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We illustrate a technique for fitting lattice QCD correlators to sums of exponentials that is significantly

faster than traditional fitting methods—10–40 times faster for the realistic examples we present. Our

examples are drawn from a recent analysis of the � spectrum, and another recent analysis of the D ! �

semileptonic form factor. For single correlators, we show how to simplify traditional effective-mass

analyses.
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Most physics results in lattice QCD come from fits of
lattice correlators to sums of exponentials. For example,
we study a particular hadron by computing Monte Carlo
simulation estimates GMC

ab ðtÞ of hadronic correlators,
X
x

h0j�bðx; tÞ�að0; 0Þj0i; (1)

with different sources �a and sinks �b that create and
destroy the hadron. The sum over all spatial sites x restricts
the hadrons to states with zero total three-momentum. Such
a correlator can be decomposed into contributions from
energy eigenstates jEji in QCD [1]:

Gabðt;NÞ ¼ XN
j¼1

ajbj expð�EjtÞ (2)

where Ej is the energy, with Ej � Ej�1, and the amplitudes

are matrix elements, with

a�j ¼ h0j�að0; 0ÞjEji; bj ¼ h0j�bð0; 0ÞjEji: (3)

The physics is in the energies and the matrix elements, and
these are determined by fitting formula (2) to the
Monte Carlo dataGMC

ab ðtÞ for a variety of sources and sinks.
In principle, the number of terms N in Eq. (2) is infinite,

but, in practice, we need only retain a finite number of
terms because the exponentials suppress high-energy
states. The number needed depends upon the precision of
the simulation dataGMC

ab , but it is not uncommon to require

N ¼ 10 or more terms for good fits to accurate data. The
fitting process becomes both cumbersome and time con-
suming if many correlators must be fit simultaneously
while using such large Ns. In this paper we introduce a

method that can dramatically simplify and accelerate such
fits.
The key to this new approach lies in how priors are intro-

duced. Two types of input data are required for these fits. The
first is simulation data for the correlators, consisting of
Monte Carlo averages �G for each a, b and t, and a covariance
matrix �2 that specifies both the statistical uncertainties in
each average and the correlations between them:

GMC
ab ðtÞ $

�
�GabðtÞ; �2

ab;a0b0 ðt; t0Þ
�

(4)

This data contributes

�2
MCðaj;bj;EjÞ¼

X
t;a;b

X
t0;a0;b0

ðGabðt;NÞ� �GabðtÞÞ��2
ab;a0b0 ðt;t0Þ

�ðGa0b0 ðt0;NÞ� �Ga0b0 ðt0ÞÞ (5)

to the�2 function that isminimized by varying parametersaj,

bj, and Ej in a conventional fit.

The second type of input data consists of Bayesian priors
for each fit parameter. Complicated multi-correlator, multi-
parameter fits are impossible without a priori estimates for
each fit parameter [2,3]:

a
pr
j � �aj��aj ; b

pr
j � �bj��bj ; E

pr
j � �Ej��Ej

: (6)

This information is included in a conventional fit by adding
extra terms to �2ðaj; bj; EjÞ: �2 ¼ �2

MC þ �2
pr where

�2
prðaj;bj;EjÞ¼

XN
j¼1

�ðaj� �ajÞ2
�2

aj

þðbj� �bjÞ2
�2

bj

þðEj� �EjÞ2
�2

Ej

�
:

(7)

The priors can also be combined to give a priori estimates
for the correlators,
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G
pr
abðt;NÞ � XN

j¼1

a
pr
j b

pr
j expð�E

pr
j tÞ; (8)

where the means and covariance matrix for G
pr
abðtÞ are

computed, using standard error propagation, from the
means and covariance matrix of the priors (Eq. (6)).

The cost of a traditional analysis goes up rapidly with
the number of parameters needed to obtain a good fit. Our
new approach takes advantage of the fact that we are rarely
interested in the values of parameters from large-j terms in
fit function (2), even when these terms are needed for a
good fit. Rather than including them in the fit, we instead
incorporate the large-j terms into the Monte Carlo data
before fitting. This reduces the number of fit parameters,
leading to much faster fits.

We incorporate large-j terms into the Monte Carlo data
by using the priors to generate a priori estimates for these
terms (including the uncertainties from the priors), which
we then subtract from the Monte Carlo data. This effec-
tively removes the large-j terms from the data. The modi-
fied data is then fit with a simpler formula that includes
only small-j terms.

More explicitly, we remove terms having n < j � N by
replacing GMC

ab ðtÞ with (first definition)

~GMC
ab ðt; nÞ � GMC

ab ðtÞ � �G
pr
abðt; nÞ; (9)

where

�Gpr
abðt;nÞ�Gpr

abðt;NÞ�Gpr
abðt;nÞ¼

XN
j¼nþ1

aprj b
pr
j expð�Epr

j tÞ

(10)

is the j > n part of the fit function. Having removed the

j > n terms, we fit ~GMC
ab ðt; nÞ with the simpler fit function,

Gabðt;nÞ, rather than Gabðt;NÞ.
Here we assume that N is sufficiently large that

�G
pr
abðt; nÞ and therefore ~GMC

ab ðt; nÞ are independent of N
to within their statistical errors. The covariance matrix for
~GMC
ab ðt;nÞ is obtained by adding the covariance matrices of

GMC
ab ðtÞ and �Gpr

abðt; nÞ (that is, adding the errors in quad-

rature) [4].
Removing high-j terms from both the fit function and

the fit data replaces the original fitting problem—fit an
N-term function Gabðt;NÞ to GMC

ab ðtÞ—by a simpler prob-

lem that can have far fewer fit parameters: fit an n-term

functionGabðt;nÞ to ~GMC
ab ðt; nÞ, where n < N. Remarkably,

as we showed in [5], these two problems are equivalent for
high statistics data even when n is quite small: that is, fit
results (means and standard deviations) for the low-j pa-
rameters are the same in both cases. In the second case, the
j > n terms have been ‘‘marginalized,’’ or, in effect, inte-
grated out of the Bayesian probability distribution, but in a
way that does not affect the analysis of the j � n terms.
When n � N, the fit parameters that remain are many

fewer than what would be required in a standard fit, and
fitting is much faster.
The new analysis, based on Eq. (9), is only approxi-

mately equivalent to the standard analysis—that is, only
insofar as the various probability distributions involved can
be approximated by Gaussian distributions. As a result
very small values of n may not work well. The rapid
exponential falloff of the propagators exacerbates this
problem here, which suggests that we replace definition
(9) by

log ~GMC
ab ðt; nÞ � logGMC

ab ðtÞ � � logG
pr
abðt; nÞ; (11)

where

� logG
pr
abðt;nÞ � logG

pr
abðt;NÞ � logG

pr
abðt; nÞ: (12)

Rearranging and exponentiating, this variation gives modi-
fied propagators that are defined by (second definition)

~GMC
ab ðt;nÞ � GMC

ab ðtÞ G
pr
abðt;nÞ

Gpr
abðt;NÞ ; (13)

We will use this second implementation of the margin-
alization procedure throughout the rest of this paper, since
we find that it gives good results for values of n that are two
or three times smaller than those from the first implemen-
tation. Again, terms with j > n have been removed, and
therefore the modified correlator data is fit with the simpler
fit function, Gabðt; nÞ.
We now illustrate our newmethod by applying it to QCD

simulation data from two recent analyses. For each analy-
sis, we fit a function, like Gabðt;nÞ, with n terms both to
untouched simulation data GMC

ab ðtÞ, and to modified simu-

lation data ~GMC
ab ðt;nÞ, from which j > n terms have been

removed using Eq. (13). We vary n, doing sequential fits
with n ¼ 1; 2; 3 . . . , where the best-fit parameter values
from one fit are used as starting values for the next fit.
Sequential fitting with increasing n is a standard approach
to complicated multi-parameter correlator fits; n is in-
creased until the fit’s �2 stops changing, at which point
enough terms have been include to reflect accurately the
uncertainties introduced by large-j terms. Here we exam-
ine the best-fit parameters for each n to investigate the rate
at which correct results emerge from this process. This
allows a detailed comparison of our two fitting strategies.
The first data set is a collection of 25 correlators for the

�ð1SÞmeson and its radial excitations (�ð2SÞ,�ð3SÞ, etc.)
[6]. These correlators were made using five different op-
erators for both sources and sinks. They were fit to formula
(2) with priors (in lattice units):

logðE1Þ ¼ logð0:3� 0:1Þ ¼ �1:2� 0:3

logðEjþ1 � EjÞ ¼ logð0:25� 0:125Þ ¼ �1:4� 0:5

aj ¼ 0:1� 1:0

(14)

except for a local source for which the priors were

K. HORNBOSTEL et al PHYSICAL REVIEW D 85, 031504(R) (2012)

RAPID COMMUNICATIONS

031504-2



logðajÞ ¼ logð0:1� 0:2Þ ¼ �2:3� 2 (local source).

These are broad priors—more than 100 times broader
than the final errors for the quantities we examine below.

We set N ¼ 20 when defining ~GMC
ab ðt;nÞ (Eq. (13)); this is

roughly twice the size it needs to be, but it costs little to
make N large. In general N should be chosen so that terms
with j > N are negligible compared with statistical errors.

In Fig. 1 we plot the �2 per degree of freedom for each
method versus the time required to get to that value [7]. As
expected, the new algorithm reaches a reasonable �2 with
just a few terms (n ¼ 2–3), in 20–30 seconds; the tradi-
tional algorithm requires n ¼ 10–11 to obtain a good �2,
and 600–700 seconds. Similar differences are evident if we
look at physical quantities extracted from the simulations.
In Fig. 2 we show results for the 2S� 1Smass splitting (in
lattice units), for the 3S� 1S mass splitting divided by the
2S� 1S splitting, and for the 1S and 2S mesons’ (non-
relativistic) wave functions at the origin, which come from
fit parameters aj for a local source. In every case the two

algorithms agree on the final result, but the new algorithm
converges to correct results 10–40 times faster.

Our second example is from a recent analysis of the
D ! � semileptonic form factor [8]. To extract the form
factor at four different momenta, this analysis uses a
simultaneous fit of 13 two-point and three-point correla-
tors: a) a D-meson correlator with a pseudoscalar local
source and sink; b) four �-meson correlators, one for each
pion momentum of interest, again with local pseudoscalar
sources and sinks; and c) two three-point correlators D !
Jscalar ! � for each of the four pion momenta. The fit
functions are more complicated for this case. For example,
the D-meson correlator is fit by a function:

GDðt;nÞ ¼
Xn
j¼1

ajfðEj; tÞ � ð�1Þtaoj fðEo
j ; tÞ (15)

where fðEj; tÞ � expð�EjtÞ þ expð�EjðT � tÞÞ is peri-

odic with period T ¼ 64, and the second (oscillating)

term is due to opposite-parity states in the correlator (a
feature of staggered-quark formalisms like that used in this
analysis). The details for the other correlators, and the
priors are given in [8].
Despite the complexity of dealing with both two-point

and three-point correlators, this is a simpler fit than the �
case; but even here we find that marginalizing most of the
fit function makes the analysis about 30 times faster. We

FIG. 1 (color online). Fit �2 per degree of freedom for sequen-
tial fits of 25� correlators with n ¼ 1; 2; 3 . . . terms in fit function
(2). Results are plotted versus the cumulative time required for
fitting, and are for fits of: a) the unmodified simulation dataGMC

ab ðtÞ
(red circles and dotted line); and b) the modified simulation data
~GMC
ab ðt; nÞ (Eq. (13)) (blue circles and dashed line). The region of

good fits is indicated by the gray band.

FIG. 2 (color online). Best-fit results from sequential fits of 25
� correlators with n ¼ 1; 2; 3 . . . terms in fit function (2). Results
are plotted versus the cumulative time required for fitting, and
are for fits of: a) the unmodified simulation data GMC

ab ðtÞ (red
circles and dotted line); and b) the modified simulation data
~GMC
ab ðt; nÞ (Eq. (13)) (blue circles and dashed line). Results are

given for mass splittings between different vector S-states, and
for the wave functions at the origin for the lowest two states. All
results are in lattice units. The gray bands show the best-fit result
from the modified data after convergence.
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show results in Fig. 3 for the D-meson’s mass mD and
leptonic decay constant fD, as well as for theD ! � scalar
form factor f0ð0; 0; 0Þ at zero recoil momentum. All results
are in lattice units. Again the two approaches agree on the
results but the new approach has correct results even with
only a single term (n ¼ 1) in the fit functions. For these fits
we set N ¼ 10 when computing the modified data
~GMC
ab ðt;nÞ (Eq. (13)), which is twice as large as it needs

to be.
Some insight into how marginalization works can be

gained by focusing just on the D correlator from this
analysis and fitting the modified data,

~GMC
D ðtÞ � GMC

D ðtÞa
pr
1 fðEpr

1 ; tÞ
G

pr
Dðt;NÞ ; (16)

with only the non-oscillating part of the first term in
Eq. (15)—that is, with a1fðE1; tÞ. This situation is suffi-
ciently simple that fitting is not required. The D mass, for
example, can be obtained by averaging the ‘‘effective
mass,’’

meffðtÞ � arccosh

� ~GMC
D ðtþ 1Þ þ ~GMC

D ðt� 1Þ
2 ~GMC

D ðtÞ
�
; (17)

over all t, taking account of correlations between different
ts. The effective mass is plotted as a function of t in Fig. 4.
It is compared with the weighted average of all 27 meffðtÞs
(gray band), which at mavg

eff ¼ 1:1584ð11Þ agrees well with
the best result, 1:1593ð7Þ, from full multi-term fits (top
panel in Fig. 3).
The first excited state in theD correlator is the opposite-

parity contribution, which accounts for the oscillation in
meffðtÞ. Strong statistical correlations between different
points result in an average meff whose error is more than
7 times smaller than the best error from an individual
meffðtÞ. The errors in meffðtÞ when t � 16 come almost
entirely from marginalized terms absorbed into the fit data
using Eq. (16); the original Monte Carlo simulation errors
are negligible there.
In the absence of marginalization, contributions from

excited states would limit a traditional effective mass analy-
sis of this data to values with t > 16. With marginalization,
all ts are used, except for a small number at very small t
where the fit function is invalid (because of temporal non-
locality in the lattice quark action). Using 28 ts is possible
because we have removed the excited states through
Eq. (16). As a result differentmeffðtÞs agree with each other
to within their errors: fitting all 27 values in Fig. 4 to a
constant gives an excellent fit, with a �2 per degree of
freedom of 0.6. (The result of the fit is, by definition, the
same as the weighted average reported above.)

FIG. 3 (color online). Best-fit results from sequential fits of 13
two-point and three-point correlators for D and � mesons with
n ¼ 1; 2; 3 . . . terms in fit function (2). Results are plotted versus
the cumulative time required for fitting, and are for fits of: a) the
unmodified simulation data (red circles and dotted line); and b)
the modified simulation data (Eq. (13)) (blue circles and dashed
line). Results are given for the D-meson mass mD and decay
constant fD, and for the D ! � scalar form factor at zero recoil
momentum f0ð0; 0; 0Þ. All results are in lattice units. The gray
bands show the best-fit result from the modified data after
convergence.

FIG. 4 (color online). The D-meson’s effective mass meffðtÞ
versus t computed from modified simulation data ~GMC

D ðtÞ from
which every state other than the ground state has been removed
(using priors). The (very thin) gray band shows the weighted
average of all meffðtÞs, taking account of correlations. The
thickness of the band indicates the uncertainty of the average.
Note that the largest ts shown here correspond to the middle t
range. The error bars grow there because meffðtÞ becomes very
sensitive to statistical errors in this region (since periodic bound-
ary conditions imply that the derivative of the correlator’s non-
oscillating part vanishes at the midpoint).
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Our new implementation of effective-mass analyses is
simpler and less ambiguous than traditional analyses be-
cause we are not limited to large ts. More importantly our
implementation also allows us to quantify the contribution
to the uncertainty in the finalmavg

eff due to the excited states:

here the priors for non-oscillating terms in Eq. (15) con-
tribute 0:44�m, those from oscillating terms contribute
0:07�m, and the uncertainties in the Monte Carlo data
contribute 0:89�m, where �m is the standard deviation of
m

avg
eff . Such information is essential for assessing the relia-

bility of the final result, as well as for planning improve-
ments to the analysis.

In this paper we have shown how to accelerate
multi-exponential fits to multiple hadronic correlators by
removing contributions due to excited states from both
the fit function and the simulation data, before fitting.

This technique for marginalizing large parts of the fit

function greatly reduces the number of fit parameters

needed in the realistic examples presented here, and

makes fitting 10–40 times faster. Marginalization also

simplifies effective-mass analyses, and generalizes

easily to analogous multi-state (generalized eigenvalue)

methods.
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degrees of freedom in the fit is the number of pieces of
original Monte Carlo data plus the number of priors minus
the number of fit parameters. Consequently the number of
degrees of freedom always equals the number of pieces of
Monte Carlo data since there is a prior for each fir parameter.
This is true however many parameters are included, even
when the number parameters exceeds the number of data
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[4] Again the covariance matrix for �Gabðt; nÞ is computed
using standard error propagation—for example,fð �x��xÞ¼
�f��f with �f 	 fð �xÞ and �2

f 	 f0ð �xÞ2�2
x. We have com-

pared this linearized analysis with Monte Carlo evaluations
of�G (from normal distributions for the priors).We find the
MonteCarlo results tobebothmuchmore expensive and also
less robust for correlators that decay exponentially quickly.
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