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We consider semiclassical computation of 3-point correlation functions of (Bogomol’nyi-Prasad-

Sommerfeld [BPS] or non-BPS) string states represented by vertex operators carrying large charges in S5.

We argue that the AdS5 part of the construction of relevant semiclassical solution involves two basic

ingredients: (i) configuration of three glued geodesics in AdS2 suggested by Klose and McLoughlin in

[arXiv:1106.0495.] and (ii) a particular Schwarz-Christoffel map of the 3-geodesic solution in cylindrical

(�, �) domain into the complex plane with three marked points. This map is constructed using the

expression for the AdS2 string stress tensor which is uniquely determined by the 3 scaling dimensions �i

as noted by Janik and Wereszczynski in [arXiv:1109.6262] (our solution, however, is different from

theirs). We also find the S5 part of the solution and thus the full expression for the semiclassical part of

the 3-point correlator for several examples: extremal and nonextremal correlators of BPS states and a

particular correlator of ‘‘small’’ circular spinning strings in S3 � S5. We demonstrate that for the BPS

correlators the results agree with the large charge limit of the corresponding supergravity and free gauge

theory expressions.
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I. INTRODUCTION

One of the central problems in solving conformal planar
N ¼ 4 super Yang-Mills theory being guided by gauge-
string duality is to compute 3-point correlation functions
of conformal primary operators at any value of gauge
coupling. Recently, some progress was achieved in under-
standing correlators of certain operators with large
quantum numbers at strong coupling using semiclassical
string theory approach (see, e.g., [1–6] and references
therein). The form of a 3-point function of scalar primary
operators is fixed by conformal invariance to be G ¼
Cj ~a12j��3 j ~a23j��1 j ~a31j��2 where ~aij ¼ ~ai � ~aj are differ-

ences of 4-coordinates and �1 ¼ �2 þ �3 � �1, etc. are
determined by the three conformal dimensions �i. The
coefficient C is a function of �i and other quantum
numbers of the operators and also depends on ‘t Hooft

coupling � or string tension
ffiffiffi
�

p
2� . On the string theory side

G is defined as a correlator of the corresponding vertex
operators. For � � 1 and when all three sets of quantum

numbers are semiclassically large (i.e., of order
ffiffiffiffi
�

p
) one

may expect C to be given by a semiclassical approxima-

tion to the string path integral, thus scaling as e�
ffiffiffi
�

p
A where

A is a function of the semiclassical parameters di ¼ �iffiffiffi
�

p ,

etc. The semiclassical trajectory should solve the string
equations with ‘‘sources’’ prescribed by the vertex opera-
tors. Finding such a solution in general appears to be
nontrivial.

It is natural to start with a correlator of three 1=2
Bogomol’nyi-Prasad-Sommerfeld (BPS) operators with

large charges and dimensions, �i ¼ Ji � 1.1 In this case
the 3-point correlator does not nontrivially depend on �,
with C being a particular function of the quantum numbers
only [7]. One may then try to reproduce the expected large
charge limit of C using semiclassical string theory argu-
ments. As the semiclassical limit of the 2-point correlator
of BPS operators is determined by a Euclidean continu-
ation of a massless geodesic in AdS5 � S5 [1,8–10] one
may expect that in this case the relevant semiclassical
trajectory should be given by an intersection of the three
geodesics [5] (with an intersection point being in the bulk
of AdS5 in the nonextremal case of �1 � �2 þ �3.)
At the same time, the nonrenormalization of the 3-point

function of the BPS operators implies that it is given simply
by the supergravity expression and thus its large charge
asymptotics can be captured [11] just by a stationary point
approximation of the supergravity integral of the product of
the corresponding wave functions over AdS5 � S5. This
integral may be viewed as a localization of the string path
integral where the string is shrunk to a point and one
integrates over the 0-mode (center-of-mass point) only.
Below we will use this supergravity picture as a guide to

arrive at a consistent semiclassical string theory evaluation
of the BPS correlator. Our result for the semiclassical
trajectory will agree with the 3-geodesic intersection in
[5] in its AdS5 part (but its S5 part will be different from
that suggested in [5]). Another important ingredient of our
construction will be an analog of the Schwarz-Christoffel
map used in the light-cone interacting string diagrams in
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1Below we shall only consider the leading order in the large
charge limit and thus will ignore possible difference between the
dimensions �i and the charges Ji.
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flat space [12] with �i (or Ji in the BPS case) playing the
role of light-cone momenta pþ

i determining string lengths.

It will be used to construct the semiclassical solution by
first mapping the complex plane with 3 marked points
corresponding to the three vertex operator insertions to a
domain in the �þ i� plane (which generalizes the usual
cylinder in the 2-point function case) and then choosing
the simplest ‘‘pointlike’’ solution which is linear in �. An
important difference compared to the flat space case
(where pþ is conserved) will be ‘‘nonconservation’’ of
�i for nonextremal correlators.2 To construct the corre-
sponding map for arbitrary values of�i we will start with a
generic expression for the AdS5 string stress tensor having
prescribed singularities at the punctures; its form is
uniquely determined by �i as was pointed out in [6].

For non-BPS operators with large quantum numbers in
S5 only, i.e., describing semiclassical strings ‘‘extended’’
only in S5, one may expect that the AdS5 part of the
semiclassical trajectory should be the same as in the case
of the BPS correlator with generic nonextremal choice of
the dimensions �i. Given that in the conformal gauge the
AdS5 and S5 parts of the string equations for the semiclas-
sical trajectory decouple, looking only at the AdS5 part of
the semiclassical trajectory one should not be able to see the
difference between the cases of a non-BPS correlator (with
nontrivial parts of vertex operators depending only on S5

coordinates) and a BPS one with the same dimensions �i.
This is the point of view we shall try to justify in this

paper. At the same time, the picture suggested recently in
[6] is different: it was argued there that for generic �i the
semiclassical solution should be extended inAdS2, becom-
ing approximately pointlike as in [5] only for sufficiently

small di ¼ �iffiffiffi
�

p . This proposal, however, raises few ques-

tions. The BPS case should be a special limit of a non-BPS
case but as the AdS5 part of the solution depends only on
�i there is no way to tell the difference between the two.
Also, there is no natural ‘‘scale’’ to compare di to, so the
notion of correspondence with the BPS case only ‘‘for
sufficiently small’’ di seems artificial, given that the BPS
states can carry arbitrarily large charges/dimensions.3

We shall start in Sec. II with a discussion of the super-
gravity representation for the protected 3-point function of
BPS states given by an integral of a product of the three
bulk-to-boundary propagators and three ‘‘spherical har-
monic’’ factors over a point of AdS5 � S5. We will show
that in the limit when the dimensions �i are large this
integral is saturated by a stationary point. In the AdS5 part
this point is the same as found in [5]. We will show that for
a nonextremal correlator the stationary point for the S5 part
of the integral can be found in a similar way by using an
analytic continuation trick relating the S5 problem to an
effective AdS5 one. We will also prove that the resulting
expression for the large charge limit of the correlator
agrees, as expected, with the one found on the free gauge
theory side.
In Sec. III we shall consider theAdS5 � S5 string-theory

representation for the 2-point and 3-point functions in
terms of correlators of the corresponding marginal vertex
operators following [2,11]. In Sec. III Awe shall clarify the
issue of cancellation of volumes of residual world sheet
and anti-de Sitter (AdS) target space conformal transfor-
mations leading to finite expressions for the 2-point and
3-point functions. In Sec. III B we shall review the semi-
classical approximation for the 2-point function of BPS
operators with large charges.
In Sec. IV we shall study the semiclassical approxima-

tion for the string theory representation of extremal (�1 ¼
�2 þ �3) correlator of the 3 BPS operators with large
charges and show that the corresponding semiclassical
trajectory can be interpreted as an intersection of 3
Euclidean AdS5 geodesics as suggested in [5]. We will
demonstrate that this interpretation applies provided one
first maps the complex plane with 3 punctures into a
cylindrical domain by the same Schwarz-Christoffel map
as in the flat-space light-cone interacting string picture.
This map encodes the positions of insertions of the vertex
operators on the complex plane.
In Sec. V we will generalize to the nonextremal 3-point

correlator case. Our discussion of the AdS part of the
solution in Sec. VAwill be completely general, i.e., appli-
cable to all (BPS or non-BPS) states with large quantum
numbers only in S5. We will show that the AdS solution is
still given by the 3 appropriately glued geodesics but the
transformation to the complex plane is now given by a
more general Schwarz-Christoffel map (which corresponds
to the case of ‘‘nonconservation’’ of string lengths or pþ in
the corresponding flat space case). The precise form of the
Schwarz-Christoffel map is dictated by the AdS stress
tensor. In Sec. VB we will specify to the case of nonex-
tremal BPS correlator. Guided by the supergravity discus-
sion in Sec. II we will find the corresponding semiclassical
trajectory in S5 using an analytic continuation to AdS5 and
finally show that we get the same expected semiclassical
expression for the correlator as in the supergravity
approximation.

2In the extremal correlator case the map will be same as in the
flat space—describing one cylinder becoming two joined cylin-
ders with the sum of the two lengths matching the length of the
original cylinder.

3A technical reason for this ‘‘smallness’’ condition in [6]
appears to be as follows. The string solution in [6] is constructed
from a nonlinear generalized sinh-Gordon equation @ �@ ~� ¼ffiffiffiffiffiffiffi
T �T

p
sinh~� where T is an effective two-dimensional stress tensor

that scales as d2i ¼ �2
i

ð ffiffiffi
�

p Þ2 . Thus for small di the solution approx-
imates to ~� ¼ 0 solution which indeed corresponds to a pointlike
string. At the same time, ~� ¼ 0 solution exists even for an
arbitrarily large di. This is, in fact, the choice that we will
advocate here. More general solutions that appear to represent
surfaces extended in AdS5 appear to represent states that carry
extra hidden AdS5 charges and thus are more general than the
states with only S5 charges.
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In Sec. VI we will consider a particular example of a
3-point correlation function of non-BPS operators repre-
senting ‘‘small’’ circular strings with two equal spins in
S3 � S5. In the case when all the three operators represent
states in the same S3 of S5 we will find a contradiction
between the angular momentum conservation condition
and the nonlinear on-shell (i.e., marginality) condition

�2
i ¼ 4

ffiffiffiffi
�

p
Ji suggesting that this correlator should vanish

as in the corresponding flat space case.
We will conclude in Sec. VII with some comments on a

comparison of our approach (of Sec. VA) to the construc-
tion of generic AdS solution with that of Ref. [6]. The
solution constructed in [6] is more general than ours, but it
is not clear if it is actually necessary to describe the
correlators of states with nontrivial charges in S5 only.
As we will argue, the relevant AdS5 solution should be
the ‘‘pointlike’’ one of Sec. VA that should universally
apply to both the BPS and non-BPS cases.

In Appendix Awe will elaborate on the issue of cancel-
lation of the Mobius group volume factor and the volume
of the residual AdS5 symmetry group transformations in
the 2-point and 3-point correlators of string vertex opera-
tors. In Appendix B we will give details of the Schwarz-
Christoffel map constructed in Sec. V.

II. SEMICLASSICAL 3-POINT
FUNCTIONS IN SUPERGRAVITY

In this paper we will study 3-point functions of ‘‘heavy’’
scalar operators whose dimensions �i, i ¼ 1, 2, 3 scale as

�i �
ffiffiffiffi
�

p
for large ’tHooft coupling�.Wewill be interested

only in the leading semiclassical contribution of order ea
ffiffiffi
�

p
,

i.e., will be ignoring subleading corrections. For this reason
it will be possible to ignore detailed structure of the corre-
sponding vertex operators or wave functions.

In this section we will consider the calculation of such
3-point function in supergravity. By semiclassical approxi-
mation here we shall assume the limit of large dimensions
or charges in which the AdS5 � S5 integral will be satu-
rated by a stationary point approximation. While the full
calculation will be valid for BPS states only, the AdS5 part
of it will formally apply also to the case of operators
representing semiclassical string states that do not carry
other AdS5 quantum numbers except the energy: they will
be described by an effective AdS5 action with a local cubic
interaction.

In supergravity description the 3-point function is given
by a simple Witten diagram consisting of three bulk-to-
boundary propagators as in Fig. 1 [7,13]. The contribution
of this diagram splits into the product of the AdS5 factor
and the S5 factor:4

G ¼ GAdSð ~a1; ~a2; ~a3ÞGS5ðn1; n2; n3Þ; (2.1)

where5

GAdSð ~a1; ~a2; ~a3Þ �
Z d4xdz

z5
½Kð ~a1Þ��1½Kð ~a2Þ��2½Kð ~a3Þ��3 ;

(2.2)

and

GS5ðn1; n2; n3Þ �
Z

d�UJ1
1 U

J2
2 U

J3
3 : (2.3)

Here we consider Euclidean AdS5 in the Poincaré coordi-
nates with the metric

ds2¼ 1

z2
ðdz2þd~x2Þ; ~x¼xm¼ðx0;x1;x2;x3Þ; (2.4)

and

Kð ~aiÞ ¼ z

z2 þ ð ~x� ~aiÞ2
: (2.5)

In the integral over S5 in (2.3) the functionsUi (i ¼ 1, 2, 3)
specify the three states under consideration. In general,
they can be written as

Ui ¼ ni � X ¼ X6
p¼1

nipXp;
X6
p¼1

X2
p ¼ 1; (2.6)

where the complex 6-vectors ni are constrained to satisfy

ni � ni ¼ 0; ni � n�i ¼ 2: (2.7)

Note that for the BPS states we must have�i ¼ Ji for large
charges Ji.
On general grounds of SOð2; 4Þ � SOð6Þ invariance we

should expect that G in (2.1) should have the following
structure (�1 ¼ �2 þ �3 ��1, etc.)

G ¼ C

j ~a1 � ~a2j�3 j ~a1 � ~a3j�2 j ~a2 � ~a3j�1
; (2.8)

where the coefficient C should be a function of the scalar
products ni � nj (i.e., C ¼ Cðn1 � n2; n2 � n3; n3 � n1Þ) and
also of the quantum numbers �i ¼ Ji.

a

(z, x)a

a

1

3

2

FIG. 1. Witten diagram for 3-point function in supergravity.

4As already mentioned, as we are interesting in the leading
semiclassical (large dimension/charge) limit of the correlator it
is sufficient to ignore details of factors in the integrands that do
not scale as powers of �i or Ji.

5Exact expressions for 3-point integrals like this one or its
analog in S5 (cf. Sec. II D) were computed in [14].
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A. 2-point function

It is useful to review first the case of the 2-point function
(see Appendix 2 in [11]). It is given by the same expres-
sions as in (2.1), (2.2), and (2.3), with �3 ¼ 0;�1 ¼ �2 ¼
�, J1 ¼ J2 ¼ J and U2 ¼ U�

1 (i.e., n2 ¼ n�1). The AdS5
contribution is then

GAdSð ~a1; ~a2Þ �
Z d4xdz

z5
½Kð ~a1Þ��½Kð ~a2Þ��: (2.9)

In the limit of large � this integral is saturated by the
stationary point of the effective ‘‘action’’

�AAdS¼�ln
z

z2þð ~x� ~a1Þ2
þ�ln

z

z2þð ~x� ~a2Þ2
: (2.10)

Without loss of generality we can choose ~a1, ~a2 to lie
along the x0 (Euclidean time) axis, ~ai ¼ ðai; 0; 0; 0Þ and
set a1 ¼ 0, a2 	 a > 0. Then we can choose solution with
x1 ¼ x2 ¼ x3 ¼ 0, i.e., ~x ¼ ðx0; 0; 0; 0Þ, so that the only
nontrivial equations are obtained by varying (2.10) with
respect to x0 and z (for notational simplicity we will ignore
the subscript ‘‘0’’, i.e., set x0 	 x)

x

z2 þ x2
þ x� a

z2 þ ðx� aÞ2 ¼ 0;

z2 � x2

z2 þ x2
þ z2 � ðx� aÞ2

z2 þ ðx� aÞ2 ¼ 0: (2.11)

The solution of these equations found in [10,11] is given by
a half circle in the (x, z) half plane:

z2 ¼ xða� xÞ (2.12)

or, equivalently,

z ¼ a

2 cosh�
; x ¼ a

2
tanh�þ a

2
: (2.13)

This line is a geodesic is AdS2 � AdS5 connecting the
boundary points x ¼ 0 and x ¼ a. Evaluating (2.9) on this
solution gives

GAdS � 1

a2�

Z 1

�1
d�Q�1=2ð�Þ; (2.14)

where Qð�Þ is the ‘‘one-loop’’ determinant of small fluc-
tuation operator around the solution (2.13). This integral
over � gives an order 1 correction that we ignore here.

The integral over S5 is

GS5 �
Z

d�ðnpXpÞJ1ðn�pXpÞJ2 : (2.15)

We can always choose the coordinates on S5 so that

npXp ¼ cosc ei’; n�pXp ¼ cosc e�i’: (2.16)

Then the integral over ’ implies charge conservation
J1 ¼ J2 and for large Ji the integral over c is saturated
by c ¼ 0. Then GS5 � 1. Combining the AdS5 (2.14) and
S5 (2.15) parts together gives

Gða1 ¼ 0; a2 ¼ aÞ � 1

a2�
(2.17)

up to terms of order unity. We have thus obtained the
2-point function which is canonically normalized up to
terms that are subleading for � � 1.

B. AdS5 contribution to 3-point function

In a similar way, in the limit of large �i’s the integral
(2.2) can be evaluated by extremizing the ‘‘action’’

�AAdS ¼ �1 ln
z

z2 þ ð ~x� ~a1Þ2
þ �2 ln

z

z2 þ ð ~x� ~a2Þ2
þ �3 ln

z

z2 þ ð ~x� ~a3Þ2
: (2.18)

Again, without loss of generality we can choose the 3
points to lie along the x0 axis, i.e., ~ai ¼ ðai; 0; 0; 0Þ, and
set a1 ¼ 0, 0< a2 < a3. Then it follows from (2.18) that
the equations for x1, x2, x3 are satisfied by x1 ¼ x2 ¼ x3 ¼
0 and the remaining nontrivial equations for x 	 x0 and z
take the form

�1

x

z2 þ x2
þ�2

x� a2
z2 þ ðx� a2Þ2

þ �3

x� a3
z2 þ ðx� a3Þ2

¼ 0;

�1

z2 � x2

z2 þ x2
þ �2

z2 � ðx� a2Þ2
z2 þ ðx� a2Þ2

þ �3

z2 � ðx� a3Þ2
z2 þ ðx� a3Þ2

¼ 0

(2.19)

The solution to Eqs. (2.19) was found in [5] and is given by
an isolated ‘‘interaction’’ point

xint ¼ �1a2a3ð�2a2 þ �3a3Þ
�1�2a

2
2 þ �1�3a

2
3 þ �2�3ða3 � a2Þ2

;

zint ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1�2�3ð�1 þ �2 þ �3Þ

p ða3 � a2Þa2a3
�1�2a

2
2 þ �1�3a

2
3 þ �2�3ða3 � a2Þ2

; (2.20)

where

�1 ¼ �2 þ�3 � �1; �2 ¼ �1 þ�3 � �2;

�3 ¼ �1 þ �2 ��3: (2.21)

Note that if the correlator is extremal, i.e., �1 ¼ �2 þ �3,
then �1 ¼ 0 and the extremum (2.20) lies on the boundary
(z ¼ 0). This leads to a divergence of the ‘‘action’’ (2.18).
In this case the correlator should be defined as a limit of
nonextremal one, i.e., by starting with �1 ¼ �2 þ�3 þ �
and taking �1 ¼ � ! 0 at the very end.
Evaluating (2.18) on the solution (2.20) leads to the

following semiclassical approximation to the AdS part of
the 3-point correlator (2.2) [5]

GAdSða1 ¼ 0; a2; a3Þ � CAdS

a�3

2 a�2

3 ða2 � a3Þ�1
; (2.22)
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CAdS¼
�

��1

1 ��2

2 ��3

3 ð�1þ�2þ�3Þ�1þ�2þ�3

ð�1þ�2Þ�1þ�2ð�1þ�3Þ�1þ�3ð�2þ�3Þ�2þ�3

�
1=2

:

(2.23)

The resulting dependence on space-time points ~ai is con-
sistent with conformal invariance, implying that in general

GAdSð ~a1; ~a2; ~a3Þ ¼ CAdS

j ~a1 � ~a2j�3 j ~a1 � ~a3j�2 j ~a2 � ~a3j�1
:

(2.24)

Note also that in the extremal limit �1 ! 0 the expression
in Eq. (2.23) is finite and gives CAdS ¼ 1.

C. S5 contribution to 3-point function

In the extremal case �1 ¼ �2 þ�3 we may choose

n2 ¼ n3 ¼ n�1; (2.25)

and then the semiclassical evaluation of the integral over S5

in (2.3) is similar to that for the 2-point function and
produces the contribution CS5 � 1.

In the nonextremal case it is useful first to consider a
particular example and then present a generalization to the
case of arbitrary complex 6-vectors ni subject to (2.7) in
the next subsection. Namely, let us choose ni as

n1 ¼ ð1; i; 0; 0; 0; 0Þ; n2 ¼ ð1;�i; 0; 0; 0; 0Þ;
n3 ¼ ð1; 0; i; 0; 0; 0Þ; (2.26)

corresponding to

U1¼X1þ iX2; U2¼X1� iX2; U3¼X1þ iX3: (2.27)

Let us parametrize the metric on S5 as

ds2 ¼ d�2 þ sin2�d’2
3 þ cos2�ðcos2c d’2

1 þ sin2c d’2
2Þ:

(2.28)

The choice ofUi’s in (2.27) effectively allows to reduce the
problem to S2 i.e., (below ’1 	 ’)

� ¼ 0; ’2 ¼ 0; ’3 ¼ 0;

X1 þ iX2 ¼ cosc ei’; X1 � iX2 ¼ cosc e�i’;

X3 ¼ sinc : (2.29)

It is useful to consider the following analytic continuation:

iX2 ! ~X2; iX3 ! ~X3; i’ ! ~’; ic ! ~c :

(2.30)

We will see that the extremum is real in these ‘‘rotated’’
coordinates. The effective action for S5 integral (2.3) then
becomes

� AS5 ¼ ðJ1 þ J2Þ lnðcosh ~c Þ þ ðJ1 � J2Þ~’
þ J3 lnðcosh ~c cosh ~’þ sinh ~c Þ: (2.31)

Varying it with respect to c and ’ gives

ðJ1 þ J2Þ tanh ~c þ J3ðsinh ~c cosh ~’þ cosh ~c Þ
cosh ~c cosh ~’þ sinh ~c

¼ 0;

J1 � J2 þ J3 cosh ~c sinh ~’

cosh ~c cosh ~’þ sinh ~c
¼ 0: (2.32)

One can write the solution to these two equations in the
following form:

tanh ~’int ¼ ðJ1 � J2ÞðJ1 þ J2 � J3Þ
ðJ1 � J2Þ2 � ðJ1 þ J2ÞJ3

;

tanh ~c int ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J23 � ðJ1 � J2Þ2

J1J2

s
: (2.33)

Evaluating U1,U2,U3 on this solution gives

U1 ¼ X1 þ ~X2 ¼ ð	2 þ 	3Þ
ffiffiffiffiffiffi
	1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	2	3ð	1 þ 	2 þ 	3Þ

p ;

U2 ¼ X1 � ~X2 ¼ ð	1 þ 	3Þ
ffiffiffiffiffiffi
	2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	1	3ð	1 þ 	2 þ 	3Þ

p ;

U3 ¼ X1 þ ~X3 ¼ 1

2

ð	1 þ 	2Þ
ffiffiffiffiffiffi
	3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	1	2ð	1 þ 	2 þ 	3Þ

p ; (2.34)

where 	i are given by similar expressions as �i in (2.21)
with �i ! Ji

	1 ¼ J2 þ J3 � J1; 	2 ¼ J1 þ J3 � J2;

	3 ¼ J1 þ J2 � J3: (2.35)

Then the stationary-point value of the S5 integral (2.3) is
found to be

GS5	CS5

� 1

2J3

�ð	1þ	2Þ	1þ	2ð	1þ	3Þ	1þ	3ð	2þ	3Þ	2þ	3

		1

1 		2

2 		2

2 ð	1þ	2þ	3Þ	1þ	2þ	3

�
1=2

:

(2.36)

Combining it with the AdS5 part Eq. (2.23) and using that
�i ¼ Ji (i.e., �i ¼ 	i) we find that the S5 contribution
almost completely cancels the contribution from AdS5: up
to subleading terms we find for the 3-point coefficient C
in (2.8)6

C ¼ CAdSCS5 ¼
1

2J3
: (2.37)

It is useful to rederive this result in a different way that
explains why this near-cancellation between the AdS5
and S5 parts happens. When we perform the analytic
continuation (2.30) we effectively turn S2 � S5 into the
Euclidean AdS2 defined by X2

1 � ~X2
2 � ~X2

3 ¼ 1. In this
AdS2 space we may introduce the Poincaré coordinates
(r, y) as

6The asymmetry of this expression in Ji has, of course, to do
with our particular choice of Ui in (2.27).
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X1 ¼ 1

2r
ð1þ r2 þ y2Þ; ~X2 ¼ y

r
;

~X3 ¼ 1

2r
ð�1þ r2 þ y2Þ: (2.38)

Then the Ui in (2.27) and (2.30) become

U1 ¼ 1

2

�
r

r2þðyþ1Þ2
��1

; U2 ¼ 1

2

�
r

r2þðy�1Þ2
��1

;

U3 ¼
�

r

r2þy2

��1
: (2.39)

These expressions look the same—up to 1
2 factors and

inverse powers—as the bulk-to-boundary propagators
(2.5) in AdS2 where the boundary points are chosen as
�1, 1, 0. This implies that in evaluating integral over the
sphere (2.3) in the stationary-point approximation we can
immediately borrow the AdS5 result (2.22), (2.23), and
(2.24) in which we should substitute7

a1!�1; a2!1; a3!0; �i!�	i: (2.40)

Here �i ! �	i is due to the negative powers in (2.39).
This is the very reason why the above cancellation be-
tween the AdS5 and S5 contributions takes place. Taking
into account the factors 1

2 in U1 and U2 in (2.39) we get

2�J1�J2 ; the factor j ~a1 � ~a2j	3 j ~a1 � ~a3j	2 j ~a2 � ~a3j	1

gives 2	3 . Combining these together we end up again with
(2.36) and (2.37).

Let us note that in the special case when one of the
dimensions vanish, �3 ¼ J3 ¼ 0, the 3-point function
(2.8) and (2.37) reduces to the 2-point one (2.17) if
�1 ¼ �2.

D. Generic nonextremal 3-point function

Let us now generalize the analytic continuation to trick
used at the end of the previous section to compute the
semiclassical expression for (2.1) for a more general choice
of 6-vectors in (2.6) and (2.7) which allows to restore the
full expression for the coefficient C.

Let us start with the EuclideanAdS5 space and introduce
6 embedding coordinates Yp (p ¼ ð�1; m; 4Þ; m ¼ 0, 1, 2,

3) related to the Poincaré coordinates in (2.4) as

Y�1 ¼ 1

2z
ð1þ z2 þ ~x2Þ; Ym ¼ xm

z
;

Y4 ¼ 1

2z
ð�1þ z2 þ ~x2Þ; (2.41)

ðY; YÞ 	 Y2
�1 � YmYm � Y4Y4 ¼ 1: (2.42)

Then it is easy to check that the inverse of the bulk-to-

boundary propagator Kð ~bÞ8 in (2.5) can be written as a
linear combination of Yp

½Kð ~bÞ��1¼ðN;YÞ; N¼ð1þ ~b2;�2 ~b;1� ~b2Þ	ð1þ ~b2Þn̂;
(2.43)

ðn̂; n̂Þ ¼ 0; n̂ � n̂ 	 X
p

n̂pn̂p ¼ 2: (2.44)

This shows that we can equivalently parametrize the bulk-

to-boundary propagator Kð ~bÞ in terms of the vector n̂. In

particular, for ~b ¼ 0, we have N ¼ ð1; 0; 0; 0; 0; 1Þ,
½Kð0Þ�� ¼ ðY�1 þ Y4Þ��. Analytically continuing to S5

Y�1¼X5; Ym¼ iXm; Y4¼ iX4; XpXp¼1; (2.45)

and introducing a complex 6-vector n ¼ ðn̂1; in̂m; in̂4Þ sat-
isfying (2.7) as

n ¼
�
1;�i

2 ~b

1þ ~b2
; i
1� ~b2

1þ ~b2

�
; n � n ¼ ðn̂; n̂Þ ¼ 0;

n � n� ¼ n̂ � n̂ ¼ 2; (2.46)

we get

½Kð ~bÞ��1 ¼ ðN; YÞ ¼ ð1þ ~b2Þn � X; (2.47)

and thus find a map between the semiclassical S5 problem
in (2.1) and (2.3) and an equivalent AdS5 problem.
Now let us consider three generic states in S5 of the form

(2.6) and (2.7). Each vector ni, i ¼ 1, 2, 3 contains 2�
6� 3 ¼ 9 independent real parameters9 so that overall the
three states are characterized by 3� 9 ¼ 27 real parame-
ters. In addition, we are allowed to act on ni with SOð6Þ
transformations preserving (2.7). We can use this SOð6Þ
freedom to restrict the number of independent real para-
meters to 27� dimSOð6Þ ¼ 12 ¼ 4 � 3. Hence, we can
always choose each of the three vectors ni in the form

(2.46), i.e., parametrized by a real 4-vector ~bi. Then

GS5ðn1;n2;n3Þ¼
�Y3
i¼1

ðni �XÞJi
�
S5

¼Y3
k¼1

ð1þ ~b2kÞ�Jk

�Y3
i¼1

½Kð ~biÞ��Ji

�
AdS

: (2.48)

Since here �Ji appear in place of �i in (2.2) that means
that we get the same semiclassical trajectory as in the

7The semiclassical solution on S5 (2.33) is exactly the same as
its AdS counterpart (2.20) with the following replacements:
a2 ! 1, a3 ! �1, �1 ! �	2, �2 ! �	1, �3 ! �	3. This
can be easily verified using Eqs. (2.38) and (2.34).

8Since the AdS5 space discussed in this subsection will play an
auxiliary role, we will denote the boundary points by ~bi rather
than by ~ai.

9The moduli space of a single geodesic can be viewed as eight-
dimensional Grassmanian SOð6Þ=½SOð4Þ � SOð2Þ� (see, e.g.,
[15]): in addition to the real SOð6Þ invariance of the two
constraints (2.7), they are also invariant under a multiplication
of n by a phase.
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original AdS5 case with �i ! 	i in (2.35) but the total
contribution should appear in the opposite power. We then
find

GS5ðn1; n2; n3Þ ¼
Y3
k¼1

ð1þ ~b2kÞ�JkGAdSð ~b1; ~b2; ~b3Þ�i!�Ji

¼ Y3
k¼1

ð1þ ~b2kÞ�JkC�1
AdSð	iÞj ~b1 � ~b2j	3

� j ~b1 � ~b3j	2 j ~b2 � ~b3j	1 : (2.49)

Observing that for ni defined as in (2.46) we have

n1 � n2 ¼ 2ð ~b1 � ~b2Þ2
ð1þ ~b21Þð1þ ~b22Þ

; (2.50)

we can then rewrite (2.49) in terms of ni as

GS5ðn1; n2; n3Þ ¼ C�1
AdSð	iÞ

�
n1 � n2

2

�
	3=2

�
�
n2 � n3

2

�
	1=2

�
n1 � n3

2

�
	2=2

: (2.51)

Finally, using (2.1), we get the following expression for
the coefficient C in the full semiclassical AdS5 � S5

correlator (2.8)

C ¼ ð~n1 � ~n2Þ	3=2ð~n1 � ~n3Þ	2=2ð~n2 � ~n3Þ	1=2; (2.52)

~n i 	 1ffiffiffi
2

p ni; ~n � ~n ¼ 0; ~n � ~n� ¼ 1; (2.53)

where 	i ¼ �i due to the BPS condition �i ¼ Ji [cf.
(2.21) and (2.35)]. For the special choice of ni in (2.26)
this gives C ¼ 1

2ð	2þ	1Þ=2 , i.e., reproduces (2.37).

E. Agreement with BPS 3-point correlator
in free gauge theory

Since the 3-point function of 1=2 BPS operators is
protected, (2.37) must be the same as the large charge limit
of the corresponding expression in free super Yang-Mills
theory. The scalar 1=2 BPS operators in N ¼ 4 supersym-
metric gauge theory can be written in terms of the 6-scalars
�a as (see, e.g., [16])

O Jð~nÞ ¼ trð~n ��ÞJ ¼ ~na1 . . . ~naJ trð�a1 . . . �aJ Þ; (2.54)

where the complex 6-vector ~n satisfies the same constraints
as in (2.53). These operators have canonically normalized
2-point function.10 In order to compute the 3-point func-
tion of the operators (2.54) in free gauge theory we need to
contract the fields in the three operators. Each contraction
of the fields in the operators i and jwill give rise to a factor

ð~ni � ~njÞ. The number of contractions among the three

operators is as follows [7]. We have to contract 	3=2 fields
between the first and the second operators, 	2=2 fields
between the first and the third operators, and 	1=2 indices
between the second and the third operators. Ignoring sub-
leading corrections in the limit of large Ji we then get the
following expression for the 3-point function coefficient in
(2.8) in free supersymmetric Yang-Mills theory

CsuperYM ¼ ð~n1 � ~n2Þ	3=2ð~n1 � ~n3Þ	2=2ð~n2 � ~n3Þ	1=2; (2.55)

which is indeed the same as (2.52) found in the super-
gravity approach.
For the choice of the vectors ~ni in (2.55) this gives

Cfree ¼ 1

2ð	2þ	1Þ=2 ¼
1

2J3
; (2.57)

which agrees with (2.37).

III. 2-POINT AND 3-POINT FUNCTIONS AS
CORRELATORS OF VERTEX OPERATORS IN

AdS5 � S5 STRING THEORY

In the rest of this paper wewill consider the semiclassical
computation of 3-point functions in AdS5 � S5 string the-
ory. Let us first review some basic points about the structure
of these correlators (see also the discussion in [2]).

A. General remarks on the structure
of correlation functions

Consider the tree-level 2-point function of string vertex
operators labeled by points ~a1 and ~a2 of the boundary of
AdS5

11

Gð ~a1; ~a2Þ ¼ hVð ~a1ÞVð ~a2Þi

¼ 1

�M

Z
DXe�A0½X�Vð ~a1ÞVð ~a2Þ: (3.1)

Here Vð ~a1Þ and Vð ~a2Þ are integrated vertex operators

V ð ~aiÞ ¼
Z

d2
iVðzð
iÞ; ~xð
iÞ � ~ai;Xpð
iÞÞ; (3.2)

where (z, xm) are the Poincaré coordinates in AdS5 and Xp

parametrize S5. The general structure of V is (ignoring
fermion dependence)

Vðzð
iÞ; xmð
iÞ � ami ;Xpð
iÞÞ ¼ ½Kð ~ai; 
iÞ��vð
iÞ; (3.3)

where � is the target space dimension of the operator,
Kð ~aiÞ is the same as in (2.5), and v depends on the
remaining quantum numbers (spins, etc.). In (3.1) the in-
tegral is over all the AdS5 � S5 string sigma model fields
with the conformal-gauge action

10There is an additional factor of 1ffiffi
J

p ð8�2

� ÞJ=2 in the normaliza-
tion of the operators in (2.54) which we ignore here but such
factors will cancel against similar factors in the propagators in
computing 3-point functions up to terms subleading for large Ji.

11For simplicity we shall consider only scalar operators and
ignore fermion field dependence. Both the world sheet and the
target space will be assumed to be Euclidean.
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A0½X� ¼
ffiffiffiffi
�

p
�

Z
d2
L

¼
ffiffiffiffi
�

p
�

Z
d2


�
@z �@zþ @~x �@ ~x

z2
þ LS5 þ fermionsÞ:

(3.4)

As we are considering a tree-level approximation in closed
string theory 
 parametrizes a complex plane and �M

�M ¼
Z d2
1d

2
2d
2
3

j
1 � 
2j2j
2 � 
3j2j
3 � 
1j2
; (3.5)

is the volume of the SLð2;CÞ Mobius group, which repre-
sents the residual gauge transformations (global conformal
diffeomorphisms). Assuming that vertex operators are
marginal, i.e., � is an appropriate function of spins and
other quantum numbers, the world sheet conformal invari-
ance implies that the integral over 
1 and 
2 in (3.1) should
factor out as

�2 ¼
Z d2
1d

2
2

j
1 � 
2j4
; (3.6)

i.e., we should get

Gð ~a1; ~a2Þ ¼ 1

�c

~Gð ~a1; ~a2Þ; �c 	 �M

�2

; (3.7)

where �c represents the volume of the subgroup of
SLð2;CÞ that preserves two points 
1, 
2. As this subgroup
is noncompact, �c diverges. In flat space this implies the
vanishing of the 2-point function. In the case of string
theory in AdSdþ1, however, the action has noncompact
global invariance group SOð1; dþ 1Þ. Assuming that ver-
tex operators represent conformal primary fields, the path
integral produces a divergent factor of volume of residual
transformations of SOð1; dþ 1Þ that preserve two fixed
boundary points ~a1, ~a2. This factor cancels against the
world-sheet factor �c producing a finite result for the
2-point function. This point was discussed in [17–20] in
the context of string theory in AdS3 based on the corre-
sponding Wess-Zumino-Witten model but it applies in
general to strings in AdSdþ1 [2].

We shall explain this in detail in Appendix A. In par-
ticular, in the context of the semiclassical expansion we are
interested in here, the (divergent) volume of residual
SOð1; dþ 1Þ transformations will appear from an integral
over the collective coordinates of a classical solution one is
expanding around.

Similarly, in the case of the 3-point function

Gð ~a1; ~a2; ~a3Þ ¼ hVð ~a1ÞVð ~a2ÞVð ~a3Þi (3.8)

the integral over the operator insertion points 
i will fac-
torize producing a factor that will cancel �M (3.5) in the
denominator. In the case when 3 target space points ai are
fixed the remaining symmetry subgroup of SOð1; dþ 1Þ is

compact SOðd� 1Þ and thus the resulting correlator is
finite.

B. Review of semiclassical
computation of 2-point function

Let us now review the semiclassical computation of the
2-point function of vertex operators with large charges
considering for simplicity the example of Berenstein-
Maldacena-Nastase states [21] or chiral primary operators;
other examples can be found in [2,22]. The corresponding
vertex operators can be written as

VJð ~a1Þ¼
Z
d2
1

�
z

z2þð ~x� ~a1Þ2
�
�ðX1þ iX2ÞJV ;

V�Jð ~a2Þ¼
Z
d2
2

�
z

z2þð ~x� ~a2Þ2
�
�ðX1� iX2ÞJV : (3.9)

Here V�J 	 V�
J and V stands for 2-derivative and fermi-

onic terms that are not relevant for determining the
stationary point solution. The marginality condition im-
plies � ¼ J.
We shall assume that ~ai ¼ ðai; 0; 0; 0Þ; then, jumping

ahead, one can argue that the semiclassical trajectory will
belong to AdS2, i.e., we can set ~x ¼ ðx; 0; 0; 0Þ. Also, if we
set [as in (2.16)] X1 þ iX2 ¼ cosc ei’, then on the semi-
classical trajectory c ¼ 0, i.e., we may replace ðX1 

iX2ÞJ by e
iJ’.
In the limit of large �, J, the 2-point function is gov-

erned by the semiclassical trajectory with singularities
prescribed by the vertex operators. It can be found from
the ‘‘effective’’ action12

A ¼ A0 � lnVJða1Þ � lnV�Jða2Þ

¼
ffiffiffiffi
�

p
�

Z
d2


�
1

z2
ð@z �@zþ @x �@xÞ þ @’ �@’

�

� �
Z

d2


�
�2ð
� 
1Þ ln z

z2 þ ðx� a1Þ2

þ �2ð
� 
2Þ ln z

z2 þ ðx� a2Þ2
�

(3.10)

� iJ
Z

d2
½�2ð
� 
1Þ � �2ð
� 
2Þ�’þ . . . ; (3.11)

where A0 is the classical string action (3.4) where we set to
zero all irrelevant fields. The dots stand for lnV terms
subleading at large � ¼ J. The semiclassical expression
for the 2-point function can then be written as (see also
Appendix A; here we assume that collective coordinate
contribution is absorbed into G)

Gð ~a1; ~a2Þ ¼ 1

�M

Z
d2
1d

2
2Gð ~ai;
iÞ; G � e�A:

(3.12)

12We use the notation @ ¼ 1
2 ð@1 � i@2Þ, �@ ¼ 1

2 ð@1 þ i@2Þ.

E. I. BUCHBINDER AND A.A. TSEYTLIN PHYSICAL REVIEW D 85, 026001 (2012)

026001-8



To find the stationary point trajectory [2,8,9,22] we may
start with the Euclidean version of the corresponding clas-
sical solution on the cylinder (�, �) which carries the same
charges as the vertex operators and then transform this
solution to the complex 
 plane by the conformal map

e�þi� ¼ 
� 
1


� 
2

: (3.13)

In this construction all the information about the singular-
ities at 
i is encoded in the conformal map (3.13).

In the present case of the Berenstein-Maldacena-Nastase
states the relevant classical solution is the (analytically
continued) geodesic connecting the points x ¼ a1 and x ¼
a2 in AdS2 (for concreteness we shall assume a2 > a1)

z¼ a2�a1
2coshð��Þ; x¼a2�a1

2
tanhð��Þþa2þa1

2
; �¼ �ffiffiffiffi

�
p ;

(3.14)

’ ¼ �i!�; ! ¼ Jffiffiffiffi
�

p : (3.15)

One can explicitly check that (3.13), (3.14), and (3.15)
indeed solve the equations following from (3.11). The
equation for ’ reads

�@@’ ¼ iJ�

2
ffiffiffiffi
�

p ½�2ð
� 
2Þ � �2ð
� 
1Þ�: (3.16)

The solution to this equation is

i’ ¼ Jffiffiffiffi
�

p ðlnj
� 
1j � lnj
� 
2jÞ; (3.17)

which is precisely !� if we use the map (3.13).
Let us point out a subtlety which will be important later

when we consider 3-point functions. In two dimensions
solutions to the Laplace equation with prescribed singular-
ities like (3.16), in general, do not go to zero at infinity.
That means there may be an additional unwanted singu-
larity at 
 ¼ 1. Indeed, if the charges of the vertex opera-
tors in (3.9) were different, J1 � J2, instead of (3.16) we
would have

�@@’ ¼ i�

2
ffiffiffiffi
�

p ½J1�2ð
� 
2Þ � J2�
2ð
� 
1Þ� (3.18)

with the solution being

i’ ¼ 1ffiffiffiffi
�

p ðJ1 lnj
� 
1j � J2 lnj
� 
2jÞ: (3.19)

Then ’ would have a logarithmic singularity not only at

 ¼ 
1, 
2 but also at 
 ¼ 1. One interpretation of this
could be that we have an additional vertex operator in-
serted at 
 ¼ 1 whose charge is J2 � J1 so that the total
charge remains zero. The condition that the solution is
nonsingular at infinity (i.e., is properly defined on a
2-sphere) is precisely J1 ¼ J2. It can be derived by inte-

grating both sides of (3.18) over the complex plane (i.e.,
2-sphere that has no boundary). A heuristic way to arrive at
same condition is by looking at the right-hand side (r.h.s.)
of (3.18) and demanding that it does not have a delta-
function source at large 
: for that one can ignore 
1 and

2 compared to 
 in the delta-functions in (3.18) and
require that the coefficient in front of the resulting �2ð
Þ
[namely, J1 � J2] is zero.
The equations for x and z are substantially more com-

plicated and without knowing the relation to the classical
solution (3.14) and (3.15) it would seem hard to solve them.
The equation for x is

@

� �@x
z2

�
þ �@

�
@x

z2

�
¼ 2��ffiffiffiffi

�
p

�
x� a1

z2 þ ðx� a1Þ2
�2ð
� 
1Þ

þ x� a2
z2 þ ðx� a2Þ2

�2ð
� 
2Þ
�
: (3.20)

When we substitute (3.14), (3.15), and (3.13) into (3.20) we
find that both sides of it become equal to

2��

ða2 � a1Þ
ffiffiffiffi
�

p ½�2ð
� 
1Þ � �2ð
� 
2Þ�: (3.21)

The equation for z can also be shown to be satisfied in a
similar way (see [2] for details). As before, let us point out
that Eq. (3.21) is nonsingular when 
 ! 1 meaning that
our solution does not have an unwanted singularity at
infinity. This is achieved because

x� a1
z2 þ ðx� a1Þ2

��������
!
1

¼ � x� a2
z2 þ ðx� a2Þ2

��������
!
2

(3.22)

for the geodesic (3.14). Let us also note that these combi-
nations are constants along (3.14) so (3.22) turns out to be
satisfied for any 
.
Evaluating the action (3.11) on this solution we get

e�A � 1

ða2 � a1Þ2�
j
1 � 
2jð�2�J2Þ= ffiffiffi

�
p
: (3.23)

In computing the action we subtracted the divergences of
the form lnj
� 
ij with 
 ! 
i corresponding to self-
contractions in the vertex operators.13 In addition, G in
(3.12) contains a factor of j
1 � 
2j�4 coming from the
expectation value of the 2-derivative termsV in (3.9). As a
result, taking into account the marginality condition� ¼ J
we recover the factor �2 (3.6) as required by two-
dimensional conformal invariance; it cancels out as ex-
plained in the previous subsection and Appendix A. Thus

for � ¼ J � ffiffiffiffi
�

p � 1 we finish with

Gð ~a1; ~a2Þ ¼ 1

j ~a1 � ~a2j2�
(3.24)

13They should automatically go away if the vertex operators are
defined with an appropriate ‘‘normal ordering’’, i.e., as proper
marginal operators.

SEMICLASSICAL CORRELATORS OF THREE STATES . . . PHYSICAL REVIEW D 85, 026001 (2012)

026001-9



up to possible subleading corrections depending on proper
normalization of the vertex operators.

Let us note that while written in the 
 coordinates the
solution (3.14) looks rather complicated, the map (3.13)
‘‘trivializes’’ it. This point will be important in the subse-
quent discussion of the semiclassical 3-point functions.

IV. SEMICLASSICAL COMPUTATION OF
EXTREMAL 3-POINT FUNCTION

We shall study a semiclassical computation of the
3-point functions with the extremal case when �1 ¼ �2 þ
�3. Here we shall explicitly consider the correlator of BPS
states but the general discussion of the AdS5 contribution
given below would formally apply also to the case of non-
BPS operators with nontrivial charges in S5 and having
�1 ¼ �2 þ�3.

In the extremal case we may assume that all three BPS
operators carry charges in the same SOð2Þ subgroup of

SOð6Þ symmetry of S5. Starting with the operators like in
(3.9) with �i ¼ jJij and ~ai ¼ ðai; 0; 0; 0Þ14 and being in-
terested only in the leading semiclassical contribution we
may choose them in the form

V Jið ~aiÞ ¼
Z

d2


�
z

z2 þ ðx� aiÞ2
�
�i

eiJi’V i; (4.1)

where we set to 0 all ‘‘irrelevant’’ coordinates that vanish
on the semiclassical trajectory. We shall also choose ai as
a1 ¼ 0< a2 < a3. The integral over the zero mode of ’
then imposes charge conservation, i.e., we may consider

Gða1; a2; a3Þ ¼ hVJ1ða1ÞV�J2ða2ÞV�J3ða3Þi;
J1 ¼ J2 þ J3; �i ¼ Ji: (4.2)

In the semiclassical limit (Ji �
ffiffiffiffi
�

p � 1) of the correlation
function (4.2) is controlled by the extremum of the follow-
ing action [cf. (3.10)]

A ¼ AAdS þ AS5 ;

AAdS ¼
ffiffiffiffi
�

p
�

Z
d2


1

z2
ð@z �@zþ @x �@xÞ �

Z
d2


�
�1�

2ð
� 
1Þ ln z

z2 þ ðx� a1Þ2

þ �2�
2ð
� 
2Þ ln z

z2 þ ðx� a2Þ2
þ �3�

2ð
� 
3Þ ln z

z2 þ ðx� a3Þ2
�
;

AS5 ¼
ffiffiffiffi
�

p
�

Z
d2
@’ �@’� i

Z
d2
½J1�2ð
� 
1Þ � J2�

2ð
� 
2Þ � J3�
2ð
� 
3Þ�’: (4.3)

We shall first find the solution in S5 and then consider the
AdS5 part.

A. Solution in S5

The equation of motion for the angle ’

@ �@’ ¼ � i�

2
ffiffiffiffi
�

p ½J1�2ð
� 
1Þ � J2�
2ð
� 
2Þ

� J3�
2ð
� 
3Þ� (4.4)

is solved by

’¼� iffiffiffiffi
�

p ðJ1 lnj
�
1j�J2 lnj
�
2j�J3 lnj
�
3jÞ:

(4.5)

Like in the case of the 2-point function [cf. (3.14), (3.15),
(3.16), and (3.17)] let us introduce a new coordinate � such
that15

’ ¼ �i!1�; !1 ¼ J1ffiffiffiffi
�

p ; (4.6)

i.e., define the following map from the complex plane 

with three marked points to a complex domain (�, �)

 ¼ e�þi� ¼ 
� 
1

ð
� 
2ÞJ2=J1ð
� 
3ÞJ3=J1
: (4.7)

Here the points 
1, 
2, 
3 are mapped to either � ¼ �1 or
� ¼ þ1. Note that since J1 ¼ J2 þ J3 we do not have an
additional singularity at 
 ¼ 1. This is, in fact, a familiar
Schwarz-Christoffel map from a plane with 3 punctures
into the ‘‘light-cone’’ three closed strings interacting dia-
gram in flat space [12] (with one cylinder at � ¼ �1
becoming two joined cylinders at � ¼ 1). Here the role
of conserved components of the light-cone momenta pþ

i or
lengths of the three strings in the light-cone gauge is played
by Ji, i.e., by the components of the angular momentum
along S1 � S5.
To simplify the discussion we may first replace the

cylinders by strips by cutting each cylinder along the �
direction and view it as two copies of an infinite strip
(imposing periodicity on functions of � at the end). For
example, an infinite strip of width� is mapped by (3.13) to
the upper half plane with two marked points 
1, 
2 lying on
the real axis. In general, conformal transformations from

14This choice is always allowed as the general dependence of
the correlator (3.8) on ~ai is fixed by conformal invariance to be as
in (2.8).
15In general, one may start with ’ ¼ � iffiffiffi

�
p J1ð�� �̂Þ but the

constant �̂ can be absorbed into the shift of the origin of � or
constant shift of ’. In what follows we shall set �̂ ¼ 0 to
simplify the formulae.
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the upper half plane with marked points to the interior of a
polygon are known as Schwarz-Christoffel maps with (4.7)
being a simple example. Let us review how the complex
domain parametrized by (�, �) can be found in the case of
(4.7). Let us assume for concreteness that the points 
i on
the real axis are ordered as 
1 < 
3 < 
2 and start moving
from 
 > 
2 in the direction of decreasing 
. Once we
cross 
2 and start moving towards 
3 we pick up a phase

ei�J2=J1 meaning that � has jumped by�J2=J1. This means
that we cannot reach 
3 unless �>�J2=J1. This, in turn,
means that we have a cut along the � direction starting at
the some point (�int, �int) with �int ¼ �J2=J1. The points

2 and 
3 lie on the opposite sides of the cut [see Fig. 2].
The point (�int, �int) may be interpreted as the interaction
point, where one incoming string splits into the two out-
going strings. It can be found as the critical point of the
map (4.7):

@

@

¼ 0: (4.8)

Using J1 ¼ J2 þ J3 we obtain a linear equation for

 ¼ 
int solved by


int ¼ J2ð
1 � 
2Þ
3 þ J3ð
1 � 
3Þ
2

J2ð
1 � 
2Þ þ J3ð
1 � 
3Þ : (4.9)

Substituting it back into (4.7) we get

�intþ i�int¼ ln
ð
1�
2ÞJ3=J1ð
3�
1ÞJ2=J1

ð
3�
2Þ þ ln
J1

JJ2=J12 JJ3=J13

;

(4.10)

so that for the above choice of 
i we have �int ¼ �J2=J1.
Note that the value of �int is unphysical and one can shift it,
e.g., to zero by reintroducing a constant shift of � in (4.7).

The discussion in the previous paragraph and Fig. 2
applied to open strings and has an advantage that it is
easier to visualize. The case of closed strings can be
described by doubling trick, to take two copies of the
domain in Fig. 2 and perform appropriate identifications
to ensure periodicity in �. The resulting domain will

be mapped to the complex plane with three marked points
using (4.7).
Explicitly, the 3 regions of the (�, �) domain in Fig. 2

representing 3 interacting strings are

I: �2ð�1;0�; �2½0;��; II: �2½0;þ1Þ;
�2½0;�int�; III: �2½0;þ1Þ; �2½�int;��: (4.11)

Doubling the � intervals we can find the angular momenta
of the corresponding closed strings as

J1¼2i

ffiffiffiffi
�

p
2�

Z �

0
d�@�’; J2¼2i

ffiffiffiffi
�

p
2�

Z �int

0
d�@�’¼J1

�int

�
;

J3¼2i

ffiffiffiffi
�

p
2�

Z �

�int

d�@�’¼J1
���int

�
: (4.12)

Here
ffiffiffi
�

p
2� is the string tension and factor of 2 is due to the

doubling of the � interval. We thus have again �int ¼
�J2=J1.
Finally, computing the S5 part of the action in (4.4) on

the solution (4.5) we find

AS5ð
1; 
2; 
3Þ ¼ 1ffiffiffiffi
�

p ðJ1J2 lnj
1 � 
2j þ J1J3 lnj
1 � 
3j

� J2J3 lnj
2 � 
3jÞ; (4.13)

where we omitted logarithmic ‘‘self-contraction’’ diver-
gences lnj
� 
ij
!
i

.

B. Solution in AdS5

Let us now consider the solution of the equations of
motion for z and x following from (4.4):

@

� �@x
z2

�
þ �@

�
@x

z2

�
¼ 2��1ffiffiffiffi

�
p

�
�1

x

z2 þ x2
�2ð
� 
1Þ

þ�2

x� a2
z2 þ ðx� a2Þ2

�2ð
� 
2Þ

þ�3

x� a3
z2 þ ðx� a3Þ2

�2ð
� 
3Þ
�
;

(4.14)

@

� �@z
z2

�
þ �@

�
@z

z2

�
þ 2

z3
ð@z �@zþ@x �@xÞ

¼ �ffiffiffiffi
�

p
�
�1

z2�x2

z2þx2
�2ð
�
1Þþ�2

z2�ðx�a2Þ2
z2þðx�a2Þ2

�2ð
�
2Þ

þ�3

z2�ðx�a3Þ2
z2þðx�a3Þ2

�2ð
�
3Þ
�
: (4.15)

As was discussed in the previous section below Eqs. (3.17)
and (3.21), the solution to these equations, in addition to
the singularities at 
1, 
2, 
3, might also have a singularity
at 
 ¼ 1. We can demand its absence by studying how the

σ

τ

intI

II

III

FIG. 2. The (�, �) domain which is mapped to the upper half
plane with three marked points by the Schwarz-Christoffel map
(4.7). Regions I, II, III can be identified with the three interacting
strings. The length of the strings is set by the angular momenta Ji
that satisfy J1 ¼ J2 þ J3.
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right-hand sides of (4.12) and (4.13) behave at large 
.16

This suggests that one should impose the two equations
analogous to Eq. (3.22)

�1

x

z2þx2

��������
!
1

þ�2

x�a2
z2þðx�a2Þ2

��������
!
2

þ�3

x�a3
z2þðx�a3Þ2

��������
!
3

¼0; �1

z2�x2

z2þx2

��������
!
1

þ�2

z2�ðx�a2Þ2
z2þðx�a2Þ2

��������
!
2

þ�3

z2�ðx�a3Þ2
z2þðx�a3Þ2

��������
!
3

¼0

(4.16)

These equations will be indeed satisfied on the solution we
are going to construct.

Let us now show that the solution to Eqs. (4.14), (4.15),
and (4.16) can be obtained by combining the conformal
map (4.7) from the complex plane with 3 marked points to
the 3-cylinder double of Fig. 2 with the construction of
intersection of 3 geodesics inAdS2 in [5]. See Fig. 3. The �
parameter of the three intersecting geodesics will be re-
lated to 
i by a map similar to (4.7)

 ¼ e�þi� ¼ 
� 
1

ð
� 
2Þ�2=�1ð
� 
3Þ�3=�1
: (4.17)

Note that this map is well-defined (no additional singular-
ity at 
 ¼ 1) only if �1 ¼ �2 þ �3.

17 For BPS states
(4.17) is actually equivalent to (4.7) due to the marginality
conditions �i ¼ Ji.

We will construct the full solution everywhere in the
domain in Fig. 2 following the idea of [5], i.e., we will
define the independent solutions in regions I, II, III in
(4.11) and ‘‘glue’’ them together at the interaction point
that will correspond ð�; �Þ ¼ ð�int; �intÞ. Near each singu-
larity the solution has to approach a geodesic of the type
(3.14); in the BPS case (and more generally, for a string
state that does not carry AdS5 charges except energy) it is
natural to propose that the solution in each region should,
in fact, be a piece of a geodesic with appropriate target
space boundary conditions.

First, let us make sure that the three intersecting geo-
desics are compatible with Eqs. (4.16). This compatibility
follows from the fact, discussed in the previous section,
that each term in Eqs. (4.16) is a constant along the
geodesic that originated at ai (i.e., corresponding to 
i).
Thus we can evaluate all the terms in (4.16) at the same
point 
int. But then these equations can be viewed as the
conditions for the intersection point in the target space
ðzint ¼ zð
intÞ; xint ¼ xð
intÞÞ. With this interpretation,

these are the same equations as the ones in (2.19) that
extremize the action (2.18) appearing in the supergravity
integral in Sec. II B. The solution to these equations is
given in (2.20). Like in Sec. II we will have to assume
that �1 ¼ �2 þ �3 þ �, i.e., to go slightly off extremality
to lift the interaction point (2.20) from the boundary and
take � ! 0 in the final expressions. Note that Eqs. (4.16)
are not the same as (2.19). The former are the functional
equations rather than algebraic. However, they reduce to
the algebraic equations on our geodesic ansatz.
Explicitly, the solutions in regions I, II, III are expected

to be

I: z2 ¼ xðb1 � xÞ; II: z2 ¼ ða2 � xÞðx� b2Þ;
III: z2 ¼ ða3 � xÞðx� b3Þ: (4.18)

Each geodesic is a half circle in the (z, x) plane connecting
one of the boundary points ai with some other boundary
points bi. The values of bi

b1 ¼ ð�2 þ �3Þa2a3
�2a2 þ �3a3

; b2 ¼ �1a2a3
ð�1 þ �3Þa2 � �3a3

;

b3 ¼ �1a2a3
ð�1 þ �2Þa3 � �2a2

(4.19)

can be found [5] by demanding that these three geodesics
meet at the point (xint, zint) given in (2.20) [see Fig. 3].
Parametrizing each geodesic by � as in (2.13) and (3.14) we
can thus write the proposed solution in the (�, �) domain
explicitly as

I�2ð�1;�int�;�2½0;��: z ¼ b1
2 coshð�1�þ �1Þ ;

x ¼ b1
2

tanhð�1�þ �1Þ þ b1
2
;

II�2½�int;þ1Þ;�2½0;�int�: z ¼
a2 � b2

2 coshð�2�þ �2Þ ;

x ¼ a2 � b2
2

tanhð�2�þ �2Þ þ a2 þ b2
2

;

III�2½�int;þ1Þ;�2½�int;��: z ¼
a3 � b3

2 coshð�3�þ �3Þ ;

x ¼ a3 � b3
2

tanhð�3�þ �3Þ þ a3 þ b3
2

: (4.20)

x=0 x=ax=a 2 3

I

II III

int

FIG. 3. Three geodesics in AdS2 meeting at the interaction
point.

16If in the formal limit of large 
 the right-hand sides of (4.12)
and (4.13) remain singular the solution is expected to be singular
at 
 ¼ 1. This may be effectively attributed to the presence of
an additional vertex operator at infinity.
17In the nonextremal case we will have to use a different
Schwarz-Christoffel map discussed in the next section.

E. I. BUCHBINDER AND A.A. TSEYTLIN PHYSICAL REVIEW D 85, 026001 (2012)

026001-12



The parameters �i are to be fixed by matching against the
singularities prescribed by the vertex operators. The pa-
rameters �i are introduced to make sure that the three
segments of the solution intersect at the interaction point
� ¼ �int which we can always choose to be at zero.
Demanding that these three geodesics meet at (2.20) for
� ¼ �int ¼ 0 gives

�1 ¼ 1

2
ln

�1ð�2a2 þ �3a3Þ2
ða3 � a2Þ2�2�3ð�1 þ �2 þ �3Þ

;

�2 ¼ 1

2
ln

a23�1�3ð�1 þ �2 þ �3Þ
�2ð�3a3 � ð�1 þ �3Þa2Þ2

;

�3 ¼ 1

2
ln

a22�1�2ð�1 þ �2 þ �3Þ
�3ð�2a2 � ð�1 þ �2Þa3Þ2

: (4.21)

Here we defined the solution using open string picture of
Fig. 2. To get the closed string solution we are simply to
double the � range (the solution is obviously periodic as it
does not depend on �).

Finally, to get a candidate solution of (4.14) and (4.15)
we need to apply to (4.21) the transformation (4.17) to map
it to the complex 
 plane with three marked points. Note
that as in the case of the 2-point function in Sec. III B, all
the information about the points 
i is hidden in this
Schwarz-Christoffel map. To verify that the resulting
zð
Þ, xð
Þ do solve (4.14) and (4.15) we may do this
separately for the three regions in (4.21). In region I we
have � 2 ð�1; 0� and 
 cannot reach the points 
2, 
3,
i.e., �2ð
� 
2Þ ¼ �2ð
� 
3Þ ¼ 0. Then comparing the

r.h.s. of Eq. (4.14) 2��1

b1
ffiffiffi
�

p �2ð
� 
1Þ to its left-hand side

(l.h.s.) 4�1

b1
�@@� ¼ 2��1

b1
�2ð
� 
1Þ we conclude that �1 ¼

�1ffiffiffi
�

p . Regions II, III can be analyzed in a similar way

implying that Eq. (4.14) is satisfied provided

�2 ¼ �3 ¼ �1ffiffiffiffi
�

p ¼ �1: (4.22)

One can also verify Eq. (4.15) as in the 2-point function
case [see (3.20) and (3.21)].
Finally, let us compute the stationary-point value of the

AdS5 part of the action in (4.3). The string part of the action
may be written as

A0AdS ¼
ffiffiffiffi
�

p
�

Z
d2


1

z2
ð@z �@zþ @x �@xÞ

¼
ffiffiffiffi
�

p
�

�2
1

Z
I
d2
@� �@�; (4.23)

where � is given by (4.17). Integrating by parts and sub-
tracting trivial divergences we get

A0AdS ¼ 1ffiffiffiffi
�

p ð�1�2 lnj
1 � 
2j þ �1�3 lnj
1 � 
3j

� �2�3 lnj
2 � 
3jÞ: (4.24)

The term in (4.3) involving vertex operators is straightfor-
ward to evaluate using the expressions for �1, �2, �3 in
(4.21):

A0
AdS ¼ AAdS � A0AdS

¼ � 2ffiffiffiffi
�

p ð�1�2 lnj
1 � 
2j þ �1�3 lnj
1 � 
3j � �2�3 lnj
2 � 
3jÞ þ �1 ln
a2a3

a3 � a2
þ�2 ln

a2ða3 � a2Þ
a3

þ �3 ln
a3ða3 � a2Þ

a2
��1

2
ln
�2�3ð�1 þ �2 þ �3Þ

�1ð�2 þ �3Þ2
��2

2
ln
�1�3ð�1 þ �2 þ �3Þ

�2ð�1 þ �3Þ2
� �3

2
ln
�1�2ð�1 þ �2 þ �3Þ

�3ð�1 þ �2Þ2
(4.25)

Summing up (4.24) and (4.25) to get AAdS and adding also
the S5 part of the action in (4.13) we obtain for the leading
semiclassical term in the 3-point function (4.2)

Gða1¼0;a2;a3Þ¼ 1

�M

Z
d2
1d

2
2d
2
3Gðai;
kÞ; (4.26)

G � e�AAdS�A
S5 ¼ C

a�3

2 a�2

3 ða3 � a2Þ�1
e�Âð
1;
2;
3Þ; (4.27)

where C is the same as in the supergravity expression in
(2.23) [with �i defined in (2.21)]

C ¼
�

��1

1 ��2

2 ��3

3 ð�1 þ �2 þ �3Þ�1þ�2þ�3

ð�1 þ �2Þ�1þ�2ð�1 þ �3Þ�1þ�3ð�2 þ �3Þ�2þ�3

�
1=2

:

(4.28)

In the extremal case under consideration �1 ¼ �2 þ�3 �
�1 ¼ 0 so that finds that C ¼ 1. The residual action
Âð
1; 
2; 
3Þ is

Âð
1; 
2; 
3Þ ¼ � 1ffiffiffiffi
�

p ð�1�2 � J1J2Þ lnj
1 � 
2j

� 1ffiffiffiffi
�

p ð�1�3 � J1J3Þ lnj
1 � 
3j

þ 1ffiffiffiffi
�

p ð�2�3 � J2J3Þ lnj
2 � 
3j; (4.29)

which vanishes due to the marginality condition �i ¼ Ji.
As in the 2-point function case in Sec. III B, G in (4.27)

contains also an additional subleading contribution
j
1 � 
2j�2j
1 � 
3j�2j
2 � 
3j�2 coming from the
2-derivative factors inV in the vertex operators (4.1); after
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the integration over 
1, 
2, 
3 cancels against the Mobius
group volume factor in (4.26) as discussed in Sec. III A and
Appendix A.

The final answer for the extremal (�1 ¼ 0) 3-point
function (4.2) and (4.27) has thus the expected ‘‘factor-
ized’’ form (here we restore the a1 dependence)

Gða1; a2; a3Þ ¼ 1

ða1 � a2Þ�3ða1 � a3Þ�2ða3 � a2Þ�1

¼ 1

ða1 � a2Þ2�2ða1 � a3Þ2�3
: (4.30)

V. SEMICLASSICAL COMPUTATION OF
NONEXTREMAL 3-POINT FUNCTION

Let us now consider the case of generic �i. Here we
shall start first with construction of semiclassical solution
in the AdS part. Our discussion in Sec. VAwill apply to the
case of generic non-BPS string states that carry large
charges in S5 only so that the relevant part of the AdS
dependence of the vertex operators is the same as in (3.3)
and (4.1), i.e.,K�. Then the semiclassical trajectory will be
given again by 3 intersecting geodesics but the Schwarz-
Christoffel map will be more complicated than (4.17) as�1

is no longer equal to �2 þ�3. In considering the S5

contribution in Sec. VB we shall specify to a nonextremal
(J1 � J2 þ J3) case of 3 BPS operators. The final semi-
classical result for the 3-point correlator will match, of
course, the supergravity expression in (2.8) and (2.37).

A. Solution in AdS

The equations which we need to solve to find semiclas-
sical trajectory in AdS are still the same as in (4.14) and
(4.15). One may expect that the solution may still be given
by 3 intersecting geodesics in (4.20) assuming the Schwarz-
Christoffel map from a (�,�) domain to the 
 plane and the
corresponding regions I, II, III are properly defined. The
expectation that the solution should still be a function of one
variable � is supported by the following reasoning. For
semiclassical string states that do not carry large charges
in AdS the correspondingAdS5 solution should be the same
as for pointlike BPS states whose correlation function is
reproduced by the supergravity expression. The difference
between the BPS and non-BPS cases should be visible only
in the S5 part of the semiclassical solution.

To construct the relevant Schwarz-Christoffel map let us
start with the conserved and traceless (i.e., holomorphic)
stress tensor of the AdS part of the classical string sigma
model in conformal gauge

Tð
Þ 	 T

 ¼ 1

z2
½ð@xÞ2 þ ð@zÞ2�: (5.1)

If we assume that the required semiclassical solution is
given by (4.20) with some choice of regions I, II, III then
computing T in (5.1) gives

Tð
Þ ¼ �2

�
@�

@


�
2
; �1 ¼ �2 ¼ �3 	 �; (5.2)

where to make Tð
Þ globally defined we have to set �i in
(4.20) to be equal. Thus to find the map from the 
 plane
with 3 punctures to a (�, �) domain we need to know the
exact form of Tð
Þ.
The key observation is that the structure of T can be

fixed uniquely [1] by using (i) its expected behavior near
each marked point and (ii) the conformal transformation
law

Tð
;
1; 
2; 
3Þ ¼ 
4Tð
�1;
�1
1 ; 
�1

2 ; 
�1
3 Þ: (5.3)

The behavior near each marked point is determined by the
2-point function solution (3.14) where � is given by the
conformal map (3.13). Substituting this solution into (5.1)
gives

½Tð
Þ�2�point ¼ �2ð@�Þ2 ¼ �2

4�

ð
1 � 
2Þ2
ð
� 
1Þ2ð
� 
2Þ2

; (5.4)

where we used the conformal map (3.13). This means that
near each marked point 
 ¼ 
i (i ¼ 1, 2, 3) the stress-
energy tensor has to behave as

Tð
 ! 
iÞ ¼ d2i
4

1

ð
� 
iÞ2
; di 	 �iffiffiffiffi

�
p : (5.5)

Using (5.3) then allows one to restore the exact form of T

Tð
Þ ¼ d21ð
1 � 
2Þð
1 � 
3Þ
4ð
� 
1Þ2ð
� 
2Þð
� 
3Þ

þ d22ð
1 � 
2Þð
3 � 
2Þ
4ð
� 
1Þð
� 
2Þ2ð
� 
3Þ

þ d23ð
1 � 
3Þð
2 � 
3Þ
4ð
� 
1Þð
� 
2Þð
� 
3Þ2

: (5.6)

Comparing Eqs. (5.6) and (5.2) we conclude that the re-
quired map is given by18

�þ i� ¼ 2

�

Z
d


ffiffiffiffiffiffiffiffiffiffi
Tð
Þp

;

i:e: � ¼ 1

�

Z
d


ffiffiffiffiffiffiffiffiffiffi
Tð
Þ

p
þ 1

�

Z
d �


ffiffiffiffiffiffiffiffiffiffi
�Tð �
Þ

q
: (5.7)

Equation (5.7) with T given by (5.6) defines a new
Schwarz-Christoffel map (with explicit form given in
Appendix B) that generalizes (4.17) to the generic case
of �1 not necessarily equal to �2 þ�3.

19 Indeed, in
the extremal case d1 ¼ d2 þ d3 the stress tensor (5.6)
simplifies to

18We implicitly assume that an arbitrary integration constant
can be absorbed into a shift of the origin of �þ i�.
19As already mentioned above, we always choose �1 to be the
largest of the three dimensions.
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Tð
Þ ¼ 1

4

�
d2ð
1 � 
2Þ

ð
� 
1Þð
� 
2Þ þ
d3ð
1 � 
3Þ

ð
� 
1Þð
� 
3Þ
�
2

(5.8)

so that (5.7) implies that20

�þ i�¼ 1

�
½d1 lnð
�
1Þ�d2 lnð
�
2Þ�d3 lnð
�
3Þ�:

(5.9)

This is equivalent to the map (4.5) used in the previous
section if we set

� ¼ d1 (5.10)

as we shall assume below. In another special case consid-
ered in [6] when


1¼1; 
2¼1; 
3¼�1; d2¼d3; (5.11)

the stress tensor (5.6) simplifies to

T ¼ d21ð
2 � q2Þ
4ð
2 � 1Þ2 ; q2 	 d21 � 4d22

d21
; (5.12)

and thus the map (5.7) takes the form21

�þ i� ¼ lnð
þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 � q2

q
Þ þ d2

d1

�
ln

� 1


þ 1

þ ln

þ q2 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� q2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi


2 � q2
p


� q2 þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 � q2

p �
: (5.13)

The discussion in (5.6) and (5.7) is valid for arbitrary�1,
�2, �3. However, the geometry of the complex domain in
the (�, �) coordinates depends on the relation between the
�i’s. Let us now consider in more detail the case when
�1 > �2 þ �3 as then it is easier to understand the struc-
ture of the map (5.7). It is convenient again to view the
closed string picture with 
 running over a complex plane
as a ‘‘double’’ of the open string picture with 
 belonging
to the upper half plane and 
i lying on the real axis. Then
(5.7) maps the upper half plane to the interior of a polygon
on the complex �þ i� plane and which, in general, is
different from the one in Fig. 2. The critical points of the
map (5.7) are determined like in (4.8) from the equation
@ð�þi�Þ

@
 ¼ 0 (i.e., from zeroes of Tð
Þ). An important dif-

ference as compared to the extremal case is that now this
equation for 
 ¼ 
int is quadratic rather than linear. The
resulting two solutions are given in (B4) and (B5). Note
that for �1 >�2 þ �3 the solutions in (B4) and (B5) are
real for 
i lying along the real axis. Finding � and � on
these two solutions22 we get the same value for � ¼ �int
(which can be shifted to � ¼ 0), i.e.,

�ð1Þint ¼ �ð2Þint ¼ 0; (5.14)

while for � ¼ �int we get two different values

�ð1Þ
int ¼

�2

�1

�; �ð2Þ
int ¼

�
1� �3

�1

�
�: (5.15)

It is then straightforward to draw the complex domain in
(�, �) coordinates which is mapped to the upper half plane
using (5.7) [see Fig. 4]. The left and right ends of the three
strips there are supposed to run to infinity. The vertical size

of the ‘‘removed’’ region is given by �ð2Þ
int � �ð1Þ

int ¼
�1��2��3

�1
�, i.e., it vanishes in the extremal case when we

get back to the diagram in Fig. 2. The behavior near the
interaction points in Fig. 4 can be understood by an appli-
cation of the Schwarz-Christoffel theorem (see, for ex-
ample, [23]) according to which a general map from the
upper half plane to the interior of a polygon is given by


0 ¼
Z

d
ð
� �1Þ�1�1ð
� �2Þ�2�1 . . . ð
� �nÞ�n�1:

(5.16)

Here 
 parametrizes the upper half plane, 
0 parametrizes
the interior of a polygon, �1; . . .�n are the points along the
real axis which are mapped to the vertices of the polygon
and ��1; . . .��1 are the angles at the corresponding ver-
tices. Expressing T in (5.6) in terms of the critical points


ð1Þ
int and 
ð2Þ

int of the map (5.7) [see (B4) and (B5)] we find

ffiffiffiffi
T

p ¼ ð
� 
ð1Þ
int Þ1=2ð
� 
ð2Þ

int Þ1=2
ð
� 
1Þð
� 
2Þð
� 
3Þ : (5.17)

Comparing with (5.7) with (5.16) we conclude that in our

case�i ¼ 
i, i ¼ 1, 2, 3 with �i ¼ 0 and�4;5 ¼ 
ð1;2Þ
int with

�i ¼ 3
2 , i.e., the angles at the interaction points are 3�

2 as,

indeed, shown on Fig. 4. Note that in the extremal case the

points 
ð1Þ
int and 


ð2Þ
int coincide and near this point

ffiffiffiffi
T

p
behaves

as 
� 
int, in the corresponding angle is 2� in agreement
with Fig. 2.
Comparing Figs. 2 and 4 one may be formally interpret

the latter as corresponding to a ‘‘generalized’’ light-cone
interacting string diagram where pþ momentum, i.e.,
length of the string, is not conserved: the removed region
in Fig. 4 may stand for an external state (carrying away the
deficit of momentum or �1 � �2 ��3 in the present
context).
Clearly, Fig. 4 applies to the case when �1 > �2 þ �3.

In the opposite case (5.7) is not defined as a map from the
upper half plane. The reason is that for 
i lying along the
real axis the critical points are always complex with non-
zero imaginary part [see (B4) and (B5)], i.e., in this case we
cannot view the resulting closed string world sheet as two
copies of a polygon with proper identifications along �.
Then we have to interpret (5.7) as a map from the full

20We ignore again an integration constant that can be chosen to
set, e.g., �int ¼ 0.
21Note that in the extremal limit (when q ! 0) this expression
reduces to (5.9) up to an irrelevant divergent constant � lnq.
22In the special case of (5.13) we get 
int ¼ 
q and thus ð�þ
i�Þint ¼ ln
int þ d2

d1
lnð
int�1Þð
intþq2Þ

ð
intþ1Þð
int�q2Þ , i.e., ð�þ i�Þð1Þint ¼ 1
2 �

ln
d2
1
�4d2

2

d2
1

þ i� d2
d1
, ð�þ i�Þð2Þint ¼ 1

2 ln
d2
1
�4d2

2

d2
1

þ i�ð1� d2
d1
Þ.
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complex plane and the resulting (�, �) domain and the
individual regions I, II, III are harder to visualize.23

The proposed solution to Eqs. (4.14) and (4.15) is thus
given by the expressions in (4.20) where regions I, II, III
should now be defined (for�1 >�2 þ�3) as in Fig. 4. For
example, let us consider Eq. (4.14). In each of the three
regions only one marked point 
i is contributing. Just like
in the previous section, near each marked point the l.h.s.
and the r.h.s. of (4.14) are equal to each other

4�

jai � bij @
�@� ¼ 
 2�di

jai � bij�
2ð
� 
iÞ; (5.18)

where the choice of the sign depends whether the point 
i

is mapped to � ¼ 1 or � ¼ �1. For concreteness, we
choose the convention that 
1 is mapped to�1 and 
2, 
3

are mapped to þ1. Equation (5.18) follows from the fact

that according to (5.2) and (5.7) near each puncture �@� ¼ffiffiffiffi
T

p
has a simple pole �ð
� 
iÞ�1 with residue 
di.

The calculation of the corresponding semiclassical value
of the AdS part of the action in (4.4) is the same as in the
previous section [see (4.24) and (4.25)] and we will simply
state the result (restoring the dependence on a1)

e�AAdS ¼ C0AdS

ða2 � a1Þ�3ða3 � a1Þ�2ða3 � a2Þ�1
e�ÂAdSð
1;
2;
3Þ;

(5.19)

where, C0AdS is the same as C in (4.28), i.e.,

C0AdS¼
�

��1

1 ��2

2 ��3

3 ð�1þ�2þ�3Þ�1þ�2þ�3

ð�1þ�2Þ�1þ�2ð�1þ�3Þ�1þ�3ð�2þ�3Þ�2þ�3

�
1=2

;

(5.20)

and ÂAdS

ÂAdSð
1;
2;
3Þ¼�

2

Z
d2
½�1�

2ð
�
1Þ��2�
2ð
�
2Þ

��3�
2ð
�
3Þ��ð
; �
Þ: (5.21)

When one substitutes here � computed using (5.7) and (B1)
one finds 3 types of terms: (i) divergent ‘‘self-contraction’’
terms that should be subtracted; (ii) lnj
i � 
jj terms that

will cancel against similar S5 terms after use of marginality
condition as in (4.29); (iii) 
i-independent terms��i ln�j

which contribute an extra factor C0
AdS to the structure

constant in the 3-point function, i.e., CAdS ¼ C0AdSC
0
AdS.

To compute C0
AdS using (B1) and (B3) one is to take into

account the choice of �int ¼ 0 which means that � is to be
shifted by the following constant

�̂ ¼ d1 � d2 � d3
2d1

ðln½d41 þ ðd2 � d3Þ2 � 2d21ðd22 þ d23Þ�
þ ln½j
1 � 
2jj
1 � 
3jj
2 � 
3j�Þ: (5.22)

Then the additional contribution coming from (5.21) is
found to be

lnC0
AdS ¼ 1

2

ffiffiffiffi
�

p ½�d21 lnð4d21Þ þ d22 lnð4d22Þ þ d23 lnð4d23Þ
þ 2d1d2 ln½ðd1 þ d2 � d3Þðd1 þ d2 þ d3Þ�
þ 2d1d3 ln½ðd1 þ d3 � d2Þðd1 þ d2 þ d3Þ�
� 2d2d3 ln½ðd1 þ d2 � d3Þðd1 þ d3 � d2Þ�
þ 1

2ðd1 � d2 � d3Þ2 lnðd41 þ d42 þ d43

� 2d21d
2
2 � 2d23d

2
2 � 2d23d

2
1Þ�: (5.23)

As we shall see in the next subsection, in the BPS case this
additional contribution cancels against a similar contribu-
tion coming from S5 [like in the supergravity approach in
Sec. II C and in the extremal case in (4.29)]. The reason for
this cancellation can be traced to the marginality condition
that ‘‘links’’ the AdS5 and S5 contribution.24

B. Solution in S5 for nonextremal BPS correlator

The S5 contribution depends on a particular choice of the
vertex operators. In this section wewill consider the case of
all three operators being BPS and choose them so that they
represent a nonextremal correlator.
Like in Secs. II C and II D wemay first consider a special

case and then generalize. Namely, let us start with the same
S5 wave functions as in (2.6), (2.26), and (2.27)

I

II

III

τ

σ

FIG. 4. The polygon on the complex plane �þ i� whose
interior is mapped to the upper half plane using the Schwarz-
Christoffel map (5.7). Regions I, II, III correspond to three
interacting strings.

23Note that in the case of the three BPS operators one always
has �1 � �2 þ�3, �2 � �1 þ �2, �3 � �1 þ�2 (this is ob-
vious at weak coupling and holds in general due to nonrenorm-
alization). Thus, Fig. 4 does not apply to the (nonextremal)
3-point function of the three BPS operators. Nevertheless, since
the geometry of the domain in the (�, �) coordinates is simpler
for �1 >�2 þ�3 it is convenient to formally perform the
analysis in this case, treating the opposite case by analytic
continuation. The general map (5.7) and the final results are
indeed valid for arbitrary �i’s.

24Such cancellation may happen also in more general context,
as it is linked with cancellation of lnj
i � 
jj terms that should
have only ‘‘subleading’’ (i.e., not proportional to

ffiffiffiffi
�

p
) coeffi-

cients in order to ensure consistency with two-dimensional
conformal invariance (and, in particular, cancellation of
Mobius volume factor).
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v1ð
1Þ ¼ ðX1 þ iX2ÞJ1 ; v2ð
2Þ ¼ ðX1 � iX2ÞJ2 ;
v3ð
3Þ ¼ ðX1 þ iX3ÞJ3 : (5.24)

Introducing the angles ’ and c as in (2.29) we arrive at the
following S5 part of the effective action including the
relevant (large charge) parts of the vertex operators

AS5 ¼
ffiffiffiffi
�

p
�

Z
d2
ð@c �@c þ cos2c @’ �@’Þ

� J1
Z

d2
�2ð
� 
1Þ lnðcosc ei’Þ

� J2
Z

d2
�2ð
� 
2Þ lnðcosc e�i’Þ

� J3
Z

d2
�2ð
� 
3Þ lnðcosc cos’þ i sinc Þ;
(5.25)

where the first term (S5 part of string action) we ignored all
the fields that vanish on the semiclassical trajectory. The
analysis in Sec. II suggests that it is useful to perform the
analytic continuation (2.30), i.e.,

iX2! ~X2; iX3! ~X3; i:e: i’! ~’; ic ! ~c : (5.26)

Then from (5.25) we obtain the following equations of
motion

2@ �@c � sinh2c @’ �@’

¼ �ffiffiffiffi
�

p
�
J1 tanh ~c�2ð
� 
1Þ þ J2 tanh ~c�2ð
� 
2Þ

þ J3
tanh ~c cosh ~’þ 1

cosh ~’þ tanh ~c
�2ð
� 
3Þ

�
;

@ðcos2 ~c �@ ~’Þ þ �@ðcos2 ~c @~’Þ
¼ �ffiffiffiffi

�
p

�
J1�

2ð
� 
1Þ � J2�
2ð
� 
2Þ

þ J3
sinh ~’

cosh ~’þ tanh ~c
�2ð
� 
3Þ

�
: (5.27)

As in the discussion of the AdS case we have to impose the
condition that there is no additional singularity at 
 ¼ 1.
This gives us Eqs. (2.32) whose solution is given in (2.33).
The problem then is how to construct the local solutions in
regions I, II, III and glue them at the point (2.33) at � ¼ 0.
Since we are considering BPS operators the local solutions
must be again geodesics. Naively, one might think that the
relevant solutions should be simply (as in (4.6)) given by

~’ ¼ ��, ~c ¼ 0 and ~c ¼ ��, ~’ ¼ 0 but these cannot be
glued at (2.33). The right choice of (complexified) geo-
desics in regions I, II, III is more complicated. Fortunately,
as we discussed at the end of Sec. II C, we can reduce the
problem of finding them to an equivalent one in AdS2
and thus simply borrow the results from the previous
subsection!

Explicitly, the analytic continuation (5.26) maps the
sphere X2

1 þ X2
2 þ X2

3 ¼ 1 into the Euclidean AdS2 space

X2
1 � ~X2

2 � ~X2
3 ¼ 1. Introducing there the Poincaré coor-

dinates (r, y) (2.38) so that the original S2 angles (’, c ) are
given by

e2i’¼ r2þðyþ1Þ2
r2þðy�1Þ2 ; sinhðic Þ¼ r2þy2�1

2r
; (5.28)

we get for the vertex operator factors in (5.24)

v1¼ 1

2J1

�
r

r2þðyþ1Þ2
��J1

; v2¼ 1

2J2

�
r

r2þðy�1Þ2
��J2

;

v3¼
�

r

r2þy2

��J3
: (5.29)

These may be formally interpreted as vertex operators in
AdS2 inserted at the boundary points a1 ¼ �1, a2 ¼ 1,
a3 ¼ 0 and carrying effective dimensions �J1, �J2, �J3.
The corresponding semiclassical solution can thus be found
from (4.18), (4.19), and (4.20) where one is to replace
ðz; xÞ ! ðr; yÞ and also to interchange the points a1 and a3
(as we assumed in (4.18) that a1 ¼ 0). Its explicit S2 form
can then be written using (5.28), i.e., this solution is com-
plex in terms of the original coordinates. The fact that the S5

intersection point is complex was already found in (2.33).25

The action on this solution was already found in (5.19),
(5.20), and (5.21) so we should just substitute the above
data [we should also remember to include the factor
2�J1�J2 coming from Eqs. (5.29)]. As a result, we obtain

e�A
S5 ¼ CS5e

�Â
S5
ð
1;
2;
3Þ; (5.30)

CS5 ¼
1

2J3

�ð	1þ	2Þ	1þ	2ð	1þ	3Þ	1þ	3ð	2þ	3Þ	2þ	3

		1

1 		2

2 		2

2 ð	1þ	2þ	3Þ	1þ	2þ	3

�
1=2

;

(5.31)

ÂS5ð
1; 
2; 
3Þ ¼ �

2

Z
d2
½�J1�

2ð
� 
1Þ þ J2�
2ð
� 
2Þ

þ J3�
2ð
� 
3Þ��; (5.32)

where 	i were defined in (2.35).
Combining this with the AdS contribution in (5.19),

(5.20), and (5.21) and using marginality condition �i ¼
Ji we find that ÂAdS cancels against ÂS5 . This implies, in
particular, that C0

AdS in (5.23) indeed cancels out.26 Since

�i ¼ 	i we find also that CAdS cancels against the square
root factor in (5.31), i.e., we are left with the same 3-point
coefficient

25This solution is thus different from the S5 part of the
3-geodesic solution discussed in [5].
26Let us stress that this cancellation is not due to the relation
between S2 and AdS2 which appeared because of the analytic
continuation (5.26) but is due to the simple marginality condition
for the BPS operators.
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C ¼ CAdS CS5 ¼
1

2J3
(5.33)

as found in the supergravity and free gauge theory compu-
tations in Sec. II.

The discussion of the more general case of nonextremal
correlators considered in Sec. II D is of course straightfor-
ward using again the analytic continuation to AdS5.

27

The resulting string theory expression is again the same
as in (2.52).

VI. AN EXAMPLE OF SEMICLASSICAL 3-POINT
FUNCTION OF NON-BPS OPERATORS

In this section we will study an example of 3-point
function of non-BPS states that correspond to small circu-
lar strings in S3.28 If we parametrize the 5-sphere as in
(2.28), i.e.,

X1þ iX2¼ cos�cosc ei’1 ; X3þ iX4¼ cos�sinc ei’2 ;

X5þ iX6¼ sin�ei’3 ; (6.1)

then the classical solution representing a small circular
string rotating on S3 of radius 0< a< 1 inside S5 with
two equal angular momenta has the following simple
‘‘chiral’’ form (AdS time is t ¼ ��) [25]

X1 þ iX2 ¼ aeið�þ�Þ; X3 þ iX4 ¼ aeið���Þ;

X5 þ iX6 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2a2

p
; (6.2)

J12 ¼ J34 	 J ¼ ffiffiffiffi
�

p
a2; E ¼ ffiffiffiffi

�
p

� ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

p
J

q
: (6.3)

The AdS energy E of this solution has exactly the same

form as in flat space (with
ffiffiffiffi
�

p ! 1
�0 ) where the string

solution described by 4 Cartesian coordinates is given

by29 x1 þ ix2 ¼ aeið�þ�Þ, x3 þ ix4 ¼ aeið���Þ.
Since a can be taken to be small, it is natural to expect

that the S5 part of the vertex operator representing such
state should have similar structure to its flat space counter-
part in Rt � R4 (in ‘‘momentum’’ representation)Z

d2
e�iEt½@ðx1 þ ix2Þ�J½ �@ðx3 þ ix4Þ�J; (6.4)

i.e., [cf. (3.9)]

Vð ~aÞ ¼
Z

d2


�
z

z2 þ ð ~x� ~aÞ2
�
�
vð
Þ;

vð
Þ ¼ ½@ðX1 þ iX2Þ�J½ �@ðX3 þ iX4Þ�J: (6.5)

The semiclassical approximation to the 2-point function of
such operators is governed [22] by the geodesic in
AdS (3.14) combined with the Euclidean continuation
(� ! �i�) of the classical solution (6.2), i.e.,

i’1 ¼ �þ i�; i’2 ¼ �� i�;

cos� ¼ ffiffiffi
2

p
a; c ¼ �

4
; ’3 ¼ 0; (6.6)

with

� ¼ E ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

p
J

q
(6.7)

being the marginality condition. This solution should be
mapped to the complex 
 plane with two marked points by
the same map as in (3.13), i.e.,

�þ i� ¼ lnð
� 
1Þ � lnð
� 
2Þ: (6.8)

Let us now consider computing a correlation function of
the 3 operators like (6.5) in semiclassical approximation

assuming Ji �
ffiffiffiffi
�

p � 1 and �i ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

p
Ji

q
� ffiffiffiffi

�
p � 1

choosing their S5 parts in the following particular form:

v1ð
1Þ ¼ ½@ðX1 þ iX2Þ�J1½ �@ðX3 þ iX4Þ�J1 ;
v2ð
2Þ ¼ ½@ðX1 � iX2Þ�J2½ �@ðX3 � iX4Þ�J2 ;
v3ð
3Þ ¼ ½@ðX1 � iX2Þ�J3½ �@ðX3 � iX4Þ�J3 : (6.9)

Note that with this choice all the three operators corre-
spond to strings spinning in the same S3. In this case, as in
flat space, the integrals over the zero modes of ’1 and ’2

appear to impose angular momentum conservation
constraint

J1 ¼ J2 þ J3: (6.10)

Then the corresponding correlator in flat space will vanish
if restricted to Rt � R4 as (6.10) with the mass shell
condition (6.7) will be inconsistent with the energy con-
servation E1 ¼ E2 þ E3. To get a nonzero correlator we
will need enlarge phase space introducing nonzero mo-
mentum components in other directions, so that the flat-
space marginality conditions become E2

i � ~p2
i ¼ 4�0�1Ji.

Let us see what happens in the AdS5 � S5 case were
there is no a priori conservation condition for �i. The
AdS5 part of the semiclassical solution should be exactly
as in the nonextremal case discussed in Sec. VA. As for the
S5 part of the solution, we will argue that it given by (6.6)
with

�þ i�¼ lnð
�
1Þ�J2
J1

lnð
�
2Þ�J3
J1

lnð
�
3Þ: (6.11)

The form of this map is suggested to be the same as in the
extremal BPS case (4.7) since Ji are conserved and since
the angles are linear in � and � as in the flat space case.
The stationary-point equations of motion for ’3, �, c

happen to be nonsingular and are solved by the same

relations cos� ¼ ffiffiffi
2

p
a, c ¼ �

4 , ’3 ¼ 0 as in (6.6) together

27As was used above, one is take into account that under the
analytic continuation from S5 to AdS5 one is to invert the sign of
the string action so that the semiclassical solution remains the
same with �i ! 	i.
28Attempts to discuss more apparently subtle examples with
‘‘large’’ circular strings wrapping big circle of S3 were made in
[5,24].
29This configuration belongs to S3 � R4 and thus can be
directly embedded into S5.

E. I. BUCHBINDER AND A.A. TSEYTLIN PHYSICAL REVIEW D 85, 026001 (2012)

026001-18



with the conditions that ’1 is holomorphic and ’2 is
antiholomorphic. The equation for ’1 readsffiffiffiffi
�

p
a2

�
ð@ �@þ �@@Þi’1

¼ J1�
2ð
� 
1Þ � J2�

2ð
� 
2Þ
� J3�

2ð
� 
3Þ � @ðð@ lni’1Þ�1

� ½J1�2ð
� 
1Þ � J2�
2ð
� 
2Þ � J3�

2ð
� 
3Þ�Þ
(6.12)

and the equation for ’2 is obtained from (6.12) by replac-
ing ’1 ! ’2, @ ! �@. Since on the solution (6.6) with
(6.11) one has ð�2ð
� 
iÞÞ�1@ lni’1;2 ¼ 0, we find that

Eq. (6.12) is indeed solved by (6.6) and (6.12) provided

J1 ¼
ffiffiffiffi
�

p
a2: (6.13)

The S5 part of the string stress tensor on this solution is
found to be

TS5ð
Þ¼ cos2�cos2c ð@’1Þ2

¼� 1ffiffiffiffi
�

p
J1

�
J2ð
1�
2Þ

ð
�
1Þð
�
2Þþ
J3ð
1�
3Þ

ð
�
1Þð
�
3Þ
�
2
:

(6.14)

Conformal gauge condition requires that the full AdS5 �
S5 stress-energy tensor should vanish. This means that
(6.14) has to cancel the AdS5 contribution (5.6) with d21 ¼
d22 þ d23 (di 	 �iffiffiffi

�
p ): this relation follows from the angular

momentum conservation (6.10) and the marginality condi-
tion (6.7). However, it is easy to see that this cancellation
(cf. (5.8)) and thus the agreement between the AdS5 map
(5.9) and the S5 map (6.11) is impossible: it requires d1 ¼
d2 þ d3 in addition to d

2
1 ¼ d22 þ d23 implying di ¼ 0. This

suggest that in this case semiclassical solution does not
exist which we interpret as an indication that this correlator
should vanish as in flat space.

The clash between the angular momentum conservation
and the nonlinear (non-BPS) marginality condition can be
avoided by considering analogs of nonextremal BPS
correlators discussed in the previous sections. There the
three operators carry charges from different planes so that
the charge conservation applies only ‘‘pairwise’’. Semi-
classical computation of such correlators remains an inter-
esting open problem.

VII. CONCLUDING REMARKS

In this section we would make some comments on
comparison of our approach with that of Ref. [6]. The
authors of [6] suggested a construction of the AdS part of
the semiclassical solution corresponding to a correlator of
3 operators that carry large charges in S5 only by using the
Pohlmeyer reduction (see, e.g., [26]) to find the relevant

AdS2 solution.
30 They defined the reduced theory variable

~� by

@z �@zþ @x �@x

z2
¼

ffiffiffiffiffiffiffi
T �T

p
cosh~�; (7.1)

where T is the stress tensor (5.6) corresponding to the case
of the three generic dimensions �i

31 so that it satisfies a
generalized sinh-Gordon equation

@ �@ ~� ¼
ffiffiffiffiffiffiffi
T �T

p
sinh~�: (7.2)

Given a solution for ~�, to find the original Poincaré coor-
dinates z, x one is to solve an additional linear problem (see
[6] for details).
In this framework, the solution which we suggested in

Sec. VA (that should apply to generic non-BPS operators
with charges only in S5) is simply ~� ¼ 0. In [6] this case
was excluded as corresponding to the geodesic related to
the 2-point function and it was assumed that the 3-point
correlator should be described by a nontrivial solution
~� � 0 of (7.2). However, ~� ¼ 0 does not necessarily cor-
respond just to the 2-point function since there is an addi-
tional data associated to the 3-point function case.
Indeed, the 3-point function problem is defined on a

plane with three punctures rather than two. Using the
Schwarz-Christoffel transformation defined by the stress
tensor we can map the plane with three marked points to a
complex domain in the (�, �) plane. Part of nontriviality of
the solution is thus hidden in the Schwarz-Christoffel map,
i.e., in details of the (�, �) domain. While the solution
suggested in Sec. VA (which generalizes the 3-geodesic
configuration of [5] in the BPS case) in each of the three (�,
�) regions corresponds simply to the ~� ¼ 0 one as in the
2-point function case, the gluing condition, i.e., the precise
definition of the three regions depends on the Schwarz-
Christoffel map and, hence, on the stress tensor.
We believe that for given generic values of dimensions

�i the AdS part of the semiclassical solution controlling
the 3-point function should be the same in the case of non-
BPS operators as in the (nonextremal) case of BPS opera-
tors: as the corresponding vertex operators are assumed to
carry only S5 charges, the distinction between the two
cases should be visible only in the S5 part of the semiclas-
sical solution. At the same time, as we demonstrated in this
paper, the expected value of the BPS correlator is correctly
reproduced by the ‘‘pointlike’’ 3-geodesic solution (4.20).
Reference [6] claimed that the relevant AdS solution

should be described by a nontrivial ~� � 0 and that the case
of the BPS correlator should be recovered only in the case

when di ¼ �iffiffiffi
�

p are small. This formally follows from (7.2)

since in view of (5.6) the coefficient
ffiffiffiffiffiffiffi
T �T

p
in (7.2) is small

30The boundary points ~ai for the 3 operators were assumed to
lie on a line.
31As was mentioned earlier, in [6] the insertion points and
dimensions were chosen as in (5.11).
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for small di and thus the solution of (7.2) should be well
approximated by ~� ¼ 0 one. However, the BPS states can,
of course, carry any large charges and thus have di � 1 so
we believe that the relevant solution of (7.2) should be just
~� ¼ 0 for any values of di.
There are, obviously, many open problems. It remains to

find a nontrivial example of non-BPS correlator with S5

charges, i.e., to construct the S5 part of the corresponding
solution. One should also address the same question for
correlators with nontrivial charges in AdS5, generalizing
the approach in [6] (for very recent work in this direction
see [27]).
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APPENDIX A: WORLD SHEETAND TARGET
SPACE CONFORMAL SYMMETRY FACTORS IN
STRING CORRELATION FUNCTIONS IN ADS

Here we shall explain in detail the remarks made in
Sec. III A about the symmetry group factors in the 2-point
and 3-point correlation functions in string theory in AdS
space. For concreteness, wewill present the discussion in the
framework of semiclassical expansion used in this paper.

Let us start with evaluating the factor �c in (3.7) which
is the volume of the subgroup of the Mobius group32


0 ¼ a
þ b

c
þ d
; a; b; c; d 2 C; ad� bc ¼ 1; (A1)

preserving two points on a complex plane. We shall choose
these points to be 0 and 1, so that the transformations
preserving them will have

b ¼ 0; c ¼ 0; a ¼ d�1 ¼ rei�: (A2)

They thus consist of dilatations with parameter r ¼ jaj and
Uð1Þ rotations with parameter �. The of this subgroup is
then given by

�c ¼
Z

d2ad2d�2ðad� 1Þ ¼
Z d2a

jaj2 ¼ 2�
Z dr

r
; (A3)

and thus diverges logarithmically.33

Let us now return to the semiclassical evaluation of the
2-point function in Sec. III B where (3.1) and (3.23) [cor-
rected by extra ‘‘canonical dimension’’ j
1 � 
2j�4 factor]
implies that

Gð ~a1; ~a2Þ ���1
c

1

j ~a12j2�
: (A4)

This may seem to vanish as �c is divergent. However, we
did not yet take into account that the semiclassical solution
(3.14) is not unique: it is defined up to AdS target space
SOð1; 5Þ transformations (acting as the Euclidean confor-
mal group at the boundary) that preserve the points ~a1,
~a2.

34 This degeneracy requires introduction of the corre-
sponding collective over which one has to integrate.
Let us count the parameters of these residual symmetry

transformations, setting e.g., a2 ¼ 0 in (3.14). First, we
have SOð3Þ rotations in the (x1, x2, x3) plane. Second, all
translations are broken because they shift the origin and
this cannot be undone by either boosts or special conformal
transformations since they all preserve the origin. Now let
us act on ~a1 ¼ ða1; 0; 0; 0Þ with a dilatation (with parame-
ter �) and a special conformal transformation (with
parameters bm):

a0m1 ¼ �am1 þ bm�2a21
1þ 2�b0a1 þ �2b2a21

: (A5)

If all bm are nonzero the components a11, a
2
1, a

3
1 will be

shifted from zero. However, they can be moved back to
their original values by boosts in the (x0, x1), (x0, x2) and
(x0, x3) planes. Thus, we get 4 equations for 8 parameters
(bm, �, and 3 boosts) leaving 4 independent parameters.
Together with 3 SOð3Þ rotations this gives 7 residual
symmetries. Note that this number is just the difference
between the dimension of SOð1; 5Þ and the number
of the conditions set by fixing 2 points on the boundary,
i.e., 15� 2� 4 ¼ 7.
Thus the semiclassical calculation of [2] and Sec. III B

should include the integral over the corresponding 7 col-
lective coordinates. The precise form of the integral de-
pends on the location of the two boundary points but its
value does not, so we may make a convenient choice of
~a2 ¼ 0, ~a1 ¼ 1. Then the unbroken subgroup consists of
dilatations and all SOð4Þ rotations (translations are broken
because they do not preserve the origin and special con-
formal transformations are broken because they do not
preserve infinity). Since SOð4Þ has finite volume, the non-
trivial factor comes only from the integral over the dila-
tions. The subgroup of dilatations can be embedded into
SOð1; 5Þ as diagonal 6-matrices

diag ð�; ~�; 1; 1; 1; 1Þ; �~� ¼ 1: (A6)

The group-invariant volume of the corresponding trans-
formations is then

�dil ¼
Z

d�d~��ð�~�� 1Þ ¼
Z d�

�
: (A7)

32The corresponding volume can be written asR
d2ad2bd2cd2d�2ðad� bc� 1Þ.
33The same conclusion follows also from the definition of �c
as a ratio �M

�2
in (3.7).

34Similar SOð6Þ degeneracy can be ignored as the correspond-
ing group has finite volume.
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This integral is logarithmically divergent like �c in (A3)
and thus we may set �dil�

�1
c ¼ 1 implying a finite ex-

pression for the 2-point function in AdS5 � S5.
The same argument applies, in fact, to the generic

AdSdþ1 case, e.g., to strings in AdS2 �M, AdS3 �M or
AdS4 �M. The number of the corresponding collective
coordinates is given by the dimension of the subgroup of
SOð1; dþ 1Þ preserving two boundary points which is

dim½SOð1; dþ 1Þ� � 2d ¼ dðd� 1Þ
2

þ 1: (A8)

If we choose the two points to be at 0 and 1 then the
unbroken subgroup is the product of SOðdÞ and dilatations.
The dimensions of these two groups are precisely the two
terms in the r.h.s. of (A8). The integral over the collective
coordinates is again the integral over SOðdÞ (which gives a
finite number) times the one-dimensional integral (A7)
over the dilatations. It again cancels the diverging �c

factor in the 2-point function (3.7).
Let us mention that the divergent integral (A7) may also be

interpreted as �ð�2 � �1Þ ! �ð0Þ, like in the Liouville
theory [28] and in string theory on AdS3 [19]. This argument
is not using semiclassical and requires a certain analytic
continuation. Let us start with the general expression (3.1)
and single out the integral over the dilatations by setting

z ¼ �z0; xm ¼ �x0m; (A9)

where z0 and x0m are fixed under the dilatations. As the string
action (3.4) and v in (3.3) will not depend on �, we will get

G�
�
. . .

Z d�

�

�
�z0

�2z02 þ ð�x0m � am1 Þ2
�
�1

�
�

�z0

�2z02 þ ð�x0m � am2 Þ2
�
�2

. . .

�
; (A10)

where d�
� is the group-invariant measure. To decouple the

integral over � we may again choose the locations of the
operators at ~a1 ¼ 1 and ~a2 ¼ 0. Then we will get
the factor in (A10)

�̂dil¼
Z d�

�
��2��1 ¼

Z
d�eð�2��1Þ�; �¼e�: (A11)

Analytically continuing � ! i� as in [28] we may interpret
this factor as �ð�2 � �1Þ, implying that the 2-point function

vanishes unless �2 ¼ �1 when the singular factor

ð�̂dilÞ�2¼�1
gets cancelled against �c as discussed above.

In the case of the 3-point function (3.8) when 3 target
space points ai are fixed the remaining symmetry subgroup
of SOð1; dþ 1Þ is compact SOðd� 1Þ and thus the result-
ing correlator is finite. Indeed, let us choose 2 out of 3 fixed
boundary points to be at ~a1 ¼ 0 and ~a2 ¼ 1. The third
point ~a3 breaks dilatations and the only surviving symme-
try is the SOðd� 1Þ subgroup of SOðdÞ that preserves ~a3.
The same applies of course to higher-point correlators.

APPENDIX B: EXPLICIT FORM OF THE
SCHWARZ-CHRISTOFFEL MAP FOR
NONEXTREMAL CORRELATORS

Here we present explicit form of the Schwarz-
Christoffel transformation found by doing the integral in
Eq. (5.7). In our convention the operator with dimension
�1 � �2 þ �3 is inserted at � ¼ �1 and the other two
operators are inserted at � ¼ þ1. We find [up to an
integration constant which we can adjust to satisfy (5.14)]

�þ i�¼ ln

�
1


12
13M1

�d2
d1

ln

�
2


12
32M2

�d3
d1

ln

�
3


13
23M3

;

(B1)

where 
ij 	 
i � 
j,

M1 ¼ 2d1Q� ðd22 � d23Þ
23ð
� 
1Þ
þ d21½ð
� 
2Þ
13 � ð
� 
3Þ
12�;

M2 ¼ 2d2Q� ðd23 � d21Þ
13ð
� 
2Þ
þ d22½ð
� 
3Þ
12 � ð
� 
1Þ
32�;

M3 ¼ 2d3Q� ðd21 � d22Þ
21ð
� 
3Þ
þ d23½ð
� 
1Þ
32 � ð
� 
2Þ
31�; (B2)

and

Q¼½d21
12
13ð
�
2Þð
�
3Þþd22
12
32ð
�
1Þð
�
3Þ
þd23
13
23ð
�
2Þð
�
1Þ�1=2: (B3)

The parameters of the critical point of the map determining
the interaction point on the diagram in Fig. 4, are deter-
mined from a quadratic equation that has two solutions


ð1Þ
int ¼

d21
12
13ð
2 þ 
3Þ þ d22
12
32ð
1 þ 
3Þ þ d23
23
13ð
2 þ 
1Þ � P1=2
23
12

2ðd21
12
13 þ d22
21
23 þ d23
13
23Þ
(B4)


ð2Þ
int ¼

d21
12
13ð
2 þ 
3Þ þ d22
12
32ð
1 þ 
3Þ þ d23
23
31ð
2 þ 
1Þ þ P1=2
23
12

2ðd21
12
13 þ d22
21
23 þ d23
13
23Þ
;

P ¼ d41 þ d42 þ d43 � 2d21d
2
2 � 2d21d

2
3 � 2d22d

2
3 ¼ ���2�1�2�3ð�1 þ �2 þ �3Þ; (B5)

where in the last relation we used that di ¼ �iffiffiffi
�

p and the definitions of �i in (2.21).

SEMICLASSICAL CORRELATORS OF THREE STATES . . . PHYSICAL REVIEW D 85, 026001 (2012)

026001-21



[1] R. A. Janik, P. Surowka, and A. Wereszczynski, J. High
Energy Phys. 05 (2010) 030.

[2] E. I. Buchbinder and A.A. Tseytlin, J. High Energy Phys.
08 (2010) 057.

[3] K. Zarembo, J. High Energy Phys. 09 (2010) 030; M. S.
Costa, R. Monteiro, J. E. Santos, and D. Zaokas, J. High
Energy Phys. 11 (2010) 141; R. Roiban and A.A. Tseytlin,
Phys. Rev. D 82, 106011 (2010).

[4] J. Escobedo, N. Gromov, A. Sever, and P. Vieira, J. High
Energy Phys. 09 (2011) 028; 09 (2011) 029.

[5] T. Klose and T. McLoughlin, arXiv:1106.0495.
[6] R. A. Janik and A. Wereszczynski, arXiv:1109.6262.
[7] S. Lee, S. Minwalla, M. Rangamani, and N. Seiberg, Adv.

Theor. Math. Phys. 2, 697 (1998).
[8] A.M. Polyakov, Int. J. Mod. Phys. A 17, 119 (2002).
[9] A. A. Tseytlin, Nucl. Phys. B664, 247 (2003).
[10] S. Dobashi, H. Shimada, and T. Yoneya, Nucl. Phys. B665,

94 (2003); S. Dobashi and T. Yoneya, Nucl. Phys. B711, 3
(2005).

[11] E. I. Buchbinder and A.A. Tseytlin, J. High Energy Phys.
02 (2011) 072.

[12] S. Mandelstam, Phys. Rep. 13, 259 (1974); in
Proceedings of Workshop on Unified String Theories,
edited by M.B. Green and D. J. Gross (World Scientific,
Singapore, 1985); M.B. Green, J. H. Schwarz, and E.
Witten, Superstring Theory (Cambridge University
Press, Cambridge, England, 1987), Vol. 2, Chap. 11.

[13] E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998).
[14] J. Bros, H. Epstein, M. Gaudin, U. Moschella, and V.

Pasquier, Commun. Math. Phys. 295, 261 (2009).

[15] A. Mikhailov, J. Geom. Phys. 54, 228 (2005); M.
Kruczenski, A. A. Tseytlin, J. High Energy Phys. 09
(2004) 038.

[16] G. Arutyunov, F. A. Dolan, H. Osborn, and E. Sokatchev,
Nucl. Phys. B665, 273 (2003).

[17] A. Giveon, D. Kutasov, and N. Seiberg, Adv. Theor. Math.
Phys. 2, 733 (1998).

[18] J. de Boer, H. Ooguri, H. Robins, and J. Tannenhauser, J.
High Energy Phys. 12 (1998) 026.

[19] D. Kutasov and N. Seiberg, J. High Energy Phys. 04
(1999) 008.

[20] J.M. Maldacena and H. Ooguri, Phys. Rev. D 65, 106006
(2002).

[21] D. E. Berenstein, J.M. Maldacena, and H. S. Nastase, J.
High Energy Phys. 04 (2002) 013.

[22] E. I. Buchbinder, J. High Energy Phys. 04 (2010) 107.
[23] Yu. V. Sidorov, M.V. Fedoryuk, and M. I. Shabunin,

Lectures on the Theory of Functions of a Complex
Variable (Mir Publishers, Moscow, 1985).

[24] S. Ryang, J. High Energy Phys. 11 (2011) 026.
[25] S. Frolov and A.A. Tseytlin, Nucl. Phys. B668, 77 (2003);

R. Roiban, A.A. Tseytlin, J. High Energy Phys. 11 (2009)
013.

[26] K. Pohlmeyer, Commun. Math. Phys. 46, 207 (1976); H. J.
De Vega and N.G. Sanchez, Phys. Rev. D 47, 3394 (1993);
L. F. Alday and J. Maldacena, J. High Energy Phys. 11
(2009) 082.

[27] Y. Kazama, S. Komatsu, arXiv:1110.3949.
[28] N. Seiberg, Prog. Theor. Phys. Suppl. 102, 319

(1990).

E. I. BUCHBINDER AND A.A. TSEYTLIN PHYSICAL REVIEW D 85, 026001 (2012)

026001-22

http://dx.doi.org/10.1007/JHEP05(2010)030
http://dx.doi.org/10.1007/JHEP05(2010)030
http://dx.doi.org/10.1007/JHEP08(2010)057
http://dx.doi.org/10.1007/JHEP08(2010)057
http://dx.doi.org/10.1007/JHEP09(2010)030
http://dx.doi.org/10.1007/JHEP11(2010)141
http://dx.doi.org/10.1007/JHEP11(2010)141
http://dx.doi.org/10.1103/PhysRevD.82.106011
http://dx.doi.org/10.1007/JHEP09(2011)028
http://dx.doi.org/10.1007/JHEP09(2011)028
http://dx.doi.org/10.1007/JHEP09(2011)029
http://arXiv.org/abs/1106.0495
http://arXiv.org/abs/1109.6262
http://dx.doi.org/10.1142/S0217751X02013071
http://dx.doi.org/10.1016/S0550-3213(03)00456-5
http://dx.doi.org/10.1016/S0550-3213(03)00460-7
http://dx.doi.org/10.1016/S0550-3213(03)00460-7
http://dx.doi.org/10.1007/JHEP02(2011)072
http://dx.doi.org/10.1007/JHEP02(2011)072
http://dx.doi.org/10.1016/0370-1573(74)90034-9
http://dx.doi.org/10.1007/s00220-009-0875-4
http://dx.doi.org/10.1016/j.geomphys.2004.09.007
http://dx.doi.org/10.1088/1126-6708/2004/09/038
http://dx.doi.org/10.1088/1126-6708/2004/09/038
http://dx.doi.org/10.1016/S0550-3213(03)00448-6
http://dx.doi.org/10.1088/1126-6708/1998/12/026
http://dx.doi.org/10.1088/1126-6708/1998/12/026
http://dx.doi.org/10.1088/1126-6708/1999/04/008
http://dx.doi.org/10.1088/1126-6708/1999/04/008
http://dx.doi.org/10.1103/PhysRevD.65.106006
http://dx.doi.org/10.1103/PhysRevD.65.106006
http://dx.doi.org/10.1088/1126-6708/2002/04/013
http://dx.doi.org/10.1088/1126-6708/2002/04/013
http://dx.doi.org/10.1007/JHEP04(2010)107
http://dx.doi.org/10.1007/JHEP11(2011)026
http://dx.doi.org/10.1016/S0550-3213(03)00580-7
http://dx.doi.org/10.1088/1126-6708/2009/11/013
http://dx.doi.org/10.1088/1126-6708/2009/11/013
http://dx.doi.org/10.1007/BF01609119
http://dx.doi.org/10.1103/PhysRevD.47.3394
http://dx.doi.org/10.1088/1126-6708/2009/11/082
http://dx.doi.org/10.1088/1126-6708/2009/11/082
http://arXiv.org/abs/1110.3949
http://dx.doi.org/10.1143/PTPS.102.319
http://dx.doi.org/10.1143/PTPS.102.319

