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We consider the family of static, axially symmetric, exact solutions of the vacuum Einstein equations,

presented in a recent article by G.A. González, et al. (Phys. Rev. D 79, 124048 (2009)) (I). These

solutions are singular on an infinite disk with a central inner edge. This singularity was interpreted in (I) as

corresponding to the presence of dust with positive energy density everywhere on the disk. It was further

asserted in (I) that the Riemann tensor is regular everywhere. Unfortunately, as we show in this Comment,

neither the physical interpretation of the source nor the assertions about the Riemann tensor are correct.

We provide an extended analysis of the geometric properties of the solutions that indicates that the

Riemann tensor is, in fact, singular on the edge of the disk, and that the disk itself contains a singularity on

this edge that acts as an infinite source of negative mass. We further comment on the appropriate use of the

Komar formula for the mass of the system to make it consistent with the fact that these solutions have

vanishing Arnowitt-Desser-Misner mass.
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I. INTRODUCTION

In a recent article by G.A. González, et al., [1] the
authors present a family of static, axially symmetric, exact
solutions of the vacuum Einstein equations. The solutions
are singular on an infinite disk with a central inner edge.
This singularity is interpreted in [1] as corresponding to the
presence of dust with positive energy density everywhere
on the disks. It is further claimed in [1] that the Riemann
tensor is regular everywhere. Unfortunately, as we show in
this Comment, neither the physical interpretation of the
source nor the assertions about the Riemann tensor are
correct, and therefore, the physical relevance of the solu-
tions obtained in [1] is doubtful.

The point that raises more doubts is the fact that, even
though the space time is asymptotically flat, and, at first
sight it appears that the energy density on the disk is
everywhere positive, the total Arnowitt-Desser-Misner
(ADM) mass is zero. As we show below, this contradiction
is related to the general behavior of the resulting space
times constructed in [1], which, as the authors indicate,
contain some sort of singularity on the inner edge of the
disk. Rather than attempting a general analysis of the
complete family of solutions given in [1], we shall consider
the simplest case. The rest of the solutions may be analyzed
in a similar way.

We recall that the static, axially (and reflection on the
z ¼ 0 plane) symmetric, metric considered in [1] may be
written alternatively as

ds2 ¼ � expð2�Þdt2 þ expð�2�Þ½r2d�2 þ expð2�Þ
� ðdr2 þ dz2Þ�; (1)

where ðr; z; �Þ may be considered as standard cylindrical
coordinates, or as

ds2 ¼ � expð2�Þdt2 þ a2ð1þ x2Þð1� y2Þ
� expð�2�Þd�2 þ a2ðx2 þ y2Þ

� expð2�� 2�Þ
�

dx2

1þ x2
þ dy2

1� y2

�
; (2)

where a is a positive constant and x, y are oblate spheroidal
coordinates, such that

r2 ¼ a2ð1þ x2Þð1� y2Þ; z ¼ axy; (3)

and corresponding inverse relations giving x, y in terms of
r, z.

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr2 þ z2 � a2Þ2 þ 4a2z2
p þ r2 þ z2 � a2

q
ffiffiffi
2

p
a

y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr2 þ z2 � a2Þ2 þ 4a2z2
p � r2 � z2 þ a2

q
ffiffiffi
2

p
a

(4)

Notice that because of the square roots there is a sign
ambiguity in these expressions that must be resolved sepa-
rately to get one-to-one maps between ðr; zÞ and ðx; yÞ.
The vacuum Einstein equations imply that �ðx; yÞ sat-

isfies the Laplace equation

½ð1þ x2Þ�;x�;x þ ½ð1� y2Þ�;y�;y ¼ 0; (5)

which in turn is the integrability condition for the function
�ðx; yÞ. A simple solution considered in [1] is

�ðx; yÞ ¼ �y

aðx2 þ y2Þ (6)
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and

�ðx; yÞ ¼ �2ð�1þ y2Þ½x4ð9y2 � 1Þ þ 2x2y2ðy2 þ 3Þ þ y4ð�1þ y2Þ�
4a2ðy2 þ x2Þ4 ; (7)

where � is a positive constant.

II. GEOMETRIC PROPERTIES AND
CURVATURE SINGULARITY

The solution (6) and (7) is regular inside the rectangle
0< y< 1, �1< x <þ1. One can check that it is also
regular for y ¼ 1, corresponding to a regular r ¼ 0 sym-
metry axis, and for y ¼ 0, x � 0. Contrary to what is
expressed in [1], there is a curvature singularity as we
approach y ¼ 0, x ¼ 0. This can be seen by considering
the Kretschmann invariant K ¼ RabcdR

abcd. It is not diffi-
cult to obtain an expression for K as a function of x, y,
although the explicit expression is rather long and not very
illuminating. Since we are interested in the limit x ! 0 and
y ! 0, we considered the limit y ! 0 along the lines
x ¼ �y, where � is a constant. Notice that this implies
that near y ¼ 0 we have

z ’ 2�

�2 � 1
ðr� aÞ (8)

so that with�1<�<þ1we also cover all directions of
approach both in the x–y and r–z planes. Going back to K,
a lengthy but straightforward calculation shows that to
leading order as y ! 0 we have

K ’ 16�6

a10ð1þ �2Þ9y18 exp

�
��2ð�4 � 6�2 þ 1Þ

a2ð1þ �2Þ4y4
�
: (9)

The crucial element here is the sign of the coefficient of
y�4 in the exponential. This is determined by the sign of
the polynomial �4 � 6�2 þ 1. The roots of the equation

�4 � 6�2 þ 1 ¼ 0 are � ¼ �1þ ffiffiffi
2

p
;�1� ffiffiffi

2
p

, and we
find that K diverges as we approach x ¼ 0, y ¼ 0 from any

direction in the intervals � ffiffiffi
2

p � 1 � � � � ffiffiffi
2

p þ 1 andffiffiffi
2

p � 1 � � � ffiffiffi
2

p þ 1, while it vanishes along any other
direction. This implies that the metric (1) contains a cur-
vature singularity along the ‘‘ring’’ (r ¼ a, z ¼ 0, 0 �
� � 2�). Similar singularities appear to be unavoidable
for this type of disk models, unless some very restrictive
features hold, as argued in [2].

To advance on the possible physical interpretation of this
singularity we may consider the behavior of time like
geodesics near the ring. From (2), we have geodesics
with � ¼ �0, where �0 is a constant and x ¼ 0 (which
implies z ¼ 0 and r < a). From the geodesic equations for
(2) we find

dt

ds
¼ Ae�2�ð0;yÞ; (10)

where A is a constant, t ¼ tðsÞ, y ¼ yðsÞ and s is the affine
parameter that can be taken as proper time along the
geodesic, and from the constancy of the norm we have

� A2e�2�ð0;yÞ þ a2y2

1� y2
e2�ð0;yÞ�2�ð0;yÞ

�
dy

ds

�
2 ¼ �1: (11)

Since the coefficient of ðdy=dsÞ2 in (11) is positive, we
must have expð�2�ð0; yÞÞ � 1=A2 for any allowed yðsÞ.
But, from (6), we have �ð0; yÞ ¼ �=y and, therefore, for
�> 0 we must have dy=ds ¼ 0 for y ¼ �=ða lnðAÞÞ. This
implies that all these timelike geodesics have a turning
point for y > 0 and cannot reach the ring x ¼ 0; y ¼ 0.
Thus, the ring acts as an infinitely repulsive wall for
particles in its inner region, although this may be different
for particles approaching the ring from other directions.
We may also notice that since the space time is static and

axially symmetric, we may define the proper distance
along a radial direction from any point outside the ring
on the symmetry plane z ¼ 0with r ¼ ro > a to the ring at
r ¼ a. This is given by

‘ ¼
��������
Z ro

a

ffiffiffiffiffiffiffi
grr

p
dr

�������� (12)

or in terms of x, y

‘ ¼
��������
Z ffiffiffiffiffiffiffiffiffiffi

r2o�a2
p

=a

0

ffiffiffiffiffiffiffi
gxx

p
dx

��������: (13)

Then, replacing from (6) and (7),

‘ ¼
��������
Z ffiffiffiffiffiffiffiffiffiffi

r2o�a2
p

=a

0

axffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p e�
2=4a2x4dx

�������� (14)

and this clearly diverges as x ! 0 (or r ! a) and, there-
fore, the ring is at an infinite proper distance from any point
on the plane z ¼ 0, r > a. A similar result holds for z ¼ 0,
r < a.

III. THE MASS CONTENTS

Going back to the solution (6) and (7), considered as a
solution in the plane r, z, one finds that �ðr; zÞ is continu-
ous on the segment (z ¼ 0, r > a) but with discontinuous z
derivatives. The authors of [1] suggest that this may be
interpreted as the discontinuity introduced by the presence
of an infinitely thin disk of matter. The surface energy
density and stresses on the disk should then be interpreted
in terms of, e.g., the well-known Israel—Damour or an
equivalent formalism. In this formalism, applied to the
present case, the surface mass density is proportional to
the jump in the first derivative of one of the metric com-
ponents, namely, Eq. (28) in [1],
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4e����;z ¼ �; (15)

evaluated at z ¼ 0þ. This expression is meaningful away
from r ¼ a, where the functions � and � are regular but
must be handled with care if one wants to include the ring
region r ¼ a because of the singular nature of the metric.
In particular, one should be careful if one wants to include
it in integral expressions where the region of integration
extends to r ¼ a. In this regard, we suspect that Eq. (72) in
[1] obtained using the Komar formula must contain an
error because for a static, asymptotically flat space time,
the Komar mass is identical to the ADM mass and this is
zero for the space times of [1]. The error stems from an
inadequate consideration of the contribution of the singu-
larity at r ¼ a, z ¼ 0. This problem is analyzed in
Appendix A, where we show that the original Komar
mass formula, involving only the timelike Killing vector
of the metric, gives the correct vanishing result. We show
that the integral expression for the Komar mass can be split
into two terms, one roughly giving the disk contribution
and the other the contribution from the ring singularity, and
that these contributions exactly cancel each other.
Moreover, as we show in Appendix B, for a similar reason,
Eq. (73) in [1] is also an incorrect expression for the total
Newtonian mass of the disk because it also does not take
into account the contribution from the inner edge of the
disk. When properly computed, the total Newtonian mass
of the system, (disk plus ring) is again zero.

IV. COMMENTS

The physical interpretation (matter disks with an inner
edge) proposed in [1] for the exact solutions of Einstein’s
equations obtained there, presents us immediately with the
rather contradictory result that the corresponding space
times would be asymptotically flat, contain only vacuum
and matter with positive energy density but with a vanish-
ing total ADM mass. As we have shown here, this inter-
pretation does not properly take into account the nature of
and the contribution from the singularity on the inner edge
of the disk. We have found that from a geometric point of
view it represents an infinite repulsive barrier for radial
geodesics contained in the inner region, suggesting that it
acts as if endowed with an infinite negative mass. We have
also found that the inner edge is at infinite proper (radial)
distance of any point on the disk. (see also, e.g., [3] for a
more detailed discussion) Finally, we showed that as we
approach the inner edge of the disk, the Kretschmann
scalar may either diverge or vanish depending on the
directions of approach considered, thereby indicating the
presence of a strong curvature singularity there. Briefly
stated, regarding the matter contents, since the ADM mass
vanishes and the total mass of the disk diverges, we must
conclude that the singularity at the inner edge must provide
also an infinite but negative contribution to the mass of the
system. These features are shown to be present in the

Newtonian interpretation of �. As indicated, explicit
proofs are provided only for the simplest case, but they
should hold for the whole family of solutions as long as
they share the feature that the disks have positive (diverg-
ing) mass, but the total ADM mass is zero.
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APPENDIX A

We recall the Komar formula for the mass, as given, e.g.,
in [4],

M ¼ � 1

8�
lim
S!1

I
S
r���dS��; (A1)

where ��
ðtÞ is the space time’s timelike Killing vector sat-

isfying the equation ��;� þ ��;� ¼ 0, S is a two-surface

admitting a timelike normal n� and a spacelike normal r�
so that the surface element is given by

dS�� ¼ �2n½�r��
ffiffiffiffi
�

p
d2�; (A2)

where � is the determinant of the metric induced on S and
�1, �2 are coordinates on S.
To apply this formula to obtain the mass of the disk, we

take for S a surface defined by taking fixed-constant values
for t and for y > 0, and letting �1 � x � þ1 and 0 �
� � 2� so that the disk is contained inside S [5]. We then
have

�� ¼ ½1; 0; 0; 0� n� ¼ ½expð��ðx; yÞÞ; 0; 0; 0�

r� ¼
�
0; 0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p expð��ðx; yÞ þ�ðx; yÞÞ; 0
�

ffiffiffiffi
�

p ¼ a2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

q
expð�ðx; yÞ � 2�ðx; yÞÞ:

(A3)

A straightforward computation then gives r���, and we
finally obtain

M ¼ 1

4�

Z þ1

�1
dx

Z 2�

0
d�a2ð1� y2Þ@�

@y
: (A4)

In the particular case n ¼ 1 we have

@�

@y
¼ �ðx2 � y2Þ

aðx2 þ y2Þ2 (A5)

and then, up to a numerical factor times a�, the mass is
given by

M /
Z þ1

�1
ðx2 � y2Þ
ðx2 þ y2Þ2 ð1� y2Þdx ¼ 0 (A6)

and, therefore, the Komar mass is zero, as expected. We
notice that the relation between (A1) and Eq. (72) of [1] is
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established using Gauss’s theorem, a differential identity
that involves the Ricci tensor and Einstein’s equations
(see [4]). The problem here is that because of the singular
nature of the Ricci tensor, the limits involved in obtaining
that relation for the disks are not well-defined. To see this
in more detail, we rewrite the right-hand side of (A6) in the
form

Z þ1

�1
ðx2 � y2Þ
ðx2 þ y2Þ2 ð1� y2Þdx

¼ ð1� y2Þ
y2

Z þ1

�1
ðx2 � 1Þ
ðx2 þ 1Þ2 dx

¼ ð1� y2Þ
y2

�Z þ1

�1

ðx2 � 1Þ
ðx2 þ 1Þ2 dxþ 2

Z þ1

1

ðx2 � 1Þ
ðx2 þ 1Þ2 dx

�

¼ ð1� y2Þ
y2

ð�1Þ þ ð1� y2Þ
y2

ðþ1Þ; (A7)

where we have used

Z þ1

�1

ðx2�1Þ
ðx2þ1Þ2dx¼�1

Z þ1

1

ðx2�1Þ
ðx2þ1Þ2dx¼

1

2
: (A8)

Clearly, as y ! 0 both terms in the last line of (A7)
diverge, although the sum vanishes identically. We notice
that, roughly, the second (positive) term corresponds to the
contribution from the disk because it corresponds to the
region x > y while the first (negative) term corresponds to
the contribution from the ring singularity. This term is not
included in Eq. (72) of [1] and this is the reason for the
inconsistent results obtained using that equation.

APPENDIX B

In this Appendix we consider (6) as a solution of (5). As
such, it is well-defined and regular for all ðx; yÞ, except for
x ¼ 0, y ¼ 0 where it is singular. The problem is that we
would like to interpret � as a solution of the Laplace
equation in cylindrical coordinates ðr; z; �Þ. At a local
level, we may use the transformation (4) to obtain
�ðr; zÞ, but we notice that because of the square roots in
(4) there is a sign ambiguity in these expressions that must
be resolved separately to get one-to-one maps between
ðr; zÞ and ðx; yÞ. Actually, the natural way to handle this
situation that does not involve the introduction of new
singularities is to consider the map ðx; yÞ ! ðr; zÞ as two-
to-one. Consider the region R1 given by ð0�y�1;�1<
x<þ1Þ. This is mapped one-to-one to the region ð0 �
r <1;�1< x<þ1Þ. We might equally well consider
the region R2 given by ð�1 � y � 0;�1< x<þ1Þ,
which is also mapped one-to-one to ð0 � r <1;�1<
x <þ1Þ. Now, the function�ðx; yÞ given by (6) is smooth
in ð�1 � y � 1;�1< x<þ1Þ, (with x ¼ 0, y ¼ 0) ex-
cluded) and, therefore, �ðx; yÞ can be smoothly mapped to
a corresponding function�ðr; zÞ provided we consider two
smoothly matched copies of the r–z plane. This matching
can be more easily visualized by restoring the � coordi-

nate. In this case, we have two copies of R3 that extend
smoothly to each other through the (singular) ring (r ¼ a,
z ¼ 0). This type of topology is not uncommon in General
Relativity. Well-known examples are the ring singularity in
the Kerr metric (see, e.g. [6]) or Appel rings (see, for
example, [3,7]) of which the present case is also an
example.
One may avoid the nontrivial topology by restricting to

one copy of the r–z plane. To achieve this one may, for
instance, consider only R1 (as is done in [1]) and identify
points with the same value of jxj along the line y ¼ 0. With
this identification the function �ðr; z; �Þ is a regular solu-
tion of the Laplace equation (except for z ¼ 0, r ¼ a),
which is continuous but with discontinuous derivatives on
the disk z ¼ 0, r > a. Using Gauss’s law, one may interpret
this discontinuity as due to the presence of a source,
restricted to the disk. The problem is that this is not the
only source for �ðr; z; �Þ because there is also a contribu-
tion from the singular ring. To find this contribution we
recall, in accordance with Gauss’s Law, if � is a closed
surface in R3, we have

M� ¼ 1

4�

Z
�
r� � d ~S; (B1)

where M� is the total mass contained in the interior of �.
Because of the functional form of �ðx; yÞ, a convenient

choice for � is any of the ellipses defined by jxj ¼ x0,
where x0 > 0 is a constant. In terms of ðr; z; �Þ, they are the
surfaces

x20r
2 þ ð1þ x20Þz2 ¼ ð1þ x20Þx20a2; (B2)

which enclose the ring for x0 > 0.
A simple computation shows that for the surfaces (B2),

the integral (B1) may be written as

M� ¼ 1

2�

Z 2�

0
d�

Z 1

0
dyr

�
@x

@r

@z

@y
� @x

@z

@r

@y

�
@�

@x
(B3)

and, using (3) and (4), we get

M� ¼
Z 1

0

@�

@x
ð1þ x20Þdy: (B4)

Then, for � given by (6) we find

M� ¼ � �

x0
¼ � �affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r20 � a2
q ; (B5)

where r0 ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x20

q
is the value of the coordinate r at the

intersection of � with the disk on z ¼ 0.
The result (B5) indicates that the enclosed mass is

negative for all r0. It diverges for r0 ! a, indicating that
the singular ring at r ¼ a provides an infinite negative
contribution to the mass. This is partially compensated
by an equally infinite but positive contribution from the
disk so that we get a finite result for any r > a. The total
enclosed mass goes to zero for r0 ! 1, in agreement with

COMMENTS PHYSICAL REVIEW D 85, 028501 (2012)

028501-4



the fact that � vanishes faster than 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z2

p
for large r

and z and, therefore, the potential� has no monopole term
asymptotically.

We may similarly ask what is the contribution from the
surface mass density of the disk. To answer this question
we compute the total mass of the disk between r ¼ r0 and
r ¼ 1. Using again Gauss’s theorem, this is given by

Mdisk ¼ 1

2�

Z 2�

0
d�

Z 1

r0

drr
@�

@z

��������z¼0
(B6)

and, therefore,

Mdisk ¼ �affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20 � a2

q : (B7)

This is a positive contribution such that the total mass
M ¼ M� þMdisk vanishes exactly. We notice that it also
diverges as r0 ! a, in agreement with the requirement that
the total mass enclosed in � must be finite.
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