenth-

order diagrams containing vacuum-polarization subdia-
grams [3,21–27]. (Note that the remaining sets have no

TABLE IX. Contributions of diagrams M01;P2; . . . ;M24;P2 of Set IV to a� for ðl1l2Þ ¼ ðmtÞ.
The multiplicity nF is the number of vertex diagrams represented by the integral and is
incorporated in the numerical value. The integral M12;P2 is evaluated with quadruple precision.

All other integrals are evaluated with double precision.

Integral nF Value (Error) including nF Sampling per iteration No. of iterations

MðmtÞ
01;P2 28 �0:026 89 15ð Þ 1� 107 100

MðmtÞ
02;P2 56 �0:002 06 37ð Þ 1� 107 100

MðmtÞ
03;P2 28 0.051 83(23) 1� 107 100

MðmtÞ
04;P2 56 0.049 99(55) 1� 107 100

MðmtÞ
05;P2 56 �0:011 20 29ð Þ 1� 107 100

MðmtÞ
06;P2 56 �0:060 08 52ð Þ 1� 107 100

MðmtÞ
07;P2 56 �0:065 38 24ð Þ 1� 107 100

MðmtÞ
08;P2 56 �0:038 51 55ð Þ 1� 107 100

MðmtÞ
09;P2 56 �0:026 52 62ð Þ 1� 107 100

MðmtÞ
10;P2 56 �0:050 11 44ð Þ 1� 107 100

MðmtÞ
11;P2 28 0.016 61(16) 1� 107 100

MðmtÞ
12;P2 28 �0:037 85 2ð Þ 1� 107 50

MðmtÞ
13;P2 56 �0:060 34 30ð Þ 1� 107 100

MðmtÞ
14;P2 56 0.000 86(43) 1� 107 100

MðmtÞ
15;P2 56 0.009 38(23) 1� 107 100

MðmtÞ
16;P2 56 0.040 26(49) 1� 107 100

MðmtÞ
17;P2 56 0.101 13(62) 1� 107 100

MðmtÞ
18;P2 56 0.011 93(28) 1� 107 100

MðmtÞ
19;P2 28 �0:063 10 5ð Þ 1� 107 100

MðmtÞ
20;P2 56 0.029 21(37) 1� 107 100

MðmtÞ
21;P2 28 0.007 11(4) 1� 107 100

MðmtÞ
22;P2 56 �0:034 71 33ð Þ 1� 107 100

MðmtÞ
23;P2 56 �0:008 27 68ð Þ 1� 107 100

MðmtÞ
24;P2 56 0.022 23(39) 1� 107 100
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vacuum-polarization loop.) In particular its ðmeÞ contribu-
tion to the muon g� 2, namely, all sets excluding light-by-
light scattering loops, is given by

Að10Þ
2 ½All sets excluding l-l loops�ðmeÞ ’ 48:88ð19Þ: (26)

This may be compared with the corresponding result

�ðIÞ
ð10Þ ’ 32 obtained by an estimate based on the renormal-

ization group method [35].
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APPENDIX A: SUMMING UP RESIDUAL
RENORMALIZATION TERMS

The purpose of this appendix is to obtain the sum of
residual renormalization terms of the Set IV. Since dia-
grams of Set IV have exact correspondence with the dia-
grams of Group Vof the eighth-order g� 2, however, it is
simpler to consider the residual renormalization of the
diagrams of Group V, from which the residual renormal-
ization of the Set IV can be readily derived.
In our approach integrals of individual diagrams must be

made convergent before they are integrated numerically.
This is achieved by constructing terms which subtract
UV-divergent parts by K-operation and IR-divergent parts
by I/R-subtractions. Since this scheme is different from the
standard on-shell renormalization, it is necessary to make
an adjustment, called residual renormalization. Residual
renormalization terms of individual diagrams must then be
summed up over all diagrams involved.

TABLE X. Contributions of diagramsM25;P2; . . . ;M47;P2 of Set IV to a� for ðl1l2Þ ¼ ðmtÞ. The
multiplicity nF is the number of vertex diagrams represented by the integral and is incorporated
in the numerical value. All integrals are evaluated with double precision.

Integral nF Value (Error) including nF Sampling per iteration No. of iterations

MðmtÞ
25;P2 28 �0:039 19 15ð Þ 1� 107 100

MðmtÞ
26;P2 28 �0:010 15 17ð Þ 1� 107 100

MðmtÞ
27;P2 56 0.060 33(53) 1� 107 100

MðmtÞ
28;P2 56 0.006 03(36) 1� 107 100

MðmtÞ
29;P2 28 0.037 86(34) 1� 107 100

MðmtÞ
30;P2 28 �0:005 19 24ð Þ 1� 107 100

MðmtÞ
31;P2 28 0.056 43(12) 1� 107 100

MðmtÞ
32;P2 56 �0:096 26 30ð Þ 1� 107 100

MðmtÞ
33;P2 28 �0:030 72 5ð Þ 1� 107 100

MðmtÞ
34;P2 56 �0:060 57 25ð Þ 1� 107 100

MðmtÞ
35;P2 56 �0:025 98 31ð Þ 1� 107 100

MðmtÞ
36;P2 56 0.050 76(32) 1� 107 100

MðmtÞ
37;P2 28 0.019 70(10) 1� 107 100

MðmtÞ
38;P2 28 0.021 52(14) 1� 107 100

MðmtÞ
39;P2 56 �0:034 44 21ð Þ 1� 107 100

MðmtÞ
40;P2 56 �0:018 44 21ð Þ 1� 107 100

MðmtÞ
41;P2 28 �0:033 08 28ð Þ 1� 107 100

MðmtÞ
42;P2 28 0.006 74(25) 1� 107 100

MðmtÞ
43;P2 28 �0:016 64 36ð Þ 1� 107 100

MðmtÞ
44;P2 56 0.039 39(35) 1� 107 100

MðmtÞ
45;P2 28 0.002 23(14) 1� 107 100

MðmtÞ
46;P2 28 �0:028 76 34ð Þ 1� 107 100

MðmtÞ
47;P2 28 �0:004 02 21ð Þ 1� 107 100
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As the order of perturbation increases the total number
of terms contributing to the residual renormalization in-
creases rapidly so that it will become harder and harder to
manage. Fortunately the sum of all residual terms can be
expressed concisely in terms of magnetic moments and
finite parts of renormalization constants of lower orders
[5], and the sum has a structure closely related to that of
the standard on-shell renormalization. This enables us
to confirm the validity of the sum of residual renormaliza-
tion terms starting from the expression of the standard
renormalization.

To see this relation clearly it is useful to treat UV-
divergence and IR-divergence separately. We present the
logic of our approach for the fourth-, sixth-, and eighth-
order cases, in that order. We deal here only with Ward-
Takahashi(WT)-summed diagrams of q-type, namely,
diagrams without closed lepton loops. Thus M2n and a2n,
n ¼ 1; 2; � � � , refer to unrenormalized and renormalized
amplitudes of such diagrams, respectively.

Our discussion here follows the scheme incorporated in
the automatic code generator GENCODEN, which is appli-
cable to any value of the order N.

1. Fourth-order case

The standard renormalization of the fourth-order mag-
netic moment a4 can be expressed in the form

a4 ¼ M4 � 2L2M2 � B2M2 � �m2M2� ; (A1)

where M2 is the second-order magnetic moment, M2� is
obtained from M2 by inserting a two-point vertex in the
lepton line of M2, and M4 is the sum of unrenormalized
WT-summed amplitudes M4a and M4b:

M4 � M4a þM4b; (A2)

where 4a and 4b refer to the fourth-order diagrams in
which two virtual photons are crossed and uncrossed,
respectively. The coefficients of renormalization constants
L2 and B2 in Eq. (A1) reflect the fact that M4a is obtained
by inserting a second-order vertex diagram in two vertices
of M2 and M4b is obtained by inserting a second-order
self-energy diagram in the electron line of M2.

a. Separation of UV divergences by the K-operation

M4 has no overall UV divergence. However, it has UV
divergences coming from subdiagrams. Applying K-
operation on these divergences we obtain

M4 ¼ BUV
2 M2 þ �mUV

2 M2� þ 2LUV
2 M2 þMR

4 ; (A3)

where the superscript R in MR
4 means that all subdiagram

UV divergences are removed from M4. L
UV
2 and BUV

2 are

the UV-divergent parts separated out from L2 and B2 by the
K-operation and LR

2 and BR
2 are UV-finite (but IR-

divergent) remainders:

L2 ¼ LUV
2 þ LR

2 ; B2 ¼ BUV
2 þ BR

2 ;

�m2 ¼ �mUV
2 : (A4)

�mR
2 ¼ 0 is the specific feature of the K-operation for the

second-order self-energy diagram.
Substituting Eqs. (A3) and (A4) in Eq. (A1) we obtain

a4 ¼ MR
4 �M2ð2LR

2 þ BR
2 Þ: (A5)

Note that the coefficients of LR
2 and BR

2 in Eq. (A5) inherit
the coefficients of L2 and B2 in Eq. (A1).

b. Separation of IR divergences by
the I/R-subtraction

The second-order mass renormalization is completely
carried out and no remainder is left in the K-operation. The
R-subtraction, then, is not applied by GENCODEN in the
case of the fourth order. IR divergence is caused by a
photon spanning over a self-energy-like subdiagram which
actually represents a lower-order magnetic moment. This
magnetic moment can be effectively represented by a
three-point vertex between one photon and two electrons.
Thus, the UV-finite term MR

4 must have an IR-singular
structure which is similar to that of the vertex renormal-
ization constant LR

2 :

MR
4 ¼ M2L

R
2 þ�M4; (A6)

where M2 comes from the second-order self-energy sub-
diagram of M4b and LR

2 appears by replacing the M2 self-
energy subdiagram by a point vertex.
The IR-divergence is also found in the vertex and wave-

function renormalization constants. The WT-identity

L2 þ B2 ¼ 0 (A7)

guarantees that L2 and B2 have the same, but opposite in
sign, IR singularity. This enables us to separate the IR-
singular and finite terms of LR

2 and BR
2 as follows:

LR
2 ¼ I2 þ �L2; BR

2 ¼ �I2 þ �B2; (A8)

where I2 is IR-singular but its finite part is undetermined.
The finite terms�L2 and�B2 depend on how we define I2.
For instance, in [32], the I-operation was defined so that
I2 ¼ LR

2 ¼ lnð�=mÞ þ 5=4, where � is the photon mass.
The sum LR

2 þ BR
2 , however, does not depend on the defi-

nition of I2. We find that

�LB2 � LR
2 þ BR

2 ¼ �L2 þ �B2 ¼ 3
4: (A9)

In other words, the finite quantity �LB2 is determined by
how we extract UV divergence by the K-operation from
each of L2 and B2:
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LUV
2 þ BUV

2 ¼ �3
4: (A10)

Substituting Eqs. (A6) and (A8) in Eq. (A5), one can
express a4 defined by the standard renormalization as a
sum of finite terms only:

a4 ¼ �M4 �M2�LB2: (A11)

2. Sixth-order case

The sixth-order magnetic moment a6 has contributions
from ten diagrams, each of which represents the sum of
five vertex diagrams transformed with the help of the WT-
identity. In the standard renormalization it can be written in
terms of unrenormalized amplitudes M6, M4, etc., and
various renormalization constants as

a6 ¼ M6 �M4ð3B2 þ 4L2Þ �M4��m2 �M2ðB4 þ 2L4Þ
�M2��m4 þM2f2ðB2Þ2 þ 8B2L2 þ 7ðL2Þ2g
þM2� ð3B2 þ 4L2Þ�m2 þM2ðB2� þ 4L2� Þ�m2

þM2��m2�m2� þM2�� ð�m2Þ2; (A12)

whereM4 is defined by Eq. (A2),M2�� is obtained fromM2

by inserting two two-point vertices in the lepton line ofM2,
and

M6¼
XH
i¼A


iM6i;
i¼1except that
D¼
G¼2;

M4� ¼
X3
i¼1

ðM4aði�Þ þM4bði�ÞÞ; B4¼B4aþB4b;

L4¼
X3
i¼1

ðL4aðiÞ þL4bðiÞÞ; �m4¼�m4aþ�m4b: (A13)

M4aði�Þ is obtained from M4a (which contains three lepton

lines 1, 2, 3) by inserting a two-point vertex in the lepton
line i of M4a, and L4aðiÞ is the vertex renormalization

constant of the diagram in which an external vertex is
inserted in the lepton line i of the diagram 4a. Similar
notation is applied for the diagrams built from 4b.

The coefficient ofM4 in Eq. (A12) can be readily under-
stood noting that the fourth-order self-energy diagrams
M4a and M4b have three fermion lines into which
second-order self-energy can be inserted and four vertices
into which second-order vertex can be inserted. Similarly,
there are one fermion line and two vertices in the second-
order self-energy diagramM2 into which we can insert a B4

or a L4, which leads to �M2ðB4 þ 2L4Þ. The term
M2f2ðB2Þ2 þ 8B2L2 þ 7ðL2Þ2g comes from two ways of
inserting B2 in M2 (one disjoint and one nested relations
of two B2’s [19]), eight ways of inserting one L2 and one
B2 in M2 (two disjoint, two overlapping, and four nested
relations of L2 and B2), and seven ways of inserting two L2

in M2 (one disjoint, four overlapping, and two nested
relations of two L2’s). There is only one way to insert
�m4 in M2 and �m2 in B2 of M2B2. There are three ways

to insert �m2 inM4, but the coefficient three is included in
the definition of M4� . There are four ways to insert �m2 in
L2 of M2L2. The coefficients of other terms can be under-
stood in a similar fashion.

a. Separation of UV divergences by the K-operation

Analysis of the UV-divergence structure of M6, L4, B4,
and �m4 by the K-operation leads to

M6 ¼ MR
6 þM4ð3BUV

2 þ 4LUV
2 Þ þM4��m2

þM2ðBUV
4 þ 2LUV

4 Þ þM2��m
UV
4

�M2fðBUV
2 Þ2 þ BUV

2 BUV
20 þ 4BUV

2 LUV
2 þ 4BUV

2 LUV
20

þ 7ðLUV
2 Þ2g �M2� ð2BUV

2 þ 4LUV
2 Þ�m2

�M2�B
UV
2 �mUV

20 �M2��m
UV
2� �m2 �M2�� ð�m2Þ2;

(A14)

where

MR
6 ¼

XH
i¼A


iM
R
6i; 
i¼1except that
D¼
G¼2; (A15)

is the UV-finite part of M6. UV-divergent parts of L4, B4,
and �m4 are separated as follows:

L4 ¼ LUV
4 þ 3LUV

2 LR
2 þ 2BUV

2 LR
20 þ 2�m2L2� þ LR

4 ;

B4 ¼ BUV
4 þ 2LUV

2 BR
2 þ BUV

2 BR
20 þ �m2B2� þ BR

4 ;

�m4 ¼ �mUV
4 þ �m2�m

R
2� þ BUV

2 �mR
20 þ �mR

4 : (A16)

MR
4 is defined in Eq. (A3), and LUV

2 and BUV
2 are defined in

Eq. (A4).
Substituting Eqs. (A14), (A3), (A16), and (A4) in

Eq. (A12) in this order, we obtain a6 expressed by UV-
finite quantities only:

a6¼MR
6 �MR

4 ð3BR
2 þ4LR

2 Þ�M2ðBR
4 þ2LR

4 Þ
�M2��m

R
4 þM2f2ðBR

2 Þ2þ8BR
2L

R
2 þ7ðLR

2 Þ2g: (A17)

Note that this equation has exactly the same structure as
Eq. (A12), although it looks simpler because �mR

2 ¼ 0 in
the K-operation. This is what one would expect since, in
Eq. (A12), all UV-divergent quantities must cancel out,
leaving only UV-finite pieces with their original numerical
coefficients.

b. Separation of IR divergences by the I/R-subtraction

Since Eq. (A17) has no linearly IR-divergent term
caused by the self-mass term, there is no need to invoke
the R-subtraction. We, however, retain the R-subtraction
that is incorporated in GENCODEN. Quantities obtained
above can be expressed as the sum of logarithmically
IR-divergent pieces defined by the I-subtraction and
finite remainders together with the residual mass-
renormalization term defined by the R-subtraction:

TENTH-ORDER QED LEPTON ANOMALOUS MAGNETIC . . . PHYSICAL REVIEW D 85, 033007 (2012)

033007-13



MR
6 ¼ LR

4M2 � ðLR
2 Þ2M2 þ LR

2M
R
4 þ �mR

4M2� þ �M6;

LR
4 ¼ I4 þ ðLR

2 Þ2 þ �L4; BR
4 ¼ �I4 þ LR

2B
R
2 þ �B4;

(A18)

where IR-divergent terms are contained in LR
2 , B

R
2 and I4

term. The WT-identity guarantees that L4 and B4 have the
same overall IR-divergence which we call I4. In the
previous work [32] the I4 is chosen as the sum of non-
contraction terms I4aðiÞ of the vertex renormalization con-

stants L4aðiÞ:

I4� I4að1ÞþI4að2ÞþI4að3Þ þI4bð1ÞþI4bð2ÞþI4bð3Þ: (A19)

The finite quantities �L4 and �B4 depend on how I4 is
defined. But the sum of LR

4 þ BR
4 is independent from the

definition of I4. Therefore, we introduce the finite quantity
�LB4 by

�LB4 � LR
4 þ BR

4 � LR
2�LB2 ¼ �L4 þ�B4: (A20)

Note that the value of �LB4 is unambiguously determined
by our choice of LUV

4 and BUV
4 in the K-operation and by

the WT-identity L4 þ B4 ¼ 0.
Substituting Eqs. (A18), (A20), (A6), and (A9) in

Eq. (A17) in this order, we obtain a6 of standard renor-
malization as the sum of finite terms only

a6 ¼ �M6 � 3�M4�LB2 þM2f��LB4 þ 2ð�LB2Þ2g:
(A21)

3. Eighth-order case

The eighth-order magnetic moment a8 has contributions
from 74 WT-summed diagrams. In the standard renormal-
ization the renormalized moment a8 can bewritten in terms
of unrenormalized amplitudes M8, M6, M4, etc., and vari-
ous renormalization constants as

a8 ¼ M8 �M6ð5B2 þ 6L2Þ �M6��m2 þM4f�3B4 � 4L4 þ 9ðB2Þ2 þ 26B2L2 þ 18ðL2Þ2 þ �m2ð3B2� þ 8L2� Þg
þM4� f�m2ð5B2 þ 6L2Þ þ �m2�m2� � �m4g þM4�� ð�m2Þ2 þM2f�B6 � 2L6 þ 12L4B2 þ 18L4L2 þ 6B4B2

þ 10B4L2 � 54B2ðL2Þ2 � 30ðB2Þ2L2 � 5ðB2Þ3 � 30ðL2Þ3g þM2�m4ðB2� þ 4L2� Þ þM2�m2ðB4� þ 2L4� � 6B2B2�

� 24B2L2� � 10B2�L2 � 36L2L2� Þ �M2�m2�m2� ðB2� þ 4L2� Þ �M2ð�m2Þ2ðB2�� þ 4L2��y þ 2L2�y� Þ
þM2��m2f3B4 þ 4L4 þ �m4� � 26B2L2 � 9ðB2Þ2 � 18ðL2Þ2g �M2��m6 þM2��m4ð5B2 þ 6L2 þ �m2� Þ
�M2� ð�m2Þ2ð3B2� þ 8L2� þ �m2�� Þ �M2��m2�m2� ð5B2 þ 6L2Þ �M2��m2ð�m2� Þ2
þM2���m2f2�m4 � �m2ð5B2 þ 6L2 þ 2�m2� Þg �M2��� ð�m2Þ3: (A22)

M8 is defined by

M8 ¼
X47
�¼01


�M�; (A23)

where 
� ¼ 1 for time-reversal-symmetric diagrams and 
� ¼ 2 for others.

a. Separation of UV divergences by the K-operation

The UV-divergence structure of M8 is given by

M8 ¼ MR
8 þM6ð5BUV

2 þ 6LUV
2 Þ þM6��m2 þM4f3BUV

4 þ 4LUV
4 � 3BUV

2 BUV
20 � 6ðBUV

2 Þ2 � 18BUV
2 LUV

2

� 8BUV
2 LUV

20 � 18ðLUV
2 Þ2g þM4� ð�mUV

4 � BUV
2 �mUV

20 � 4�m2B
UV
2 � 6�m2L

UV
2 � �m2�m

UV
2� Þ �M4�� ð�m2Þ2

þM2fBUV
6 þ 2LUV

6 � 2BUV
4 BUV

2 � 6BUV
4 LUV

2 � BUV
4 BUV

20 � 4BUV
4 LUV

20 � 4LUV
4 BUV

2 � 18LUV
4 LUV

2

þ 6BUV
2 LUV

2 BUV
20 þ 36BUV

2 LUV
2 LUV

20 þ 18BUV
2 ðLUV

2 Þ2 � BUV
2 BUV

40 � 2BUV
2 LUV

40 þ 4BUV
2 BUV

20 LUV
20 þ BUV

2 ðBUV
20 Þ2

þ 6ðBUV
2 Þ2LUV

2 þ 2ðBUV
2 Þ2LUV

200 þ ðBUV
2 Þ2BUV

200 þ 2ðBUV
2 Þ2BUV

20 þ 8ðBUV
2 Þ2LUV

20 þ ðBUV
2 Þ3 þ 30ðLUV

2 Þ3g
þM2� f�mUV

6 � BUV
2 �mUV

40 þ ðBUV
2 Þ2�mUV

200 g þM2��m
UV
4 f�2BUV

2 � 6LUV
2 � �mUV

2� g
þM2��m

UV
20 f�BUV

4 þ 6BUV
2 LUV

2 þ 2ðBUV
2 Þ2 þ BUV

2 BUV
20 þ BUV

2 �mUV
2� g þM2��m2f�2BUV

4 � 4LUV
4 � �mUV

4�

þ 18ðLUV
2 Þ2 þ BUV

2 ð12LUV
2 þ 8LUV

20 þ 2BUV
20 þ 3BUV

2 þ 2�mUV
2�0 Þ þ �mUV

2� ð2BUV
2 þ 6LUV

2 þ �mUV
2� Þg

þM2���m2f�2�mUV
4 þ ð3�m2 þ 2�mUV

20 ÞBUV
2 þ 6�m2L

UV
2 þ 2�m2�m

UV
2� g þM2��� ð�m2Þ3: (A24)
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The quantities with a prime, L20 , called derivative ampli-
tudes, arise from a fourth-order diagram that contains a
self-energy subdiagram. This self-energy subdiagram sup-
plies the inverse of the fermion propagator times the wave
function renormalization constant and cancels out one of
the adjacent fermion propagators and yields another renor-
malization constant L2. In the expression L20 , the inverse
fermion propagator and the adjacent fermion propagator
are left in the numerator and denominator, respectively, of
the Feynman-parametric expression of the amplitude. Thus
the whole renormalization constant L20 is analytically
identical with L2. But, the separation of UV divergence

by the K-operation works differently in two cases, so that
LUV
20 is different from LUV

2 by a finite amount.
A similar consideration applies to higher order quanti-

ties. Take, for instance, L4 which consists of four fermion
lines. There are four ways to insert a self-energy subdia-
gram to L4. Since we define L40 as the sum of all derivative
amplitudes ofL4, we haveL40 ¼ 4L4. Similarly,B40 ¼ 3B4.
The second-order derivative amplitude, such as L20 ,

however, does not include its symmetric factor in our
definition. Thus, L20 ¼ L2.
We also need the UV-divergence structures of the renor-

malization terms B6, L6, and �m6:

B6 ¼ BUV
6 þ BR

6 þ B4��m2 þ BR
2 f2LUV

4 � 4BUV
2 LUV

20 � 7ðLUV
2 Þ2g þ BR

20 ðBUV
4 � 4BUV

2 LUV
2 � BUV

2 BUV
20 Þ � BR

200 ðBUV
2 Þ2

þ BR
2�0 ð�2�m2B

UV
2 Þ þ fB4ð4LUV

2 Þ þ fB40 ðBUV
2 Þ þ B2� ð�mUV

4 � BUV
2 �mUV

20 � 4�m2L
UV
2 � �m2�m

UV
2� Þ � B2�� ð�m2Þ2;

(A25)

L6 ¼ LUV
6 þ LR

6 þ L4� ð�m2Þ þ LR
2 f3LUV

4 � 6BUV
2 LUV

20 � 12ðLUV
2 Þ2g þ LR

20 ð2BUV
4 � 10BUV

2 LUV
2 � 2BUV

2 BUV
20 Þ

� LR
200 ðBUV

2 Þ2 þ fL4ð5LUV
2 Þ þ fL40 ðBUV

2 Þ þ LR
2�0 ð�2�m2B

UV
2 Þ þ L2� ð2�mUV

4 � 2BUV
2 �mUV

20 � 10�m2L
UV
2

� 2�m2�m
UV
2� Þ � L2�� ð�m2Þ2; (A26)

and

�m6 ¼ �mUV
6 þ �mR

6 � �mR
200 ðBUV

2 Þ2 þ �mR
20 ðBUV

4 � BUV
2 BUV

20 Þ þ �mR
2� ð�mUV

4 � BUV
2 �mUV

20 � �m2�m
UV
2� Þ

þ �mR
2�0 ð�2�m2B

UV
2 Þ þ �mR

4 ð4LUV
2 Þ þ g�m4��m2 þ g�m40B

UV
2 � �m2�� ð�m2Þ2; (A27)

where the quantity ~A is defined by ~A � A� AUV. The difference between ~A and AR is that the former contains
UV-divergent terms arising from subdiagrams, while the latter is completely free from these sub-UV divergences.
For instance, we have

fB4 � B4 � BUV
4 ¼ BR

4 þ �m2B2� þ BUV
2 BR

20 þ 2LUV
2 BR

2 ; (A28)

fL4 � L4 � LUV
4 ¼ LR

4 þ 2�m2L2� þ 2BUV
2 LR

20 þ 2LUV
2 LR

2 ; (A29)

and so on.
We also need the UV-divergence structure of M4� , which is the amplitude of the fourth-order magnetic moment with a

two-point vertex insertion:

M4� ¼ MR
4� þ 2LUV

2 M2� þ 2ð�m2M2�� þ BUV
2 M2� Þ þ �mUV

2� M2� : (A30)

Substituting the UV structures of the eighth order [Eq. (A24)], the sixth-order quantities [Eqs. (A14) and (A25)–(A27)],
those of the fourth order [Eqs. (A3), (A16), and (A30)], and those of the second order [(A4)] in this sequence in Eq. (A22),
we obtain the UV-finite expression of the magnetic moment a8:

a8 ¼ MR
8 þMR

6 ð�5BR
2 � 6LR

2 Þ þMR
4 f�4LR

4 � 3BR
4 þ 26LR

2B
R
2 þ 18ðLR

2 Þ2 þ 9ðBR
2 Þ2g

�MR
4��m

R
4 þM2f�BR

6 � 2LR
6 þ ðB2� þ 4L2� Þ�mR

4 þ 6BR
4B

R
2 þ 10BR

4L
R
2 þ 12BR

2L
R
4 þ 18LR

2L
R
4 � 30LR

2 ðBR
2 Þ2

� 54ðLR
2 Þ2BR

2 � 30ðLR
2 Þ3 � 5ðBR

2 Þ3g þM2� f��mR
6 þ �mR

4 ð�mR
2� þ 6LR

2 þ 5BR
2 Þg: (A31)

Again Eq. (A31) has exactly the same structure as Eq. (A22) except that �mR
2 ¼ 0.
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b. I/R-subtraction

In order to handle the numerical calculation on a com-
puter, we need to separate the IR-divergent terms fromMR

8 .

Paying attention to the outermost photon spanning over a
self-energy subdiagram, we obtain the IR structure of MR

8

as follows:

MR
8 ¼ �M8 þMR

6L
R
2 þMR

4 fLR
4 � ðLR

2 Þ2g
þM2fLR

6 � 2LR
4L

R
2 þ ðLR

2 Þ3 � 2�mR
4L

R
2� g

þMR
4��m

R
4 þM2� ð�mR

6 � �mR
4�m

R
2� � �mR

4L
R
2 Þ:
(A32)

Equation (A32) has a term MR
4��m

R
4 , where M

R
4� is linearly

IR-divergent, which arises from the diagramsM16 andM18.
This term compensates the same IR divergence found in a8
of Eq. (A31) whose origin is the mass-renormalization
term M4��m4 associated with the diagrams M16 and M18.
This IR-divergence in MR

8 can thus be removed from M16

and M18 by the R-subtraction which acts on a fourth-order
self-energy subdiagram ofM16 (M18) and complements the
mass-renormalization constant �m4að�m4bÞ.

Another linear IR-divergent term in Eq. (A32) is
2M2L

R
2��m

R
4 , where L2� is linearly divergent. This IR

divergence is again found in the diagrams of M16 and
M18. In the IR limit of the outermost photon loop, a
possible configuration ofM16ðM18Þ is that the second-order
self-energy subdiagram of M16ðM18Þ supplies the second-
order anomalous magnetic moment M2 and the fourth-
order self-energy subdiagram behaves as �mR

4bðaÞ. The IR

behavior of the residual diagram including the outermost
photon line resembles the second-order vertex diagram
with a two-point vertex insertion LR

2� :

L2� � �L2� þ LR
2� ; (A33)

where�L2� ¼ �3=4 is the one contraction term of L2� and
the IR-divergent LR

2� is the noncontraction term of L2� .

This IR divergence in MR
8 of Eq. (A32) compensates

the IR divergence in 2M2L2��m4 of the renormalized
magnetic moment a8 of Eq. (A31). The origin of the
þ4L2��m4M2 in Eq. (A31) is the renormalization terms
associated with the diagramsM08,M10,M41, andM46. Two
of four L2� terms are exactly canceled by B2� terms because
of the WT identity 2L2� þ B2� ¼ 0. The remaining two L2�

terms will cancel the IR divergence arising from the dia-
grams M16 and M18 in MR

8 .

The last of the linearly IR divergent terms of MR
8 of

Eq. (A32) is M2L
R
6 , which also comes from M16 and M18.

In this case, the second-order self-energy subdiagram sup-
plies a second-order anomalous magnetic moment M2 and
the rest of the residual diagrams are pushed in the IR limit.
From M16ðM18Þ, it gives rise to the similar IR behavior of

the six-order vertex renormalization constant L6bð1ÞðL6cð1ÞÞ.
This IR divergence will be canceled in a8 of Eq. (A31) by
the M2L

R
6 term which comes from the renormalization

constants for the diagram M08ðM10Þ.
To see the cancellation of remaining logarithmic IR

divergence in a8, we need the IR structures of the renor-
malization constants LR

6 and BR
6 . Resorting to the WT

identity again, we can define the finite quantity �LB6 as
follows:

�LB6 � LR
6 þ BR

6 � fþI6 þ 2LR
4L

R
2 � ðLR

2 Þ3
þ 2�mR

4L2� g � f�I6 þ LR
4B

R
2 þ LR

2B
R
4

� ðLR
2 Þ2BR

2 þ �mR
4B2� g; (A34)

where I6 is the overall IR-divergent term of L6 and B6.
The WT identity guarantees that �LB6 is independent of
the choice of I6. Note that �LB6 � �L6 þ�B6 þ
�L4�B2 þ��m4B2� ½I�, where the quantities in the
right-hand side are defined in [32].

c. Finite expression

Separating the UV-finite quantities in a8 of Eq. (A31)
into the IR-singular parts and the finite parts as given in
Eqs. (A32), (A18), (A6), (A34), (A20), and (A9), we obtain
the expression a8 in terms of the finite quantities only:

a8 ¼ �M8 þ�M6ð�5�LB2Þ þ�M4f�3�LB4

þ 9ð�LB2Þ2g þM2f��LB6 þ 6�LB4�LB2

� 5ð�LB2Þ3g þ 2M2�L2���m4: (A35)

Since �LB4 ¼ �L4 þ �B4, 2�L2� ¼ ��B2� , and
�LB2 ¼ �B2, this is equivalent to Eq. (76) of [5],
which was obtained from the direct sum of all subtrac-
tion terms. Note that the last term of Eq. (A35) remains
unsubtracted regardless of the R-subtraction, which is
the residual mass-renormalization. This is because we
use only the noncontraction term LR

2 as the IR-
subtraction term, leaving the finite part of �L2�

untouched.
The definition of the finite term �L2� does depend on

how to separate IR part from L2� . To avoid such arbitrari-
ness, we stick to the same I-subtraction rule of IR separa-
tion which is used for vertex renormalization constants.
Namely, the IR-singularity is confined in LR

n , which is
defined by the rule

fLn � Ln � highest contraction termLn

LR
n � fLn � sub-divergence term determined by

K-operation onfLn (A36)
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and this LR
n is used as an IR-subtraction term. This deter-

mines �L2� ¼ �3=4 unambiguously. The K-operation
does not pick up this �L2� term from a corresponding
subdiagram, since L2� is UV-finite. So, no rule exists in
the automation code GENCODEN that allows us to subtract
the finite term �L2� of a renormalization constant.

The residual renormalization scheme for the Set IV

contribution Að10Þ
1 ½Set IVðl1l2Þ� can be readily obtained

from Eq. (A35) by insertion of a closed loop of the lepton
l2 in the internal photon lines of a8. This leads to Eq. (17)
given in Sec. III.
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