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We study the zero-point energy of massless scalar and vector fields subject to spheroidal boundary

conditions. For massless scalar fields and small ellipticity the zero-point energy can be found using both

zeta function and Green’s function methods. The result agrees with the conjecture that the zero-point

energy for a boundary remains constant under small deformations of the boundary that preserve volume

(the boundary deformation conjecture), formulated in the case of an elliptic-cylindrical boundary. In the

case of massless vector fields, an exact solution is not possible. We show that a zonal approximation

disagrees with the result of the boundary deformation conjecture. Applying our results to the MIT bag

model, we find that the zero-point energy of the bag should stabilize the bag against deformations from a

spherical shape.
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I. INTRODUCTION

The Casimir effect is a manifestation of the quantum
nature of fields. The presence of physical boundaries gives
rise to changes in the zero-point energy of a quantum field
[1]. This has been studied theoretically for a number of
geometries [2,3]; however, apart from fairly simple cases
such as parallel plates, spheres, and cylinders, exact results
are difficult to find because analytic solutions to the field
equations are required. The possibility of technological
applications of quantum vacuum fluctuations [4,5] has
made further investigation of the Casimir effect in
situations where the boundaries are either not perfectly
conducting or of lower symmetry timely.

The problem of the Casimir self-stress on a spherical
shell was first proposed by Casimir [6] as a possible
mechanism for stabilizing a semiclassical model of the
electron. However, Boyer showed [7] that the zero-point
energy is positive in this case. While the concept of the
zero-point energy of a single object must be carefully
defined to avoid ambiguity, this notion has been applied
to Kaluza-Klein theories [8,9] and cosmological models,
for example, in [10,11]. Another area where the idea of the
zero-point energy of a single object has found application
is in hadronic physics. There have been many papers on the
zero-point energy of colored fields confined in a spherical
cavity following the early work of Bender and Hays [12]
and Milton [13]. Also, zero-point energy concepts have
been applied to soliton [14], hybrid bag [15], and string
models [16] of hadrons.

In recent years there has also been experimental and
theoretical progress on the Casimir force between sepa-
rated objects. We refer the reader to review articles by
Lamoreaux [5], Milton [17], and Klimchitskaya,
Mohideen, and Mostepanenko[18]. Of particular note is

the recent experimental finding [19] that the Casimir or,
more properly, the Casimir-Lifshitz force can be repulsive,
confirming a prediction of Lifshitz and collaborators [20]
for a system where the two plates have different dielectric
permittivities and the vacuum is replaced by a liquid with a
permittivity whose value is between those of the plates.
It is well known that the Casimir energy is sensitive to

geometry—even the sign of the energy is difficult to pre-
dict. It is natural, therefore, to investigate the modification
of zero-point energy when the boundary is modified.
Experimental investigations [21] have shown that changing
the boundary on the nanometer scale alters the Casimir-
Lifshitz force by a factor different from that predicted
using the proximity force approximation, though more
sophisticated calculations [22,23] can account for the
change in the force. Recent work [24] has provided experi-
mental confirmation of an exact theoretical calculation of
the effect of varying the amplitude of a sinusoidally corru-
gated surface.
Kitson and Romeo [25] looked at the theoretical prob-

lem of an infinite cylinder deformed from circular to
elliptical cross section. For small ellipticity (or eccentric-
ity) e a perturbative-like expansion for the zero-point
energy can be found:

E Cða; eÞ ¼ ECða; 0Þ½1þ 1
2e

2 þOðe4Þ�; (1)

where a is the semimajor axis of the ellipse, and ECða; 0Þ is
the regularized zero-point energy per unit length of an
infinite circular cylinder of radius a, which has the numeri-
cal value [26]

E Cð0Þ � � 0:013 56

a2
: (2)

This agrees with earlier work of Kvitsinsky [27]. Noting
that an ellipse with semimajor axis a and ellipticity e has

area �a2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
, Kitson and Romeo’s result can be writ-

ten in terms of R, the geometric mean of the semimajor and

semiminor axes R ¼ ffiffiffiffiffiffi
ab

p
,

*a.r.kitson@gmail.com
†a.i.signal@massey.ac.nz

PHYSICAL REVIEW D 85, 025021 (2012)

1550-7998=2012=85(2)=025021(11) 025021-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.85.025021


E ðeÞ � � 0:013 56

R2
½1þOðe4Þ�; (3)

that is, if the cross section of the cylinder remains con-
stant under the deformation of the cross section from a
circle of radius R to an ellipse, then the zero-point energy
per unit length does not change, up to Oðe4Þ. This is a
remarkable result, and begs the question whether it can be
generalized to other deformations of highly symmetric
boundaries.

In this paper, we will consider the deformation of a
sphere to a spheroid. It is known that the zero-point energy
for a spherical boundary is positive [7], whereas it is
negative in the cases of parallel plates and infinite circular
and elliptical cylinder geometries. As these geometries are
limiting cases of spheroidal geometry, it is interesting to
investigate the change in zero-point energy as a sphere is
deformed into a spheroid, and to see whether this change
lowers or increases the zero-point energy. Some care may
be needed here, as while the parallel plate configuration is
the limiting case of an oblate spheroid with ellipticity taken
to unity, there is also a change in topology, so the value of a
physical quantity such as the zero-point energy may not be
continuous in this limit.

It should be recognized that the situation we are discus-
sing is an idealization where boundary conditions have
replaced a physical interaction, and care needs to be taken,
especially with the appearance of divergences. An alter-
native approach is to replace the boundary with a renorma-
lizable coupling between the fluctuating field and a
nondynamical smooth background field [28–30]. This ap-
proach allows the use of the standard renormalization
procedure of quantum field theory without boundaries to
obtain finite results.

In Sec. II we consider the case of a massless scalar field
subject to Dirichelet (D) and Neumann (N) boundary con-
ditions on the surface of a prolate spheroid. We obtain the
zero-point energy as a perturbative expansion in the ellip-
ticity. In Sec. III we study the Maxwell equations with
perfect conductor boundary conditions on the surface of a
spheroid. Unfortunately, an analytic solution for the fields
is not possible in this case. In previous work [31], we
proposed using a zonal approximation by weighting com-
ponents of the known axial symmetric field solutions with
a spheroidal boundary. However, we will show that this
approximation is poor, and likely to give the wrong sign for
the first correction term in the perturbative expansion of the
zero-point energy. In Sec. IV we examine the implications
of our results for the MIT bag and flux tube models of
hadron structure in QCD.

II. MASSLESS SCALAR FIELD IN
SPHEROIDAL GEOMETRY

The spheroidal boundary is given by the Cartesian
equation,

x2

a2
þ y2 þ z2

b2
¼ 1; (4)

where both a and b are nonzero. A prolate spheroid has
a > b whereas an oblate spheroid has a < b. We shall
consider a prolate spheroid; the results for an oblate
spheroid can be easily obtained from those we derive
here. We can think of the prolate-spheroidal boundary
as the solid figure formed by rotating the ellipse with
semimajor axis a and semiminor axis b about the x axis.
The ellipticity of the spheroid is

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

a2

s
: (5)

It is most convenient to work in prolate-spheroidal co-
ordinates (�;�;�) [32], which are related to Cartesian
coordinates by

x ¼ f��;

y ¼ f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�2 � 1Þð1� �2Þ

q
cos�;

z ¼ f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�2 � 1Þð1� �2Þ

q
sin�;

(6)

where f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

p
¼ ea. The domains of the prolate-

spheroidal coordinates are 1 � � � 1, �1 � � � 1, and
0 � �< 2�. In these coordinates the boundary (4) is
given by

� ¼ 1

e
: (7)

Let us consider a real massless scalar field ’ that sat-
isfies the homogeneous Dirichelet condition on the bound-
ary of the prolate spheroid. In natural units, the field
equation and boundary condition are

ðr2 þ!2Þ’ ¼ 0; (8)

’j�¼1=e ¼ 0; (9)

where ! is the frequency. In prolate-spheroidal coordi-
nates the field equation is separable, and the general
expression for the field in the interior of the boundary
can be found [33]

’I;Dð�;�;�Þ

¼X1
l¼0

Xl
m¼�l

Am
l S

mð1Þ
l ð�;�2Þpsmð1Þ

l ð�;�2Þexpðim�Þ; (10)

where � ¼ f!. Here the functions Smð1Þ
l are the radial

prolate-spheroidal functions of the first kind and psmð1Þ
l are

the angular prolate-spheroidal functions of the first kind
[32,34]. The homogeneous Dirichelet boundary condition
is satisfied when
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Smð1Þ
l

�
1

e
; z2e2

�
¼ 0; (11)

where we have introduced the dimensionless frequency
z ¼ !a. Exterior to the boundary the general expression
for the field is similar:

’II;Dð�;�;�Þ

¼X1
l¼0

Xl
m¼�l

Bm
l S

mð3Þ
l ð�;�2Þpsmð1Þ

l ð�;�2Þexpðim�Þ; (12)

where Smð3Þ
l are the radial prolate-spheroidal functions of

the third kind.
With these solutions to the field equation we can proceed

to finding the zero-point energy. We will use two methods
to find the zero-point energy: the zeta function method and
the Green’s function method.

A. Zeta function method

The zeta function for the field is given by

�ðsÞ ¼ �s
X
k

!�s
k ; (13)

where !k are the eigenenergies of the field, s is a complex
variable, and � is a positive mass scale. The zero-point
energy is related to the principal part of the zeta function

E C ¼ 1
2 PPs¼�1��ðsÞ: (14)

Let the positive solutions of the spheroidal boundary
condition equation (11) be given by zlmn. For large enough
ReðsÞ we can write the zeta function for the interior field as

� I;Dðs; a; eÞ ¼ ð�aÞs X1
l¼0

Xl
m¼�l

X1
n¼1

z�s
lmn: (15)

The summation over n can be performed via the argu-
ment principle [35,36]

X1
n¼1

z�s
lmn ¼

1

2�i

Z
C
dzz�s S

mð1Þ0
l ð1=e; z2e2Þ
Smð1Þ
l ð1=e; z2e2Þ : (16)

Here the prime denotes differentiation with respect to z,
and the contour is a closed path that encloses all the
positive zeroes of the radial spheroidal function and avoids
the origin.

We can make progress via a formal asymptotic expan-
sion of the radial prolate-spheroidal functions for small
ellipticity in terms of spherical Bessel functions of the first
kind jlðzÞ

Smð1Þ
l ð1=e; z2e2Þ � jlðzÞ �

�
l2 þ lþm2 � 1

4l2 þ 4l� 3
zj0lðzÞ

�
�
l2 þ l� 3m2

8l2 þ 8l� 6
þm

2

�
jlðzÞ

�
e2 þOðe4Þ: (17)

The integrand of the zeta function can now be expressed
using this expansion as

z�s S
mð1Þ0
l ð1=e; z2e2Þ
Smð1Þ
l ð1=e; z2e2Þ � z�s j

0
lðzÞ
jlðzÞ �

l2 þ lþm2 � 1

4l2 þ 4l� 3

�
�
sz�s j

0
lðzÞ
jlðzÞ þ

�
z1�s j

0
lðzÞ
jlðzÞ

�0�
e2 þOðe4Þ: (18)

The leading order term of (18) can be recognized as the
integrand we would obtain for a spherical boundary of
radius a [37]. The Oðe2Þ term has two terms: the first is
proportional to the leading order term, the second is con-
tinuous on C, and has an antiderivative, so will integrate to
zero. We can perform the summation over m as the leading
order term is independent of m, and for the next-to-leading
order term we can use the relation

Xl
m¼�l

l2 þ lþm2 � 1

4l2 þ 4l� 3
¼ 2lþ 1

3
: (19)

So now we have that the next-to-leading order term is
simply � 1

3 se
2 times the leading order term, and we can

write the zeta function as

� I;Dðs; a; eÞ � � I;Dðs; a; 0Þ
�
1� s

3
e2 þOðe4Þ

�
: (20)

For the exterior field, we can do a similar analysis. The
formal asymptotic expansion of the radial prolate-

spheroidal functions Smð3Þ
l is the same as that for Smð1Þ

l

except that the spherical Bessel functions of the first kind
are replaced by spherical Hankel functions of the first kind

hð1Þl . Thus, we obtain the expansion of the zeta function in

the exterior of the spheroidal boundary:

� II;Dðs; a; eÞ � � II;Dðs; a; 0Þ
�
1� s

3
e2 þOðe4Þ

�
: (21)

The total zeta function is the sum of internal and external
contributions

�Dðs; a; eÞ ¼ � I;Dðs; a; eÞ þ � II;Dðs; a; eÞ
� �Dðs; a; 0Þ

�
1� s

3
e2 þOðe4Þ

�
: (22)

The first term is the total zeta function for a massless scalar
field satisfying the homogeneous Dirichelet condition on
the boundary of a sphere of radius a. This term is well
behaved at s ¼ �1, and taking the principal part gives the
zero-point energy,

E Dða; eÞ � EDða; 0Þð1þ 1
3e

2 þOðe4ÞÞ; (23)

where the leading term is the zero-point energy of the
massless scalar field for a sphere with Dirichelet boundary
conditions [38]

CASIMIR EFFECT IN SPHEROIDAL GEOMETRIES PHYSICAL REVIEW D 85, 025021 (2012)

025021-3



E Dða; 0Þ ¼ 0:002 81 . . .

a
: (24)

We can also consider Neumann (or Robin) boundary
conditions. The homogeneous Neumann boundary condi-
tion for the massless scalar field in prolate-spheroidal
geometry will be satisfied when the radial function satisfies

@

@�
Smð1Þ
l ð�; u2e2Þj�¼1=e ¼ ~Sml ðu; eÞ ¼ 0; (25)

where u is now the dimensionless frequency. We can find
the zeta function for the interior region

� I;Nðs; eÞ ¼ ð�aÞs X1
l¼0

Xl
m¼�l

X1
n¼1

u�s
lmn: (26)

As before, we can convert the summation over n to a
contour integral over complex u,

X1
n¼1

u�s
lmn ¼ 1

2�i

Z
C
duu�s

~Sm0
l ðu; eÞ
~Sml ðu; eÞ

: (27)

Here the prime denotes differentiation with respect to u.
Again using the formal expansion of the radial prolate-
spheroidal functions for small e, Eq. (17), we obtain an
expression for the integrand of the zeta function which is
very similar to Eq. (18), except that the Bessel function jl is
replaced by its derivative, the derivative j0l is replaced by

the second derivative, and we find an extra term which is a
power of u:

u�s
~Sm0
l ðu; eÞ
~Sml ðu; eÞ

� u�s�1 þ u�s j
00
l ðuÞ
j0lðuÞ

� l2 þ lþm2 � 1

4l2 þ 4l� 3

�
�
su�s j

00
l ðuÞ
j0lðuÞ

þ
�
u1�s j

00
l ðuÞ
j0lðuÞ

�0�
e2 þOðe4Þ: (28)

As the contour avoids the origin, the u�s�1 term will
integrate to zero, and the analysis can proceed as before:
the leading term being the same as for a spherical bound-
ary, and the next-to-leading term having one part which

integrates to zero and another part which is proportional to
� 1

3 s times the leading term. Hence we arrive at

� I;Nðs; a; eÞ � � I;Nðs; a; 0Þ
�
1� s

3
e2 þOðe4Þ

�
: (29)

Clearly this analysis extends to the field exterior to the
prolate spheroid, and so we see that Eq. (23) holds for both
Dirichelet and Neumann boundary conditions and can be
considered a general result for the zero-point energy of the
massless scalar field.

B. Green’s function method

The zero-point energy is related to the reduced Green’s
function in a region of space,

E C ¼ 1

2�i

Z
d!

Z
d3x!2gðx;xÞ: (30)

For the interior of the spheroidal boundary, with the
homogeneous Dirichelet boundary condition, we have the
reduced Green’s function [33]

gI;Dðx;x0Þ ¼ �i!
X1
l¼0

Xl
m¼�l

Xm
l ð�;�; �2ÞXm�

l ð�0; �0; �2Þ

� Smð3Þ
l ð1=e; �2Þ

Smð1Þ
l ð1=e; �2ÞS

mð1Þ
l ð�; �2ÞSmð1Þ

l ð�0; �2Þ;

(31)

where

Xm
l ð�;�; �2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4�

ðl�mÞ!
ðlþmÞ!

s
psmð1Þ

l ð�;�2Þ expðim�Þ:
(32)

For the exterior region, the reduced Green’s function is
similar, except that the radial prolate-spheroidal functions
of the first and third kind are interchanged. The spatial
integral in Eq. (30) becomes

Iðz;eÞ¼
Z
d3x!2gDðx;xÞ

¼�i
X1
l¼0

Xl
m¼�l

Z 2�

0
d�

Z 1

�1
d�Xm

l ð�;�;z2e2ÞXm�
l ð�;�;z2e2Þ

�
Smð3Þ
l ð1=e;z2e2Þ

Smð1Þ
l ð1=e;z2e2Þ

Z z

ze
d�ð�2��2z2e2Þ

�
Smð1Þ
l

�
�

ze
;z2e2

��
2

þSmð1Þ
l ð1=e;z2e2Þ

Smð3Þ
l ð1=e;z2e2Þ

Z 1

z
d�ð�2��2z2e2Þ

�
Smð3Þ
l

�
�

ze
;z2e2

��
2
�
; (33)

where we have rescaled � by a factor of ze. As in the previous subsection, we now make formal expansion of the radial and
angular prolate-spheroidal functions. Note that the argument of the spherical Bessel functions in the expansion (17)
becomes �. For the angular prolate-spheroidal functions we have the expansion for small �2,

ps mð1Þ
l ð�; �2Þ � Pm

l ð�Þ þ
�ðlþm� 1ÞðlþmÞ
2ð2l� 1Þ2ð2lþ 1Þ P

m
l�2ð�Þ �

ðl�mþ 1Þðl�mþ 2Þ
2ð2lþ 1Þð2lþ 3Þ2 Pm

lþ2ð�Þ
�
�2 þOð�4Þ: (34)

We obtain the expansion of the spatial integral for small ellipticity
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I ðz; eÞ � I ð0ÞðzÞ þ I ð2ÞðzÞe2 þOðe4Þ: (35)

As we expect, the leading term is the same as the spatial
integral for the same problem on the boundary of a sphere
of radius a [39]:

I ð0ÞðzÞ ¼ �i
X1
l¼0

Xl
m¼�l

Z 2�

0
d�

Z 1

�1
d�

2lþ 1

4�

ðlþmÞ!
ðl�mÞ!

� ðPm
l ð�ÞÞ2

�
hð1Þl ðzÞ
jlðzÞ

Z z

0
duu2ðjlðuÞÞ2

þ jlðzÞ
hð1Þl ðzÞ

Z 1

z
duu2ðhð1Þl ðuÞÞ2

�
: (36)

The next-to-leading order term is given by

I ð2ÞðzÞ ¼ lim
e!0

1

2

@2

@e2
Iðz; eÞ: (37)

We note that in the integral over the angular variables,
only the leading term contributes because of the orthogo-
nality of the associated Legendre functions Pm

l . For the

radial integrals, we need to use Leibnitz’s rule. There is one
term involving �2; however, this can be dealt with using
the recurrence relation for associated Legendre functions,

ð2lþ 1Þ�Pm
l ð�Þ ¼ ðlþ 1�mÞPm

lþ1ð�Þ þ ðlþmÞPm
l�1ð�Þ;
(38)

and the orthogonality relation. After further simplification
we can write

I ð2ÞðzÞ ¼ 1

3
I ð0ÞðzÞ � 1

3

@

@z

�
zI ð0ÞðzÞ þX

l;m

Qm
l ðzÞ

�
: (39)

When the second term is integrated over z, we can use an i	
prescription to deform the contour in the complex plane to
avoid the poles along the real axis, and close the contour
around the upper half-plane. The integral will then vanish
as it is a total derivative. Thus, the next-to-leading order
term is 1

3 e
2 times the leading order term, which agrees with

the above calculation using the zeta function method.

C. Discussion

Our Eq. (23) for the zero-point energy of the prolate
spheroid is a new result. We can generalize this result to an
oblate spheroid. Rather than repeat our derivation above,
we note that the ellipticity e0 of an oblate spheroid is
related to that of a prolate spheroid with a $ b by

1

e2
þ 1

e02
¼ 1: (40)

Substituting into Eq. (23) yields

EDða; e0Þ � EDða; 0Þð1� 1
3e

02 þOðe4ÞÞ; (41)

similar to the result for a prolate spheroid.

We can gain more insight into our result by considering a
sphere of radius R. The volume of this sphere is equal to
that of the prolate spheroid when

R ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

3
p

; (42)

which gives the zero-point energy of the spheroid as

E ða; eÞ � EðR; 0Þð1þOðe4ÞÞ; (43)

i.e., the leading correction term vanishes when the sphere is
deformed to a spheroid in a manner that preserves the
volume. This agrees with the result of Kitson and Romeo
for the elliptical cylinder geometry [25]. It is natural to
speculate that this result may hold more generally [40],
though this is difficult to investigate. In the case of the
elliptical cylinder, the result could be derived using a
conformal map, which only requires continuity of the field
solutions and is independent of the boundary condition.
For the spheroid, we do not know the range of validity for
our expansion in the ellipticity, so confirmation of this
result may require experimental input.
In the limit e ! 1, a prolate spheroid becomes a circular

cylinder, which has negative zero-point energy. We note
that our result for the zero-point energy of the prolate
spheroid is positive and increases in magnitude as the
ellipticity increases. For an oblate spheroid, which be-
comes parallel plates in the limit e0 ! 1, our result for
the zero-point energy does decrease as the ellipticity in-
creases, however, it remains positive. (A plot in an earlier
paper [31] erroneously showed a negative zero-point en-
ergy.) So the change in sign of the zero point as the
geometry changes must come from higher order terms in
the ellipticity expansion, or be associated with the change
in topology at the limit. In Fig. 1 we show the total zero-
point energy for a scalar field subject to Dirichelet bound-
ary conditions on both a prolate and an oblate spheroid.

III. ELECTROMAGNETIC FIELD
IN SPHEROIDAL GEOMETRY

In general, Maxwell’s equations are not separable in
spheroidal coordinates [33]. This means that we cannot
use either zeta function or Green’s function methods to
investigate the zero-point energy of the electromagnetic
field subject to appropriate boundary conditions on the

1.0 1.5 2.0 2.5 3.0
0.000

0.002

0.004

0.006

0.008

0.010

a b

2a

1.0 1.5 2.0 2.5 3.0
0.000

0.002

0.004

0.006

0.008

0.010

b a

2a

FIG. 1 (color online). Total zero-point energy of a scalar field
with Dirichelet conditions on a prolate spheroid (left) and an
oblate spheroid (right) of small ellipticity.
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boundary of either a prolate or oblate spheroid. However,
there is one known case of the Maxwell equations separat-
ing in prolate-spheroidal coordinates, which is when the
field is axially symmetric [41]. In a previous paper, we
proposed that the zero-point energy could be obtained in a
zonal approximation by suitably weighting the zeta func-
tion of the axially symmetric solution, and obtained a result
with the leading correction term in the ellipticity expansion
having an opposite sign to the spherical result [31]. We
now show that this result is unreliable, and that the zonal
approximation is probably a poor conjecture.

In the case of a scalar field, we can compare the exact
result with the result of the zonal approximation. The
zeta function for the field satisfying the homogeneous
Dirichelet boundary condition on the prolate spheroid is
given by

� I;Dðs;a;eÞ ¼ ð�aÞsX1
l¼0

Xl
m¼�l

1

2�i

Z
C
dzz�s S

mð1Þ0
l ð1=e;z2e2Þ
Smð1Þ
l ð1=e;z2e2Þ :

(44)

The zonal approximation is made by setting m ¼ 0 in
the integrand and replacing the sum over m by a factor
(2lþ 1). We denote the zonal approximation to the zeta

function by ~� , and use the expansion in ellipticity, Eq. (17),
to write

~�ðs; a; eÞ � ~� ð0Þðs; aÞ þ ~� ð2Þðs; aÞe2 þOðe4Þ: (45)

For simplicity we set the mass scale � equal to a, and let
� ¼ lþ 1=2. The leading order term is the zeta function
for a spherical boundary

~� ð0Þðs; aÞ ¼ X1
l¼0

2�

2�i

Z
C
dzz�s j

0
lðzÞ
jlðzÞ ; (46)

which has a Laurent expansion about s ¼ �1 [42]

~� ð0Þðs; aÞ ¼ 1

315�

1

sþ 1
� 0:008 89 . . .þOðsþ 1Þ:

(47)

The next-to-leading order term is found to be

~� ð2Þðs; aÞ ¼ �s
X1
l¼0

5� 4�2

16ð1� �2Þ
2�

2�i

Z
C
dzz�s j

0
lðzÞ
jlðzÞ : (48)

This expression needs analytic continuation from the do-
main where it is absolutely convergent ReðsÞ> 2 to �1<
ReðsÞ< 0. This can be done by considering the contour to
run along the imaginary axis from z ¼ þiy ¼ þi1 to
z ¼ �iy ¼ �i1, avoiding the origin via a semicircle of
radius 	, and being completed by a semicircle in the right
half-plane; see Fig. 2. The line integrals along the large
semicircle, radius 
 ! 1 and the small semicircle,
radius 	 both vanish. The integral along the imaginary
axis becomes

~� ð2Þðs; aÞ ¼ �s
X1
l¼0

5� 4�2

8ð1� �2Þ�
2�s 1

�
sin

�
�s

2

�

�
Z 1

0
dyy�s

�
1

�

i0lð�yÞ
ilð�yÞ � 1þ 1

2�y

�
(49)

where ilðzÞ are the modified spherical Bessel functions.
Now, continuing to a neighborhood of s ¼ �1 we find the
Laurent expansion,

~� ð2Þðs; aÞ ¼ 3

64�

1

ðsþ 1Þ2 �
2561� 1890�� 5670 ln2

40 320�

� 1

sþ 1
� 0:034 21 . . .þOðsþ 1Þ; (50)

where � ¼ 0:577 21 . . . is the Euler-Mascheroni constant.
Taking the principal part of both the leading and next-to-
leading terms, and factoring out the result for the spherical
boundary, we have the zero-point energy using the zonal
approximation

~E I;Dða; eÞ � ~EI;Dða; 0Þð1� 3:853 12 . . . e2 þOðe4ÞÞ:
(51)

However, we can expand the zeta function, Eq. (44), for
small ellipticity as

� I;Dðs;a;eÞ�X1
l¼0

Xl
m¼�l

� I;Dlm ðs;a;0Þ
�
1� l2þ lþm2� 1

4l2þ 4l� 3
se2

þOðe4Þ
�

(52)

where � I;Dlm ðs; a; 0Þ is the term appearing under the summa-

tion in Eq. (46) for the zeta function for the spherical
boundary. The summation over m is performed using
Eq. (19) giving

� I;Dðs; a; eÞ �X1
l¼0

ð2lþ 1Þ� I;Dlm ðs; a; 0Þ
�
1� s

3
e2 þOðe4Þ

�
;

(53)

as expected from our earlier result, Eq. (20). Using the zeta
function for the sphere, Eq. (47) we get the exact result for
the zero-point energy

FIG. 2. The contour of integration for the zeta function
in Eq. (48).
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E I;Dða; eÞ � EI;Dða; 0Þð1þ 0:257 59 . . . e2 þOðe4ÞÞ:
(54)

We see that the zonal approximation gives a next-to-
leading term that is the wrong sign and an order of magni-
tude too large. Additionally, the Laurent expansion in the
zonal approximation, Eq. (23), has a double pole, which
contradicts the Poisson kernel method. We thus conclude
that the zonal approximation is a poor approximation in
this case. We also note that if we had used the boundary
deformation conjecture, Eq. (23), which takes into account
the external field, the next-to-leading order term would be
þ 1

3 E
I;Dða; 0Þe2, which has the correct sign, and is not too

different in magnitude from the exact result.
In the coordinate systems where Maxwell’s equations

are separable (e.g., spherical polar or elliptical cylindrical
coordinates), the field equations can be broken down into
two sets of equations with solutions corresponding to TE or
TM modes. For perfectly conducting boundary conditions,
each of these modes (up to polarization states) is equivalent
to a massless scalar field subject to either homogeneous
Dirichelet or Neumann boundary conditions. So, in these
geometries, finding the zero-point energy of the massless
scalar field with either Dirichelet or Neumann boundary
conditions gives the zero-point energy of the electromag-
netic field as the sum of the zero-point energies for the two
solutions of the massless scalar field. In the case of the
spheroid, we were able to find the zero-point energy for
both solutions of the massless scalar field, so it is interest-
ing to conjecture that, for small ellipticity, the zero-point
energy of the electromagnetic field will follow our bound-
ary deformation conjecture,

E EMða; eÞ � EEMða; 0Þð1þ 1
3e

2 þOðe4ÞÞ; (55)

where EEMða; 0Þ is Boyer’s result for a sphere of radius a,

E EMða; 0Þ ¼ 0:046 17 . . .

a
; (56)

which is the sum of zero-point energies for Dirichelet and
Neumann boundary conditions minus the contributions
from n ¼ 0 modes. The difficulty with proving this con-
jecture is that we do not know exactly what form the
boundary conditions will take for the solutions of the field
equations in either prolate or oblate spheroidal coordinates,
as these solutions do not separate into radial and angular
parts. However, the simplicity of the perfectly conducting
boundary conditions, which require only the radial part of
the solution to vanish, or have vanishing first derivative, on
the surface gives us some grounds for believing that these
boundary conditions will not differ greatly from those we
have used for the massless scalar field, and so the boundary
deformation conjecture should be applicable for the elec-
tromagnetic field.

IV. ZERO-POINT ENERGY IN THE
MIT BAG MODEL

The MIT bag model [43] is a phenomenologically suc-
cessful model of hadron structure. In the model, the QCD
vacuum has infinite color magnetic permeability �, while
inside the bag the permeability is unity. This confines color
magnetic and electric fields to the interior with boundary
conditions on the bag surface

n � E ¼ 0 ¼ n�B; (57)

where n is a unit vector pointing in the inward normal
direction. The original fit to hadron masses [44] included a
term �Z=R (where r is the radius of a spherical bag) to
account for zero-point energy and center of mass effects,
with a value of Z � 1:8 giving a good fit. We note that the
fit for the strong coupling constant inside the bag typically
gives fairly large values �S � 2:2 in order that the color
hyperfine splitting reproduces the nucleon-delta mass split-
ting of 300 MeV.
The zero-point energy of the confined color fields, with

divergences subtracted, can be estimated [13]

E ðRÞ � þ 0:7

R
; (58)

which is of opposite sign to the value found in hadron mass
fits. As the leading divergence is associated with the bag
surface, more realistic boundary conditions incorporating a
‘‘skin depth,’’ will not greatly alter this result [2]. The
contribution of the zero-point energy of fermion (quark
and antiquark) fields is small, and is usually neglected. The
center of mass motion is also estimated to give a positive
contribution to hadron masses [45,46]. One possible reso-
lution to this is to include further terms in the mass for-
mula, such as a constant force term FR [2,47], which
allows reasonable fits to the hadron masses.
Another approach, in light of the large values of �S

found in the mass fits, is to consider nonperturbative ef-
fects. Recently Oxman, Svaiter, and Amaral [48] consid-
ered modifying the gluonic Green’s function to include
confinement effects. Based on Schwinger-Dyson analysis,
they introduced a modified reduced Green’s function,

�gðk2Þ ¼ ð�k2Þ�
ð�k2 þ�2Þ�þ1

; (59)

where � is a low momentum scale ���QCD and � is a

positive constant, typically �� 1. This modified Green’s
function reproduces the expected large momentum behav-
ior �gðk2Þ ! �1=k2, and has a power law behavior at low
momentum �gðk2Þ � ð�k2Þ�. The zero-point energy can be
expressed in terms of the reduced Green’s function [2]

E ¼ � 1

2

X
k

1

2�i

Z
d! lngð!2 �!2

kÞ: (60)
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Now, expressing the modified reduced Green’s function in
terms of the unmodified reduced Green’s function,

�gðk2Þ ¼ gðk2Þ��gðk2 ��2Þ�þ1; (61)

we can find the modified zero-point energy,

�E ¼ ��Eð0Þ þ ð�þ 1ÞEð�2Þ; (62)

where Eðm2Þ is the zero-point energy calculated using the
unmodified Green’s function for a field of mass m. The
second term will be small, so taking � � 1 we obtain
the modified result,

�E �� 0:7

R
; (63)

which is in better agreement with the usual hadron mass
fits.

Using the boundary deformation conjecture, we can
investigate the stability of the spherical bag against defor-
mations. We note that the zero-point energy of the bag no
longer includes terms coming from the exterior of the
boundary, so the boundary deformation conjecture is un-
likely to be exact. However, as we saw in the case of the
massless scalar field in the interior region, the conjecture is
able to give the correct sign and magnitude of next-to-
leading terms in the ellipticity expansion. Let us first
consider a meson state (quark-antiquark pair). At small
separations of the quark and antiquark, lattice QCD simu-
lations [49–51] show that the pair sits in a roughly spheri-
cal potential, whereas at large separations the sphere
becomes stretched into a flux tube of roughly the same
radius as the original ‘‘bag.’’ We can model this as a
spherical bag being deformed to a prolate spheroid with
the semiminor axis b staying approximately constant.
Using the modified Green’s function result above, we
have the zero-point energy of the spheroid

�E �� 0:7

a

�
1þ 1

3
e2 þOðe4Þ

�
: (64)

Now the semiminor and semimajor axes of the spheroid
are related by b2 ¼ a2ð1� e2Þ, so the zero-point energy
becomes

�EðeÞ � � 0:7

b

�
1� 1

6
e2 þOðe4Þ

�
; (65)

so increasing the ellipticity will increase the energy of the
bag. We can also consider a baryon (three quark) state. At
small interquark separations, the quarks sit in a spherical
bag. Lattice QCD simulations [52] show that when one
quark is separated from the other two a flux tube is formed,
similar to the quark-antiquark case, with the flux tube
again having approximately the same radius as the original
bag. We can model this as a spherical bag being deformed
to an oblate spheroid with constant semiminor axis a. The

zero-point energy of the oblate spheroidal bag using the
modified Green’s function result is

�E �� 0:7

a

�
1� 1

3
e02 þOðe04Þ

�
; (66)

where e0 is the ellipticity of the oblate spheroid. Again,
we see that increasing the ellipticity increases the energy
of the bag. These results are consistent with the flux tube
model result that the flux tube has constant energy per
unit length.

V. SUMMARY

In this paper we have investigated the zero-point energy
of a spheroid. For a massless scalar field, subject to either
Dirichelet or Neumann boundary conditions on the bound-
ary of the spheroid, we were able to make an expansion in
the ellipticity around e ¼ 0 and find the lowest order
correction term for deviations from a perfect sphere. We
used both zeta function and Green’s function methods to
obtain the lowest order correction, and both methods agree.
Our result is consistent with the boundary deformation
conjecture of Kitson and Romeo [25], first seen in the
case of an elliptical cylinder. In this case, the boundary
deformation conjecture says that the zero-point energy of a
sphere does not change, up to Oðe4Þ, when the sphere is
deformed to a spheroid. In the case of a massless vector
field (or electromagnetism), we were able to show that the
zonal approximation we had previously used to calculate
the zero-point energy [31] is likely to be incorrect, and we
argued that there are good reasons for believing that the
boundary deformation conjecture should apply in this case,
even if an exact solution is not possible. Finally, we applied
the boundary deformation conjecture to the MIT bag
model, where we argued that zero-point energy should
increase when the bag is deformed from a sphere.
It is tempting to relate the boundary deformation con-

jecture to the results of Ambjørn and Wolfram [53] for a
cubiodal box boundary. However, the results for the cuboid
are only calculated for the field on the interior of the
boundary, and are thus both divergent and dependent on
the renomalization method used (zeta function regulariza-
tion in this case), whereas our result for the spheroid (and
the result of Kitson and Romeo for the elliptic cylinder
geometry) includes both internal and external fields and is
finite (as the divergences cancel) and unambiguous. The
finite part of Ambjørn and Wolfram’s result shows that the
sign of the zero-point energy can change as the box is
deformed, so it would be of considerable interest if their
calculation could be extended to the external field, which
would allow an unambiguous result.
It would also be of interest to extend the work of this

paper to spinor fields and fields with mass. Finally, the
Oðe4Þ corrections in the ellipticity expansion should be
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calculated to enable us to place better limits on the bound-
ary deformation conjecture.
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APPENDIX: SPHEROIDAL FUNCTIONS

The scalar Helmholtz equation is separable in
prolate-spheroidal and oblate-spheroidal coordinates. As
oblate-spheroidal functions are easily related to prolate-
spheroidal functions [32], we shall only consider prolate-
spheroidal functions. The solution of the Helmholtz
equation in prolate-spheroidal coordinates has the form

’ð�;�;�Þ ¼ �ð�ÞHð�Þ expð	im�Þ; (A1)

where the functions � and H satisfy the ordinary differ-
ential equations�

ð�2 � 1Þ d2

d�2
þ 2�

d

d�
� �lmð�2Þ

þ �2ð�2 � 1Þ � m2

�2 � 1

�
�ð�Þ ¼ 0; (A2)

�
ð1� �2Þ d2

d�2
� 2�

d

d�
þ �lmð�2Þ

þ �2ð1� �2Þ � m2

1� �2

�
Hð�Þ ¼ 0: (A3)

Here � ¼ f!;m is an integer and �lm is a constant of
separation. We note that these equations are identical,
however, they apply over different ranges of the variables,
� 
 1 and j�j � 1. The solutions to (A2) are the radial
prolate-spheroidal functions; the solutions to (A3) that are
regular and well behaved at � ¼ 	1 are the angular sphe-

roidal functions of the first kind psmð1Þ
l ð�; �2Þ [54].

1. Angular prolate-spheroidal functions

Angular prolate-spheroidal functions of the first kind
can be expressed as a series of associated Legendre
polynomials,

ps mð1Þ
l ð�; �2Þ ¼ X1

k¼�1
ð�1Þkaml;kð�2ÞPn

lþ2kð�Þ; (A4)

where the series coefficients satisfy a three term recur-
rence relation [34,54],

7

Am
l;kð�2Þaml;k�1ð�2Þ þ ðBm

l;kð�2Þ � �lmð�2ÞÞaml;kð�2Þ
þ Cm

l;kð�2Þaml;kþ1ð�2Þ ¼ 0; (A5)

with coefficients

35Am
l;kð�2Þ ¼ ��2 ðl�mþ 2k� 1Þðl�mþ 2kÞ

ð2mþ 4k� 3Þð2mþ 4k� 1Þ ;

Bm
l;kð�2Þ ¼ ðlþ 2kÞðlþ 2kþ 1Þ

� 2�2 ðlþ 2kÞðlþ 2kþ 1Þ þm2 � 1

ð2mþ 4k� 1Þð2mþ 4k� 3Þ ;

Cm
l;kð�2Þ ¼ ��2 ðlþmþ 2kþ 1Þðlþmþ 2kþ 2Þ

ð2mþ 4kþ 3Þð2mþ 4kþ 5Þ :

(A6)

There are a number of normalizations for the angular
prolate-spheroidal functions: we have used the normal-
ization of Ref. [34]:

Z 1

�1
d�psmð1Þ

l ð�; �2Þpsmð1Þ
l0 ð�;�2Þ ¼ 2

2lþ 1

ðlþmÞ!
ðl�mÞ!ll0 :

(A7)

In the spherical limit (�2 ! 0), Eq. (A3) becomes the
associate Legendre equation with eigenvalue �lm ¼
lðlþ 1Þ. This enables us to make an expansion for the
angular prolate-spheroidal functions and their eigenval-
ues in powers of �2,

ps mð1Þ
l ð�; �2Þ ¼ Pm

l ð�Þ þ �2Qð2Þ
lm þOð�4Þ; (A8)

�lmð�2Þ ¼ lðlþ 1Þ þ �2�ð2Þ
lm þOð�4Þ: (A9)

Substituting these expansions back into the angular
prolate-spheroidal differential equation (A3), and using
the expansion in terms of associated Legendre polyno-
mials (A4) it is straightforward, though tedious, to find

0.0 0.2 0.4 0.6 0.8 1.0
0.998

0.999

1.000

1.001

1.002

FIG. 3 (color online). The ratio of the approximation,

Eq. (A10), to the full angular prolate-spheroidal function ps0ð1Þl

(� ¼ 0:5; �2) for l ¼ 0 (full curve), 10 (dashed curve), 20
(dotted curve), and 30 (dot-dash curve).
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ps mð1Þ
l ð�; �2Þ � Pm

l ð�Þ þ
�ðlþm� 1ÞðlþmÞ
2ð2l� 1Þ2ð2lþ 1Þ P

m
l�2ð�Þ

� ðl�mþ 1Þðl�mþ 2Þ
2ð2lþ 1Þð2lþ 3Þ2 Pm

lþ2ð�Þ
�
�2 þOð�4Þ:

(A10)

In Fig. 3 we plot the ratio of our expansion up to
Oð�2Þ over the full angular prolate-spheroidal function

ps0ð1Þl (� ¼ 0:5; �2) for l ¼ 0, 10, 20, and 30 over the

range 0 � �2 � 1. We see that the expansion is accu-
rate to better than 1% over this range of �.

2. Radial prolate-spheroidal functions

The solutions to the radial prolate-spheroidal equation
(A2) are related to spherical Bessel functions. If we take
the limit �2 ! 0, � ! 1 with z ¼ �� ¼ constant, and

also make the substitution �ð�Þ ¼ ð1� ��2Þm=2fðzÞ, we
find

z2
d2f

dz2
þ 2z

df

dz
þ ðz2 � �ÞfðzÞ ¼ 0; (A11)

which is satisfied by the spherical Bessel functions jlðzÞ
and ylðzÞ. We are interested in the radial spheroidal func-
tions of the first and third kinds, which satisfy the physical
boundary conditions at the surface of the spheroid and at
infinity. These can be expressed as series of either spherical
Bessel functions of the first kind jlðzÞ or spherical Bessel
functions of the third kind hlðzÞ ¼ jlðzÞ þ iylðzÞ, also
known as spherical Hankel functions of the first kind: [54]

Smð1;3Þ
l ð�; �2Þ ¼ ð1� 1=�2Þm=2

A�m
l ð�2Þ

X1
k¼�1

a�m
l;k ð�2Þflþ2kð��Þ;

(A12)

where f ¼ j; h, respectively, and

Am
l ð�2Þ ¼ X1

k¼�1
ð�1Þkaml;kð�2Þ: (A13)

The coefficients aml;k are the same as for the expansion of

the angular prolate-spheroidal functions. The normaliza-
tion has been chosen such that for large ��,

Smð1Þ
l ð�; �2Þ ! jlð��Þ: (A14)

Now we are able to make an asymptotic expansion in the
ellipticity e ¼ 1=�,

Smð1Þ
l

�
1

e
; z2e2

�
� jlðzÞ þ e2Tð2Þ

lm þOðe4Þ; (A15)

and then by substituting back into the radial spheroidal
equation (A2) and using the Bessel function expansion
(A12) we can obtain

Smð1Þ
l ð1=e; z2e2Þ � jlðzÞ �

�
l2 þ lþm2 � 1

4l2 þ 4l� 3
zj0lðzÞ

�
�
l2 þ l� 3m2

8l2 þ 8l� 6
þm

2

�
jlðzÞ

�
e2 þOðe4Þ:

(A16)

For the radial prolate-spheroidal functions of the third kind

Smð3Þ
l ð1=e; z2e2Þ we obtain the same expansion except that

the spherical Bessel functions jlðzÞ are replaced by spheri-
cal Hankel functions of the first kind. In Fig. 4 we plot the
ratio of our expansion up to Oðe2Þ over the full radial

prolate-spheroidal function S0ð1Þl ð1=e; z2e2Þ for z ¼ 10
and l ¼ 0, 10, 20, and 30 over the range 0 � e � 0:3.
We see that the expansion is accurate to better than 1%
for e < 0:1, but can become much less accurate as the
ellipticity increases.
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