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We study the classical dynamics of SUð2Þ-Higgs field theory using multiple-scale perturbation theory.

In the spontaneously broken phase, assuming small perturbations of the Higgs field around its vacuum

expectation value, we derive a nonlinear Schrödinger equation and study the stability of its nonlinear plane

wave solutions. The latter turn out to be stable only if the Higgs amplitude is an order of magnitude

smaller than that of the gauge field. In this case, the Higgs field mass possesses some bounds which may

be relevant to the search for the Higgs particle at ongoing experiments.
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I. INTRODUCTION

One of the main goals of the current collider experi-
ments (LHC at CERN, Tevatron at Fermilab) is the detec-
tion of the Higgs particle [1], the missing piece in the
experimental verification of the standard model [2].
Existing bounds on the properties of the Higgs particle
originate exclusively from quantum corrections of the
standard model or its extensions (see Ref. [3] and refer-
ences therein). This implies a different treatment of the
Higgs field as compared to the electroweak gauge fields
since, for the latter, a rough estimation of their properties is
obtained already at the classical (Born) level. The reason
for this discrimination is the fact that the weak boson mass
is determined only from the vacuum expectation value
(vev) of the Higgs field, while the Higgs mass depends
explicitly also on the unknown coupling constant deter-
mining its self-interaction. In fact, the self-interaction
corresponds to the presence of nonlinear terms in the
Higgs potential. Usually, the nonlinear terms in the
SUð2Þ-Higgs Lagrangian are treated as perturbation of an
underlying linear theory allowing, this way, the straightfor-
ward canonical quantization of the electroweak theory.
From the classical point of view, however, this treatment
is insufficient. The reason is that such a perturbation
scheme usually develops instabilities due to the emergence
of secular terms at higher orders (see, e.g., Ref. [4]).

In the present work, we study the stability of plane waves
in the presence of the nonlinear terms in the SUð2Þ-Higgs
model—a problem that, to the best of our knowledge, has
not been addressed so far in the literature. There is strong
motivation in performing such a study. Generally, classical
solutions may describe sufficiently the effective dynamics
of nonlinear quantum fields since, in this case, energy can
be transferred from high frequency modes to long-
wavelength excitations. In particular, they are important
for the description of condensates, as indicated by an
analogous treatment for the dynamics of the QCD chiral

condensate in terms of classical pion fields [5]. Finally,
stability is a prerequisite for using classical solutions as a
basis for the quantization of a classical field theory.
In our approach, the classical equations of the

SUð2Þ-Higgs model are solved approximately, using
multiple-scale perturbation theory [4] to handle the non-
linear terms. This technique employs slow temporal and
spatial scales to reduce the original nonlinear system to a
simpler one, thus allowing the understanding of gross
features of the original problem and enabling the consistent
treatment of the secular terms. We note in passing that such
perturbative methods are commonly used in a variety of
physical contexts, ranging from water waves to nonlinear
optics, condensed-matter physics, etc. In our case, assum-
ing small perturbations of the Higgs field around its vev, we
derive a set of coupled nonlinear equations for the evolu-
tion of the Higgs and the gauge boson fields. If the Higgs
field amplitude is much smaller compared to the gauge
boson field, these equations decouple and obey a nonlinear
Schrödinger (NLS) equation. The latter possesses nonlin-
ear plane wave (among other, soliton-type) solutions,
which have been already discussed in literature [6,7].
Here, we will focus on the stability properties of these
solutions and show that the stability condition for the
nonlinear plane waves leads to restrictions in the values
of the ratio of the Higgs to the gauge boson field mass.

II. FORMULATION AND SETUP

In our treatment, we neglect the mixing with the elec-
tromagnetic Uð1Þ gauge field since it does not couple
directly to the Higgs field. As a consequence, the mass of
the three components of the SUð2Þ field is taken to be the
same. We also do not consider here the fermionic sector.
The SUð2Þ-Higgs field dynamics is described by the
Lagrangian:

L ¼ �1
4F

a
��F

a;�� þ ðD��ÞyðD��Þ � Vð�y�Þ; (1)
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where Fa
�� is the SUð2Þ field strength tensor, D� ¼ @� þ

igAa
�

�a

2 is the associated covariant derivative, �a are the

Pauli matrices, Vð�y�Þ ¼ �2�y�þ �ð�y�Þ2ð� > 0Þ is
the Higgs self-interaction potential, and summation over
repeated indices is implied. In the broken phase, �2 < 0, a

vev v=
ffiffiffi

2
p

of the Higgs field arises classically with v2 ¼
��2=�. We focus on the dynamics of this system assum-
ing that the Higgs field fluctuates slightly around its vev. In
this case, we perform the standard gauge selection and we
expand� as� ¼ ð0; 1

ffiffi

2
p ðvþHÞÞT obtaining the following

equations of motion for the fields Aa
� and H:

�

hþ g2v2

4

�

Aa
� � @�ð@�Aa;�Þ þ vg2

2
HAa

� þ g2

4
H2Aa

�

þ g�abc½ð@�Ac;�ÞAb
� � ð@�Ab;�ÞAc

� � 2Ab
�@

�Ac
��

� g2½Aa
�A

b
�A

b;� � Ab
�A

a
�A

b;�� ¼ 0; (2)

ðhþ2�v2ÞHþ3�vH2þ�H3�g2

4
Aa
�A

a;�ðvþHÞ¼0:

(3)

The above equations, due to the presence of a small fluc-
tuating field H, suggest the use of a perturbation method
with a small parameter � related to the ratio of the ampli-
tude of the Higgs field to its vev. Here, we will employ the
method of multiple scales [4], thus expanding the fields,
variables, and operators in Eqs. (2) and (3) in powers of �
as follows:

Aa
� ¼ Aa

�ð0Þ þ �Aa
�ð1Þ þ �2Aa

�ð2Þ þ . . . ;

H ¼ Hð0Þ þ �Hð1Þ þ �2Hð2Þ þ . . . ;

@

@x�
¼ X

1

i¼0

�i
@

@x�i
; x

�
i ¼ �ix�;

(4)

where j ¼ 0; 1; . . . in Aa
�ðjÞ and HðjÞ denotes the order of

approximation. Within this perturbative scheme, Eq. (3)
implies—for reasons of self-consistency and stability—
that the fields Aa

� and H should be expanded around the

stable minimum, Aa
�ð0Þ ¼ Hð0Þ ¼ 0, of Eqs. (2) and (3).

Generally, the dynamics of the gauge fields, without Higgs,
are chaotic [8,9]. However, there exist configurations
which admit regular solutions. For example, such a typical
configuration is obtained through the color isotropic
‘‘hedgehog’’ ansatz Aa

0 ¼ 0 and Aa
i ¼ �a

i A [7,10,11]. In

particular, such an ansatz allows the mapping of the gauge
field theory to the scalar�4 theory [11]. Here, we will use a
less-restrictive representation of the gauge field, assuming
that the nondiagonal terms are of higher order than the
diagonal terms. Furthermore, for consistency reasons im-
plied by the structure of the equations of motion, we have
to choose the temporal components of the gauge fields Aa

0

to be an order of magnitude larger than the other non-
diagonal terms. Thus, the gauge fields can be expressed as
follows:

A1
1; A

2
2; A

3
3 ¼ A ¼ Oð�Þ; A1

0; A
2
0; A

3
0 ¼ Oð�2Þ

A1
2; A

1
3; A

2
1; A

2
3; A

3
1; A

3
2 ¼ Oð��Þ; � � 3:

(5)

The above ansatz, combined with a suitable choice
for the Higgs field (which will be discussed below), leads
to the decoupling of the equations of motion up to the
order Oð�3Þ.
In addition, the Lorentz condition @�A

a;� ¼ 0 is ful-

filled up to the same order, Oð�3Þ. For the Higgs field, we
will consider two scenarios. The straightforward case
Hð1Þ � 0 leads to a set of coupled nonlinear partial differ-
ential equations of the NLS form for which, however, the
nonlinear plane wave solutions are unstable for all the
values of the relevant parameters. The details of this analy-
sis are shown in the Appendix. In the following, we will
focus on the scenario where Hð1Þ ¼ 0, Hð2Þ � 0: in this
case, we show that nonlinear plane waves, both for the
gauge and the Higgs field, are stable if the mass parameter
of the Higgs field is suitably bounded.

III. THE NLS EQUATION FOR
THE SUð2Þ GAUGE BOSON

Using the assumptions (5), the evolution Eqs. (2) and (3)
for the gauge and Higgs fields, containing all contributions
up to Oð�3Þ, are simplified as follows:

ðhþm2
AÞAþ vg2

2
HAþ 2g2A3 ¼ Oð�4Þ; (6)

ðhþm2
HÞH þ 3

4
vg2A2 ¼ Oð�4Þ; (7)

where

m2
A ¼ g2v2

4
; m2

H ¼ 2�v2:

Notice that we obtain a single equation for the gauge fields
due to the choice (5) as well as the equality of the Ai

i

components. Equation (6) leads, to Oð�Þ, to the following
solution for the gauge field A:

Að1Þ ¼ fe�imAt þ c:c:; (8)

where ‘‘c.c.’’ denotes complex conjugate and the function
f ¼ fð ~x1; t2; . . .Þ is obtained from the secular terms of
Eq. (6) at Oð�2Þ. At the same order, Eq. (7) determines
the Higgs field:

Hð1Þ ¼ B½bjfj2 þ f2e�2imAt þ ðf�Þ2e2imAt�; (9)

where b ¼ 2ðm2
H � 4m2

AÞ=m2
H and B ¼ �6m2

A=bvm
2
H.

The function f is determined from Eq. (6) at the order
Oð�3Þ, which leads to the following NLS equation:

i
@f

@t2
þ 1

2mA

r2
1fþ sjfj2f ¼ 0; (10)

with s ¼ �2g2ð3þ �Þ=ð2mAÞ. The parameter �¼
ð1=4ÞvBðbþ1Þ, which depends only on the ratio
q ¼ mH=mA, is given by
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�ðqÞ ¼ � 3

4

�

2

q2
þ 1

q2 � 4

�

: (11)

The solutions of the NLS Eq. (10), as well as their stability,
can now be used to investigate, at the classical level, the
effect of nonlinearity on the properties of the Higgs parti-
cle. In that regard, first we note that the properties of the
solutions of the NLS model depend on the relative sign of
the coefficients of the kinetic and nonlinear terms in
Eq. (10). In the case s < 0, plane wave solutions of the
NLS Eq. (10) are stable (see below). Furthermore, stable
localized nonlinear excitations on top of these plane waves
are possible too: these include dark solitons (i.e., density
dips with a phase jump across their density minima) in one
dimension [12], vortices in two dimensions [13], and vor-
tex rings in three dimensions [14]. On the other hand, if
s > 0, the plane wave solutions of the NLS Eq. (10) are
unstable, while stable localized solutions exist only in one
dimension: these solutions are nontopological solitons
(also known as ‘‘bright solitons’’) in the form of localized
humps with vanishing conditions at infinity. Nevertheless,
in higher dimensions, all localized structures are subject to
collapse—see, e.g., [15]. From the above comments, it
turns out that, within this setup, there are no stable and
localized classical solutions in three dimensions which can
be interpreted—in an obvious way—as the elementary
Higgs particle.

In the following, we focus on the plane wave solutions of
Eq. (10) and their stability. As stated above, these solutions
are particularly important for the effective description of
the spontaneously broken vacuum and excitations on top of
it, or in their use as a basis for the quantization of the
theory.

IV. STABILITY CONSTRAINTS AND
THE HIGGS MASS

The NLS Eq. (10) possesses exact analytical plane wave
solutions of the form

fð ~x1; t2Þ ¼ f0 exp½�ið!t2 � ~k � ~x1Þ�; (12)

where f0 is the amplitude of the plane wave for the gauge

field, while its frequency ! and the wave vector ~k satisfy
the following dispersion relation:

!ðkÞ ¼
~k2

2mA

� sjf0j2: (13)

The solutions (12) resemble the plane wave solutions
usually employed for the quantization of the
SUð2Þ-Higgs theory, but they feature a modified dispersion
relation, cf. Equation (13), involving an amplitude-
dependent mass correction. This correction originates
from the self-interaction, as well as the interaction between
the gauge and the Higgs fields, and has, in principle, a
similar effect as the quantum self-energy correction.
Similar solutions have been found in Ref. [7] for the pure

SUð2Þ model in the vanishing ‘‘Poynting’’ vector frame of
reference.
The stability of the nonlinear plane waves (12) can be

studied by considering small-amplitude perturbations
which, for a static background (k ¼ 0), assume the form

�f ¼ ðuþ ivÞ exp½�iðð�þ!Þt2 � ~Q~x1Þ�: (14)

In Eq. (14), u and v denote the (real) amplitudes, while�,
~Q the frequency and wave vector of the perturbation,
respectively [16]; then, it is straightforward to find from

Eq. (10) that � and ~Q satisfy the dispersion relation:

�2 ¼ j ~Qj2
2mA

�

�2sjf0j2 þ j ~Qj2
2mA

�

: (15)

Hence, the solution (12) is stable, i.e.,� is real for all j ~Qj,
only if s < 0, i.e., if the parameter � obeys:

3þ �ðqÞ> 0: (16)

The above inequality determines the permitted regions for
the ratio q—thus restricting mH for given mA—so that
plane waves of the gauge field are stable. Thus, although
the Born approximation of the usual perturbation theory
(which neglects all nonlinear terms for small coupling)
does not imply any information concerning the properties
of the Higgs field, in the framework of multiscale analysis
we obtain restrictions for the Higgs mass originating from
stability conditions.
Interestingly enough, we will now show that these re-

strictions do not exclude the region, which turns out to be
the most probable for the Higgs mass based on the recent
experimental observations. Particularly, utilizing the stan-
dard model value mA ¼ 80 GeV we find that mH fulfills
the condition:

56 GeV<mH < 160 GeV or mH > 165 GeV: (17)

The region of very low Higgs masses (mH < 114:5 GeV) is
practically excluded from existing experimental data (LEP
II [17]). In addition, the zone mH 2 ½158; 173� GeV has
been excluded from the Tevatron analysis [18]. Latest
results from ATLAS and CMS experiments at LHC-
CERN [19], when combined, practically exclude the re-
gion [145, 466] GeV. Thus, the most probable scenario for
a light Higgs field, compatible with existing experimental
data and the above analysis, is 114:5 GeV<mH <
145 GeV. According to the standard model, in this range
of the Higgs mass parameter, the decay of Higgs into a pair
of opposite charged gauge bosons starts to increase rapidly
[20], dominating for mH > 140 GeV over the other chan-
nels. This partly justifies the use of the simplified model
considered here, which takes into account the interaction of
the Higgs field with the gauge bosons while neglecting all
fermion couplings.
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V. CONCLUDING REMARKS

We have employed a multiple-scale perturbative scheme
to analyze the classical SUð2Þ-Higgs dynamics, taking into
account the nonlinear terms in the corresponding equations
of motion. This approach enables a consistent treatment of
the secular terms occurring at higher orders of the classical
perturbation theory. Using a suitable representation for the
gauge field, the equations of motion of the complete
SUð2Þ-Higgs model simplify significantly and are reduced,
depending on the magnitude of the Higgs field amplitude,
either to a single NLS equation (weak Higgs field, / �A) or
to a set of two coupled NLS equations (strong Higgs field,
/ A—see Appendix). These equations admit nonlinear
plane wave solutions, with an amplitude-dependent disper-
sion relation, in contrast to the ones usually used for the
quantization of the model. The relevance of nonlinear wave
solutions for the field quantization has been recently dis-
cussed in Ref. [21]. These plane wave solutions are stable
for a range of Higgs mass values and only in the case of a
weak Higgs field. On the other hand, for a strong Higgs
field the nonlinear plane waves are unstable for all parame-
ter values. Thus, the classical stability analysis of the
nonlinear solutions of the reduced SUð2Þ-Higgs evolution
equations provides bounds in the characteristics (ampli-
tude, mass) of the Higgs field, which could be of relevance
for the running experimental studies. Finally, one should
notice that the dynamics of the coupled NLS equations
occurring in the case of a strong Higgs field (see Appendix)
require a more extensive analysis in order to explore also
other solutions which could be relevant for the dynamical
description of the SUð2Þ-Higgs model. This is an interest-
ing direction for future studies.
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APPENDIX: THE CASE OF STRONG HIGGS
FIELD AMPLITUDE

Here, we study the case where the expansion of the
Higgs field in powers of � starts from the first order, i.e.,
the case when the ratio of the Higgs to the gauge boson
field amplitude is larger. This way, we consider the follow-
ing asymptotic expansion of H:

H ¼ �Hð1Þ þ �2Hð2Þ þ . . . ; (A1)

and keep all other expressions in Eq. (5) the same as in the
preceding analysis. Then, Eqs. (6) and (7) for the gauge
and Higgs fields are modified and their form, containing all
contributions up to Oð�3Þ, is

ðhþm2
AÞAþ

g2v

2
HAþg2

4
H2Aþ2g2A3¼Oð�4Þ; (A2)

ðhþm2
HÞH þ �H2ðH þ 3vÞ þ 3g2A2

4
ðvþHÞ ¼ Oð�4Þ:

(A3)

The perturbative treatment of Eqs. (A2) and (A3) at each
order of � leads to the following form for the fields Að1Þ
and Hð1Þ:

Að1Þ ¼ fð ~x1; t2; . . .Þe�imAt þ c:c:;

Hð1Þ ¼ hð ~x1; t2; . . .Þe�imHt þ c:c::
(A4)

The functions f and h satisfy two coupled NLS equations
of the following form:

i@t2fþ 1

2mA

r2
1f� ½g11jfj2 þ g12jhj2�f ¼ 0;

i@t2hþ 1

2mH

r2
1h� ½g21jfj2 þ g22jhj2�h ¼ 0;

(A5)

where the coefficients gijði; j 2 f1; 2gÞ are given by

g11 ¼ g2

mA

ð3þ �ðqÞÞ; g12 ¼ g2

4mA

	ðqÞ;

g21 ¼ 3g2

4mH

	ðqÞ; g22 ¼ � 3g2

4mH

q2;

(A6)

the parameter �ðqÞ is given by Eq. (11), and 	ðqÞ ¼
�3þ q2=ðq2 � 4Þ.
The system of Eqs. (A5) admits plane wave solutions of

the form

fð ~x1; t2Þ ¼ f0 exp½�ið!ft2 � ~kf ~x1Þ�;
hð ~x1; t2Þ ¼ h0 exp½�ið!ht2 � ~kh ~x1Þ�;

(A7)

where the frequencies !f, !h satisfy the following disper-

sion relations:

!f ¼
~k2f

2mA

þ g11jf0j2 þ g12jh0j2;

!h ¼
~k2h

2mH

þ g21jf0j2 þ g22jh0j2:
(A8)

In order to investigate the stability of the solutions (A7) on
top of a static background, i.e., kf ¼ kh ¼ 0, we introduce

small perturbations of the form

�f ¼ ðu1 þ iv1Þ exp½�iðð�þ!fÞt2 � ~Q~x1Þ�;
�h ¼ ðu2 þ iv2Þ exp½�iðð�þ!hÞt2 � ~Q~x1Þ�;

(A9)

where the perturbation amplitudes ui, vi (i ¼ 1, 2) are

assumed to be real, while �, ~Q denote the energy and
the momentum of the perturbations, respectively. Applying
again the method used above for the weaker Higgs field,
we require that the small variations (A9) do not diverge
with time. This is satisfied if the roots of the biquadratic
equation,
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�4 � b�2 þ c ¼ 0; (A10)

are real. The coefficients b and c read

b ¼ pHbH þ pAbA;

c ¼ pHpAbHbA � 4pHpAjf0j2jh0j2g12g21;
(A11)

where pH ¼ ~Q2=2mH, pA ¼ ~Q2=2mA, bH ¼ pH þ
2g22jh0j2, and bA ¼ pA þ 2g11jf0j2. Real roots of (A10)

imply b > 0 and c > 0, leading to the following stability
conditions:

g11g22 � g12g21 > 0; g22 > 0; g11 > 0: (A12)

For the coefficients gij [cf. Eq. (A6)], there are no values of

q satisfying the first two inequalities. Thus, according to
this analysis, for a stronger Higgs field, plane wave solu-
tions are unstable.

[1] P.W. Higgs, Phys. Lett. 12, 132 (1964); Phys. Rev. Lett.
13, 508 (1964); Phys. Rev. 145, 1156 (1966); F. Englert
and R. Brout, Phys. Rev. Lett. 13, 321 (1964); G. Guralnik,
C. Hagen, and T. Kibble, Phys. Rev. Lett. 13, 585 (1964);
S. Dittmaier et al. (LHC Higgs Cross Section Working
Group), arXiv:1101.0593, https://twiki.cern.ch/twiki/bin/
view/LHCPhysics/CrossSections.

[2] A. Djouadi, Phys. Rep. 457, 1 (2008); 459, 1 (2008).
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