
N ¼3 supersymmetric effective action of D2-branes
in massive IIA string theory

Gyungchoon Go,1,* O-Kab Kwon,1,† and D.D. Tolla1,2,‡

1Department of Physics, BK21 Physics Research Division, Institute of Basic Science,
Suwon 440-746, Korea

2University College, Sungkyunkwan University, Suwon 440-746, Korea
(Received 23 December 2011; published 25 January 2012)

We obtain a new type of N ¼ 3 Yang-Mills Chern-Simons theory from the Mukhi-Papageorgakis

Higgs mechanism of the N ¼ 3 Gaiotto-Tomasiello theory. This theory has N ¼ 1 BPS fuzzy funnel

solution, which is expressed in terms of the seven generators of SU(3), excluding T8. We propose that this

is an effective theory of multiple D2-branes with D6- and D8-branes background in massive IIA string

theory.

DOI: 10.1103/PhysRevD.85.026006 PACS numbers: 11.25.Uv, 11.10.Kk, 11.30.Pb

I. INTRODUCTION

Three-dimensional Yang-Mills Chern-Simons (YM
CS) theories can be realized on brane configurations in
type II string theory in two ways. On one hand, one can
start with the Hanany-Witten-type brane configuration,
which contains D3-branes stretched between two parallel
NS5-branes in type IIB string theory [1]. The corre-
sponding gauge theory is (2þ 1)-dimensional N ¼ 4
YM theory. When one of the NS5-branes is replaced
by a (1, k) 5-brane, a CS term with CS level k arises in
the corresponding gauge theories and the supersymmetry
is broken to N ¼ 1, 2, 3 depending on the orientation
of the (1, k) 5-brane with respect to the other NS5-brane
[2,3]. For further progress on this issue, see [4–7]. This
method of generating the CS term was also used in the
type IIB brane configuration of the Aharony-Bergman-
Jafferis-Maldacena (ABJM) theory [8], which describes
the dynamics of M2-branes on C4=Zk orbifold singular-
ity. See also [9–11]. On the other hand, CS terms are
also needed in describing D3(2)-branes dynamics in the
background of D7(8)-branes [12,13]. In this case, the CS
term is generated by the monodromy due to the presence
of the D7-brane [14] in type IIB brane configurations.
The corresponding CS term in massive IIA brane con-
figurations is obtained by massive T duality [15]. This
phenomenon is closely related with the brane configura-
tion of the Gaiotto-Tomasiello (GT) theories [16,17]. In
particular, by introducing D7-branes to the type IIB
brane configuration of ABJM theory, Bergman and
Lifschytz constructed the brane configuration of the
N ¼ 0 GT theory [18]. For N ¼ 3, see [19].1

The dimensional reduction of the ABJM theory with
UðNÞ � UðNÞ gauge symmetry [8] via the Mukhi-
Papageorgakis (MP) Higgs mechanism [23] results in the
(2þ 1)-dimensional N ¼ 8 supersymmetric YM theory
with UðNÞ gauge symmetry [24,25]. The N ¼ 3 GT
theory [16] was obtained from the ABJM theory by shift-
ing the CS levels of the two gauge groups, so that
k1 þ k2 � 0. Apparently, theN ¼ 3GT theory is a minor
deformation of the ABJM theory; however, there are un-
answered questions about this theory. This is mainly be-
cause of the fact that there is no clear argument about the
related brane system. In order to clarify this point, we
apply the MP Higgs mechanism to the N ¼ 3 GT theory
and obtain (2þ 1)-dimensional N ¼ 3 YM CS theory
with UðNÞ gauge symmetry and CS level k1 þ k2 ¼ F0.
This N ¼ 3 YM CS theory is different from the one
studied in [26,27] because it contains four massless scalar
fields and their fermionic superpartners in addition to the
three massive scalar fields in the massive vector multiplet,
which are also present in the latter theory. It is also true that
our theory has N ¼ 1 BPS fuzzy funnel solution and
ðR4 � S1ÞN=SN vacuum moduli space while these are triv-
ial in the theory in [26,27].
Even though the brane configuration for the original

N ¼ 3 GT theory is unclear, the structure of the moduli
space and the fuzzy funnel solution provide an insight
into the branes configuration for our N ¼ 3 YM CS
theory. In this paper, we argue that in massive IIA string
theory, YM CS theories with UðNÞ gauge symmetry
describe the low-energy dynamics of N coincident D2-
branes in the background of D8-brane.2 We also show
that the presence of three massive and four massless
scalar fields, which are matter contents of our N ¼ 3
YM CS theory, implies the branes system should contain
D6-branes. More precisely, the brane system includes N
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1Some aspects of N ¼ 2, 3 GT theories were also discussed

in [20–22].

2See [28,29] for earlier considerations in the case of single
D2-brane.
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coincident D2-branes in the background of jF0j D8-
branes, which have one common spacial direction with
the D2-branes, and jF0j D6-branes, which have two
common spacial directions with the D2-branes. The
four massless scalar fields represent the position of the
D2-branes inside the worldvolume of the D6-branes
while the three massive scalar fields represent the posi-
tion of the D2-branes along the directions transverse
to the D6-branes in the presence of the background
D8-branes.

The remaining part of the paper is organized as fol-
lows. In Sec. II, we apply the MP Higgs mechanism to the
N ¼ 3 GT theory and obtain N ¼ 3 YM CS theory. In
Sec. III, we find the vacuum moduli space and N ¼ 1
BPS fuzzy funnel solution. In Sec. IV, we propose the

brane configuration of the N ¼ 3 GT theory and that of
our N ¼ 3 YM CS theory. In Sec. V, we discuss our
results.

II. N ¼ 3 YM CS THEORY

A. N ¼ 3 GT theory

Based on theN ¼ 2 superfield formulation of [16], the
component field expansions of the GT theories were ob-
tained in [22]. For clarity of presentation, we copy the
Lagrangian of the N ¼ 3 GT theory,

LN¼3 ¼ L0 þLCS þLferm þLbos; (2.1)

where

L0 ¼ tr½�D�Z
y
AD

�ZA �D�W
yAD�WA þ i�y

A�
�D��

A þ i!yA��D�!A�;
LCS ¼ k1

4�
����tr

�
A�@�A� þ 2i

3
A�A�A�

�
þ k2

4�
����tr

�
Â�@�Â� þ 2i

3
Â�Â�Â�

�
;

Lferm ¼ � 2�i

k1
tr½ð�A�y

A �!yA!AÞðZBZy
B �WyBWBÞ þ 2ðZA�y

A �!yAWAÞð�BZy
B �WyB!BÞ�

� 2�i

k2
tr½ð�y

A�
A �!A!

yAÞðZy
BZ

B �WBW
yBÞ þ 2ðZy

A�
A �!AW

yAÞð�y
BZ

B �WB!
yBÞ�

� 2�

k1
trðZA!AZ

B!B þ �AWA�
BWB þ 2ZAWA�

B!B þ 2ZA!A�
BWB

�!yAZy
A!

yBZy
B �WyA�y

AW
yB�y

B � 2!yA�y
AW

yBZy
B � 2WyA�y

A!
yBZy

BÞ
� 2�

k2
trð!AZ

A!BZ
B þWA�

AWB�
B þ 2!AZ

AWB�
B þ 2WAZ

A!B�
B

� Zy
A!

yAZy
B!

yB � �y
AW

yA�y
BW

yB � 2�y
AW

yAZy
B!

yB � 2�y
A!

yAZy
BW

yBÞ;

Lbos ¼ � 4�2

k21
tr½ðZAZy

A þWyAWAÞðZBZy
B �WyBWBÞðZCZy

C �WyCWCÞ�

� 8�2

k1k2
tr½ðZAZy

A �WyAWAÞZBðZy
CZ

C �WCW
yCÞZy

B

þ ðZAZy
A �WyAWAÞWyBðZy

CZ
C �WCW

yCÞWB�

� 4�2

k22
tr½ðZy

AZ
A þWAW

yAÞðZy
BZ

B �WBW
yBÞðZy

CZ
C �WCW

yCÞ�

� 4tr

��
2�

k1
WAZ

BWB þ 2�

k2
WBZ

BWA

��
2�

k1
WyCZy

CW
yA þ 2�

k2
WyAZy

CW
yC
�

þ
�
2�

k1
ZBWBZ

A þ 2�

k2
ZAWBZ

B

��
2�

k1
Zy
AW

yCZy
C þ 2�

k2
Zy
CW

yCZy
A

��
: (2.2)

In N ¼ 2 superfield formalism, ZA and WA (A ¼ 1, 2) are the scalar components of chiral superfields ZA and W A,
respectively, whereas �A and !A are their fermionic superpartners. A� and Â� are the vector components of the vector
superfields V 1 and V 2, respectively. The N ¼ 3 supersymmetry transformation rules for these component fields are as
follows [22]:
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�ZA ¼ i ���A � 	!yA; �WA ¼ i ��!A þ 	�y
A;

��A ¼ �D�Z
A���� 
1Z

A�þ ZA
2�� 4�i

k1
��WyBZy

BW
yA � 4�i

k2
��WyAZy

BW
yB þ iD�W

yA��	

þ i	
1W
yA � i	WyA
2 þ 4�i

k1
	WyBZy

BZ
A þ 4�i

k2
	ZAZy

BW
yB;

�!A ¼ �D�WA�
��þWA
1�� 
2WA�� 4�i

k1
��Zy

AW
yBZy

B � 4�i

k2
��Zy

BW
yBZy

A � iD�Z
y
A�

�	

þ i	Zy
A
1 � i	
2Z

y
A � 4�i

k1
	WAW

yBZy
B � 4�i

k2
	Zy

BW
yBWA;

�A� ¼ 1
2ð ���� ��1 þ �1���Þ � 1

2ð	���1 � i ��1��	Þ; �Â� ¼ 1
2ð ���� ��2 þ �2���Þ þ 1

2ð	���2 � i ��2��	Þ; (2.3)

where � and �� are a complex two-component spinor and its
complex conjugate, whereas 	 is a complex spinor satisfy-
ing �	 ¼ �i	. Here, we also defined


1�2�

k1
ðZBZy

B�WyBWBÞ; 
2��2�

k2
ðZy

BZ
B�WBW

yBÞ;

�1��4�

k1
ðZA�y

A�!yAWAÞ; �2�4�

k2
ð�y

AZ
A�WA!

yAÞ;

�1�4�

k1
ð�AWAþZA!AÞ; �2�4�

k2
ðWA�

Aþ!AZ
AÞ:

(2.4)

In the next subsection, we apply the MP Higgs mecha-
nism to the Lagrangian (2.1) and the corresponding super-
symmetry transformation rules (2.3) and obtain the
N ¼ 3 YM CS theory.

B. MP Higgs mechanism of the N ¼ 3 GT theory

An important step in the MP Higgs mechanism is to turn
on vacuum expectation value v for a scalar field along
which the bosonic potential is flat. The only flat directions
for the bosonic potential in the N ¼ 3 GT theory are the
tilted directions, Z1 �Wy2 and Z2 �Wy1. In order to turn
on the vacuum expectation value for a specific field, it is
convenient to make field redefinitions that align the scalars
along the flat directions of the potential. The appropriate
field redefinitions for bifundamental fields are

ZA ¼ XA � YyAffiffiffi
2

p ; WyA ¼ 
A
BðXB þ YyBÞffiffiffi

2
p ;

�A ¼ �A � iyAffiffiffi
2

p ; !yA ¼ 
A
BðyB � i�BÞffiffiffi

2
p ;

(2.5)

where 
A
B is the Pauli matrix 
1. The N ¼ 3 GT

Lagrangian is rewritten in terms of the redefined fields in
Appendix A.

The MP Higgs mechanism of the ABJM theory involves
a double-scaling limit of large vacuum expectation value
and CS level k, keeping the ratio v=k finite. This can be
applicable to the GT theory by setting k1 ¼ k and

k2 ¼ �kþ F0 and taking the same scaling limit.3 The
appearance of the Chern-Simons levels in the fermionic
and bosonic potentials suggests the following expansions
in powers of 1=k for finite F0:

1

k2
¼ � 1

k

�
1þ F0

k
þ � � �

�
;

1

k22
¼ 1

k2

�
1þ 2F0

k
þ 3F2

0

k2
þ � � �

�
;

1

k1k2
¼ � 1

k2

�
1þ F0

k
þ F2

0

k2
þ � � �

�
:

(2.6)

We proceed by turning on the vacuum expectation value
for a scalar field, which breaks the gauge symmetry from
UðNÞ � UðNÞ to UðNÞ as follows:
XA ¼ ~XA þ i ~XAþ4;

YyA ¼ v

2
T0�A2 þ ~XAþ2 þ i ~XAþ6;

�A ¼ c A þ ic Aþ4; yA ¼ c Aþ2 þ ic Aþ6; (2.7)

where T0 is the generator of U(1). Here, the fields ~Xiði ¼
1; � � � ; 8Þ and c rðr ¼ 1; � � � ; 8Þ are Hermitian and trans-
form in the adjoint representation of the unbroken UðNÞ
gauge group. In the double-scaling limit of v, k ! 1 with
finite v=k, the covariant derivatives for the bosonic and
fermionic fields are written as

D�Y
y2 ¼ ~D�

~X4 þ iv

�
A�
� þ 1

v
~D�

~X8

�
! ~D�

~X4 þ ivA�
�;

D�Y
y1 ¼ ~D�

~X3 þ i ~D�
~X7;

D�X
A ¼ ~D�

~XA þ i ~D�
~XAþ4;

D��
A ¼ ~D�c

A þ i ~D�c
Aþ4;

D�!
yA ¼ ~D�c

Aþ2 þ i ~D�c
Aþ6;

(2.8)

where A�
� ¼ 1

2 ðA� � Â�Þ, ~D�
~X ¼ @� ~X þ i½Aþ

�; ~X�, and

we have made the gauge choice A�
� ! A�

� � 1
v
~D�

~X8 in

3In massive type IIA gravity, which is the gravity dual of the
GT theory, F0 is identified as the Romans mass [30].
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the first line. In writing (2.8), we have also used the fact
that the auxiliary field A�

� is of the order 1
v and neglected

terms of this order or higher.
Using (2.7) and (2.8), from the kinetic and the Chern-

Simons terms in the N ¼ 3 GT Lagrangian we obtain

L0 þLCS ¼ tr

�
� ~D�

~Xi ~D� ~Xi � v2A�
�A

��

þ k

2�
����A�

�
~F�� þ ic r�

� ~D�c r

þ F0

4�
����

�
Aþ
�@�A

þ
� þ 2i

3
Aþ
�A

þ
� A

þ
�

��

þO
�
1

v

�
; (2.9)

where ~F�� ¼ @�A
þ
� � @�A

þ
� þ i½Aþ

�; A
þ
� � and i ¼

1; � � � ; 7 since ~X8 is eliminated by the gauge choice.
Solving the equation of motion for the auxiliary gauge
field A�

� , we can expresses it in terms of the field strength

of the dynamical gauge field Aþ
� as

A�
� ¼ k

4�v2
��

�� ~F�� ¼ 1

2gv
��

�� ~F��; (2.10)

where g ¼ 2�v
k is the Yang-Mills coupling. For dimen-

sional reasons, it is also necessary to rescale all the matter
fields as � ! 1

g�. Then, we obtain

L0 þLCS ¼ ~LYM þ ~L0 þ ~LCS

¼ 1

g2
tr

�
� 1

2
~F��

~F�� � ~D�
~Xi ~D� ~Xi

þ ic r�
� ~D�c r þ F0g

2

4�
����

�
Aþ
�@�A

þ
�

þ 2i

3
Aþ
�A

þ
� A

þ
�

��
: (2.11)

Using (2.6) and (2.7), the Higgs mechanism of the
potential terms is tedious but straightforward. In particular,
from the fermionic potential we obtain Yukawa-type cou-
pling and fermionic mass term, which are given by

~L ferm ¼ tr

�
iF0

4�
�rsc rc s � 1

g2
�rs
i c r½ ~Xi; c s�

�
; (2.12)

where �rs
i ’s are seven-dimensional Euclidian gamma ma-

trices in a particular representation that is determined by
the Higgs mechanism (see Appendix B), and �rs is fermi-
onic mass matrix given by

� ¼ 1

2

�1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0

0 0 1 0 0 0 �1 0

0 0 0 1 0 0 0 1

1 0 0 0 �1 0 0 0

0 1 0 0 0 1 0 0

0 0 �1 0 0 0 1 0

0 0 0 1 0 0 0 1

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

:

For convenience, we write the Lagrangian in terms of the
fermionic fields that are eigenstates of this mass matrix.
The mass matrix can be diagonalized by an orthogonal
matrix as follows:

~� ¼ OT�O ¼ diagð�1; 1; 1; 1; 0; 0; 0; 0Þ; (2.13)

where O is given by

O ¼ 1ffiffiffi
2

p

�1 0 0 0 0 0 0 1

0 0 0 1 0 0 �1 0

0 0 �1 0 0 1 0 0

0 1 0 0 �1 0 0 0

1 0 0 0 0 0 0 1

0 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 0

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

:

Then, the fermionic mass eigenstates are

~c r ¼ c sO
sr

¼ 1ffiffiffi
2

p ðc 5 � c 1; c 8 þ c 4; c 7 � c 3; c 6 þ c 2; c 8

� c 4; c 7 þ c 3; c 6 � c 2; c 5 þ c 1Þ: (2.14)

This transformation also modifies the gamma matrices as

~� i ¼ OT�iO: (2.15)

Then, we can write

~L ferm ¼ 1

g2
tr

�
iF0g

2

4�
~�rs ~c r

~c s � ~�rs
i
~c r½ ~Xi; ~c s�

�
:

(2.16)

The fermionic kinetic term in (2.11) is invariant under the
transformation (2.14).
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The Higgs mechanism of the bosonic potential is even
more involved than that of the fermionic potential; how-
ever, the algebraic procedure is similar. As a result of such
lengthy algebra, we obtain4

~Lbos ¼ 1

g2
tr

�
� F2

0g
4

16�2
Mij

~Xi ~Xj

� iF0g
2

2�
~Tijk

~Xi½ ~Xj; ~Xk� þ 1

2
½ ~Xi; ~Xj�2

�
; (2.17)

where the nonvanishing components of the bosonic mass
matrix Mij and the antisymmetric constant tensor ~Tijk are

M33 ¼ M44 ¼ M55 ¼ 1;

~T567 ¼ � ~T468 ¼ ~T369 ¼ ~T345 ¼ ~T378 ¼ ~T479 ¼ ~T589 ¼ 1
6:

(2.18)

In summary, the total Lagrangian after the Higgs mecha-
nism is written as

~L ¼ ~LYM þ ~LF0
; (2.19)

where

~LYM ¼ 1

g2
tr

�
�1

2
~F��

~F�� � ~D�
~Xi ~D� ~Xi

þ ic r�
� ~D�c r � ~�rs

i
~c r½ ~Xi; ~c s� þ 1

2
½ ~Xi; ~Xj�2

�
;

~LF0
¼ F0

4�
tr

�
����

�
Aþ
�@�A

þ
� þ 2i

3
Aþ
�A

þ
� A

þ
�

�
þ i ~�rs ~c r

~c s

� 2i ~Tijk
~Xi½ ~Xj; ~Xk� �F0g

2

4�
Mij

~Xi ~Xj

�
: (2.20)

This is theN ¼ 3 YM CS theory anticipated at the end of
the previous subsection. For vanishing F0, this reduces to
N ¼ 8 super YM theory as expected. In literature,
(2þ 1)-dimensional N ¼ 3 YM CS theory was already
studied [26,27]. In this case, the theory can be obtained
from the N ¼ 4 YM theory by adding a CS term, which
breaks one supersymmetry. The field contents of the later
differ from the field contents of ourN ¼ 3 YMCS theory
by four massless scalars and their superpartners. The
Lagrangian of [26,27] can also be obtained by turning off
four scalar fields ~X6;7;8;9 and four Majorana fermions
~c 5;6;7;8 in our YM CS Lagrangian.

The supersymmetry transformation rules of (2.19) are
obtained as a result of the Higgs mechanism of the corre-
sponding transformation rules in the original GT theory
given in (2.3),

�Aþ
� ¼ i�r��

~c r; � ~Xi ¼ i~�rs
i �r ~c s;

� ~c r ¼ i ~F��

���r þ ~�rs

i �
��s ~D�

~Xi � ~�rs
ij �s½ ~Xi; ~Xj�

� F0g
2

4�
~�rs~�st

i �t ~X
i; (2.21)

where the nonvanishing supersymmetry parameters are

�2 ¼ � 1þ i

2
ffiffiffi
2

p ð ��� i�Þ; �3 ¼ � 1� iffiffiffi
2

p 	;

�4 ¼ 1� i

2
ffiffiffi
2

p ð ��þ i�Þ;
(2.22)

and


�� ¼ � i

4
ð���� � ����Þ; ~�ij ¼ i

4
ð~�i

~�j � ~�j
~�iÞ:

(2.23)

Actually, the Higgs mechanism of (2.3) gives the super-
symmetric transformation rules of the dynamical fields,
which are the seven scalar fields ~Xi, the eight fermionic

fields ~c r, and the gauge field Aþ
� , as well as the trans-

formation rules for the auxiliary gauge field A�
� , and the

would-be Goldstone boson ~X8. However, the fields A�
� and

~X8 are integrated out from the action and their transforma-
tion rules, which are not listed in (2.21), are irrelevant.

III. VACUUM MODULI SPACE AND FUZZY
FUNNEL SOLUTION

A. Vacuum moduli space

In order to understand the brane configuration for our
N ¼ 3 YM CS theory in (2.19), we start by figuring out
the vacuum moduli space of the theory. The bosonic
potential in (2.17) can be written in a positive-definite
form as follows:

Vbos ¼ 1

4g2

X8
r¼1

��������ðð1� iÞ~�r2
ij � ð1þ iÞ~�r4

ij Þ½ ~Xi; ~Xj�

þ � ~�rsðð1� iÞ~�s2
i � ð1þ iÞ~�s4

i Þ ~Xi

��������2

; (3.24)

where � � F0g
2

4� and we have introduced the notation

jOj2 � trOyO. We obtain the vacuum equations from
this positive-definite potential,

½ ~Xa; ~Xb� ¼ 0; ½ ~Xa; ~Xp� ¼ 0;

� ~X3 þ ið½ ~X6; ~X9� þ ½ ~X7; ~X8�Þ ¼ 0;

� ~X4 � ið½ ~X6; ~X8� � ½ ~X7; ~X9�Þ ¼ 0;

� ~X5 þ ið½ ~X6; ~X7� þ ½ ~X8; ~X9�Þ ¼ 0;

(3.25)

where a, b ¼ 3, 4, 5, p ¼ 6, 7, 8, 9. The solution of (3.25)
is

~X a ¼ 0; ~Xp ¼ diagonal matrices: (3.26)

4For later convenience, we have made renaming of scalar
fields as follows: ~X1 ! ~X6, ~X2 ! ~X3, ~X3 ! ~X4, ~X4 ! ~X7, ~X5 !
~X5, ~X6 ! ~X8, ~X7 ! ~X9. The same renaming applies to the
gamma matrices ~�i.
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The diagonal matrices ~Xp’s represent the full moduli space
of the theory. The fact that the N � N scalar fields are
diagonal on the vacuum moduli indicates that the UðNÞ
gauge symmetry of the theory is broken to Uð1ÞN � SN ,
where the SN permutes the diagonal elements of the ma-
trices. Thus, the moduli space including the effect of the
dual photon in (2þ 1) dimensions is given by

M ¼ ðR4 � S1ÞN
SN

: (3.27)

B. Fuzzy funnel solution

In this subsection, we will obtain fuzzy funnel solution
of BPS equations in our N ¼ 3 YM CS theory. The
Killing spinor equation of the supersymmetry variation
(2.21) is written as

� ~c r ¼ i ~F��

���r þ ~�rs

i �
��s ~D�

~Xi � ~�rs
ij �s½ ~Xi; ~Xj�

� � ~�rs~�st
i �t ~X

i ¼ 0: (3.28)

In order to obtain a fuzzy funnel solution, we consider
the following projection to the supersymmetry parameters,
�2�2;3 ¼ �2;3, and also set �4 ¼ 0. The resulting fuzzy

funnel solution reduces the number of supersymmetries
by 1=3, i.e., it hasN ¼ 1 supersymmetry. We also assume
the vanishing gauge field and a static configuration. Under
these conditions, the BPS equations are

~� rs
i @1 ~X

i ¼ 0;

~�rs
i @2 ~X

i � ~�rs
ij ½ ~Xi; ~Xj� � ��rt~�ts

i
~Xi ¼ 0:

(3.29)

The first line of (3.29) can be satisfied by choosing a
configuration which does not depend on x1 direction. From
the second line of (3.29), we have

@2 ~X
3 � i½ ~X4; ~X5� ¼ 0; @2 ~X

5 � i½ ~X3; ~X4� ¼ 0;

@2 ~X
4 � � ~X4 þ ið½ ~X6; ~X8� þ ½ ~X3; ~X5� � ½ ~X7; ~X9�Þ ¼ 0;

� ~X3 þ ið½ ~X6; ~X9� þ ½ ~X7; ~X8�Þ ¼ 0;

� ~X5 þ ið½ ~X6; ~X7� þ ½ ~X8; ~X9�Þ ¼ 0;

@2 ~X
6 � i½ ~X4; ~X8� ¼ 0; @2 ~X

7 þ i½ ~X4; ~X9� ¼ 0;

@2 ~X
8 � i½ ~X6; ~X4� ¼ 0; @2 ~X

9 � i½ ~X4; ~X7� ¼ 0;

½ ~X6; ~X5� � ½ ~X3; ~X8� ¼ 0; ½ ~X6; ~X3� þ ½ ~X5; ~X8� ¼ 0;

½ ~X3; ~X7� þ ½ ~X5; ~X9� ¼ 0; ½ ~X3; ~X9� þ ½ ~X7; ~X5� ¼ 0:

(3.30)

Comparing the equation in the second line with the re-
maining equations, it appears natural to divide it into the
following two equations:

� ~X4 � ið½ ~X6; ~X8� � ½ ~X7; ~X9�Þ ¼ 0;

@2 ~X
4 þ i½ ~X3; ~X5� ¼ 0:

(3.31)

Then, from the first and the second lines of (3.30) we obtain

@2 ~X
a ¼ i�abc½ ~Xb; ~Xc�; ða; b; c ¼ 3; 4; 5Þ: (3.32)

These are the Nahm equations with the fuzzy two-sphere
solution, in which the scalar fields ~X3;4;5 are proportional to
the generators of SU(2). However, the fuzzy two sphere
configuration does not satisfy the remaining equations in
(3.30). It is also important to notice that there is no non-
trivial solution satisfying the Eqs. (3.30) in the case of U(2)
gauge group. For N � 3, an interesting solution exists and
it can be expressed in terms of seven generators of SU(3).
Explicitly, we can write

~X 3 ¼ gðx2ÞT1; ~X4 ¼ gðx2ÞT2; ~X5 ¼ gðx2ÞT3;

(3.33)

where T1;2;3’s are the SU(2) subgroup elements of

N-dimensional representation of SU(3). Then, from (3.32)
we easily obtain

gðx2Þ ¼ 1

x2
:

The remaining equations of (3.30) can be solved by choos-
ing ~X6;7;8;9 in terms of the rest of generators of SU(3),
excluding T8,

~X6 ¼ hðx2ÞT4; ~X7 ¼ hðx2ÞT5;

~X8 ¼ �hðx2ÞT6; ~X9 ¼ hðx2ÞT7;
(3.34)

where

hðx2Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðx2Þ

q
¼ �

ffiffiffiffiffi
�

x2

s
:

Here, we would like to point out an important difference
between ourN ¼ 3YMCS theory and a similar theory in
[26,27]. As we pointed out before, the latter theory can be
obtained from ours by turning off four massless scalar
fields, ~X6;7;8;9, which means in that case the fuzzy funnel
solution in (3.33) and (3.34) is not allowed for nonvanishing
�. As we will see in the next section, together with the
vacuum moduli space, this N ¼ 1 BPS solution provides
useful insights about the brane configuration of our theory.

IV. BRANE CONFIGURATION

A. Generation of CS terms

In order to pave a way for the understanding of the brane
configuration, which can be described by our YM CS
theory obtained in Sec. II, we briefly summarize some
brane configurations in the literature. These brane configu-
rations are described by gauge theories involving CS terms.
We start with a type IIB brane system where two parallel
NS5-branes are separated along one direction of the world-
volume of N D3-branes. The remaining two worldvolume
coordinates of the D3-branes are parallel to the corre-
sponding coordinates of NS5-branes. In the low- energy
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limit, this configuration is described by (2þ 1)-
dimensional N ¼ 4 YM theory with gauge group UðNÞ
[1], where all fields transform in the adjoint representa-
tions. Since the two NS5-branes are parallel, the three
scalar fields, representing the positions of the D3-branes
inside the worldvolume of NS5-branes, are massless.

Now, we replace one of the NS5-branes with a (1, k) 5-
brane (a bound state of an NS5-brane and kD5-branes) in a
tilted direction with respect to the other NS5-brane. Then,
the D3-branes cannot move freely and this fact translates
into mass terms for the three scalar fields on the field theory
side. The N ¼ 4 supersymmetry of the original theory is
broken to N ¼ 1, 2, 3 theories, depending on the choice
of the direction of the (1, k) 5-brane. The corresponding
effective field theories for these cases are obtained by
including the CS terms with CS level k in supersymmetric
ways [2,3]. Such CS term is introduced in order to cancel
the surface term originated from the boundary condition of
the (1, k) 5-brane in the equation of motion of the gauge
field [2,3].

The brane configuration of the ABJM theory [8] is based
on the brane system of theN ¼ 3 YM CS theory [26,27].
An important difference is the fact that the two parallel
NS5-branes are separated along a compact direction of the
worldvolume of N D3-branes. In this case, the D3-branes,
which wind around the compact direction, can break on the
NS5-branes resulting in a (2þ 1)-dimensional N ¼ 3
YM CS gauge theory with gauge group UkðNÞ � U�kðNÞ
[8]. At the infrared fixed point, this becomes conformal and
the supersymmetry is enhanced to N ¼ 6. One can also
add l fractional D3-branes, suspended on one side of the
interval between the NS5-brane and the (1, k) 5-brane.
Then, the corresponding effective field theory becomes
N ¼ 3 YM CS theory with gauge group UðN þ lÞk �
UðNÞ�k or UðNÞk � UðN þ lÞ�k depending on the side
on which the fractional D3-branes are added [10].

Along a different line of thought, CS terms are also
required in order to describe brane systems involving
D7- or D8-branes [12,13,18]. The configuration with
D8-branes can be understood by the massive T dualization
of that of D7-branes [15]. In [18], a D7-brane was added to
the brane configuration of the ABJM theory as follows:

0 1 2 3 4 5 6 7 8 9

N D3 � � � �
1 D7 � � � � � � � �

Here, we have omitted 5-branes for simplicity. This con-
figuration breaks the entire supersymmetry. Since the D7-
brane is a pointlike object in the (x5, x6) plane, it sources a
SLð2;ZÞ monodromy on the plane, � ! �þ 1,5 i.e.,
C0 ! C0 þ 2� for the axion. This monodromy is the result

of a branch cut emanated from the D7-brane with the
direction of the cut chosen to cross the D3-branes. Then,
the Wess-Zumino-type coupling for the D3-branes gener-
ates a CS term:Z

R2þ1

Z
x6

C0trðF ^ FÞ 	 SCS
R2þ1ðAÞ: (4.35)

To summarize, we have seen two ways to generate the
CS term in the descriptions of brane configurations in
(2þ 1)-dimensional gauge theories. The CS term in our
N ¼ 3 YM CS theory is related to the configuration
involving D7- or D8-branes. In the next subsection, we
construct the brane configuration for our N ¼ 3 YM CS
theory starting with type IIB brane system involving
D7-branes.

B. Massive IIA brane configuration

The type IIA string theory on AdS4 � CP3 with q D8-
branes (q ¼ jF0j) wrapped on CP3 was proposed as a
dual gravity of the N ¼ 3 GT theory [19]. Based on this
and the type IIB brane configuration of the N ¼ 6
ABJM theory, we propose the type IIB brane configura-

tion of the N ¼ 3 GT theory as in Table I: where 6̂
represents a compact direction and � is the orientation of
the (1, k) 5-brane relative to NS5-brane in (x3, x7), (x4,
x8), and (x5, x9) planes, and tan� ¼ k, assuming the string
coupling gs ¼ 1 and RR axion is vanishing. In addition to
the brane configuration of the ABJM theory, this configu-
ration contains q D7-branes and additional q D5-branes in
a supersymmetric way. The D7-branes are results of the T
dualization of the D8-branes in the proposal of [19], while
the additional D5-branes are included in our proposed
brane configuration for the reason that we will explain
below.
The MP Higgs mechanism in ABJM theory includes two

important steps, which are identification of the two gauge
fields with each other and moving the M2-branes far away
from the orbifold singularity. In the corresponding brane
configuration, these actions are interpreted as separating
the D3-branes from the five-branes and moving them far
away in the transverse directions. After the separation,
the T duality along the compact direction will give the
brane configuration with coincident D2-branes, and the

TABLE I. The NS5-brane, q D5-branes, and q D7-branes are
located at the same point along the x6 direction.

0 1 2 3 4 5 6̂ 7 8 9

N D3 � � � �
NS5 � � � � � �
(1, k) 5 � � � cos� cos� cos� sin� sin� sin�
q D5 � � � � � �
q D7 � � � � � � � �5We define the complex combination of the axion field C0 and

the dilaton field � as � � C0

2� þ ie��.
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corresponding effective field theory is the N ¼ 8 YM
theory in (2þ 1) dimensions. This procedure does not
break supersymmetry.

Even though the M theory uplifting of our proposed
brane configuration is unclear, we can apply the MP
Higgs mechanism to this brane configuration as well.
This corresponds to moving the NS5- and (1, k) 5-brane
far away from the D7-D3-D5-brane system in the trans-
verse directions. This results in the type IIB brane con-
figuration with N D3-branes intersecting q D7-branes
along one common spatial direction and q D5-branes
along two common spatial directions as in Table II:
Unlike the brane configuration in [18], ours is super-
symmetric. Based on the discussion in the previous
subsection, q D7-branes generate a CS term with CS
level �q depending on the relative orientation of D3-
and D7-branes.

Applying massive T duality along x6̂ direction from IIB

configuration with D7-branes to massive IIA configuration
with D8-branes [15], we obtain the brane configuration of
Table III: where 6 denotes the new direction appeared after
the T dualization along x6̂ direction. This brane configura-
tion is expected to coincide with the brane configuration
described by the N ¼ 3 CS YM theory discussed in
Sec. II.

Next, we use the vacuum moduli space and the fuzzy
funnel solution in Sec. III to discuss the importance of
D6-branes in the brane configuration of massive IIA
string theory in Table III. From the vacuum moduli space
in (3.27), we can infer that there are three massive
directions for which h ~X3;4;5i ¼ 0 and four flat directions
for which h ~X6;7;8;9i ¼ diagonal. The former indicates the
fact that the D2-branes are not free to move in these
directions, while they are free to move in the remaining
four transverse directions. This moduli space and the

supersymmetry structure in the massive IIA gravity
[19] suggest the presence of D6-branes parallel to the
D2-branes in addition to D8-branes. Moreover, the
N ¼ 1 BPS fuzzy funnel solution, in which the seven
transverse scalar fields are proportional to the seven
generators (excluding T8) of SU(3) with x2-dependent
coefficients, also seems to support our brane configura-
tion. The solution is given by ~X3;4;5 	 ð1=x2ÞT1;2;3 and
~X6;7;8;9 	 ð1= ffiffiffiffiffi

x2
p ÞT4;5;6;7. The (1=x2) dependence of ~X3;4;5

indicates the localization of the D8-branes along those
directions without any interference from the D6-branes.
On the other hand, the (1=

ffiffiffiffiffi
x2

p
) dependence of ~X6;7;8;9

indicates mild localization of the D8-branes along those
directions due to an interference from the D6-branes that
span the x2 direction. Further evidence for this brane
configuration should come from the BPS solutions in the
massive IIA gravity. We leave this possibility for future
investigation.

V. CONCLUSION

In this paper, we carried out the MP Higgs mechanism
of the N ¼ 3 GT theory and obtained N ¼ 3 YM CS
theory in (2þ 1) dimensions with UðNÞ gauge symme-
try. We also verified that the MP Higgs mechanism of
the supersymmetry transformation rules of the GT theory
results in the corresponding rules in the YM CS theory.
Compared to the MP Higgs mechanism of the ABJM
theory, the present case is more subtle because of two
reasons. First, none of the four complex scalars in the
GT theory represent the flat direction of the bosonic
potential and they cannot acquire infinitely large vacuum
expectation values. We overcame this problem by intro-
ducing field redefinitions that rotate the scalars to the flat
directions of the bosonic potential. Second, in the GT
theory we have two CS levels k1 and k2 and it is not
clear how to take the large CS level limit. We took k1,
k2 ! �1 limit under the assumption that k1 þ k2 ¼ F0

and F0 is a finite dimensionless parameter. It turns out
that the F0 is the CS level in the resulting YM CS
theory.
Earlier,N ¼ 3 YM CS theory was studied from differ-

ent perspectives [26,27]. This theory is a deformation of
the N ¼ 4 YM theory in (2þ 1) dimensions by a CS
term. On the other hand, our N ¼ 3 YM CS theory is a
similar deformation of the N ¼ 8 YM theory in (2þ 1)
dimensions. By comparing these two theories, one can
realize that the former is obtained from the latter by turning
off four massless scalars and their fermionic superpartners.
An interesting difference between these two theories is the
fact that in our theory we could find a nontrivial fuzzy
funnel solution to the BPS equations while in their theory
such BPS solution does not exist. In addition, the vacuum
moduli space in our theory is ðR4 � S1ÞN=SN, while it is
trivial in their theory.

TABLE III. Massive IIA brane configuration for N ¼ 3 YM
CS theory.

0 1 2 3 4 5 6 7 8 9

N D2 � � �
q D6 � � � � � � �
q D8 � � � � � � � � �

TABLE II. Type IIB brane configuration for N ¼ 3 GT the-
ory after the MP Higgs mechanism.

0 1 2 3 4 5 6̂ 7 8 9

N D3 � � � �
q D5 � � � � � �
q D7 � � � � � � � �

GYUNGCHOON GO, O-KAB KWON, AND D.D. TOLLA PHYSICAL REVIEW D 85, 026006 (2012)

026006-8



Since the N ¼ 3 YM CS theory we obtained
in this paper is new, we found it interesting to figure
out the brane configuration that can be described by this
theory. We proposed that the theory describes the dynam-
ics of N coincident D2-branes in the background of qD6-
branes and the same number of D8-branes, q being the
absolute value of the CS level F0. More precisely, the
branes system contains N D2-branes extending along
the directions x0;1;2, q D6-branes along the directions

x0;1;2;6;7;8;9, and q D8-branes along the directions

x0;1;3;4;5;6;7;8;9. As a confirmation of our brane configura-

tion, we obtained N ¼ 1 BPS fuzzy funnel solution,
which indicates the localization of the D8-branes
along the x2 direction and supports the presence
of D6-branes.

The massive IIA supergravity [30] is the low-energy
limit of the massive IIA string theory. This supergravity
theory has many (non)supersymmetric solutions of the
form AdS4 �M6 [20,30–37], where M6 represents a
six-dimensional manifold. The supersymmetries of these

solutions are less than N ¼ 3. Since our massive IIA
brane configuration in Sec. IVB hasN ¼ 3 supersymme-
try, finding the corresponding solution in gravity side will
be interesting.
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APPENDIX A: N¼ 3 GT LAGRANGIAN AFTER
FIELD REDEFINITION

After the field redefinition (2.5), the N ¼ 3 GT
Lagrangian in (2.1) is rewritten as

L0 ¼ tr

�
�D�X

y
AD

�XA �D�Y
yAD�YA þ i�y

A�
�D��

A þ iyA��D�A�;

LCS ¼ k1
4�

����tr

�
A�@�A� þ 2i

3
A�A�A�

�
þ k2

4�
����tr

�
Â�@�Â� þ 2i

3
Â�Â�Â�

�
;

Lferm ¼ 2�

k1
tr½ðyA�y

A � �AAÞðXBYB þ YyBXy
BÞ þ

1

2
ðyAXy

A � i�AYA � iXAA þ YyA�y
AÞ

� ðyBXy
B � i�BYB � iXBB þ YyB�y

BÞ þ
1

2
ð�AXy

A þ iyAYA � YyAA � iXA�y
AÞ

� ð�BXy
B þ iyBYB � YyBB � iXB�y

BÞ þ 
A
C


B
D

�
ð�CA þ yC�y

AÞðYyDXy
B � XDYBÞ

þ iðyCA � �C�y
AÞðXDXy

B � YyDYBÞ � 1

2
ð�CXy

A � iyCYA � YyCA þ iXC�y
AÞ

� ð�DXy
B � iyDYB � YyDB þ iXD�y

BÞ þ
1

2
ðyCXy

A þ i�CYA þ iXCA þ YyC�y
AÞ

� ðyDXy
B þ i�DYB þ iXDB þ YyD�y

BÞ
��

þ 2�

k2
tr

�
ð�y

A
yA � A�

AÞðYBX
B þ Xy

BY
yBÞ

þ 1

2
ðXy

A
yA � iYA�

A � iAX
A þ �y

AY
yAÞðXy

B
yB � iYB�

B � iBX
B þ �y

BY
yBÞ

þ 1

2
ðXy

A�
A þ iYA

yA � AY
yA � i�y

AX
AÞðXy

B�
B þ iYB

yB � BY
yB � i�y

BX
BÞ

þ 
C
A


D
B

�
ðC�

A þ �y
C

yAÞðXy
DY

yB � YDX
BÞ þ iðC

yA � �y
C�

AÞðXy
DX

B � YDY
yBÞ

� 1

2
ðXy

C�
A � iYC

yA � CY
yA þ i�y

CX
AÞðXy

D�
B � iYD

yB � DY
yB þ i�y

DX
BÞ

þ 1

2
ðXy

C
yA þ iYC�

A þ iCX
A þ �y

CY
yAÞðXy

D
yB þ iYD�

B þ iDX
B þ �y

DY
yBÞ

��
;

and
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Lbos ¼ � 4�2

k21
tr

�
ðXAXy

A þ YyAYAÞðXBYB þ YyBXy
BÞðXCYC þ YyCXy

CÞ

þ 1

2

B

D
C
EðXBXy

D þ XBYD � YyBXy
D � YyBYDÞ

� ðXAXy
A � XAYA � YyAXy

A þ YyAYAÞ
� ðXEXy

C � XEYC þ YyEXy
C � YyEYCÞ

þ 1

2

B

D
C
EðXy

AX
B þ YAX

B � Xy
AY

yB � YAY
yBÞ

� ðXy
DX

E þ YDX
E þ Xy

DY
yE þ YDY

yEÞ
� ðXy

CX
A � YCX

A þ Xy
CY

yA � YCY
yAÞ

�

� 4�2

k22
tr

�
ðXy

AX
A þ YAY

yAÞðXy
BY

yB þ YBX
BÞðXy

CY
yC þ YCX

CÞ

þ 1

2

B

D
C
EðXy

DX
B þ YDX

B � Xy
DY

yB � YDY
yBÞ

� ðXy
AX

A þ YAX
A þ Xy

AY
yA þ YAY

yAÞ
� ðXy

CX
E � YCX

E þ Xy
CY

yE � YCY
yEÞ

þ 1

2

B

D
C
EðXAXy

D þ XAYD � YyAXy
D � YyAYDÞ

� ðXBXy
C � XBYC � YyBXy

C þ YyBYCÞ
� ðXEXy

A � XEYA þ YyEXy
A � YyEYAÞ

�

� 8�2

k1k2
tr

�
ðXAYA þ YyAXy

AÞfXBðXy
CY

yC þ YCX
CÞXy

B þ YyBðXy
CY

yC þ YCX
CÞYBg

� þ 1

4

B

D
C
EðXBXy

D þ XBYD � YyBXy
D � YyBYDÞ

� ðXAXy
C � XAYC � YyAXy

C þ YyAYCÞ
� ðXEXy

A � XEYA þ YyEXy
A � YyEYAÞ

þ 1

4

B

D
C
EðXy

AX
B þ YAX

B � Xy
AY

yB � YAY
yBÞ

� ðXy
DX

A þ YDX
A þ Xy

DY
yA þ YDY

yAÞðXy
CX

E � YCX
E þ Xy

CY
yE � YCY

yEÞ
þ 1

4

B

D
C
EðXy

DX
B þ YDX

B � Xy
DY

yB � YDY
yBÞ

� ðXy
AX

E þ YAX
E þ Xy

AY
yE þ YAY

yEÞ
� ðXy

CX
A � YCX

A þ Xy
CY

yA � YCY
yAÞ

þ 1

4

B

D
C
EðXAXy

D þ XAYD � YyAXy
D � YyAYDÞ

� ðXBXy
A � XBYA � YyBXy

A þ YyBYAÞðXEXy
C � XEYC þ YyEXy

C � YyEYCÞ
�
: (A1)

APPENDIX B: SEVEN-DIMENSIONAL EUCLIDEAN
GAMMA MATRICES

In Sec. II B, we have seen that the MP Higgs mechanism of the fermionic potential gives the fermionic mass term and
Yukawa-type coupling that is expressed in terms of seven-dimensional Euclidean gamma matrices. In this Appendix, we
list the gamma matrices that were determined by the Higgs mechanism,
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�1 ¼

0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 �1 0 0

�1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0

0 �1 0 0 0 0 0 0

0 0 0 0 �1 0 0 0

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

; �2 ¼

0 0 �1 0 0 0 0 0

0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0

0 0 0 0 0 �1 0 0

0 0 0 0 0 0 �1 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 �1 0 0 0 0 0 0

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

;

�3 ¼

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0

0 0 �1 0 0 0 0 0

0 �1 0 0 0 0 0 0

�1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 �1

0 0 0 0 0 0 1 0

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

; �4 ¼

0 0 0 0 �1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0

0 �1 0 0 0 0 0 0

0 0 �1 0 0 0 0 0

0 0 0 �1 0 0 0 0

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

;

�5 ¼

0 0 0 0 0 0 0 �1

0 0 �1 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 �1 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 �1 0 0

1 0 0 0 0 0 0 0

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

; �6 ¼

0 0 0 0 0 0 1 0

0 0 0 �1 0 0 0 0

0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0

0 0 �1 0 0 0 0 0

0 0 0 0 0 0 0 1

�1 0 0 0 0 0 0 0

0 0 0 0 0 �1 0 0

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

;

�7 ¼

0 1 0 0 0 0 0 0

�1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 �1 0

0 0 0 0 0 1 0 0

0 0 0 0 �1 0 0 0

0 0 0 1 0 0 0 0

0 0 �1 0 0 0 0 0

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA
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