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I discuss a correspondence between string theory and the black hole membrane paradigm in the context

of the D1-D5-P system. By using the Kubo formula, I calculate transport coefficients of the effective string

model induced by two kinds of minimal scalars. Then, I show that these transport coefficients exactly

agree with the corresponding membrane transport coefficients of a five-dimensional near-extremal black

hole with three charges.
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I. INTRODUCTION

In recent decades, much progress has been made on a
correspondence between a black hole and string theory. In
[1,2], the Bekenstein-Hawking entropy of a black hole has
been derived from a highly excited fundamental string up
to a numerical factor. These works have been generalized
and it has been conjectured that a highly excited funda-
mental string becomes a black hole with the same mass and
charges when the string coupling is increased, and be-
comes a critical value which is called the correspondence
point [3].

Although the correct numerical factor of the black hole
entropy could not be reproduced from the fundamental
string, the Bekenstein-Hawking entropy of a five-
dimensional extremal black hole with three charges has
been found to be exactly equal to the degeneracy of BPS
states in a system which is composed of n1 D1-branes
wrapped on S1 and n5 D5-branes wrapped on S1 �M4,
where M4 ¼ K3 or T4 [4,5]. This system is called the
D1-D5-P system. In the case of M4 ¼ T4, the microscopic
states are effectively described by a single D1-brane with
winding number n1n5 which vibrates only inside T

4. It has
been shown that the correct Bekenstein-Hawking entropy
of the near extremal five dimensional black hole is repro-
duced by counting the number of states in the effective
string model [5–7]. In addition, the Hawking radiation of
minimal scalars has been correctly explained by the effec-
tive string model [8–14]. Although the effective string
model does not correctly produce fixed scalar emissions
of the black hole [15], it is still useful to discuss a coupling
of the black hole with some minimal scalars on the string
theory side. More appropriate treatment of the D1-D5-P
system is given by a N ¼ ð4; 4Þ superconformal field
theory living on a circle [16].

In this paper, I discuss a correspondence between string
theory and the black hole membrane paradigm in the
context of the D1-D5-P system. The membrane paradigm
states that a distant observer sees a fictitious membrane or
fluid with some transport coefficients such as viscosities

and conductivities on a stretched horizon of a black hole
[17,18]. Recently, we have found that the membrane shear
viscosity of a neutral black hole agrees with the shear
viscosity of highly excited fundamental string states at
the correspondence point if the central charge c is 6 [19].
This work has been generalized and I have shown that
except for the bulk viscosity, the membrane transport co-
efficients of an electric NS-NS 2-charged black hole cor-
respond to the transport coefficients of the fundamental
string states with a Kaluza-Klein momentum and a winding
number at the correspondence point if c ¼ 6 [20]. From
these results, we can guess that in the D1-D5-P system,
the membrane paradigm can be correctly explained by the
effective string model because the central charge of the
effective string model is 6. In fact, I show that the mem-
brane transport coefficients of the D1-D5-P black hole
induced by two kinds of minimal scalars are exactly the
same as the corresponding transport coefficients of the
effective string model.
This paper is organized as follows. In Sec. II, I review

the D1-D5-P black hole and calculate the membrane
transport coefficients induced by the minimal scalars. In
Sec. III, I introduce the effective string model of the
D1-D5-P system and calculate the transport coefficients
induced by the minimal scalars by using the Kubo formula.
Then, I find that both the transport coefficients are exactly
equal. The final section is devoted to the summary and
comments.

II. MEMBRANE TRANSPORT COEFFICIENTS

A. D1-D5-P black hole

Let us consider type IIB string theory compactified
on T4 � S1 and wrap n5 D5-branes on T4 � S1 and n1
D1-branes on S1. We also put

np
R left-moving momentum

along the D1-branes, where R is the radius of S1. This
system becomes a five-dimensional extremal black hole
with three charges at strong string coupling gs [5].
The Einstein metric of the five-dimensional extremal

black hole is given by [5,16]

ds2 ¼ �fðrÞ�2=3dt2 þ fðrÞ1=3ðdr2 þ r2d�2
3Þ; (1)*sasai@mappi.helsinki.fi
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where

fðrÞ ¼ f1ðrÞf5ðrÞfpðrÞ; (2)

fxðrÞ ¼ 1þ r2x
r2

; ðx ¼ 1; 5; pÞ; (3)

r2x ¼ cxnx; (4)

c1 ¼ gs�
0

~v
; c5 ¼ gs�

0; cp ¼ g2s�
02

~vR2
: (5)

Here, V ¼ ð2�Þ4�02 ~v is the volume of T4. The event
horizon is located at r ¼ 0.

To discuss the membrane paradigm, we need a finite
radius of the event horizon. The generalization to the
nonextremal case is given by the following Einstein
metric [6,16]:

ds2 ¼ �hðrÞfðrÞ�2=3dt2 þ fðrÞ1=3ðhðrÞ�1dr2 þ r2d�2
3Þ;
(6)

where

hðrÞ ¼ 1� r20
r2
; (7)

fðrÞ ¼ f1ðrÞf5ðrÞfpðrÞ; (8)

fxðrÞ ¼ 1þ r2x
r2
; ðx ¼ 1; 5; pÞ; (9)

r2x ¼ r20sinh
2�x; (10)

and r0 is the horizon radius. The mass and three
charges are

M ¼ R~vr20
2�02g2s

ðcosh2�1 þ cosh2�5 þ cosh2�pÞ; (11)

Qx ¼ r20 sinh2�x

2cx
: (12)

The extremal limit corresponds to the limit r0 ! 0 with
at least one of �x ! 1, keeping R, ~v and the associ-
ated charges fixed.

This nonextremal black hole can be formally viewed as a
system which is composed of noninteracting branes, anti-
branes and left-right moving momentum [6]. The numbers
of D1-branes, D5-branes, left-moving momentum and their

anticounterparts (D1-branes, D5-branes and right-moving
momentum) are

nx ¼ r20e
2�x

4cx
; �nx ¼ r20e

�2�x

4cx
: (13)

In terms of these numbers, the mass and charges are
expressed by

M ¼ R

gs�
0 ðn1 þ �n1Þ þ ~vR

gs�
0 ðn5 þ �n5Þ þ 1

R
ðnp þ �npÞ;

(14)

Qx ¼ nx � �nx: (15)

The area of the horizon is

AH ¼ 2�2r30 cosh�1 cosh�5 cosh�p

¼ 8�G5

� ffiffiffiffiffi
n1

p þ ffiffiffiffiffi
�n1

p �� ffiffiffiffiffi
n5

p þ ffiffiffiffiffi
�n5

p �� ffiffiffiffiffiffi
np

p þ
ffiffiffiffiffiffi
�np

q �
;

(16)

where

G5 ¼ �g2s�
02

4~vR
(17)

is the five-dimensional Newton constant. Thus, the
Bekenstein-Hawking entropy is [6]

SBH ¼ AH

4G5

¼ 2�
� ffiffiffiffiffi

n1
p þ ffiffiffiffiffi

�n1
p �� ffiffiffiffiffi

n5
p þ ffiffiffiffiffi

�n5
p �� ffiffiffiffiffiffi

np
p þ

ffiffiffiffiffiffi
�np

q �
:

(18)

In this paper, we assume the dilute gas regime [12],

r1; r5 � r0; rp; (19)

and the near extremality,

np � �np: (20)

The near extremality will be necessary for perturbative
string calculations to be valid at the strong coupling
regime.
Then, the area of the horizon and the Bekenstein-

Hawking entropy become

AH ¼ 8�G5

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1n5np

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1n5 �np

q �
; (21)

SBH ¼ 2�
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n1n5np
p þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1n5 �np

q �
; (22)

because �n1, �n5 ¼ 0.

B. Membrane transport coefficients induced
by minimal scalars

We consider the fluctuations of the off-diagonal metric
components of T4 and the six-dimensional dilaton around
the near extremal black hole solution, which are denoted

by hij � f�1=2
1 f1=25 �Gij (i, j ¼ 6, 7, 8, 9) and �, respec-

tively. They are called minimal scalars. The action for
these scalars is given by [13,16]
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S¼ 1

16�G5

Z
d5x

ffiffiffiffiffiffiffi�g
p �

�1

4

X9
i;j¼6
i�j

@�hij@
�hij�@��@��

�
;

(23)

where �, � ¼ 0, 1, 2, 3, 4.
Let us calculate the membrane transport coefficient of

the near extremal black hole induced by hij [18,20,21]. It is

enough to show it in the case of h67. Let us set h67 � h. By
varying the action with respect to h, one finds the following
boundary term on the horizon surface �:

�S ¼ 1

16�G5

Z
�
d4x

ffiffiffiffiffiffiffiffi��
p

n��hr�h; (24)

where ��� is the induced metric on �. This boundary term

is unnecessary for the bulk equation of motion to hold on
�. To cancel this boundary term, we add the following
surface term to the action:

Ssurf ¼
Z
�
d4x

ffiffiffiffiffiffiffiffi��
p

Jhh: (25)

Then, we find

Jh ¼ � 1

16�G5

n�r�h: (26)

Jh is interpreted as a charge density on the stretched
horizon induced by the bulk field h. Since the Einstein
metric of the black hole solution (6) takes the following
form,

ds2 ¼ �gttðrÞdt2 þ grrðrÞdr2 þ f1=3ðrÞr2d�2
3; (27)

the membrane charge density becomes

Jh ¼ � 1

16�G5

1ffiffiffiffiffiffiffi
grr

p @rhj�: (28)

In general, fields measured by a free-falling observer must
be regular at an event horizon [17,18]. This is equivalent to
the fact that the fields at the event horizon depend only on
the ingoing null coordinate v defined by [21]

dv ¼ dtþ
ffiffiffiffiffiffiffi
grr
gtt

s
dr: (29)

Thus, near the horizon, we find

@rh ’
ffiffiffiffiffiffiffi
grr
gtt

s
@th: (30)

Therefore, the membrane charge density becomes

Jh ’ � 1

16�G5

1ffiffiffiffiffiffi
gtt

p @thj� ¼ � 1

16�G5

U�@�h; (31)

where U� is the velocity vector of an observer at the
stretched horizon.

If we assume that h is isotropic, the total membrane
charge induced by h per unit time is found to be

Jtoth ¼ � AH

16�G5

U�@�h

¼ � 1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1n5np

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1n5 �np

q �
U�@�h; (32)

where we have used (21). Therefore, the membrane trans-
port coefficient induced by h is1

X mb
h ¼ 1

2
ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n1n5np
p þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1n5 �np

q
Þ: (33)

Divided by the Bekenstein-Hawking entropy (22), we
obtain

Xmb
h

SBH
¼ 1

4�
: (34)

In the same way, the membrane transport coefficient
induced by � is

X mb
� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n1n5np
p þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1n5 �np

q
; (35)

Xmb
�

SBH
¼ 1

2�
: (36)

III. TRANSPORT COEFFICIENTS
OF D1-D5-P SYSTEM

A. Effective string model

The effective string model of the D1-D5-P system is
described by a single D1-brane wrapped n1n5 times on S1.

The D1-brane has
np
R left-moving momentum and

�np
R right-

moving momentum which are carried by the open strings
attached on the D1-brane. These open strings are assumed
to oscillate only inside T4. This model is valid when

~v�Oð1Þ, R � ffiffiffiffiffi
�0p

and the energy scale is much lower
than the string scale [16].
The low energy effective dynamics in our interest is

given by the following DBI action [9,13],

S ¼ �Teff

Z
d2�e��10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� det��	

q
; (37)

where Teff is the effective tension of the D1-brane, �10 is
the 10-dimensional dilaton and ��	ð�;	 ¼ 0; 1Þ is the

induced metric on the D1-brane.
Let us choose the static gauge �0 � 
 ¼ X0, �1 �

� ¼ X5. Expand the action around the flat backgrounds

1Since the conventional definition of the membrane transport
coefficient is given by the membrane charge density (31), the
conventional membrane transport coefficient is 1

16�G5
. However,

we use (32) to compare the membrane paradigm with the
transport coefficient of the effective string model.
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and carrying out the Kaluza-Klein reduction of the external
fields, we find [13]

S ¼ S0 þ S1 þ � � � ; (38)

S0 ¼ Teff

2

Z
d2�ð _Xi _Xi � X0iX0

iÞ; (39)

S1 ¼ Teff

2

Z
d2�½hijðX�ÞPij ��ðX�ÞPi

i�; (40)

where

_X i ¼ @Xi

@

; X0i ¼ @Xi

@�
; (41)

Pij ¼ _Xi _Xj � X0iX0j; (42)

and S1 is the leading source terms of hijði � jÞ and �.

Assuming that the external fields hij and� depend only on

time t [20], S1 becomes

S1 ¼ Teff

2

Z
dt

Z 2�Rn1n5

0
d�½hijðtÞPij ��ðtÞPi

i�j
¼t;

¼
Z

dt

�
1

2
hijðtÞJ ij

h ðtÞ þ�ðtÞJ �ðtÞ
�
; (43)

where

J ij
h ðtÞ ¼ Teff

Z 2�Rn1n5

0
d�Pijj
¼t; (44)

J �ðtÞ ¼ �Teff

2

Z 2�Rn1n5

0
d�Pi

ij
¼t: (45)

We note that the mass dimension ofJ ij
h andJ � is 1, which

is the same as (32).
From the kinetic term (39), we can quantize Xi in the

same way as the bosonic string theory. Since� is identified
with �þ 2�Rn1n5, the mode expansion of Xi becomes

Xið
; �Þ ¼ ið4�TeffÞ�1=2
X
m�0

�
�i
m

m
e�iðm=Rn1n5Þð
��Þ

þ ~�i
m

m
e�iðm=Rn1n5Þð
þ�Þ

�
; (46)

where

½�i
m; �

j
n� ¼ ½~�i

m; ~�
j
n� ¼ m�mþn;0�

ij; ½�i
m; ~�

j
n� ¼ 0:

(47)

Inserting the mode expansion into (44) and (45), we find

J ij
h ðtÞ ¼

1

Rn1n5

X
m�0

ð�i
m ~�j

m þ ~�i
m�

j
mÞe�ið2m=Rn1n5Þt; (48)

J �ðtÞ ¼ � 1

2Rn1n5

X
m�0

ð�i
m ~�mi þ ~�i

m�miÞe�ið2m=Rn1n5Þt:

(49)

The mode expansion shows that each quantum which is
labeled bym and i carries the momentum m

Rn1n5
. Therefore,

the total left-moving momentum and right-moving mo-
mentum are

np
R

¼ NL

Rn1n5
;

�np
R

¼ NR

Rn1n5
; (50)

where NL and NR are the excitation levels of the left
movers and right movers, respectively. Thus, we obtain

NL ¼ n1n5np; NR ¼ n1n5 �np: (51)

Because of the near extremality (20), we find NL � NR.
The Hamiltonian of this system is

H ¼ 1

Rn1n5
ðNL þ NRÞ ¼

np
R

þ �np
R

: (52)

B. Transport coefficients of effective string model

To describe the mixed states of the effective string
model, we introduce the following density matrix [22]:

� ¼ Z�1 expð�	LNL � 	RNRÞ; (53)

where Z ¼ tr½expð�	LNL � 	RNRÞ� and 	L;R are the

conjugate parameters of NL;R, respectively. The mean val-

ues of the oscillation levels and the entropy are

�N L � hNLi ¼ c�2

6	2
L

; �NR � hNRi ¼ ~c�2

6	2
R

; (54)

S ¼ �hln�i ¼ 2�

� ffiffiffiffiffiffiffiffiffi
c �NL

6

s
þ

ffiffiffiffiffiffiffiffiffi
~c �NR

6

s �
; (55)

where hOi � trð�OÞ. Since there are four bosonic oscilla-
tions and four fermionic oscillations, the central charges
are c ¼ ~c ¼ 6. Therefore, the entropy becomes

S ¼ 2�ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1n5np

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1n5 �np

q
Þ; (56)

which exactly agrees with the Bekenstein-Hawking en-
tropy (22) [5,6]. The statistical description is valid if
	L;R � 1 [20,22]. Thus, together with the near extremal-

ity, we need 	L � 	R � 1 or 1 � �np � np. This gives

the microscopic reason of why the membrane paradigm
does not exist in the extremal black hole.
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Let us define the following function:

fABðt� t0Þ ¼ 1

2
h:½AðtÞ;Bðt0Þ�:i; (57)

where AðtÞ;BðtÞ are some operators and :: denotes the
normal ordering.2 A transport coefficient is obtained by

XAB ¼ lim
!!0

fABð!Þ
!

; (58)

where fABð!Þ is the Fourier transformation of fABðtÞ.
This is known as the Kubo formula [20,23].

Let us calculate the transport coefficient of the effective
string model induced by h � h67. Using the following
formulas,

h:�i
m�

j
n:i ¼ jnj

e	Ljnj � 1
�ij�mþn;0; (59)

h:~�i
m ~�j

n:i ¼ jnj
e	Rjnj � 1

�ij�mþn;0; (60)

we find

f
J ij

h
J i0j0

h

ðt� t0Þ ¼ 1

2
h:½J ij

h ðtÞ;J i0j0
h ðt0Þ:�i ¼ 1

ðRn1n5Þ2
�ij;i0j0

X
m�0

e�ið2m=Rn1n5Þðt�t0Þm
� jmj
e	Ljmj � 1

þ jmj
e	Rjmj � 1

�

¼ �2i

ðRn1n5Þ2
�ij;i0j0

X1
m¼1

m2

�
1

e	Lm � 1
þ 1

e	Rm � 1

�
sin

�
2m

Rn1n5
ðt� t0Þ

�
; (61)

where �ij;i0j0 � �ii0�jj0 þ �ij0�ji0 . The Fourier transformation of f
J ij

h
J i0j0

h

ðtÞ is

f
J ij

h
J i0j0

h

ð!Þ ¼
Z 1

�1
dtf

J ij
h
J i0j0

h

ðtÞei!t ¼ �Rn1n5
4

�ij;i0j0!2

�
1

e	LRn1n5!=2 � 1
þ 1

e	RRn1n5!=2 � 1

�
: (62)

Therefore, using (54) and (51), the transport coefficient
induced by h is

X str
h ¼ lim

!!0

fJ 67
h
J 67

h
ð!Þ

!
¼ 1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1n5np

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1n5 �np

q �
;

(63)

which exactly agrees with the membrane transport coeffi-
cient (33).

In the same way, we obtain the transport coefficient
induced by �,

X str
� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n1n5np
p þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1n5 �np

q
; (64)

which exactly agree with (35).

IV. SUMMARYAND COMMENTS

I have calculated the transport coefficients of the D1-D5-
P system induced by two kinds of minimal scalars hij and

� by using the effective string model. Then, I have found
that these transport coefficients exactly agree with the
corresponding membrane transport coefficients of the
D1-D5-P black hole.

Two comments are in order. First, there are the other
kinds of minimal scalars whose coupling with the D1-
D5-P system can not be found in the effective string

model [16]. Also, generically we can not use the effec-
tive string model to study the coupling with fixed scalars
[15,16]. Since it is known that the correct couplings of
the D1-D5-P system with these scalars are given by a
N ¼ ð4; 4Þ superconformal field theory [16], we should
use the superconformal field theory to calculate the
remaining transport coefficients induced by the scalar
fields.
Finally, the effective string model does not possess the

viscosities and conductivities because there is no fluc-
tuation of the effective string in the noncompact space
and therefore the effective string can not couple to the
bulk metric and gauge fields. This seems to conflict with
the membrane paradigm because there exists the mem-
brane viscosities and conductivities in the D1-D5-P black
hole. This discrepancy comes from the fact that the
energy scale at which the effective string model is valid
is much smaller than the string energy scale. It is known
that the Hawking radiation of spin-1 and spin-2 particles
are suppressed at low energy compared to the case of the
scalar particles. On the string theory side, this situation
corresponds to the fact that the effective string does not
couple to the bulk metric and gauge fields [24]. Thus, to
discuss the viscosities and conductivities of the D1-D5-P
system, we will need to study the string scale physics of
the D1-D5-P system.
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