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There are several instances where quantum anomalies of continuous and discrete classical symmetries

play an important role in fundamental physics. Examples come from chiral anomalies in the Standard

Model of fundamental interactions and gravitational anomalies in string theories. Their generic origin is

the fact that classical symmetries may not preserve the domains of quantum operators like the

Hamiltonian. In this work, we show by simple examples that anomalous symmetries can often be

implemented at the expense of working with mixed states having nonzero entropies. In particular there

is the result on color breaking by non-abelian magnetic monopoles. This anomaly can be rectified by using

impure states. We also argue that non-abelian groups of twisted bundles are always anomalous for pure

states sharpening an earlier argument of Sorkin and Balachandran [A. P. Balachandran, G. Marmo, B. S.

Skagerstam, and A. Stern, Classical Topology and Quantum States (World Scientific, Singapore, 1991).].

This is the case of mapping class groups of geons [A. P. Balachandran, G. Marmo, B. S. Skagerstam, and

A. Stern, Classical Topology and Quantum States (World Scientific, Singapore, 1991).] indicating that

large diffeos are anomalous for pure states in the presence of geons. Nevertheless diffeo invariance may be

restored by using impure states. This work concludes with examples of these ideas drawn from molecular

physics. The above approach using impure states is entirely equivalent to restricting all states to the

algebra of observables invariant under the anomalous symmetries. For anomalous gauge groups such as

color, this would mean that we work with observables singlet under global gauge transformations. For

color, this will mean that we work with color singlets, a reasonable constraint.
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I. INTRODUCTION

There is perhaps a dominant perception that quantum
anomalies of classical symmetries can occur only in the
context of quantum field theories. Typically they arise in
the course of regularizing divergent expressions in quan-
tum fields [1,2], causing the impression that it is these
divergences that cause anomalies.

It is however known that anomalies can occur in simple
quantum mechanical systems such as a particle on a circle
or a rigid rotor. Esteve [3,4] explained long ago that the
presence or otherwise of anomalies is a problem of domains
of quantum operators. Thus while quantum state vectors
span a Hilbert space H , the Hamiltonian H is seldom
defined on all vectors of H . For example, the space H
of square-integrable functions on R3 contains nondifferen-
tiable functions c , but the Schroedinger Hamiltonian H ¼
� 1

2mr2 is not defined on such c . Rather H is defined only

on a dense subspace DH of H . If a classical symmetry g
does not preserveDH, gDH � DH, thenHgc for c 2 DH

is an ill-defined expression. In this case, one says that g is
anomalous [3,4]. See also [5–11].
In the present work, we explore the possibility of over-

coming anomalies by using mixed states. There are excel-
lent reasons for trying to do so, there being classical gauge
symmetries like SUð3Þ of QCD or large diffeomorphisms
(diffeos) of manifolds (see below) which can become
anomalous. Color SUð3Þ does so in the presence of non-
abelian monopoles [12–14], while ‘‘large’’ diffeos do so
for suitable Friedman-Sorkin geon manifolds [15–17]. It is
surely worthwhile to find ways to properly implement
these symmetries.
In this paper, we first focus on simple quantum mechani-

cal systems to illustrate how the use of impure states can
often restore the anomalous symmetries. We then discuss
color breaking by non-abelian monopoles. Finally we
argue that structure groups of twisted non-abelian bundles
are always anomalous for pure states. This claim is illus-
trated with examples from molecular physics, where such
groups are not only compact, but discrete as well. In later
work, we will extend these considerations to diffeo
anomalies.
While non-abelian structure groups of twisted bundles

are always anomalous, abelian groups also of course can be
*bal@phy.syr.edu
†amilcarq@unb.br

PHYSICAL REVIEW D 85, 025017 (2012)

1550-7998=2012=85(2)=025017(11) 025017-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.85.025017


anomalous. For instance, parity anomaly for a particle on a
circle (discussed in Sec. II of this work) and the axialUð1ÞA
anomaly in the Standard Model are both abelian. The
crucial issue is whether the classical symmetry preserves
the domains of appropriate operators like the Hamiltonian.
If they do not preserve such domains, then they are anoma-
lous. The important feature of non-abelian structure groups
of twisted bundles is that they never preserve the domain of
the Hamiltonian. More on this later.

Our use of mixed states is entirely equivalent to restrict-
ing the algebra of observables to those invariant under
symmetries. For global symmetries, this can be a restric-
tion, as there may be no good reason to discard noninvar-
iant observables. But for many gauge symmetries, this
requirement is often already implied by gauge invariance.
That is the case for mapping class groups of manifolds and
‘‘symmetries’’ of molecules. For the global color group
which is emergent from gauge transformations, constrain-
ing observables to singlets is reasonable in view of the
hypothesis of color confinement.

In this paper, all examples we work on are those of
global anomalies. As a matter of specificity, most of these
examples are of ‘‘global’’ gauge anomalies like the global
color group or large diffeos.

We shall see that even though we can overcome the
problem of implementing a symmetry, time evolution still
does involve the choice of a domain. In this sense, the
theory carries the memory of the anomaly.

But when the anomaly is for a classical symmetry, a
domain and its transform by this symmetry are equivalent,
exactly as in the case of standard spontaneous symmetry
breaking. In quantum field theory, there seems to be an
associated Nambu-Goldstone theorem as well. But now we
can show that all this can happen on a spatial manifold with
a boundary, and does not require its infinite volume. We
will elaborate on these issues elsewhere.

The present paper is organized as follows: in Sec. II, we
discuss parity and time reversal for a particle on a circle,
this being a very simple example; In Sec. III, we adapt this
discussion to color breaking; In Sec. IV, we show the
generic nature of our results. We finally conclude with
examples from molecular physics.

II. ANOMALOUS PARITYAND TIME REVERSAL
FOR PARTICLE ON A CIRCLE

A. Classical theory

A point on a circle S1 can be described by ei’, with ’
being real. Its classical equation of motion assuming it to
be free is

d2

dt2
’ðtÞ ¼ 0; (1)

where t labels time.

If S1 is embedded in R2,

S1 ¼ fx ¼ ðx1; x2Þ 2 R2: x21 þ x22 ¼ 1g; (2)

then we can relate ei’ to x by writing

x1 þ ix2 ¼ ei’: (3)

The parity transformation P: ðx1; x2Þ � ðx1;�x2Þ takes
ei’ to e�i’, that is,

P: ei’ � e�i’: (4)

It is an orientation-reversing diffeomorphism of S1. On the
angular variable ’ 2 ½0; 2��, its action is P: ’ � 2��
’. Classically (4) is a symmetry of the equation of motion
(1).
The time-reversal transformation T defined by

T: ei’ðtÞ � e�i’ð�tÞ (5)

is also a classical symmetry.

B. Quantum theory

In quantum theory, the Hamiltonian H from which one
can obtain (1) is

H ¼ � 1

R

d2

d’2
; (6)

where the constant 1=R has the dimension of energy.
The Hilbert space for a particle on S1 is

H � L2ðS1Þ ¼ fh�; c i :¼
Z 2�

0
d’ ��c <1;

for �; c 2 L2ðS1Þg: (7)

As usual, hc ; c i ¼ kc k2.
Now, the Hamiltonian H has several different domains

for which it is self-adjoint. They are labeled by the points
� ¼ ei� of S1. The definition of these domains is1

D� ¼ fc 2 H : c ð2�Þ ¼ �c ð0Þg: (8)

The density matrix jc ihc j associated to c 2 D� is a

periodic function of ’, since � cancels out, showing that
(6) is appropriate for quantum dynamics on S1.
Another way to see that (8) is good for quantum dynam-

ics on S1 is the following. Let us consider the algebra
C1ðS1Þ of smooth functions on S1. Then D� is a module

for C1ðS1Þ, that is, if f 2 C1ðS1Þ and c 2 D�, then

fc 2 D�: (9)

As S1 can be recovered from C1ðS1Þ as a topological space
by the Gel’fand-Naimark theorem2 [18], we again see that
(8) works out.

1There are also some differentiability (Sobolev) conditions for
c in these domains.

2The closure of C1ðS1Þ in the sup-norm gives a C�-algebra to
which we can apply the Gel’fand-Naimark theorem.
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All of these remarks go towards solving an old problem
of the Quantum Baby described in detail in [19].

1. Parity

Parity P acts on c according to

ðPc Þð’Þ ¼ c ð2�� ’Þ: (10)

Hence, if c 2 D�, then

ðPc Þð2�Þ ¼ c ð0Þ ¼ ��c ð2�Þ ¼ ��ðPc Þð0Þ; (11)

or Pc 2 D ��, that is,

PD� ¼ D ��: (12)

The conclusion is that P is anomalous unless � ¼ �� or
� ¼ �1. In terms of �, the statement is that P is anomalous
unless � ¼ 0, � mod 2�.

2. Time reversal

Since T is an anti-unitary operator,

TD� ¼ D ��; (13)

so T as well is broken, unless again � ¼ �� or � ¼ �1.
Note however that PT preserves D� for all �,

PTD� ¼ D�: (14)

Recall that in 1þ 1 QED and 3þ 1 QCD, the well-
known �-terms also break P and T, unless � ¼ 0, �, while
PT is always preserved. This coincidence is not accidental.
It comes from the fact that �1ðQÞ ¼ Z for their configura-
tion spaces Q [20,35].

3. Restoration of P and T

A naive approach to restoration of P and T, which
however does not work, is the following. Consider the
case of P. For c , � 2 D�, we can declare that the domain

ofH consists of vectors of the form c þ P�. Since c or �
can be zero, this means that we would like to declare the
linear span D of D� and PD� as the domain of H.

This approach does not work asD is not a domain forH.
An easy way to see this fact is to check that

hc þ P�;Hðc þ P�Þi � hHðc þ P�Þ; c þ P�i (15)

is not zero for generic c , �. SoH is not even symmetric on
D.

Another, but different, reason to discard such D is to
note that

jc þ P�ihc þ P�j (16)

is not a periodic function of S1 for generic c , �. Thus D is
not adapted to the quantum particle problem on S1.

Now, if we do not insist that H is always defined, but
only the unitary time evolution e�itH is, then as this is a
bounded operator, it is defined on all of H , an hence also
on D. For this definition of e�itH, we can start with H

having domainD�, and define e
�itH onD� and then extend

it to all of H (see below). However this will not resolve
the second difficulty noted above, as D is still not adapted
to an underlying S1. Furthermore, the evolutions e�itH are
different if the starting domain is D� or D �� (if � � ��), for

instance.
Thus such superpositions of vectors to overcome anoma-

lies in P or T do not work.
There is an alternative though. For c 2 D�, we note

that

� ¼ jc ihc j þ Pjc ihc jP (17)

has positive trace if jc i is not a zero vector, that is,

Tr� ¼ 2hc ; c i> 0: (18)

Hence

! ¼ �

�
; Tr! ¼ 1; (19)

is a well-defined state on observables. Moreover it is P and
T invariant and is continuous on S1.
If K ¼ Ky is a (bounded) observable, its mean value in

this state is defined by

!ðKÞ ¼ TrK! ¼ 1

Tr�
½hc jKjc i þ hc jPKPjc i�: (20)

Since

!ðKÞ ¼ !ðPKPÞ; (21)

then !ðKÞ is zero for P-odd K:

!ðKÞ ¼ 0; if PKP ¼ �K: (22)

If P were not anomalous, so that � ¼ �1, then c 2 D�

need not be an eigenstate of P. So jc ihc j may have no
definite parity, and P-odd observables K may have non-
trivial expectation values hc jKjc i.
As for time evolution, it is important to keep its group

property. So we can time-evolve jc i by e�itH� or e�itH �� to
obtain jc ti� or jc ti ��. We can then use (20) to calculate the

mean value of K. As this mean value does depend on �, we
still have two physically distinct choices for time
evolution.
Note that P-invariant observables form a subalgebra.
Our rule (20) for expectation values can actually be

derived by restricting ! to P-invariant operators. Thus if
PKP is K, then

hc jPKPjc i ¼ hc jKjc i ¼ 1

2
½hc jPKPjc i þ hc jKjc i�;

(23)

which leads to (20). We have emphasized the significance
of this result for gauge theories in the introduction.
All the above remarks are seen to straightforwardly

apply to time reversal T.
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4. Summary

In the presence of P and T anomalies, we can restore
them compatibly with time evolution. We must however
work with impure states ! of rank 2. We must work with
P-invariant states and so also P-invariant observables.

For anomalous gauge symmetries like color, this is
actually good, as it gives the possibility of restoring gauge
invariance.

C. What is an anomaly?

In the general formulation of quantum theory, it is
assumed that any bounded self-adjoint operator K is an
observable. Being bounded, it is defined on all ofH . Such
K can however mix domains.

Let us consider, for example, the unitary operator U�0 ,

with �0 ¼ ei�
0
, defined by

ðU�0c Þð’Þ ¼ eið�0=2�Þ’c ð’Þ: (24)

Acting with this operator on D�, one changes � to �0�,
i.e.,

U�0D� ¼ D�0�: (25)

Moreover, since U�0 is a bounded operator, it is defined on

all of H .
Now, the operators

K ¼ 1

2
ðU�0 þUy

�0 Þ; (26)

K0 ¼ 1

2i
ðU�0 �Uy

�0 Þ (27)

are bounded and self-adjoint. Are they observables?
In fact, the parity operator P is bounded and self-adjoint.

Is it an observable? If yes, is its anomaly problem
spurious?

A closer examination reveals that in the presence of
domain-changing observables, there is no canonical choice
for time evolution. Any choice will fail to commute with
the domain-changing observable. We have already re-
marked on this point and its relation to spontaneous sym-
metry breaking. That is so even if it generates a classical
symmetry like P. In the latter case, we call the classical
symmetry anomalous.

Extension of e�itH� to all of H

We begin by solving the eigenvalue problem

H�c
�
n ¼ Enc

�
n : (28)

The solution is (recalling that � ¼ ei� and c �
n 2 D�)

c �
n ð’Þ ¼ 1ffiffiffiffiffiffiffi

2�
p eiðnþð�=2�ÞÞ’; (29)

En ¼ 1

R

�
nþ �

2�

�
2
; with n 2 Z: (30)

Now, fc �
n g is a complete set. So any� 2 H , even if it is

not in D�, can be expanded in the basis fc �
n g:

� ¼ X
n

anc
�
n (31)

an ¼ ðc �
n ; �Þ: (32)

The expansion converges in norm, that is,

lim
N!1k�� X

jnj�N

anc
�
nk ¼ 0: (33)

The time evolution of � under e�itH� is

�t ¼ e�itH��0 ¼
X

jnj�N

ane
�itEnc �

n ; (34)

for a initial �0 ¼ �. The R.H.S. converges, since
jane�itEn j ¼ janj.
But if �tD�, term-by-term differentiation of the R.H.S.

in t leads to a divergent series.
We can illustrate this by considering a periodic � and

� � 1. Set

�ð’Þ ¼ �Mð’Þ ¼ 1

2�
eiM’; M 2 Z: (35)

Then

an ¼ 1

2�

Z 2�

0
d’e�iðnþð�=2�ÞÞ’eiM’

¼ 1

2�

i

nþ �
2� �M

ðe�i� � 1Þ: (36)

With these an, the series (31) and (34) converge since
janj ¼ Oð 1

n2
Þ as jnj ! 1:

X
n

janj2 <1: (37)

But term-by-term differentiation of (31) leads to a di-
vergent series since janEnj ¼ OðjnjÞ as n ! 1.
The conclusion is that time evolution U�ðtÞ determined

by H� is defined on all H (and is continuous in t), but is

differentiable in t only on vectors in the domain D� of the

Hamiltonian H�. If a classical symmetry g does not pre-

serve this domain, then gU�ðtÞ �U�ðtÞg � 0 on all ofH ,

and we say that g is anomalous.

D. Relation to Lagrangian approach

In this subsection, we explain how our discussion of
anomalies based on domains can be interpreted in conven-
tional terms. The example of the particle on a circle gives a
transparent model for this demonstration.
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Consider the operator

U ��: ðU ��c Þð’Þ ¼ e�ið�=2�Þ’c ð’Þ: (38)

For c 2 D�, then

U ��c 2 D1: (39)

Now, D1 consists of periodic functions and it is invariant
under parity. But the new Hamiltonian

H� ¼ U ��HU�1
�� ¼ 1

R

�
�i

@

@’
þ �

2�

�
2

(40)

is not parity invariant.
Using canonical methods, it is easy to show that the

Hamiltonian H� comes from a Lagrangian

L� ¼ R

2
_’2 � �

2�
_’: (41)

In L�dt, �ð�=2�Þd’ is a topological term. It is closed,

but not exact on S1. It is the analogue of the Wess-Zumino-
Witten term [20] or the topological term in the charge-
monopole Lagrangian [21].

We can also model ‘‘covariant’’ and ‘‘consistent’’
anomalies of quantum field theory in this model. For this
purpose, for clarity, wewrite�ið�=2�Þd’ as a connection:

Að’Þ ¼ eið�=2�Þ’dðe�ið�=2�Þ’Þ; (42)

so that

L�dt ¼ R

2
_’2dt� iAð’Þ (43)

Note that we can allow any fluctuation in A, which is an
exact one-form on S1 without affecting the cohomology
class of A. Such fluctuations will not change the domain
D� of the Hamiltonian. Let us allow such fluctuations now.

For that we write

A ¼ �iað’Þd’ (44)

and

L� ¼ R

2
_’2 � að’Þ _’: (45)

This Lagrangian defines a model invariant under the
‘‘small’’ gauge transformations

að’Þ ! að’Þ þ @�

@’
; (46)

�ð2�Þ ¼ �ð0Þmod 2�; (47)

as they change (45) only by a total derivative �d�=dt.
Furthermore, it preserves the domain D�. Hence they

preserve the spectrum of the Hamiltonian. [The meaning

of the mod 2� qualification in (47) is that ei�ð’Þ defines a
Uð1Þ-valued function on S1.]

If a Maxwell term F2ð�Þ is introduced for að�Þ, the
Gauss law reads

@Eð�Þ
@�

� �

2�
�ð�� ’Þ ¼ 0; (48)

where Eð�Þ is the electric field. This is the analogue of the
Gauss law in the presence of a point charge at zðtÞ at time t:

@EiðxÞ
@xi

þ e�3ðx� zðtÞÞ ¼ 0: (49)

The charge Q on S1 is thus given by integrating (48), so
that

Q ¼ Eð2�Þ � Eð0Þ ¼ �

2�
: (50)

This charge is conserved. But under an anomalous gauge
transformation, where the gauge function� does not fulfill
(47), � changes. So it is not invariant under such gauge
transformations. It is thus the analogue of the consistent
charge. The corresponding consistent but not gauge invari-
ant current

@Eð�Þ
@�

� �

2�
�ð�� ’Þ (51)

happens to be zero here. The corresponding covariant
gauge invariant current is

@Eð�Þ
@�

: (52)

III. NON-ABELIAN MONOPOLES AND
BREAKDOWN OF COLOR

In ’t Hooft-Polyakov models, magnetic monopoles are
associated with twisted G-bundles on the sphere S21 at 1.
Here, G is the remaining gauge symmetry group after the

breaking Gð0Þ ! G by a Higgs field �. This remaining
group G is also known as global or large gauge group.
Furthermore, S21 refers to a large enough spatial sphere,
where� can be approximated by its asymptotic value�1.
In the unitary gauge, where�1 takes a constant value on

S21, the G-bundle is described by a transition function on a
small strip � 2 ½�=2� �; �=2þ �� around the equator of
S21, where � is the polar angle. This is called a collar
neighborhood N� of the equator in S21. When � lies in
N� and the azimuthal angle ’ increases from 0 to 2�, the
transition function � maps this curve to a noncontractible
loop in G.
It can happen that the values �ð�;’Þ taken by � are not in

the center C of G. In that case g�ð�;’Þg�1 � �ð�;’Þ for
all g 2 G. The group G is then broken.
As examples, considerUð2Þ andUð3Þ. The second group

contains the color group SUð3Þ and the electromagnetic
Uð1Þ, since Uð3Þ ¼ ½SUð3Þ �Uð1Þ�=Z3.
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Let us first consider Uð2Þ ¼ ðSUð2Þ �Uð1ÞÞ=Z2. We
work in its two-dimensional (faithful) representation by
unitary matrices. Then the choice

�ð�;’Þ ¼ eði=2Þ	3’eði=2Þ’; (53)

where 	3 is the third Pauli matrix, gives a noncontractible
loop in Uð2Þ, which is not entirely contained in its center
Uð1Þ. The homotopy class of this loop generates
�1½Uð2Þ� ¼ Z.

A similar discussion applies to Uð3Þ ¼ ½SUð3Þ �
Uð1Þ�=Z3. In its three-dimensional irreducible representa-
tion, the diagonal matrix Y ¼ 1

3 ð1; 1;�2Þ is in the Lie

algebra uð3Þ of Uð3Þ. The transition function � defined by

�ð�;’Þ ¼ eiY’e�ið2�=3Þ’ (54)

is a noncontractible loop which is not contained in the
center of Uð3Þ. So, for a generic g 2 Uð3Þ,

g�ð�; ’Þg�1 � �ð�; ’Þ (55)

in the entire collar neighborhood around the equator. Thus,
global SUð3Þ color cannot be implemented.

In [20,35], it was shown that each such � characterizes a
domain D� of say the Dirac Hamiltonian HD. Moreover,
global SUð3Þ color becomes anomalous because its action
changes D� to Dg�g�1 .

We can now restore color as a symmetry by following
the procedure described in the last section. Let j�i� be a
state vector for the transition function �. This defines its
gauge. It is in the domain D�.

Suppose a g 2 G, it acts on � by conjugation

ðg�g�1Þð�; ’Þ ¼ g�ð�; ’Þg�1: (56)

So

gD� ¼ Dg�g�1 : (57)

Following Sec. II, we thus consider

� ¼
Z
G
d
ðgÞgj�i��h�jgy ¼

Z
G
d
ðgÞj�ig�g�1g�g�1h�j;

(58)

where d
ðgÞ is the Haar measure on G.
This � is a positive G-invariant operator, so that

! ¼ �

Tr�
(59)

is a G-invariant state.
Let H� be the Hamiltonian with domain D�. On the

intersection \
g�g�1;g2G

Dg�g�1 ¼ D0 (60)

of these domains, the Hamiltonian Hg�g�1 coincide

Hg�g�1 jD0 ¼ H�; (61)

for all g 2 G. Also,

ge�itH�g�1 ¼ e�itH
g�g�1 : (62)

We now define �t at time t by

�t ¼
Z
G
d
ðgÞe�itH

g�g�1 j�ig�g�1g�g�1h�jeitHg�g�1 ; (63)

with �0 being �. Now, �t is positive and G-invariant. It
gives the G-invariant state

!t ¼ �t

�t

: (64)

The state !t is impure.

Is color confinement a domain problem?

Suppose that there is no twisted SUð3Þ- or more gener-
ally twistedG-bundle on spatial slices, so that state vectors
j�i, which are color (G� ) non-singlets are in the domain
of the Hamiltonian. Suppose though that there is ‘‘confine-
ment’’ in the sense that we observe only SUð3Þ-invariant
operatorsK. Such (bounded) operators form an algebraA.
Then j�ih�j (with h�j�i ¼ 1) restricted to A is in fact an
impure state like the one we discussed before. That is
because we can trace over jc ihc j the color degrees of
freedom. This point was emphasized by Akant et al [22].
To see this explicitly, let UðgÞ be the unitary operator

implementing G. Then for K 2 A,

h�jKj�i ¼ 1

V

Z
G
d
ðgÞh�jUðgÞyKUðgÞj�i; (65)

V ¼
Z
G
d
ðgÞ; (66)

or

TrKj�ih�j ¼ TrK!; (67)

! ¼ 1

V
d
ðgÞUðgÞj�ih�jUðgÞy: (68)

Since the Hamiltonian H must be a G-singlet if H is to
display confinement, we can evolve ! for time t in a
conventional way,

!t ¼ e�itH!0e
itH; (69)

with !0 ¼ !. The previous formula (64) reduces to (69)
when there is no domain problem.
However, we were led to the singlet states !t of (64)

because of domain problems caused by non-abelian mono-
poles. Is this a first step towards a proof of confinement?
Discussions of confinement also speculate that colored

states have infinite mean energy. That is also the case here
if this conjecture is suitably interpreted. Thus, first con-
sider e�itH� , H� being the Hamiltonian with domain D�. It
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can be defined on all H including vectors j�ig�g�1 , with

g�g�1 2 Dg�g�1 � D�. But

i
d

dt
h�je�itH� j�ig�g�1 jt¼0g�g

�1 (70)

diverges.
We can show this by the parity example of section 2, but

the result seems to be generic. Thus from (28), (29), (31),
and (36), and also

h�Mje�itH� j�Mi ¼
X
n

janj2e�itEn ; (71)

it follows that

En ¼ 1

R

�
nþ �

2�

�
2

(72)

an ¼ 1

2�

1

nþ �
2� �M

ðe�i� � 1Þ; (73)

showing that (71) is not differentiable in t or that the mean
energy h�MjH�j�Mi is infinite.

This is perhaps a mechanism which contributes to con-
finement. But for further progress, we still need non-
abelian colored monopoles associated with reasonable
length scales. Unfortunately, we know of none. GUT
monopoles seem too small for our purpose. If the length
scale of quark confinement is 1028 cm�1, then it is hard to
understand the low-energy success of the quark model.

IV. ON THE GENERICITY OF GAUGE
ANOMALIES

Let Ĝ be a gauge group for a quantum system based on a
HamiltonianH. By definition, all observables, includingH,

commute classically with Ĝ.

In quantum theory, typically, the identity component Ĝ0

of Ĝ is required to act trivially on quantum states by virtue

of a Gauss law. The group Ĝ=Ĝ0 ¼ G can then act by an
unitary irreducible representation (UIRR) � on the quan-
tum states.

As an example, consider QCD. There, for Ĝ, we can
consider G1ðSUð3ÞÞ, the group of maps from R3 to
SUð3Þ, which reduce to identity at spatial infinity. Its
identity component G1

0 ðSUð3ÞÞ, being generated by

Gauss law, acts trivially on quantum states. Now,
G1ðSUð3ÞÞ=G1

0 ðSUð3ÞÞ ¼ �3ðSUð3ÞÞ ¼ Z. It has UIRR’s
� � �� with ��ðnÞ ¼ ein� for n 2 Z. The angle � is fixed
in a given QCD theory.

In quantum gravity based on asymptotically flat space-
times, the approach of diffeomorphisms D1ðMÞ of the
spatial sliceMwhich become asymptotically identity plays
a role similar to G1ðSUð3ÞÞ. Its identity component
D1

0 ðMÞ acts trivially on quantum states, while the discrete

group D1ðMÞ=D1
0 ðMÞ acts by some UIRR � on quantum

states.

There are examples of a different sort from molecular
physics [20]. In the Born-Oppenheimer approximation, the
family of nuclear orientations which serves as the configu-
ration spaceQ for rotational excitations is SUð2Þ=G, where
G is a subgroup of SUð2Þ. It may be discrete giving rise to a

Platonic solid [23], Uð1Þ or Z42Uð1Þ. If Uð1Þ ¼
fei�	3=2; 0 � � � 4�g and Z4 ¼ fz ¼ i	2: z

4 ¼ eg, then

it is generated by hei�	3=2; i	2i.
In time-reversal invariant systems, if the value k0 of

momentum k is time-reversal invariant, then the sphere
fk: jk� k0j2 ¼ 1g can support a Z2-bundle [12–14,24].
The Z2 is generated by the square of the time-reversal
transformation T. According to Wigner [25], T2 is either
þ1 or �1. T can act on quantum states by either of these
two UIRR’s. Since observables necessarily commute with
the square of time-reversal transformation, Z2 is a gauge
group. These bundles occur in discussions of topological
insulators [26].
Thus there are plenty of gauge groups G and many are

non-abelian.
Let us call the effective gauge group after possible

Gauss-law constraints are accounted for asG. As explained
above, it is the group which can act by nontrivial repre-
sentations � on quantum states.
Now if �ðgÞ is the unitary operator representing g 2 G

on quantum states, then � also gives a representation of the
entire group algebra CG of G. If

P
gcðgÞg 2 CG, where

cðgÞ 2 C, then its operator is
P

gcðgÞ�ðgÞ. This represen-
tation incidentally is a *-representation:

� : X
g

cðgÞg ! X
g

�cðgÞ g�1 (74)

on CG goes over to the adjoint operations in the
representation

�

�X
g

�cðgÞg�1

�
¼

�X
g

cðgÞ�ðgÞ
�y
; (75)

since �ðgÞy ¼ �ðg�1Þ.
Now all observables must commute with CĜ, the gauge

group algebra of Ĝ, and, in particular, with CG. That is the
meaning of gauge invariance. But if G and hence CG are
non-abelian, only the center CðCGÞ of CG commutes with
every element ofCG. IfG is abelian, the CðCGÞ ¼ CG, but
that is not the case if G is non-abelian.
Thus if G is a finite group, its center has the basis [27]

e� ¼ X
g

��ðgÞg; (76)

where �� is the character in the irreducible representation
��. If instead G is a compact Lie group, its center is
spanned by the Casimir invariants. In either of these cases
of interest, CðCGÞ is an abelian algebra.
Since CðCGÞ lies in the center of the entire algebra

of observables, in a given representation of the latter,

MIXED STATES FROM ANOMALIES PHYSICAL REVIEW D 85, 025017 (2012)

025017-7



elements of CðCGÞ have a fixed value. Fixing e� means
fixing the irreducible representation3 while for Lie groups
G, we will be fixing its Casimirs.

Thus, general considerations fix only the UIRR � ofCG.
The �ðgÞ acts on a Hilbert space H by a unitary repre-
sentation, so we can choose a complete set spanningH in
the form

j	i � jc i � j	; c i; (77)

where

�ðgÞj	; c i ¼ j	0; c i�ðgÞ	0	; (78)

on denoting the matrix of �ðgÞ by the same symbol.
Now, elements of �ðCðCGÞÞ have exactly the same value

on j	; c i, for every 	 2 CðCGÞ, with � being irreducible.
So CðCGÞ does not mix different values of 	, nor does any
other observable as it commutes with �ðGÞ. So we have to
‘‘gauge fix’’ the redundancy in the multiplicity of of 	 if
possible.

We are assuming that the dimension of �ðGÞ is larger
than one, otherwise �ðCGÞ is abelian.

One possibility that may occur is that we can fix the
value for 	, and choose a domain for observables in the
span of fjc ig. This may be possible with observables act-
ing just on jc i. The c ’s are typically functions on a
classical configuration space Q, so that in this case the
quantum vector bundle over Q is trivial. Physical predic-
tions in this case do not depend on 	.

Instead of working with vector states, we can also work
with density matrices

X
	

j	; c ih	; c j
Trj	; c ih	; c j : (79)

Such states are more like our construction in Sec. II and
treat all 	 democratically. However, on observables, both
approaches are equivalent when the bundle is trivial.

Note also that G acts on (79) by the identity representa-
tion,4 while if we gauge fix 	, the G-action changes the
gauge, but harmlessly.

When the bundle is twisted, we cannot proceed in this
manner. In that case, we cover Q by contractible open
sets Q�,

Q ¼ [
�

Q�: (80)

In each Q�, we choose a sectionX
	

�ð�Þ
	 j	; c i; (81)

where �ð�Þ
	 are smooth functions on Q�. In the overlap

Q� ¼ Q� \Q, we have a transition function U�,

which at q 2 Q� gives an element �ðgÞ, g 2 G,

U� 2 �ðGÞ; q 2 Q�; (82)

in a self-evident notation. Then the vectors (81) and

X
	

�ðÞ
	 j	; c i (83)

are related by U� over Q�:

X
	

�ð�Þ
	 j	; c i ¼ U�

X
	

�ðÞ
	 j	; c i on Q�: (84)

There are also consistency conditions on U� which lead

to Čech cohomology [28,29].
If there exist U�’s which are �ðGÞ-valued smooth func-

tions on Q� such that

U� ¼ U�1
� U on Q�; (85)

then we can reduce U� to the constant function on Q�

with value 1 by choosing different sections, namely

U�

X
	

�ð�Þ
	 j	; c i on Q�: (86)

But such U� may not exist. In that case, the vector bundle
is said to be ‘‘twisted.’’
The choice of sections onQ� is a ‘‘gauge choice.’’ It also

goes towards fixing the domain of the Hamiltonian.
If the vector bundle is twisted, we cannot say that the

action of �ðgÞ preserves the transitions functions. As the
domain of the Hamiltonian is determined precisely by
these transition functions, we cannot say that �ðgÞ pre-
serves the domain. If it does not, we say that G is anoma-
lous [3,4].
More generally, there can be a classical symmetry like

parity P which is not part of �ðCGÞ. If it does not preserve
the domain, that is, the transition functions, then this
symmetry is anomalous.
If G is non-abelian, only the elements of G commuting

with all U� preserve the domain. The rest are anomalous.

In QCD, the global symmetry group SUð3Þ can be
regarded as the group of constant maps from R3 to
SUð3Þ. Since SUð3Þ \ G1 ¼ feg, they are not ‘‘gauge
transformations’’ as per the considerations hitherto. We
should really enlarge G1 to G, which are smooth maps
from R3 to SUð3Þ which approach a constant value in
SUð3Þ at infinity (that is, when j ~xj ! 1). In that case
SUð3Þ is part of the gauge group. What we have proved
in [12–14] is that its action changes the transition functions
and hence the domain of the Hamiltonian in the presence of
non-abelian monopoles. Hence SUð3Þ of color is anoma-
lous in the presence of these monopoles.
We conclude this section by listing examples where

twisted bundles with non-abelian gauge groups occur. A
proper investigation of the physics and mathematics of
these bundles from a physical perspective does not exist.

3The e�’s after a normalization become orthogonal projectors.
4The co-unit for its Hopf algebra [27].
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A. Examples

1. From molecular physics

As mentioned above, the rotational degrees of freedom
of a molecule are described by the configuration space
Q ¼ SUð2Þ=G, where G is a subgroup of SUð2Þ [20,23].
Since SUð2Þ � Q�G, the principle bundles G !
SUð2Þ ! SUð2Þ=G are all twisted when G � feg. There
are plenty of molecules with �ðGÞ non-abelian.

We will illustrate our general considerations from such
Q in the next section.

2. Parastatistics, braid group

The configuration spaceQ of N identical particles onRd

is

Q ¼ f½q1; . . . ; qN�: qi 2 Rd; qi � qj; if i � jg; (87)

where ½q1; . . . ; qN� is an unordered set [20,30,31]:

½q1; q2; . . . ; qN� ¼ ½qsð1Þ; qsð2Þ; . . . ; qsðNÞ� s 2 SN; (88)

SN being the permutation group of N particles. It is (88)
which enforces the particle identity. Thus Q consists of N
points of Rd of cardinality N.

In quantum theory, for d 	 3, the group SN arises as the
‘‘gauge’’ group commuting with all observables. If �ðSNÞ
is abelian, which is the case only for bosons and fermions,
there is no problem in implementing it on vector states. But
if �ðSNÞ is non-abelian, gauge fixing in order to eliminate
the redundant vectors in the representation space leads to
anomalies.

For d ¼ 2, SN is replaced by the braid group BN [20,31],
allowing the possibility of fractional statistics. Its non-
abelian representations have recently occurred in discus-
sions of quantum Hall effect at the filling fraction � ¼ 5=2
[32], topological quantum computing [33] and the Kitaev
model [34]. If �ðBNÞ is non-abelian, it cannot act on
properly gauge fixed quantum states.

3. Non-abelian monopoles break color

We have already discussed this issue in Sec. 3 above.

4. Mapping class groups of geons

The mapping class groups here are the groups D1=D1
0

already defined above for the Friedmann-Sorkin spatial
slices supporting topological geons. They are discrete,
but are non-abelian for appropriate slices [15–17]. In
these cases, if �ðD1=D1

0 Þ is non-abelian, there might

appear quantum diffeo anomalies. We discuss this issue
elsewhere [24].

V. ON MOLECULAR CONFIGURATION SPACES

We will adapt the discussion of [23] regarding quantum
theories onQ ¼ SUð2Þ=G, withG a subgroup of SUð2Þ for
illustrating our preceding remarks.

Quantization on Q can conveniently start from its uni-
versal cover SUð2Þ and functions on SUð2Þ. The latter are
spanned by the components of rotation matrices Dj

�
, with

j 2 Zþ=2, �;
 2 ½�j;�jþ 1; . . . ; j�, where the scalar
product is

hDj0
�0
0 ; D

j
�
i ¼

Z
s2SUð2Þ

d
ðsÞ �Dj0
�0
0 ðsÞDj

�
ðsÞ; (89)

where d
ðsÞ is the invariant SUð2Þ measure (with volume
of SUð2Þ equal to 16�2, say). With this scalar product, this
space of functions on SUð2Þ generates a Hilbert space.
On functions f on SUð2Þ, there is a left- and a right-

action UL;R of SUð2Þ defined by

ðULðtÞfÞðsÞ ¼ fðt�1sÞ; (90)

ðURðtÞfÞðsÞ ¼ fðstÞ; s; t 2 SUð2Þ: (91)

These actions commute:

ULðsÞURðtÞ ¼ URðtÞULðsÞ: (92)

The gauge group G and its group algebra CG act on the
right, that is, by the representation UR. The observables lie
in CULðGÞ, so that they commute with the gauge trans-
formations URðGÞ and its group algebra CURðGÞ.
We take UR to be a UIRR. Now,

Dj
�
ðstÞ ¼ Dj

�
0 ðsÞDj

0
ðtÞ; (93)

so that to obtain an irreducible action ofG, we must restrict
the second index to a suitable subset.

For example, if G ¼ ZN ¼ feið2�=NÞm	3 : m ¼ 0; 1; . . . ;
N � 1g, then

Dj
�
ðseið2�=NÞm	3Þ ¼ Dj

�
ðsÞeið4�=NÞm
 (94)

remembering that 
 is associated with eigenvalues for
	3=2. So for 
� 1=2,

eið2�=NÞ	3 ! e�ið2�=NÞ: (95)

These two representations may or may not be equivalent
depending on N.
For general 
 the representations are

eið2�=NÞ	3 ! eið4�=NÞ
: (96)

So


 ¼ 1

2
þ N

2
k; k 2 Z (97)

also give the representation

eið2�=NÞ	3 ! eþið2�=NÞ: (98)

For this UIRR, then, the wave functions are spanned by

fDj
�;ð1=2ÞþðN=2Þk: k 2 Zg: (99)
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For specificity, we focus on the UIRR ei2�=N	3 !
ei2�=N . Using (94), we see that a subset of 
’s, call it

f�g, carry this UIRR. Then the space spanned by fDj
��:� 2

f�gg is invariant under observables. We can reduce this
further and fix � to a particular value �0 2 f�g or if one
prefers, consider the span of

P
c�D

j
�� for fixed c� 2 C.

To present this basis in terms of transition functions, we
must cover SUð2Þ=G by contractible open sets Q�. Then
on Q�, there is a global section. That is, for q 2 Q�, we
can pick an element s�ðqÞ 2 SUð2Þ ‘‘in the fiber over’’ q
smoothly. More generally, we can choose a section
s�ðqÞg�ðqÞ 2 SUð2Þ, with g�ðqÞ 2 G.

Now suppose that we choose to work with the span of

Dj
��0

ðs�ðqÞg�ðqÞÞ over Q�. Then the sections over Q� are

Dj
��0

ðs�ðqÞÞURðg�ðqÞÞ; (100)

where URðg�ðqÞÞ is a phase.
The first factor here corresponds to jc i in (78), the

second to the factor with 	.
Now consider U�. In U�, s�ðqÞ and sðqÞ can differ

only by the action of the group, so that

s�ðqÞ ¼ sðqÞg�ðqÞ; (101)

with q 2 Q� and g�ðqÞ 2 G. Hence

Dj
��0

ðs�ðqÞÞURðg�ðqÞÞ ¼ Dj
��0

ðsðqÞÞURðgðqÞÞ
�URðg�ðqÞÞ: (102)

The last factor URðg�ðqÞÞ regarded as the evaluation at q

of a function with values in URðGÞ gives the U� of (84).

In the abelian example, there is no problem of imple-
menting URðgÞ for any g 2 G, as they preserve the tran-
sition functions. Indeed as G is abelian, G 2 CðCGÞ.

But there can still be classical symmetries which can
changeU�. In particular, parity P and time-reversal T can

do so. In [23], it was shown that P and T are not violated if
and only if

URðeið4�=NÞ	3Þ ¼ �1: (103)

Otherwise they are violated.
The group ZN occurs as G (called H� in [23]) for

pyramidal molecules. There are pyramidal molecules
where (103) is not fulfilled. Their quantum theories violate
P and T. But just like QCD, PT is not anomalous in
quantum theories.
The groups D�

4N , with N 2 Z, is the gauge group G for

‘‘staggered’’ and ‘‘eclipsed’’ configurations such as those
of ethane [23].
The group D�

8 has the following elements:

D�
8 ¼ f�1;�i�ig 
 SUð2Þ: (104)

It is the ‘‘symmetry group’’ or the gauge group leaving the
shape of the biaxial nematic invariant.
Reference [23] shows that molecules with N even do not

violate P or T.
But D�

4N are all non-abelian for N 	 2. If D�
4N has K

UIRR’s, then the center CðCD�
4NÞ is of dimension K. For a

generic UIRR UR, only URðe�Þ, e� 2 CðCD�
4NÞ and their

linear combinations are well-defined in a quantum theory,
and we cannot implement the UIRR’s UR of D�

4N .
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