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Recently, the possibility of so-called twinlike field theories has been demonstrated, that is, of different

field theories which share the same topological defect solution with the same energy density. Further,

purely algebraic conditions have been derived which the corresponding Lagrangians have to obey in order

that the field theories be twins of each other. A further diagnostical tool which, in general, allows us to

distinguish the topological defects of a given theory from the corresponding defects of its twins is the

spectrum of linear fluctuations about these defects. Very recently, however, explicit examples of twin

theories have been constructed such that not only their shapes and energy densities coincide, but also their

linear fluctuation spectra are the same. Here we show that, again, there exist purely algebraic conditions

for the Lagrangian densities which imply that the corresponding field theories are twins and that the

fluctuation spectra about their defects coincide. These algebraic conditions allow us to construct an infinite

number of twins with coinciding fluctuation spectra for a given theory, and we provide some explicit

examples. The importance of this result is related to the fact that coinciding defects with coinciding

energy densities and identical fluctuation spectra are almost indistinguishable physically, that is, indis-

tinguishable in a linear or semiclassical approximation. This implies that the measurable physical

properties of a kink, in general, do not allow us to determine the theory which provides the kink uniquely.

Instead, in principle, an infinite number of possible theories has to be considered.

DOI: 10.1103/PhysRevD.85.025019 PACS numbers: 11.30.Pb, 11.27.+d

I. INTRODUCTION

One of the most fertile concepts in theoretical physics in
the last decades has been the concept of topological defects
or topological solitons (see, e.g., [1]). They are ubiquitous
in condensed matter systems and, besides this, are deemed
relevant for the cosmology of the early universe.
Topological defects may, for instance, contribute to the
structure formation in the very early universe (e.g., during
or at the end of inflation) [2–4]. A topological soliton is, in
general, a static solution of the Euler-Lagrange equations
of the given field theory with finite energy which obeys
nontrivial boundary conditions. Further, the stability of the
topological soliton against transitions to the vacuum is
guaranteed by the fact that a deformation to the vacuum
configuration with trivial boundary conditions would re-
quire us to change the field in an infinite volume and,
therefore, cost an infinite amount of energy. The relevant
data characterizing the physical properties of a soliton are,
first of all, its shape or profile (i.e., the soliton solution
itself), and its energy density. Additional important infor-
mation is contained in the so-called spectrum of linear
fluctuations about the topological defect. In order to deter-
mine this spectrum, one calculates the fluctuations about
the soliton up to second order in the action (or up to first
order in the Euler-Lagrange equations). For the fluctuation
field then, one introduces a temporal Fourier decomposi-
tion, which results in a stationary second order equation of
the Schrödinger type. The (in general, infinitely many)
solutions of this equation together with the allowed fre-

quencies constitute the spectrum of linear fluctuations. The
first relevant information contained in the spectrum of
linear fluctuations is linear stability. For a stable soliton,
the spectrum should contain no negative mode (i.e., no
imaginary frequency). Another aspect where the fluctua-
tion spectrum is important is the issue of semiclassical
quantization in the presence of solitons [5] (for an easy
to follow discussion, see [6]). Concretely, the discrete part
of the fluctuation spectrum describes some excited states of
the soliton or, equivalently, soliton-meson bound states.
Here by ‘‘meson’’ we mean a fluctuation field which is
Gaussian in the leading approximation and obeys the
boundary conditions of the vacuum configuration.
Further, the continuous part of the spectrum describes
soliton-meson scattering.
The discussion so far has been for general soliton mod-

els, but now we want to restrict to the case of a real scalar
field in 1þ 1 dimensions. The standard scalar field theory
in 1þ 1 dimensions is

Ls ¼ X �Uð�Þ; X � 1
2@��@��; (1)

and we shall require that U is nonnegative,

Uð�Þ � 0 8 �: (2)

This theory may support topological solitons (kinks) pro-
vided that the potential U has at least two vacua, i.e., there
exist at least two (constant) values � ¼ �i such that
Uð�iÞ ¼ 0. A kink is a static solution �kðxÞ which, in
general, interpolates between two adjacent vacua, i.e.,
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�kð�1Þ ¼ �i, �kð1Þ ¼ �iþ1. The corresponding static
kink equation is (�0 � @x�)

1
2�

02 � �X ¼ U; (3)

with the two roots (for kink and antikink)

�0 ¼ � ffiffiffiffiffiffiffi
2U

p
: (4)

The kink equation (3) results from the static second order
Euler-Lagrange equation by performing one integration,
where the integration constant must be set equal to zero in
order to satisfy the kink boundary conditions. Finally, the
linear fluctuation equation in the kink background may be
derived by inserting the decomposition �ðt; xÞ ¼ �kðxÞ þ
�ðt; xÞ and the temporal Fourier decomposition �ðt; xÞ ¼
cosð!tÞ�ðxÞ into the Euler-Lagrange equation and keeping
terms linear in �. Explicitly, the linear fluctuation equation
reads (U;� � @�U, etc.)

� �00 ¼ ð!2 �U;��j�k
Þ�; (5)

where the notation j�k
means that the expression has to be

evaluated for the kink solution. The solutions of this
Schrödinger type equation, together with the allowed fre-
quencies !, determine the spectrum of linear fluctuations
in this case.

Up to now, the logical line of reasoning has been to
begin with a field theory and to derive from this starting
point the topological defect (kink) and its properties. Now
we want to see whether and how far this logical arrow can
be reversed. That is to say, we start with a kink solution
together with its properties, like energy density and linear
fluctuation spectrum, and we want to know whether or to
which degree we may recover the theory which gives rise
to this defect solution with its properties. The answer
depends on the class of Lagrangians we are willing to
admit. For a standard scalar field theory (1), the kink
solution itself is already sufficient to recover the
Lagrangian, i.e., the potential, by inverting the solution
� ¼ �kðxÞ ) x ¼ xkð�Þ and by inserting the resulting
expression into the kink equation,

�02ðxÞ ¼ �02ðxkð�ÞÞ � 2Uð�Þ; (6)

which determines Uð�Þ. On the other hand, the situation
will be different if we allow for a more general class of
Lagrangians. Concretely, we want to admit Lagrangians
which are general functions of both � and X �
ð1=2Þ@��@��. There are several reasons which make

these theories with a generalized kinetic term (the so-called
K field theories) worth considering. First of all, K field
theories have been applied already to some problems in
cosmology, like inflation (so-called K inflation [7]), late
time acceleration (so-called K essence [8]), or in the brane
world scenario [9–11]. Second, generalized kinetic terms
may serve to stabilize static field configurations, evading

thereby the Derrick theorem and allowing the existence of
soliton solutions. The third and probably strongest case in
favor of K field theories is related to the fact that in many
circumstances scalar field theories are interpreted as effec-
tive field theories which result from the integration of UV
degrees of freedom of some more fundamental theory. In
this case of an effective field theory, higher powers of
derivatives are induced naturally, and therefore they have
to be taken into account. In this paper, we are specifically
interested in K field theories whose topological defects
coincide with the standard ones, but let us mention, never-
theless, that K field theories, in general, give rise to a much
richer phenomenology of possible topological defects
[12,13], like, e.g., solitons with compact support (so-called
compactons) [14–23]. Other more mathematical aspects of
K field theories have been discussed, e.g., in [24] and
in [25].
For the generalized dynamics ofK field theories [i.e., for

general Lagrangians LðX;�Þ] it was found recently [26]
that different field theories may exist which share the same
topological defect with the same energy density. The co-
inciding kinks with their coinciding energy densities were
dubbed twin or Doppelgänger defects in [26], and the
models which give rise to these identical kink solutions
are called twinlike models. The investigation of twinlike
models was carried further in [27] and in [28]. Specifically,
in [28] it was demonstrated that there exist purely algebraic
necessary and sufficient conditions for a Lagrangian
LðX;�Þ to be the twin of a standard theory Ls ¼ X �
U. As these conditions are algebraic, they do not require
the knowledge of the topological defect solution, and
therefore allow the simple construction of an infinite num-
ber of twins for any given standard field theory supporting
topological defects. Very recently, in [29] explicit ex-
amples of K field theories were found which not only are
twin models of standard field theories, but where also the
fluctuation spectra of the standard defect and its K field
twins coincide, making the standard defect and its twins
almost completely indistinguishable physically. This im-
plies that the measurable physical properties of a kink, in
general, do not allow us to determine the theory which
provides the kink uniquely. Instead, in principle, an infinite
number of possible theories has to be considered.
It is the purpose of the present paper to show that, again,

there exist purely algebraic conditions for a Lagrangian
density which imply that the corresponding field theory is
the twin of a standard scalar field theory and that the
fluctuation spectra about their defects coincide. Further,
these algebraic conditions allow us to explicitly construct
an infinite number of twins with coinciding fluctuation
spectra for any given standard field theory. Concretely, in
Sec. II we briefly review some known facts about twinlike
models which we need. In Sec. III, we derive the algebraic
conditions for coinciding fluctuation spectra and provide
some explicit examples. Further, we discuss the relation of
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our results with the examples of Ref. [29]. Finally, Sec. IV
contains our conclusions.

II. TWINLIKE MODELS

The algebraic twin conditions require the first order
form of the static field equations, so let us briefly review
this issue (for more details see, e.g., [28,30]). For a general

Lagrangian LðX;�Þ, where X � 1
2@��@�� ¼ 1

2 �
ð _�2 ��02Þ, the Euler-Lagrange equation reads

@�ðL;X@
��Þ �L;� ¼ 0: (7)

Further, the energy momentum tensor is

T�� ¼ L;X@��@��� g��L; (8)

which, for static configurations � ¼ �ðxÞ, �0 � @x�,
simplifies to

T00 ¼ E ¼ �L; (9)

T11 ¼ P ¼ L;X�
02 þL; (10)

where E is the energy density and P is the pressure. The
static Euler-Lagrange equation may be integrated once to
give

� 2XL;X þL � P ¼ 0: (11)

The general first integral allows for a nonzero constant on
the right-hand side (nonzero pressure), but the boundary
conditions for finite energy field configurations require this
constant to be zero (zero pressure condition). For a stan-
dard field theory Ls ¼ X�U, the energy density and
pressure read

E s ¼ �XþU ¼ 1
2�

02 þU; (12)

P s ¼ �X�U ¼ 1
2�

02 �U; (13)

and for a kink solution �k obeying �02
k ¼ 2U these sim-

plify to

E sj�k
¼ �2Xj�k

¼ 2Uj�k
; (14)

� P s ¼ X þU � 0: (15)

Obviously, a K field theory will be the twin of a standard
theory (i.e., have the same kink solution �k with the same
energy density) if both E and P � 0 agree when evaluated
for the kink solution. A necessary and sufficient condition
for the K field Lagrangian is [26]

L j�k
¼ �2U; (16)

L ;Xj�k
¼ 1; (17)

as may be checked easily. Now the important point is that
the first order form �02 ¼ �2X ¼ 2U of the static kink
equation may be interpreted as an algebraic equation in-

volving the variables X and � on which the K field
Lagrangian depends. As a consequence, the evaluation
condition j�k

may be replaced by the purely algebraic

condition jX¼�U, leading to the so-called algebraic
twin conditions [28]

L jX¼�U � Lj ¼ �2U; (18)

L ;XjX¼�U � L;Xj ¼ 1: (19)

[Here and below the evaluation of an expression at X �
�ð1=2Þ�02 ¼ �U (and its prolongations, when required)
will always be denoted by the vertical line j, and will
be called on-shell condition or on-shell evaluation
frequently.]

III. THE ALGEBRAIC CONDITIONS

A. The fluctuation equation

We start from the Euler-Lagrange equation (7) and insert
the decomposition

�ðt; xÞ ¼ �kðxÞ þ �ðt; xÞ; (20)

where �k is the kink solution and � is the fluctuation field.
In first order in � we find

@�ðL;X@
��þL;XX@��k@

��@��k þL;X��@
��kÞ

�L;����L;X�@��k@
�� ¼ 0: (21)

Now we use the fact that �k only depends on x, and the
ansatz for the fluctuation field

�ðt; xÞ ¼ cosð!tÞ�ðxÞ; (22)

and get

ð�L;X�
0 þL;XXð�0

kÞ2�0 �L;X��
0
k�Þ0 �L;���

þL;X��
0
k�

0 �!2L;X� ¼ 0 (23)

or, more explicitly,

� ðL;X þ 2XL;XXÞ�00 � ðL;X� þ 2XL;XX�

��00
k ð3L;XX þ 2XL;XXXÞÞ�0

k�
0

¼ ð!2L;X þL;�� � 2XL;X��

þ�00
k ðL;X� þ 2XL;XX�ÞÞ�: (24)

This expression should now be evaluated for the defect
solution�k, i.e., implementing the on-shell condition Xj ¼
�U and its first prolongation (that is, the original second
order static field equation) �00j � �00

k ¼ U;�. Inserting

these on-shell expressions above produces an expression
containing U and its derivative, whereas the variables ofL
and its derivatives are Xð¼ �UÞ and �. The problem is
that for a general potential U the algebraic relation be-
tween � and U is undetermined, so we would have to treat
each potential separately, losing thereby some of the gen-
erality of the algebraic method. The obvious alternative is
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to assume that the Lagrangian depends on � only via the
potential U, that is, L ¼ LðX;UÞ. With

L ;� ¼ L;UU;�; L;�� ¼ L;UUU
2
;� þL;UU;��;

(25)

we may rewrite the fluctuation equation like

� ðL;X þ 2XL;XXÞ�00 � ððL;XU þ 2XL;XXUÞU;�

��00
k ð3L;XX þ 2XL;XXXÞÞ�0

k�
0

¼ ð!2L;X þL;UUU
2
;� þL;UU;�� � 2XL;XUUU

2
;�

� 2XL;XUU;�� þ�00
k ðL;XU þ 2XL;XXUÞU;�Þ�

(26)

or, after implementing the on-shell conditions,

Xj ¼ �U; �00j ¼ �00
k ¼ U;�; (27)

like

� ðL;X þ 2XL;XXÞj�00 � ½ðL;XU � 3L;XX

þ 2UðL;XXX �L;XXUÞ�jU;��
0
k�

0

¼ ½!2L;X þU2
;�ðL;UU þL;XU þ 2UðL;XUU �L;XXUÞÞ

þU;��ðL;U þ 2UL;XUÞ�j�: (28)

This expression should now be compared with the fluctua-
tion equation of the standard case,

� �00 ¼ ð!2 �U;��jÞ�: (29)

Comparing the standard and generalized fluctuation equa-
tions for a twin defect solution, and taking into account the
twin conditionL;Xj ¼ 1, we find that a sufficient condition
for the equality of the two fluctuation equations is provided
by the following on-shell conditions:

L ;XXj ¼ 0; (30)

½L;XU þ 2UðL;XXX �L;XXUÞ�j ¼ 0; (31)

½L;UU þL;XU þ 2UðL;XUU �L;XXUÞ�j ¼ 0; (32)

and

ðL;U þ 2UL;XUÞj ¼ �1: (33)

These conditions are, again, purely algebraic conditions
which the Lagrangian has to obey. If a Lagrangian obeys
these conditions and the two twin conditions (18) and (19),
then it not only shares the same twin defect with the
standard Lagrangian, but also the spectra of linear fluctua-
tions about the defects coincide.

B. Examples

It is easy to understand that there must exist infinitely
many Lagrangians for eachU which obey these conditions.
Indeed, if the Lagrangian LðX;UÞ is interpreted as a

function of two independent variables X and U, then the
six twin and linear fluctuation conditions are just condi-
tions which the first few Taylor coefficients ofLmust obey
‘‘on the diagonal,’’ i.e., for X ¼ �U. In a next step, let us
construct, as a first example, a class of infinitely many
Lagrangians which obey these conditions. These
Lagrangians were, in fact, already introduced in [28] as
examples of twins of the standard Lagrangian without
noticing that they also give rise to coinciding fluctuation
spectra. The class of Lagrangians is given by

L ex1 ¼ X2Nþ1

i¼3;5;...;

fiðUÞðX þUÞi þ X�U; fiðUÞ � 0;

(34)

where the fi are arbitrary non-negative functions of their
argument. The restriction to odd i implies that the above
Lagrangian obeys the null energy condition (NEC) and,
therefore, defines a healthy (stable) field theory. We remark
that this restriction may be relaxed without violating the
NEC provided that the fi for even i obey certain inequal-
ities, but here we restrict to odd i for reasons of simplicity.
It is easy to check that the above Lagrangian obeys

L ex1j ¼ �2U; Lex1
;X j ¼ 1; (35)

i.e., the twin conditions, as well as

L ex1
;XXj ¼ Lex1

;XUj ¼ Lex1
;UUj ¼ 0; Lex1

;U j ¼ �1; (36)

and

L ex1
;XXXj ¼ Lex1

;XXUj ¼ Lex1
;XUUj ¼ 6f3: (37)

Further, these conditions obviously imply that the ‘‘fluc-
tuation conditions’’ (30)–(33) hold, therefore the class of
Lagrangians (34) are not only twins of the standard
Lagrangian Ls ¼ X �U (i.e., they share the same kink
solution with the same energy density) but also the linear
fluctuation spectra about the kink solutions coincide.
We remark that it is obvious from the above derivation

that the restriction to fi ¼ fiðUÞ in the above class of
examples is not necessary, and we may in fact allow for
functions fi ¼ fið�Þ � 0 without changing our results.
Another class of examples is provided by the power

series expansion

L ex2 ¼ XM;N

i¼0;j¼0

aijX
iðXþUÞj � 2U; (38)

where the twin and fluctuation conditions lead to

a0j ¼ 0 8 j; a10 ¼ 1; a1j ¼ 0;

j ¼ 1; . . . ; N; a2j ¼ 0 8 j: (39)

It is again possible to satisfy the NEC by imposing the
corresponding conditions (inequalities) on the nonzero
coefficients aij.
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For a more systematic search for examples, it is useful to
perform the following transformation of variables:

Y¼XþU; Z¼U)@X ¼@Y; @U¼@Yþ@Z; (40)

where the evaluation condition now means evaluation at
Y ¼ 0, i.e., j � jY¼0. Shifting, in addition, the Lagrangian
by 2U,

~L ¼ Lþ 2U; (41)

the two twin conditions and the first fluctuation condition
read

~Lj ¼ 0; (42)

~L ;Yj ¼ 1; (43)

and

~L ;YYj ¼ 0; (44)

and, taking these into account, the remaining fluctuation
conditions become

ð ~L;Z þ 2Z ~L;YZÞj ¼ 0; (45)

ð ~L;YZ � 2Z ~L;YYZÞj ¼ 0; (46)

and

½2 ~L;YZ þ ~L;ZZ þ 2Zð ~L;YYZ þ ~L;YZZÞ�j ¼ 0: (47)

As an application, let us study the Dirac-Born-Infeld (DBI)
type theory which was first introduced in [26] as an ex-
ample for a K field twin,

~L DBI ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2U

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2X

p þX

i

fiðUÞðX þUÞi

¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2Z

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2Y þ 2Z

p þX

i

fiðZÞYi; (48)

where the task consists in determining the coefficient
functions fiðZÞ ¼ fiðUÞ such that all the twin and fluctua-
tion conditions are satisfied. After some calculation, one
finds that the two twin conditions (42) and (43) and the first
fluctuation condition (44) lead to

f0 ¼ 1þ 2Z; f1 ¼ 0; f2 ¼ 1

2

1

1þ 2Z
; (49)

whereas the remaining fluctuation conditions are satisfied
identically precisely for the above solutions for f0, f1, and
f2. We conclude that the DBI type Lagrangian,

L DBI ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2U

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2X

p þ 1þ 1

2

1

1þ 2U
ðX þUÞ2;

(50)

is a twin of the standard LagrangianX�Uwith coinciding
linear fluctuation spectra about the common (twin) defect
solution. The above DBI–type Lagrangian as it stands does

not obey the NEC, but we are allowed to add, e.g., a cubic
term f3ðX þUÞ3 without altering the twin or fluctuation
conditions. It may be checked easily that, e.g., for func-
tions f3ðUÞ obeying the inequality f3 � ½1=ð3ð1þ 2UÞ2Þ�,
the resulting Lagrangian does obey the NEC.
Obviously, our algebraic method may be used without

difficulty to produce more examples of K field twins with
coinciding linear fluctuation spectra.

C. The examples of Bazeia and Menezes

In their recent paper [29], Bazeia and Menezes intro-
duced a class of Lagrangians given by the following ansatz:

L BM ¼ �UFðYÞ; Y � � X

U
; (51)

where F is an arbitrary function of its argument. This
ansatz may be justified by the observation that both the
twin conditions (18) and (19) and the fluctuation conditions
(30)–(33) are compatible with a Lagrangian which is a
homogeneous function of degree one in its two variables
X and U. The Lagrangian in (51) obviously is such a
homogeneous function of degree one. For the partial de-
rivatives with respect to X and U we get

L BM
X ¼F0; LBM

XX ¼�F00

U
; LBM

XXX¼
F000

U2
; (52)

L BM
U ¼ �F� X

U
F0; LBM

UU ¼ � X2

U3
F00 (53)

and

LBM
XU ¼ X

U2
F00; LBM

XUU ¼ �2
X

U3
F00 þ X2

U4
F000;

LBM
XXU ¼ F00

U2
� X

U3
F000: (54)

These expressions should now be evaluated on-shell, i.e.,
for X ¼ �U, and inserted into the twin and fluctuation
conditions. We shall find that the homogeneity of the
ansatz (51) not only is compatible with these conditions,
but also leads to a considerable simplification for the
fluctuation conditions. First of all, for the twin conditions
we find

L BMj ¼ �UFð1Þ ¼ �2U ) Fð1Þ ¼ 2; (55)

and

L BM
;X j ¼ F0ð1Þ ¼ 1; (56)

where the on-shell condition X ¼ �U implies that the
function FðYÞ and its derivatives are evaluated at Y ¼ 1.
For the fluctuation conditions we find that condition (32) is
satisfied identically without providing a further restriction,
whereas the remaining conditions lead to

L BM
XX j ¼ �F00ð1Þ

U
¼ 0; (57)
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½L;XU þ 2UðL;XXX �L;XXUÞ�j ¼ � 2

U
F00ð1Þ ¼ 0; (58)

and

ðL;U þ 2UL;XUÞj ¼ �Fð1Þ þ F0ð1Þ � 2F00ð1Þ
¼ �1� 2F00ð1Þ ¼ �1; (59)

where we used the two twin conditions in the last expres-
sion. In other words, for the ansatz of Bazeia and Menezes,
all four fluctuation conditions just boil down to the simple
condition

F00ð1Þ ¼ 0: (60)

Finally, Bazeia and Menezes gave the following explicit
example (one-parameter family of Lagrangians):

FðYÞ ¼ 1þ Y þ �

3
ð1� YÞ3 ) LBM;�

¼ X �Uþ �

3U2
ðX þUÞ3; (61)

where � is a real, positive constant. This example belongs,
in fact, to the first class of examples discussed in the
previous subsection. Concretely, it is of the type (34) for
the choice

f3ðUÞ ¼ �

3U2
; fi ¼ 0 for i > 3: (62)

IV. CONCLUSIONS

In this article we demonstrated that for every standard
scalar field theory Ls ¼ X �Uð�Þ which supports a to-
pological defect (a kink), there exist infinitely many gen-
eralized (or K) field theories LðX;�Þ (’’twins’’ of the
standard field theory) which support the same kink with
the same energy density and with the same spectrum of
linear fluctuations about the kink. Further, we gave a
simple and explicit algebraic method to construct these
twins of the standard scalar field theory with identical
linear fluctuation spectra. As stated, some first examples
of such twinlike models with coinciding kink solutions,
energy densities, and linear fluctuation spectra have been
given already in [29]. K field twin defects with coinciding
linear fluctuation spectra are almost completely indistin-
guishable from their standard counterparts and, as a con-
sequence, theK field theories giving rise to them have to be

considered on par with the standard field theories in all
situations where K field theories cannot be excluded on
theoretical grounds. In particular, in the context of effective
field theories, where higher kinetic terms are induced
naturally, the topological defects formed inK field theories
should be taken as seriously as their standard field theory
twins, because they give rise to almost exactly the same
physics. In this context, an observation of special interest is
related to the fact that the coinciding linear fluctuation
spectra imply that a semiclassical quantization about the
topological defect provides the same results for the stan-
dard defect and its K field twins. This not only facilitates
specific physical properties of the K field defect, but also,
more generally, provides us with a first partial result on the
quantization of K field theories, which, in general, is still
an unsolved and probably quite difficult problem.
Finally, let us briefly comment on possible generaliza-

tions and future work. A first issue is the inclusion of
fermions and the supersymmetric extension of K field
twins. Supersymmetric (SUSY) extensions of scalar K
field theories have been found recently [31–33], and
some examples of SUSY K field twins of standard SUSY
theories have been given already in [28]. Here, one inter-
esting question obviously is what the coinciding fluctua-
tion spectra in the twin kinks imply for the SUSY fermions.
Another interesting generalization concerns the issue of
twins of topological defects in higher dimensions, like,
e.g., vortices, monopoles, or skyrmions, possibly after a
symmetry reduction (e.g., to spherical symmetry) of the
Lagrangian or Euler-Lagrange equations. The case of vor-
tices in generalized Abelian-Higgs models has been inves-
tigated in the very recent paper [34], where the authors do
find twins of standard vortices. Certainly these issues are
worth further investigation.

ACKNOWLEDGMENTS

The authors acknowledge financial support from the
Ministry of Science and Investigation, Spain (Grant
No. FPA2008-01177), the Xunta de Galicia (Grant
No. INCITE09.296.035PR and Conselleria de
Educacion), the Spanish Consolider-Ingenio 2010
Programme CPAN (CSD2007-00042), and FEDER.
Further, the authors thank J. Sanchez-Guillen for helpful
discussions.

[1] N. Manton and P. Sutcliffe, Topological Solitons

(Cambridge University Press, Cambridge, 2007).
[2] A. Vilenkin and E. P. S. Shellard, Cosmic Strings and

Other Topological Defects (Cambridge University Press,

Cambridge, 1994).

[3] M. Hindmarsh and T.W. B. Kibble, Rep. Prog. Phys. 58,
477 (1995).

[4] R. A. Battye and J. Weller, Phys. Rev. D 61, 043501
(2000).

[5] J. Goldstone and R. Jackiw, Phys. Rev. D 11, 1486 (1975).

C. ADAM AND J.M. QUEIRUGA PHYSICAL REVIEW D 85, 025019 (2012)

025019-6

http://dx.doi.org/10.1088/0034-4885/58/5/001
http://dx.doi.org/10.1088/0034-4885/58/5/001
http://dx.doi.org/10.1103/PhysRevD.61.043501
http://dx.doi.org/10.1103/PhysRevD.61.043501
http://dx.doi.org/10.1103/PhysRevD.11.1486


[6] R. Rajaraman, Solitons and Instantons (Elsevier Science,
Amsterdam, 1982).

[7] C. Armendariz-Picon, T. Damour, and V. Mukhanov, Phys.
Lett. B 458, 209 (1999).

[8] C. Armendariz-Picon, V. Mukhanov, and P. J. Steinhardt,
Phys. Rev. Lett. 85, 4438 (2000); C. Armendariz-Picon, V.
Mukhanov, and P. J. Steinhardt, Phys. Rev. D 63, 103510
(2001).

[9] C. Adam, N. Grandi, J. Sanchez-Guillen, and A.
Wereszczynski, J. Phys. A 41, 212004 (2008); C. Adam,
N. Grandi, P. Klimas, J. Sanchez-Guillen, and A.
Wereszczynski, J. Phys. A 41, 375401 (2008).

[10] M. Olechowski, Phys. Rev. D 78, 084036 (2008).
[11] D. Bazeia, A. R. Gomes, L. Losano, and R. Menezes,

Phys. Lett. B 671, 402 (2009).
[12] E. Babichev, Phys. Rev. D 74, 085004 (2006).
[13] C. Adam, J. Sanchez-Guillen, R.A. Vazquez, and A.

Wereszczynski, J. Math. Phys. (N.Y.) 47, 052302 (2006).
[14] J. Werle, Phys. Lett. 71B, 367 (1977).
[15] P. Rosenau and J.M. Hyman, Phys. Rev. Lett. 70, 564

(1993); P. Rosenau, Phys. Rev. Lett. 73, 1737 (1994).
[16] F. Cooper, H. Shepard, and P. Sodano, Phys. Rev. E 48,

4027 (1993); B. Mihaila, A. Cardenas, F. Cooper, and A.
Saxena, Phys. Rev. E 82, 066702 (2010).

[17] H. Arodz, Acta Phys. Pol. B 33, 1241 (2002); H. Arodz, P.
Klimas, and T. Tyranowski, Acta Phys. Pol. B 36, 3861
(2005).

[18] C. Adam, J. Sanchez-Guillen, and A. Wereszczynski, J.
Phys. A 40, 13625 (2007); 42, 089801(E) (2009).

[19] C. Adam, P. Klimas, J. Sanchez-Guillen, and A.
Wereszczynski, J. Phys. A 42, 135401 (2009).

[20] D. Bazeia, E. da Hora, R. Menezes, H. P. de Oliveira, and
C. dos Santos, Phys. Rev. D 81, 125016 (2010).

[21] C. dos Santos, Phys. Rev. D 82, 125009
(2010).

[22] T. Gisiger and M. B. Paranjape, Phys. Rev. D 55, 7731
(1997); C. Adam, P. Klimas, J. Sanchez-Guillen, and A.
Wereszczynski, Phys. Rev. D 80, 105013 (2009); C.
Adam, T. Romanczukiewicz, J. Sanchez-Guillen, and A.
Wereszczynski, Phys. Rev. D 81, 085007 (2010); J.M.
Speight, J. Phys. A 43, 405201 (2010).

[23] P. E. G. Assis and A. Fring, Pramana J. Phys. 74, 857
(2010).

[24] E. Babichev, V. Mukhanov, and A. Vikman, J. High
Energy Phys. 02 (2008) 101.

[25] E. Goulart and S. E. Perez Bergliaffa, Phys. Rev. D 84,
105027 (2011).

[26] M. Andrews, M. Lewandowski, M. Trodden, and D.
Wesley, Phys. Rev. D 82, 105006 (2010).

[27] D. Bazeia, J. D. Dantas, A. R. Gomes, L. Losano, and R.
Menezes, Phys. Rev. D 84, 045010 (2011);
arXiv:1105.5111.

[28] C. Adam and J.M. Queiruga, Phys. Rev. D 84, 105028
(2011).

[29] D. Bazeia and R. Menezes, Phys. Rev. D 84, 125018
(2011).

[30] D. Bazeia, L. Losano, R. Menezes, and J. C. R. E. Oliveira,
Eur. Phys. J. C 51, 953 (2007); D. Bazeia, L. Losano, and
R. Menezes, Phys. Lett. B 668, 246 (2008).

[31] D. Bazeia, R. Menezes, and A.Yu. Petrov, Phys. Lett. B
683, 335 (2010).

[32] C. Adam, M. Queiruga, J. Sanchez Guillen, and A.
Wereszczynski, Phys. Rev. D 84, 065032 (2011).

[33] C. Adam, M. Queiruga, J. Sanchez Guillen, and A.
Wereszczynski, Phys. Rev. D 84, 025008 (2011).

[34] D. Bazeia, E. da Hora, and R. Menezes, arXiv:1111.6542.

TWINLIKE MODELS WITH IDENTICAL LINEAR . . . PHYSICAL REVIEW D 85, 025019 (2012)

025019-7

http://dx.doi.org/10.1016/S0370-2693(99)00603-6
http://dx.doi.org/10.1016/S0370-2693(99)00603-6
http://dx.doi.org/10.1103/PhysRevLett.85.4438
http://dx.doi.org/10.1103/PhysRevD.63.103510
http://dx.doi.org/10.1103/PhysRevD.63.103510
http://dx.doi.org/10.1088/1751-8113/41/21/212004
http://dx.doi.org/10.1088/1751-8113/41/37/375401
http://dx.doi.org/10.1103/PhysRevD.78.084036
http://dx.doi.org/10.1016/j.physletb.2008.12.039
http://dx.doi.org/10.1103/PhysRevD.74.085004
http://dx.doi.org/10.1063/1.2199089
http://dx.doi.org/10.1016/0370-2693(77)90241-6
http://dx.doi.org/10.1103/PhysRevLett.70.564
http://dx.doi.org/10.1103/PhysRevLett.70.564
http://dx.doi.org/10.1103/PhysRevLett.73.1737
http://dx.doi.org/10.1103/PhysRevE.48.4027
http://dx.doi.org/10.1103/PhysRevE.48.4027
http://dx.doi.org/10.1103/PhysRevE.82.066702
http://dx.doi.org/10.1088/1751-8113/40/45/009
http://dx.doi.org/10.1088/1751-8113/40/45/009
http://dx.doi.org/10.1088/1751-8121/42/8/089801
http://dx.doi.org/10.1088/1751-8113/42/13/135401
http://dx.doi.org/10.1103/PhysRevD.81.125016
http://dx.doi.org/10.1103/PhysRevD.82.125009
http://dx.doi.org/10.1103/PhysRevD.82.125009
http://dx.doi.org/10.1103/PhysRevD.55.7731
http://dx.doi.org/10.1103/PhysRevD.55.7731
http://dx.doi.org/10.1103/PhysRevD.80.105013
http://dx.doi.org/10.1103/PhysRevD.81.085007
http://dx.doi.org/10.1088/1751-8113/43/40/405201
http://dx.doi.org/10.1007/s12043-010-0078-8
http://dx.doi.org/10.1007/s12043-010-0078-8
http://dx.doi.org/10.1088/1126-6708/2008/02/101
http://dx.doi.org/10.1088/1126-6708/2008/02/101
http://dx.doi.org/10.1103/PhysRevD.84.105027
http://dx.doi.org/10.1103/PhysRevD.84.105027
http://dx.doi.org/10.1103/PhysRevD.82.105006
http://dx.doi.org/10.1103/PhysRevD.84.045010
http://arXiv.org/abs/1105.5111
http://dx.doi.org/10.1103/PhysRevD.84.105028
http://dx.doi.org/10.1103/PhysRevD.84.105028
http://dx.doi.org/10.1103/PhysRevD.84.125018
http://dx.doi.org/10.1103/PhysRevD.84.125018
http://dx.doi.org/10.1140/epjc/s10052-007-0329-0
http://dx.doi.org/10.1016/j.physletb.2008.08.046
http://dx.doi.org/10.1016/j.physletb.2009.12.041
http://dx.doi.org/10.1016/j.physletb.2009.12.041
http://dx.doi.org/10.1103/PhysRevD.84.065032
http://dx.doi.org/10.1103/PhysRevD.84.025008
http://arXiv.org/abs/1111.6542

