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We discuss consequences of combining the effective Z2 � Z2 symmetry of the tribimaximal neutrino

mass matrix with the CP symmetry. Imposition of such generalized Z2 � Z2 symmetries leads to

predictive neutrino mass matrices determined in terms of only four parameters and leads to a nonzero

�13 and maximal atmospheric mixing angle and CP violating phase. It is shown that an effective

generalized Z2 � Z2 symmetry of the mass matrix can arise from the A4 symmetry with specific vacuum

alignment. The neutrino mass matrix in the considered model has only three real parameters and leads to

determination of the absolute neutrino mass scale as a function of the reactor angle �13.

DOI: 10.1103/PhysRevD.85.031903 PACS numbers: 11.30.Hv, 14.60.Pq, 14.60.St

I. INTRODUCTION

Recent �e–�� oscillation observations by T2K [1] and

MINOS [2] and double CHOOZ [3] have led to a search of
alternatives to the tribimaximal (TBM) leptonic mixing [4]
pattern among neutrinos.
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The above pattern corresponds to sin2�12 ¼ 1=3,
sin2�23 ¼ 1=2, and sin2�13 ¼ 0 for the three mixing angles
involved in neutrino oscillations. It is theoretically well
founded and can be obtained using flavor symmetries in the
leptonic sector; see [5] for a review and original references.
While the predicted values of the �12 and �23 in TBM agree
nearly within 1� of the latest global analysis [6,7] of the
neutrino oscillation data, prediction �13 ¼ 0 is at variance
with T2K [1] (MINOS [2]) results by 2:5�ð1:6�Þ and with
the global analysis [6,7] by about 3�. This suggests that
one should look either for perturbations to TBM affecting
mainly �13 or for alternative flavor symmetries which
imply a nonzero �13. Recently, several attempts [8–10]
have been made in these directions. Some of these works
[8,9] discuss the possible schemes of perturbations to TBM
while some [10] provide the models also. The minimal
scheme would be the one in which �13 gets generated but
�23 and �12 remain close to their predictions in the TBM
scheme. We show that this can be achieved by generalizing
the Z2 � Z2 symmetry of the TBM mass matrix and iden-
tify appropriate flavor symmetry which can lead to the
modified pattern.

The paper is organized as follows. In the next section,
we discuss the generalized Z2 � Z2 symmetry of the neu-
trino mass matrix which minimally modifies the TBM

mixing pattern and leads to a nonzero �13. In Sec. III, we
present possible modifications in the well-known A4 model
which lead to the neutrino mass matrix invariant under the
proposed symmetry and discuss its phenomenology.
Finally, we summarize in Sec. IV.

II. GENERALIZED Z2 � Z2 SYMMETRYAND
LEPTON MIXING ANGLES

A well-known property of the TBM pattern is the pres-
ence of a specific Z2 � Z2 symmetry [11] enjoyed by the
corresponding neutrino mass matrix M�f in the flavor

basis. This symmetry is defined in general by the operators
Si, i ¼ 1, 2, 3:

ðSiÞjk ¼ �jk � 2UjiU
�
ki; (2)

where U is the matrix diagonalizingM�f. Each Si defines

a Z2 group and satisfies

SiSj ¼ �Sk; i � j � k: (3)

The Si also leave the neutrino mass matrix invariant

STi M�fSi ¼ M�f; (4)

as can be verified from the Eq. (2) and the propertyM�f ¼
U�D�U

y, D� being the diagonal neutrino mass matrix.
The explicit forms for S2 and S3 in the TBM case are

given by
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S2 and S3, respectively, are determined by the second and
the third column of the TBM mixing matrix (1) using Eq.
(2). The element S1 can be obtained using relation (3). In
particular, S3 corresponds to the well-known �-� symme-
try which is responsible for two of the three predictions,
namely �13 ¼ 0, �23 ¼ �

4 of the TBM pattern.

A desirable replacement of the �� � symmetry would
be the one which retains maximality of �23 but allows a
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nonzero �13. Such a symmetry is already known [12] and is
obtained by combining the �-� symmetry with the CP
transformation. The neutrino mass matrix gets transformed
to its complex conjugate under the action of the general-
ized �-�:

ST3M�fS3 ¼ M�
�f: (6)

A neutrino mass matrix with this property leads to two
predictions [12]:

sin 2�23 ¼ 1
2; (7)

sin�13 cos� ¼ 0: (8)

One needs a nonzero �13 in which case the above equation
leads to a prediction � ¼ �

2 for the CP violating Dirac

phase. Equation (6) does not put any restrictions on the
solar angle. In order to do this, we would like to combine
the generalized�-� symmetry with the ‘‘magic symmetry’’
corresponding to invariance under S2 and define a general-
ized Z2 � Z2 symmetry. This can be done in two indepen-
dent ways.

Case I: Let us first assume that the neutrino mass matrix
in flavor basis simultaneously satisfies

ST1;3M�fS1;3 ¼ M�
�f: (9)

Both these conditions together imply that

ST2M�fS2 ¼ M�f: (10)

The above condition fixes the second column of the
Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix U to

be 1=
ffiffiffi
3

p ð1; 1; 1ÞT . This form of U has been studied before
and known as a trimaximal mixing pattern [13,14]. When
compared with the standard form [15], it leads to the
relation

j sin�12 cos�13j ¼ 1ffiffiffi
3

p ) sin2�12 ¼ 1

3
ð1þ tan2�13Þ; (11)

which provides the lower limit sin2�12 � 1=3. The neu-
trino mass matrix in the flavor basis M�f that satisfies (9)

can be written as

M �f ¼
yþ z� x xþ ix0 x� ix0
xþ ix0 y� ix0 z
x� ix0 z yþ ix0

0
@

1
A; (12)

where all the parameters are real. Note that ReðM�fÞ is
invariant under (4) and so it is in the TBM form while
ImðM�fÞ follows the condition

ST1;3ImðM�fÞS1;3 ¼ �ImðM�fÞ:
The neutrino mass matrix in Eq. (12) can be diagonalized
by the matrix

UI ¼ UTBMPR13ð�Þ; (13)

where P ¼ diag:ð1; 1; iÞ and R13ð�Þ denotes a rotation by
an angle � in the 1–3 plane.

Case II: The second possibility is

ST2;3M�fS2;3 ¼ M�
�f; (14)

which leads to

ST1M�fS1 ¼ M�f: (15)

This fixes the first column of U to be 1=
ffiffiffi
6

p ð2;�1;�1ÞT
which implies

j cos�12 cos�13j ¼
ffiffiffi
2

3

s
) sin2�12 ¼ 1

3
ð1–2tan2�13Þ: (16)

In contrast to the previous case, this provides an upper
bound on the solar angle sin2�12 � 1=3. The neutrino mass
matrix in the flavor basisM�f in this case can be written as

M �f ¼
yþ z� x xþ ix0 x� ix0
xþ ix0 yþ 2ix0 z
x� ix0 z y� 2ix0

0
@

1
A: (17)

The above M�f can be diagonalized by the matrix

UII ¼ UTBMPR23ð�Þ; (18)

where R23ð�Þ denotes a rotation by an angle � in the 2–3
plane. The third possibility is to consider ST1;2M�fS1;2 ¼
M�

�f and this results in the �-� symmetric M�f which

leads to �13 ¼ 0, so it is not the case of our interest. Both
the above scenarios predict small deviations in sin2�12
from its tribimaximal value, but in opposite directions.
While both of them are consistent with the present 3�
ranges of �12 and �13 obtained from the global fits to the
recent neutrino oscillation data [7], prediction (16) is more
favored if only 1� is considered. Note that both these
scenarios lead to the trivial Majorana phases (0 or �) and
do not restrict the masses of neutrinos.
The mass matrices in Eqs. (12) and (17) based on the

generalized Z2 � Z2 symmetry are different and more
predictive compared to most other proposed modifications
of the TBM structure [8–10]. Let us emphasize the main
differences:
(i) Equations (12) and (17) contain four real parameters

and hence lead to five predictions among nine ob-
servables. These are two trivial Majorana phases, a
Dirac phase � ¼ ��=2, an atmospheric mixing
angle �23 ¼ �=4, and the solar mixing angle pre-
dicted by Eq. (11) or (16).

(ii) Grimus and Lavoura [13] and He and Zee [9] pro-
posed a mixing matrix similar to Eq. (13). The
differences being the absence of P, the presence of
the Majorana phase matrix, and the replacement of
R13 by a unitary transformation in the 1–3 plane
with an undetermined Dirac CP phase �. In the
process, � and Majorana phases become unpredict-
able and �23 deviates from the TBM value by a term
of Oð�13Þ.
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(iii) Likewise, Ma in his classic paper [16] considered a
modification to TBM analogous to Eq. (18). Here
also R23 gets replaced by a unitary transformation
in the 2–3 plane with an undetermined phase re-
sulting in less predictivity than the present case.

(iv) A special case of Eq. (12) was considered by
Grimus and Lavoura [14]. This corresponds to
choosing

x0 ¼ � 1ffiffiffi
3

p ðz� xÞ:
As a result, M�f contains only three parameters and

allows determination of the absolute neutrino mass scale
in addition to the five predictions mentioned above. It is
also shown in [14] that such a mass matrix can arise in a
model based on the�27 group. So far we have not appealed
to any flavor symmetry at the Lagrangian level and con-
sidered only the effective Z2 � Z2 symmetry of the neu-
trino mass matrix. We now propose to realize this effective
symmetry from an underlying flavor symmetry. In the
process, we find that the use of flavor symmetry also leads
us to a three parameter neutrino mass matrix as in the case
proposed by Grimus and Lavoura [14].

III. MODEL AND PHENOMENOLOGY

We use the flavor symmetry A4. Several versions of this
symmetry are proposed [5] to obtain a neutrino mass
matrix which exhibits the TBM mixing. Here we show
that a simple modification of the existing A4 schemes can
lead to the more predictive mass matrix given in Eq. (17).
For definiteness, we concentrate on a specific A4 model of
He, Keum, and Volkas [17]. We propose two possible
schemes, one based on the type-I seesaw and the other
using a combination of both the type-I and type-II seesaw
mechanisms.

Let us first outline the basic features of the A4 model
proposed in [17]. Though it was proposed to explain both
quark and lepton mixing patterns, we here discuss only the
lepton sector of it. The matter and Higgs field content of
the model with their assignments under the standard model
(SM) gauge group GSM � SUð3Þc � SUð2ÞL �Uð1ÞY and
A4 group are given in Table I.

The renormalizable GSM � A4 Yukawa interactions of
the model can be written as

�LY ¼yeðlL ~�Þ1eRþy�ðlL ~�Þ100�Rþy�ðlL ~�Þ10�R
þyDðlL�RÞ1�þ 1

2M ��R�
c
Rþ 1

2B
0ð ��R�

c
RÞ3	þH:c:;

(19)

where ~� � i�2�
� and ð. . .ÞR denotes the R-dimensional

representation of A4. Note that in [17], an additional Uð1ÞX
symmetry is also imposed so that an unwanted GSM � A4

invariant term lL�R� can be forbidden when it is assumed
that lL, eR, �R, �R, and � carry X ¼ 1 and other fields are
chargeless under Uð1ÞX. A specific choice of the A4 vac-
uum h�i ¼ 
ð1; 1; 1ÞT leads to the charged lepton mass
matrix:

Ml ¼
ffiffiffi
3

p

Uð!ÞDiagðye; y�; y�Þ; (20)

where

Uð!Þ ¼ 1ffiffiffi
3

p
1 1 1
1 !2 !
1 ! !2

0
@

1
A (21)

and ! ¼ e2i�=3 is a cube root of unity. The Dirac neutrino
mass matrix is proportional to the identity matrix

MD ¼ yD
�I; (22)

where 
� ¼ h�i. Further, assuming that the field 	 devel-

ops a vacuum expectation value (vev) in the direction
h	i ¼ 
	ð1; 0; 0ÞT , the heavy neutrino mass matrix can

be written as

MR ¼
A 0 0
0 A B
0 B A

0
@

1
A; (23)

where B ¼ B0
	. After the seesaw, Eqs. (22) and (23) lead

to the light neutrino mass matrix

M � ¼ �MDM
�1
R MT

D ¼
ða2�b2Þ

a 0 0
0 a b
0 b a

0
B@

1
CA; (24)

where a ¼ �½y2D
2
�=ðA2 � B2Þ�A and b ¼ ½y2D
2

�=

ðA2 � B2Þ�B.
As is well-known, Eqs. (21) and (24) lead to an M�f ¼

Uð!ÞTM�Uð!Þ in the form exhibiting the TBM mixing:

M�f

¼ 1

3a

ðaþbÞð3a�bÞ �bðaþbÞ �bðaþbÞ
�bðaþbÞ bð2a�bÞ 3a2�bðaþbÞ
�bðaþbÞ 3a2�bðaþbÞ bð2a�bÞ

0
BB@

1
CCA:

(25)

We need to change the existing model in two ways to
obtain a more predictive form of Eq. (17). First, we require
that all the Yukawa couplings in Eq. (19) as well as the

TABLE I. Various fields and their representations under GSM � A4.

lL eR �R �R �R � � 	

GSM ð1; 2;�1Þ ð1; 1;�2Þ ð1; 1;�2Þ ð1; 1;�2Þ (1, 1, 0) ð1; 2;�1Þ ð1; 2;�1Þ (1, 1, 0)

A4 3 1 10 100 3 3 1 3
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vacuum expectation values are real. Equation (25) then
coincides with the real part of (17) with

z¼a� b

3a
ðaþbÞ; y¼ b

3a
ð2a�bÞ; x¼� b

3a
ðaþbÞ:

(26)

We need to enlarge the model to introduce the imaginary
part. This can be done by adding additional SUð2ÞL singlet
or triplet fields transforming as an A4 triplet.
Conventionally, one uses CP symmetry to obtain the real
Yukawa couplings. The reality of Yukawa couplings fol-
lows if the definition of CP is generalized in a manner
analogous to [12]. This generalized CP combines the CP
and �-� symmetry as follows:

ðll; �R;�; 	Þ ! S3ðlcL; �c
R;�

y; 	yÞ;
ðeR;�R; �RÞ ! ðecR; �c

R; �
c
RÞ; (27)

where superfix c on a field denotes its CP conjugate and S3
is defined in Eq. (5). Note that the above symmetry behaves
like ordinary CP on the A4 singlet right-handed charged
leptons and is thus slightly different from the generalized
�-� symmetry introduced in [13].

The required imaginary part inM�f can be generated in

two ways:

A. Type-II extension

Add three copies of SUð2ÞL triplet fields�which form a
triplet of A4 with the Uð1ÞX charge X ¼ 2. This modifies
the Yukawa interaction by an additional triplet seesaw term

�L�
Y ¼ yLðlLlcLÞ3�þ H:c: (28)

yL becomes real if � ! S3�
y under the generalized CP.

Let us now assume that� takes the vev along the following
direction:

h�i ¼ 
�ð0;�1; 1ÞT: (29)

Such vacuum alignment can be achieved through some
terms that break A4 softly and an explicit example is
discussed in [16]. Equation (28) gives rise to a type-II
contribution in the neutrino mass matrix. Combining this
with the type-I contribution, Eq. (24), we get the following:

M � ¼
ða2�b2Þ

a c �c
c a b
�c b a

0
B@

1
CA: (30)

Parameters a, b, c are real but when transformed to the
flavor basis one obtains a complexM�f coinciding exactly

with Eq. (17) with x, y, z defined in Eq. (26) and

x0 ¼ � cffiffiffi
3

p :

The generalized Z2�Z2 symmetry emerges here as an
effective symmetry. The type-II contribution (characterized
by the parameter c) in the above neutrino mass matrix

generates a nonzero reactor angle and modifies the solar
mixing angle as in Eq. (16).

B. Type-I extension

Another viable extension of the model is obtained by
adding the A4 triplet, SUð2ÞL singlet field 	0 in addition to
the 	 already present. 	0 introduces the following term
in Eq. (19):

�L	0
Y ¼ 1

2yRð ��R�
c
RÞ3	0 þ H:c: (31)

yR can be made real using the similar generalized CP sym-
metry defined in Eq. (27). Assuming that	0 takes a vev along
the same direction as � in the previous case, i.e., h	0i ¼

	0 ð0;�1; 1ÞT , we get

MR ¼
A C �C
C A B
�C B A

0
@

1
A; (32)

where C ¼ yR
	0 . After the seesaw the light neutrino mass

matrix can be suitably written as

M � ¼
ða2�b2þc2Þ

a c �c
c a b
�c b a

0
B@

1
CA: (33)

This matrix also exhibits the generalized Z2 � Z2 symmetry
and is determined by three real parameters as before. The
only difference from the previous case is a small contribution
of the 	Oða�213Þ in the 11 entry in M�. As a result the

phenomenology of neutrino masses in both cases is very
similar and we now turn to this discussion.

C. Phenomenology

We now derive the phenomenological consequences of
the generalized Z2 � Z2 structures Eqs. (30) and (33)
obtained using the A4 symmetry and specific vacuum
alignment. While the most general, Z2 � Z2 invariant
structure, Eq. (17), has four parameters, the specific
realization obtained here has only three parameters. This
follows from Eq. (26) which shows that x, y, z are not
independent but are related by

z ¼ �yþ xðxþ 5yÞ
2xþ y

: (34)

The situation here is similar to the original A4 models in
which specific realizations of the TBM schemes lead to a
more constrained mass pattern than the most general one
and lead to sum rules among neutrino masses [18].
Specifically, Eq. (26) leads to a mass sum rule [18,19]

2

m2

þ 1

m3

¼ 1

m1

; (35)

where mi are the neutrino masses. Note that mi are real in
our case since all the parameters in the neutrino mass
matrix (24) are real. The phenomenological implications
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of this neutrino mass sum rule are already considered in
[18,19]. The generalization introduced through Eq. (30)
modifies this sum rule to

2

m2þ3ðm3�m2Þs213
þ 1

m3þ3ðm2�m3Þs213
¼ 1

m1

: (36)

The above sum rule allows determination of the absolute
neutrino mass scale as a function of s213. This determination

depends on the type of hierarchy and approximate analytic
form for the lightest neutrino mass given in the limit
s13 ¼ 0 by [18]

For normal hierarchy jm1j

ffiffiffiffiffiffiffiffiffiffiffiffi
�m2

sol

3

s 0
@1�4

ffiffiffi
3

p
9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m2

sol

�m2
atm

s 1
A;
(37)

For inverted hierarchyjm3j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m2

atm

8

s �
1þ1

3

�m2
sol

�m2
atm

�
: (38)

Using the values of �m2
sol and �m

2
atm obtained from recent

global fits [7] to the neutrino oscillation data, the above
equations imply

For normal hierarchyjm1j 
 5:7� 10�3 eV

or 
 4:4� 10�3 eV;
(39)

For inverted hierarchy jm3j 
 0:0179 eV: (40)

Further, the three mass dependent neutrino observables,
namely, (1) the sum of absolute neutrino masses �mi, (2)
the kinematic electron neutrino mass in beta decaym�, and

(3) the effective mass for the neutrinoless double beta
decay m��, can also be obtained by their approximated

expressions given in [18,19]. The presence of a nonzero �13
modifies the predicted values of the observable compared
to the models in [18,19]. We determine the effect of a
nonzero �13 numerically using Eq. (30). The results of
such an analysis are given in Fig. 1.
As can be seen from Fig. 1, all the mass dependent

observables vary slightly with the reactor angle. These
variations are smaller for inverted hierarchy compared to
the normal hierarchy. Results of a similar numerical analy-
sis for purely type-I extension, Eq. (33), are given in Fig. 2.

IV. SUMMARY

The evidence of a possible nonzero �13 requires the
modification of the TBM patterns motivated by A4 and
other discrete symmetries. We have proposed a minimal
modification which retains the prediction of the maximal-
ity of �23, allows a nonzero �13, and introduces small

FIG. 1 (color online). Correlations between the reactor angle and different neutrino mass dependent observables implied by the
neutrino mass matrix in Eq. (30). The black [lighter (red)] points correspond to the normal (inverted) hierarchy in neutrino masses. The
black horizontal line shows the mean value of sin2�13 obtained from the global fits. The unshaded and the shaded regions correspond to
1� and 3� ranges of sin2�13, respectively.

FIG. 2 (color online). Correlations between the reactor angle and different neutrino mass dependent observables arise in the neutrino
mass matrix given by Eq. (33). The black [lighter (red)] points correspond to the normal (inverted) hierarchy in neutrino masses. The
black horizontal line shows the mean value of sin2�13 obtained from the global fits. The unshaded and the shaded regions correspond to
1� and 3� ranges of sin2�13, respectively.
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Oð�213Þ deviation from the �12 predicted in the TBM. The

basis of our proposal is the Z2 � Z2 symmetry of the TBM
mass matrix. It is shown that combination of this symmetry
with the CP gives rise to a very predictive structure deter-
mined in terms of only four real parameters. The general-
ized Z2 � Z2 can emerge from a simple extension of the
standard A4 schemes if Yukawa couplings and vev are real.
The resulting neutrino mass matrix is quite predictive and
is determined in terms of only three parameters making it

one of the simplest modifications of the TBM scheme
consistent with the present information on neutrino masses
and mixing angles.
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