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We analyze the entanglement and the nonlocality of a (1þ 1)-dimensional massless Dirac field

confined to a cavity on a world tube that consists of inertial and uniformly accelerated segments, for

small accelerations but arbitrarily long travel times. The correlations between the accelerated field modes

and the modes in an inertial reference cavity are periodic in the durations of the individual trajectory

segments, and degradation of the correlations can be entirely avoided by fine-tuning the individual or

relative durations of the segments. Analytic results for selected trajectories are presented. Differences

from the corresponding bosonic correlations are identified, and extensions to massive fermions are

discussed.
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I. INTRODUCTION

One of the fundamental problems in the emerging field
of relativistic quantum information is the degradation of
correlations caused by accelerated motion. Studies of uni-
form acceleration in Minkowski spacetime (see [1–6] for a
small selection and [7] for a recent review) have revealed
significant differences in the degradation that occurs for
bosonic and fermionic fields. There are, in particular, clear
qualitative differences in the bosonic versus fermionic
particle-antiparticle entanglement swapping [5] and in
the infinite acceleration residual entanglement and non-
locality [6].

The analyses of uniform acceleration mentioned above
involve two ingredients that make it difficult to compare
the theoretical predictions to experimentally realizable
situations. The first is that, while the uniformly accelerated
observers are considered to be pointlike and perfectly
localized on a trajectory of prescribed acceleration, the
field excitations are nevertheless usually treated as delo-
calized field modes of plane wave type, normalized in the
sense of Dirac rather than Kronecker deltas. This may
seem a technicality, perhaps remediable by use of appro-
priate wave packets [4], but at present it appears unex-
plored how localized observers would in practice perform
measurements to probe the correlations in the delocalized
states.

The second concern lies in the time evolution of the
correlations. An inertial trajectory in Minkowski space is
stationary, in the sense that it is the integral curve of a
Minkowski time translation Killing vector. A uniformly
accelerated trajectory is also stationary, in the sense that
it is the integral curve of a boost Killing vector. However,
the combined system of the two trajectories is not

stationary, as the two Killing vectors do not commute.
For example, in the (1þ 1)-dimensional setting there is a
unique moment at which the two trajectories are parallel,
and the trajectories may or may not intersect depending
on their relative spatial location. Yet the analyses men-
tioned above regard the correlations between observers
on the two trajectories as stationary and the relative
location of the trajectories as irrelevant, observing just
that the spacetime has a quadrant causally disconnected
from the uniformly accelerated worldline and noting that
the field modes confined in this quadrant are inaccessible
to the accelerated observer. While the acceleration hori-
zon that is responsible for this inaccessibility may be
seen as the basis of the Unruh effect [8,9], the horizon
exists only if the uniform acceleration persists from the
asymptotic past to the asymptotic future. In this setting it
is not clear how to address motion on trajectories that
remain uniformly accelerated only up to the moment at
which localized observers might make their measure-
ments on the quantum state.
Both of these concerns have been recently addressed by

studying correlations between field modes of a real scalar
field confined in two cavities, one inertial and the other
undergoing motion that consists of segments of inertial
motion and uniform acceleration [10]. In this setting the
field modes are spatially localized in the cavities, and
the acceleration effects can be localized in time by taking
the initial and final segments of the accelerated cavity to be
inertial. It was found that the entanglement is affected by
the acceleration, and in (1þ 1)-dimensional spacetime the
mass of the field has a strong effect on the qualitative
behavior on the entanglement. For a massless Dirichlet
field the entanglement is periodic in the durations of the
individual trajectory segments, so that entanglement
degradation can be entirely avoided by fine-tuning the
durations of the individual segments; further, in the small
acceleration limit the degradation can also be avoided by
fine-tuning the relative lengths of the inertial and acceler-
ated segments.

*pmxnf@nottingham.ac.uk
†pmxal3@nottingham.ac.uk
‡pmxdeb@nottingham.ac.uk
§jorma.louko@nottingham.ac.uk

PHYSICAL REVIEW D 85, 025012 (2012)

1550-7998=2012=85(2)=025012(11) 025012-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.85.025012


In this paper we shall undertake the first steps of inves-
tigating fermionic entanglement in accelerated cavities by
adapting the scalar field analysis of [10] to a Dirac fermion.
Conceptually, one new issue with fermions is that the
presence of positive and negative charges allows a broader
range of initial Bell-type states to be considered. Another
conceptual issue is that in a fermionic Fock space the
entanglement between the cavities can be characterized
not just by the negativity but also by the violation of the
Clauser-Horne-Shimony-Holt (CHSH) version of Bell’s
inequality [11,12], physically interpretable as nonlocality.
New technical issues arise from the boundary conditions
that are required to keep the fermionic field confined in the
cavities.

We focus this paper on a massless fermion in (1þ 1)
dimensions. In this setting another new technical issue
arises from a zero mode that is present in the cavity under
boundary conditions that may be considered physically
preferred. This zero mode needs to be regularized in order
to apply usual Fock space techniques.

We shall find that the entanglement behavior of the
massless Dirac fermion is broadly similar to that found
for the massless scalar in [10], in particular, in the periodic
dependence of the entanglement on the durations of the
individual accelerated and inertial segments, and in the
property that entanglement degradation caused by accel-
erated segments can be canceled in the leading order in the
small acceleration expansion by fine-tuning the durations
of the inertial segments. We shall however find that the
charge of the fermionic excitations has a quantitative effect
on the entanglement, and there is, in particular, interfer-
ence between excitations of opposite charge.

We begin in Sec. II by quantizing a massless Dirac
field in a static cavity and in a uniformly accelerated
cavity in (1þ 1)-dimensional Minkowski spacetime. We
pay special attention to the boundary conditions that are
required for maintaining unitarity and to the regulariza-
tion of a zero mode that arises under an arguably natural
choice of the boundary conditions. Section III develops
the Bogoliubov transformation technique for grafting
inertial and uniformly accelerated trajectory segments,
presenting the general building block formalism and
giving detailed results for a trajectory where initial and
final inertial segments are joined by one uniformly ac-
celerated segment. The evolution of initially maximally
entangled states is analyzed in Sec. IV, and the results for
entanglement are presented in Sec. V. A one-way-trip
travel scenario, in which the accelerated cavity undergoes
both acceleration and deceleration, is analyzed in
Sec. VI. Section VII presents a brief discussion and
concluding remarks.

We use units in which ℏ ¼ c ¼ 1. Complex conjugation
is denoted by an asterisk and Hermitian conjugation by a
dagger. OðxÞ denotes a quantity for which OðxÞ=x is
bounded as x ! 0.

II. STATIC CAVITY

In this section we quantize the massless Dirac field in an
inertial cavity and in a uniformly accelerated cavity, estab-
lishing the notation and conventions for use in the later
sections.

A. Inertial cavity

Let ðt; zÞ be standard Minkowski coordinates in (1þ 1)-
dimensional Minkowski space, and let ��� denote the

Minkowski metric, ds2 ¼ ���dx
�dx� ¼ �dt2 þ dz2.

The massless Dirac equation reads

i��@�c ¼ 0; (1)

where the 4� 4matrices �� form the usual Dirac-Clifford
algebra, f��; ��g ¼ 2���. A standard basis of plane wave
solutions reads

c !;�;�ðt; zÞ ¼ A!;�;�e
�i!ðt��zÞU�;�; (2)

where ! 2 R, � 2 f1;�1g, � 2 f1;�1g, the constant
spinors U�;� satisfy

�3U�;� ¼ �U�;�; (3a)

�5U�;� ¼ �U�;�; (3b)

Uy
�;�U�0;�0 ¼ ���0���0 ; (3c)

and A!;�;� is a normalization constant. Physically, ! is the

frequency with respect to the Minkowski time, the eigen-
value � of the operator �3 ¼ �0�3 indicates whether the
solution is a right-mover (� ¼ 1) or a left-mover (� ¼ �1),
and � is the eigenvalue of the helicity/chirality operator
�5 ¼ i�0�1�2�3 [13]. The right-handed (� ¼ þ1) and
left-handed (� ¼ �1) solutions are decoupled because
(1) does not contain a mass term.
We encase the field in the inertial cavity a � z � b,

where a and b are positive parameters satisfying a < b.
The inner product reads

ðc ð1Þ; c ð2ÞÞ ¼
Z b

a
dzc y

ð1Þc ð2Þ; (4)

where the integral is evaluated on a surface of constant t.
To ensure unitarity of the time evolution, so that the inner
product (4) is conserved in time, the Hamiltonian must be
defined as a self-adjoint operator by introducing suitable
boundary conditions at z ¼ a and z ¼ b [14,15]. We spe-
cialize to boundary conditions that do not couple right-
handed and left-handed spinors. For concreteness, we
consider from now on only left-handed spinors, and we
drop the index �. The analysis for right-handed spinors is
similar.
We seek the eigenfunctions of the Hamiltonian in the

form

c !ðt; zÞ ¼ A!e
�i!ðt�zÞUþ þ B!e

�i!ðtþzÞU�; (5)
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where A! and B! are complex-valued constants. It would
be mathematically possible to maintain unitarity by allow-
ing probability to flow out through one of the cavity walls
and instantaneously reappear at the other wall; physically,
this would mean that the spatial surface is considered to be
a circle, possibly with one marked point. However, wewish
to regard the spatial surface as a genuine interval with two
spatially separated endpoints, and we hence specialize to
boundary conditions that ensure vanishing of the probabil-
ity current independently at each wall. The boundary con-
dition on the eigenfunctions thus reads

ð �c !�
3c !0 Þz¼a ¼ 0 ¼ ð �c !�

3c !0 Þz¼b; (6)

where �c ¼ c y�0.
Following the procedure of [14,15], we find from (5) and

(6) that the self-adjoint extensions of the Hamiltonian are
specified by two independent phases, characterizing the
phase shifts of reflection from the two walls. We encode
these phases in the parameters 	 2 ½0; 2
Þ and s 2 ½0; 1Þ,
which can be understood, respectively, as the normalized
sum and difference of the two phases. The quantum theo-
ries then fall into two qualitatively different cases, the
generic case 0< s < 1 and the special case s ¼ 0.

In the generic case 0< s < 1, the orthonormal eigen-
functions are

c nðt; zÞ ¼ e�i!nðt�zþaÞUþ þ ei	e�i!nðtþz�aÞU�ffiffiffiffiffiffi
2�

p ; (7a)

!n ¼ ðnþ sÞ

�

; (7b)

where n 2 Z and � :¼ b� a. Note that !n � 0 for all n,
and positive (respectively, negative) frequencies are ob-
tained for n � 0 (n < 0). A Fock space quantization can be
performed in a standard manner [13].

The special case s ¼ 0 corresponds to assuming that the
two walls are of identical physical build. In this case !n �
0 for n � 0 but!0 ¼ 0. It follows that a Fock quantization
can proceed as usual for the n � 0 modes, but n ¼ 0 is a
zero mode that does not admit a Fock space quantization.
In what follows we consider the s ¼ 0 quantum theory to
be defined by first quantizing with s > 0 and at the end
taking the limit s ! 0þ. All our entanglement measures
will be seen to remain well defined in this limit.

B. Uniformly accelerated cavity

We consider a cavity whose ends move on the worldlines

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ t2

p
and z ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ t2

p
, where the notation is as

above. The proper accelerations of the ends are 1=a and
1=b, respectively, and the cavity as a whole is static in the
sense that it is dragged along the boost Killing vector � :¼
z@t þ t@z. At t ¼ 0 the accelerated cavity overlaps pre-
cisely with the inertial cavity of Sec. II A.

Coordinates convenient for the accelerated cavity are
the Rindler coordinates ð�;�Þ, defined in the quadrant
z > jtj by

t ¼ � sinh�; z ¼ � cosh�; (8)

where 0<�<1 and �1<�<1. The metric reads
ds2 ¼ ��2d�2 þ d�2. The cavity is at a � � � b, and
the boost Killing vector along which the cavity is dragged
takes the form � ¼ @�.

In Rindler coordinates the massless Dirac equation (1)
takes the form [16,17]

i@�c ð�;�Þ ¼
�
�i�3

�
�@� þ 1

2

��
c ð�;�Þ; (9)

and the inner product for a field encased in the accelerated
cavity reads

ðc ð1Þ; c ð2ÞÞ ¼
Z b

a
d�c y

ð1Þc ð2Þ; (10)

where the integral is evaluated on a surface of constant �.
Working as in Sec. II A, we find that the orthonormal
energy eigenfunctions are

ĉ nð�;�Þ ¼
e�i�n�ðð�aÞi�nUþ þ ei	ð�aÞ�i�nU�Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2� lnðb=aÞp ; (11a)

�n ¼ ðnþ sÞ

lnðb=aÞ ; (11b)

where n 2 Z. The parameters 	 and s have the same
meaning and values as above; we consider the microphys-
ical build of the cavity walls not to be affected by their
acceleration. For s � 0 a Fock space quantization can be
performed in a standard manner. For s ¼ 0 the mode n ¼ 0
is again a zero mode, and we consider the s ¼ 0 quantum
theory to be defined as the limit s ! 0þ.

III. GRAFTING TRAJECTORY SEGMENTS

We now turn to a cavity whose trajectory consists of
inertial and uniformly accelerated segments.
The prototype cavity configuration is shown in Fig. 1.

Two cavities, referred to as Alice and Rob, are initially
inertial and in the configuration described in Sec. II A. At
t ¼ 0, Rob’s cavity begins to accelerate to the right, fol-
lowing the Killing vector � ¼ @�. The acceleration ends at

Rindler time � ¼ �1, and the duration of the acceleration
in proper time measured at the center of the cavity is 
1 :¼
1
2 ðaþ bÞ�1. We refer to the three segments of Rob’s

trajectory as Regions I, II and III. Alice remains inertial
throughout.
We shall discuss the evolution in Rob’s cavity in two

steps: first, from Region I to Region II and then from
Region II to Region III. We then use the evolution to relate
the operators and the vacuum of Region I to those in
Region III.
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A. Region I to Region II

Consider the Dirac field in Rob’s cavity. In Regions I and
II we may expand the field using the solutions (7) and (11),
respectively, as

I: c ¼ X
n�0

anc n þ
X
n<0

bync n; (12a)

II: c ¼ X
m�0

âm ĉ m þ X
m<0

b̂ym ĉ m; (12b)

where the nonvanishing anticommutators are

I: fam; ayn g ¼ fbm; byn g ¼ �mn; (13a)

II: fâm; âyn g ¼ fb̂m; b̂yn g ¼ �mn: (13b)

Matching the expansions (12) at t ¼ 0, we have the
Bogoliubov transformation,

ĉ m ¼ X
n

Amnc n; c n ¼
X
m

A�
mn ĉ m; (14)

where the elements of the Bogoliubov coefficient matrix
A ¼ ðAmnÞ are given by

Amn ¼ ðc n; ĉ mÞ (15)

and the inner product in (15) is evaluated on the surface
t ¼ 0. Note that A is unitary by construction.

We shall be working perturbatively in the limit where the
acceleration of Rob’s cavity is small. To implement this,
we follow [10] and introduce the dimensionless parameter
h :¼ 2�=ðaþ bÞ, satisfying 0< h< 2. Physically, h is the
product of the cavity’s length � and the acceleration at the
center of the cavity. Expanding (15) in a Maclaurin series
in h, we find

A ¼ Að0Þ þ Að1Þ þ Að2Þ þOðh3Þ; (16)

where the superscript indicates the power of h and the

explicit expressions for Að0Þ, Að1Þ and Að2Þ read

Að0Þ
mn¼�mn; (17a)

Að1Þ
nn ¼0; (17b)

Að1Þ
mn¼½ð�1Þmþn�1�ðmþnþ2sÞ

2
2ðm�nÞ3 h ðm�nÞ; (17c)

Að2Þ
nn ¼�

�
1

96
þ
2ðnþsÞ2

240

�
h2; (17d)

Að2Þ
mn¼½ð�1Þmþnþ1�

8
2ðm�nÞ4 ½ðmþsÞ2þ3ðnþsÞ2

þ8ðmþsÞðnþsÞ�h2 ðm�nÞ: (17e)

The expressions (17) show that the small h expansion of
Amn is not uniform in the indices, but we have verified that
the expansion maintains the unitarity of A perturbatively to
order h2 and the products of the order h matrices in the
unitarity identities are unconditionally convergent.
The perturbative unitarity of A persists in the limit

s ! 0þ. Had we set s ¼ 0 at the outset and dropped the
zero mode from the system by hand, the resulting truncated
A would not be perturbatively unitary to order h2.

B. Region I to Region III

In Region III, we expand the Dirac field in Rob’s
cavity as

III : c ¼ X
n�0

~an ~c n þ
X
n<0

~byn ~c n; (18)

where the mode functions ~c n are as in (7) but ðt; zÞ are
replaced by the Minkowski coordinates ð~t; ~zÞ adapted to the
cavity’s new rest frame, with the surface ~t ¼ 0 coinciding
with � ¼ �1. The nonvanishing anticommutators are

III : f~am; ~ayn g ¼ f~bm; ~byn g ¼ �mn: (19)

The Bogoliubov transformation between the Region I and
Region III modes can then be written as

~c m ¼ X
n

Amnc n; c n ¼
X
m

A�
mn

~c m; (20)

where the coefficient matrix A ¼ ðAmnÞ has the
decomposition

A ¼ AyGð�1ÞA (21)

and Gð�1Þ is the diagonal matrix whose diagonal
elements are

Gnnð�1Þ ¼ expði�n�1Þ ¼: Gn: (22)

The role of Gð�1Þ in (21) is to compensate for the phases

that the modes ĉ m develop between � ¼ 0 and � ¼ �1,
and the matrix Ay ¼ A�1 in (21) arises from matching
Region II to Region III at � ¼ �1. Note that A is unitary
by construction.

a b

 = 1

Alice

Rob

I

II

III

z

ct

FIG. 1 (color online). Spacetime diagram of cavity motion is
shown. Rob’s cavity is at rest initially (Region I), then undergoes
a period of uniform acceleration from t ¼ 0 to � ¼ �1 (Region
II) and is thereafter again inertial (Region III). Alice’s cavity
overlaps with Rob’s cavity in Region I and remains inertial
throughout.
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Expanding A in a Maclaurin series in h as

A ¼ Að0Þ þAð1Þ þAð2Þ þOðh3Þ; (23)

where the superscript again indicates the power of h, we
obtain from (16) and (21)

Að0Þ ¼ Gð�1Þ; (24a)

Að1Þ ¼ Gð�1ÞAð1Þ þ ðAð1ÞÞyGð�1Þ; (24b)

Að2Þ ¼ Gð�1ÞAð2Þ þ ðAð2ÞÞyGð�1Þ
þ ðAð1ÞÞyGð�1ÞAð1Þ: (24c)

Note that the diagonal elements of Að1Þ are vanishing.
Unitarity of A implies the perturbative relations

0¼Gð�1Þ�Að1Þ þðAð1ÞÞyGð�1Þ; (25a)

0¼Gð�1Þ�Að2Þ þðAð2ÞÞyGð�1ÞþðAð1ÞÞyAð1Þ; (25b)

which will be useful below.

C. Operators and vacua

We denote the Fock vacua in Regions I and III by j0i and
j~0i, respectively. To relate the two, we mimic the bosonic
case [18] and make the ansatz

j0i ¼ NeW j~0i; (26)

where

W ¼ X
p�0;q<0

Vpq~a
y
p
~byq (27)

and the coefficient matrix V ¼ ðVpqÞ and the normalization

constant N are to be determined. Note that the two indices
of V take values in disjoint sets.

It follows from (12a), (20), and (18), that the creation
and annihilation operators in Regions I and III are related
by

n � 0: an ¼ ðc n; c Þ
¼ X

m�0

~amAmn þ
X
m<0

~bymAmn; (28a)

n < 0: byn ¼ ðc n; c Þ
¼ X

m�0

~amAmn þ
X
m<0

~bymAmn: (28b)

Using (26) and (28a), the condition anj0i ¼ 0 reads�X
m�0

~amAmn þ
X
m<0

~bymAmn

�
eW j~0i ¼ 0: (29)

From the anticommutators (19) it follows that

½W; ~am� ¼ �X
q<0

Vmq
~byq ; (30a)

½W; ½W; ~am�� ¼ 0: (30b)

Using (30) and the Hadamard lemma,

eABe�A ¼ Bþ ½A; B� þ 1
2½A; ½A; B�� þ . . . ; (31)

(29) reduces toX
m�0

AmnVmq ¼ �Aqn ðn � 0; q < 0Þ: (32)

A similar computation shows that the condition bnj0i ¼ 0
reduces toX

m<0

A�
mnVpm ¼ A�

pn ðn < 0; p � 0Þ: (33)

If the block ofAwhere both indices are non-negative is
invertible, Eq. (32) determines V uniquely. Similarly, if the
block of A where both indices are negative is invertible,
Eq. (33) determines V uniquely. If both blocks are inver-
tible, it can be verified using unitarity of A that the
ensuing two expressions for V are equivalent. Working
perturbatively in h, the invertibility assumptions hold,
and using (23) and (24) we find

V ¼ Vð1Þ þOðh2Þ; (34)

where

Vð1Þ
pq ¼ �Að1Þ

qpG�
p ¼ Að1Þ�

pq Gq ðp � 0; q < 0Þ: (35)

We shall show in Sec. IV that the normalization constantN
has the small h expansion

N ¼ 1� 1
2

X
p;q

jVpqj2 þOðh3Þ: (36)

IV. EVOLUTION OF ENTANGLED STATES

In this section we apply the results of Sec. III to the
evolution of Bell-type quantum states between the two
cavities which are initially maximally entangled. We shall
work perturbatively to quadratic order in h.
Focusing first on Rob’s cavity only, we write out in

Sec. IVA the Region I vacuum and the Region I states
with a single (anti-)particle in terms of Region III excita-
tions on the Region III vacuum. In Sec. IVB we address an
entangled state where one field mode is controlled by Alice
and one by Rob. In Sec. IVC we address a state of the type
analyzed in [5] where the entanglement between Alice and
Rob is in the charge of the field modes.

A. Rob’s cavity: Vacuum and single-particle states

Consider the Region I vacuum j0i in Rob’s cavity. We
shall use (26) to express this state in terms of Region III

excitations over the Region III vacuum j~0i.
We expand the exponential in (26) as

eW ¼ 1þX
p;q

Vpq~a
y
p
~byq

þ 1
2

X
p;q;i;j

VpqVij~a
y
p
~byq ~a

y
i
~byj þOðh3Þ: (37)
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We denote the Region III single-particle states by

j~1kiþ :¼ ~ayk j~0i (38)

for k � 0 and by

j~1ki� :¼ ~byk j~0i (39)

for k < 0, so that the superscript� indicates the sign of the
charge. From (37) we obtain

eW j~0i ¼ j~0i þX
p;q

Vpqj~1piþj~1qi� � 1
2

X
p;q;i;j

VpqVijð1� �piÞ

� ð1� �qjÞ � j~1piþj~1iiþj~1qi�j~1ji� þOðh3Þ;
(40)

where the ordering of the single-particle kets encodes the
ordering of the fermion creation operators. It follows that

the normalization constant N is given by (36), and (26)
gives

j0i ¼
�
1� 1

2

X
p;q

jVpqj2
�
j~0i þX

p;q

Vpqj~1piþj~1qi�

� 1
2

X
p;q;i;j

VpqVijð1� �piÞð1� �qjÞ

� j~1piþj~1iiþj~1qi�j~1ji� þOðh3Þ: (41)

Consider then in Rob’s cavity the state with exactly one

Region I particle, j1ki� :¼ byk j0i for k < 0 or j1kiþ :¼
ayk j0i for k � 0. Acting on the Region I vacuum (41) by

(28b) and the Hermitian conjugate of (28a), respectively,
we find

k < 0: j1ki� ¼ X
p;q

VpqApkj~1qi� þ X
m<0

Amk

��
1� 1

2

X
p;q

jVpqj2
�
j~1mi� þX

p;q

Vpqð1� �mqÞj~1piþj~1qi�j~1mi�

� 1
2

X
p;q;i;j

VpqVijð1� �piÞð1� �qjÞð1� �mqÞð1� �mjÞj~1piþj~1iiþj~1qi�j~1ji�j~1mi�
�
þOðh3Þ; (42a)

k > 0: j1kiþ ¼ �X
p;q

VpqA�
qkj~1piþ þ X

m�0

A�
mk

��
1� 1

2

X
p;q

jVpqj2
�
j~1miþ þX

p;q

Vpqð1� �mpÞj~1miþj~1piþj~1qi�

� 1
2

X
p;q;i;j

VpqVijð1� �piÞð1� �qjÞð1� �mpÞð1� �miÞj~1miþj~1piþj~1iiþj~1qi�j~1ji�
�
þOðh3Þ: (42b)

B. Entangled two-mode states

We wish to consider a Region I state where one field
mode is controlled by Alice and one by Rob. Concretely,
we take

j��
initiARþ ¼ 1ffiffi

2
p ðj0k̂iAj0kiR � j1k̂i�Aj1kiþR Þ; (43a)

j��
initiAR� ¼ 1ffiffi

2
p ðj0k̂iAj0kiR � j1k̂i�Aj1ki�R Þ; (43b)

where the subscripts A and R refer to the cavity and the
superscripts � indicate whether the mode has positive or

negative frequency, so that � ¼ þ for k̂ � 0 and � ¼ �
for k̂ < 0. Furthermore, we consider the two-particle basis
state of the two-mode Hilbert space, corresponding to one

excitation each in the modes k̂ in Alice’s cavity and k in
Rob’s cavity, to be ordered as in (43). As pointed out in
Ref. [19], making such a choice can lead to ambiguities
in the entanglement. In our case, the ambiguity amounts to
a relative phase shift of 
, i.e., a sign change, in (43),
which does not affect the amount of entanglement. In other
words, the states (43) are pure, bipartite, maximally en-

tangled states of mode k̂ in Alice’s cavity and mode k in
Rob’s cavity.

We form the density matrix for each of the states (43),
express the density matrix in terms of Rob’s Region III

basis to order h2 using (41) and (42), and take the partial
trace over all of Rob’s modes except the reference mode k.
All of Rob’s modes except k are thus regarded as environ-
ment, to which information is lost due to the acceleration.
The relevant partial traces of Rob’s matrix elements de-
pend on the sign of the mode label k. For k � 0, corre-
sponding to (43a), we find

Tr:kj0kih0kj¼ ð1�f�k Þj~0kih~0kjþf�k j~1kiþþh~1kj; (44a)

Tr:kj0kiþh1kj¼ ðGkþAð2Þ
kk Þj~0kiþh~1kj; (44b)

Tr:kj1kiþþh1kj¼ ð1�fþk Þj~1kiþþh~1kjþfþk j~0kih~0kj; (44c)

where we have used (25a) and (35) and introduced the
abbreviations

fþk :¼ X
p�0

jAð1Þ
pk j2; f�k :¼ X

q<0

jAð1Þ
qk j2: (45)

For k < 0, corresponding to (43b), we find similarly

Tr:kj0kih0kj¼ ð1�fþk Þj~0kih~0kjþfþk j~1ki��h~1kj; (46a)

Tr:kj0ki�h1kj¼ ðG�
kþAð2Þ�

kk Þj~0ki�h~1kj; (46b)

Tr:kj1ki��h1kj¼ ð1�f�k Þj~1ki��h~1kjþf�k j~0kih~0kj: (46c)
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C. States with entanglement between opposite charges

We finally consider the Region I state

j��
initiAR ¼ 1ffiffi

2
p ðj1kiþA j1k0 i�R � j1k0 i�A j1kiþR Þ; (47)

where the meaning of the subscripts and superscripts is as
described for (43), indicating that k � 0 and k0 < 0. In this

state Alice and Rob each have access to both of the modes
k and k0, and the entanglement is in the charge of the field
modes, similarly to the states considered in [5].
We form the reduced density matrix to order h2 as in

Sec. IVB, but now the partial tracing over Rob’s modes
excludes both mode k and mode k0. The relevant matrix
elements take the form

Tr:k;k0 j1k0 i��h1k0 j¼f�k0 j~0kiþj~0k0 i��h~0k0 jþh~0kjþð1�f�k0 �f�k þjAð1Þ
kk0 j2Þj~0kiþj~1k0 i��h~1k0 jþh~0kj

þðf�k �jAð1Þ
kk0 j2Þj~1kiþj~1k0 i��h~1k0 jþh~1kjþ

�X
q<0

GkG
�
k0A

ð1Þ�
qk Að1Þ

qk0 j~0kiþj~0k0 i��h~1k0 jþh~1kjþh:c:

�
; (48a)

Tr:k;k0 j1kiþþh1kj¼fþk j~0kiþj~0k0 i��h~0k0 jþh~0kjþð1�fþk0 �fþk þjAð1Þ
kk0 j2Þj~1kiþj~0k0 i��h~0k0 jþh~1kj

þðfþk0 �jAð1Þ
kk0 j2Þj~1kiþj~1k0 i��h~1k0 jþh~1kj�

�X
p�0

GkG
�
k0A

ð1Þ�
pk Að1Þ

pk0 j~0kiþj~0k0 i��h~1k0 jþh~1kjþh:c:

�
; (48b)

Tr:k;k0 j1kiþ�h1k0 j¼ðG�
kG

�
k0 jAð1Þ

kk0 j2þA�
kkA

�
k0k0 Þj~1kiþj~0k0 i��h~1k0 jþh~0kj; (48c)

where in (48c) A�
kkA

�
k0k0 is kept only to order h2 in the

small h expansion

A �
kkA

�
k0k0 ¼ G�

kG
�
k0 þG�

k0A
ð2Þ�
kk þG�

kA
ð2Þ�
k0k0 þOðh3Þ:

(49)

V. ENTANGLEMENT DEGRADATION
AND NONLOCALITY

We are now in a position to study the entanglement and
the nonlocality of our states in Region III.

A. Entanglement of two-mode states

Consider the states j��
initiARþ and j��

initiAR� (43), in

which Alice and Rob control one mode each. We shall
quantify the entanglement by the negativity [20–22] and
the nonlocality by a possible violation of the CHSH in-
equality [11,12].

The negativityN ½�� is an entanglement monotone that
quantifies how strongly the partial transpose of a density
operator � fails to be positive. It is defined as the sum of the
absolute values of the negative eigenvalues � of ð1 � TRÞ�,

N ½�� ¼ X
�<0

j�j; (50)

where ð1 � TRÞ denotes the transpose in one of the two
subsystems (which we have taken to be Rob without loss of
generality). The negativity is a useful measure for our
system because all the entangled states that it fails to detect
are necessarily bound entangled, that is, these states cannot
be distilled [23], and a system with two fermionic modes
cannot be bound entangled.

We work perturbatively in h. The unperturbed part of
ð1 � TRÞ��

AR� has the triply degenerate eigenvalue 1
2

and the nondegenerate eigenvalue � 1
2 . In a perturbative

treatment the positive eigenvalues remain positive and the
only correction to the negativity comes from the perturba-
tive correction to the negative eigenvalue. A straightfor-
ward computation using (44) and (46) shows that the
leading correction to the negativity comes in order h2,
and to this order the negativity formula reads

N ½��
AR�� ¼ 1

2ð1� fkÞ; (51)

where fk :¼ fþk þ f�k . fk can be expressed as

fk ¼
X1

p¼�1
jEk�p

1 � 1j2jAð1Þ
kpj2

¼ 2½Qð2kþ s; 1Þ �Qð2kþ s; E1Þ�h2; (52)

where

Qð�; zÞ :¼ 2


4
Re

�
�2

�
Li6ðzÞ � 1

64Li6ðz2Þ
�

þ Li4ðzÞ � 1
16 Li4ðz2Þ

�
; (53)

Li is the polylogarithm [24], and

E1 :¼ exp

�
i
�1

lnðb=aÞ
�
¼ exp

�
i
h
1

2�atanhðh=2Þ
�
: (54)

We see from (51) that acceleration does degrade the
initially maximal entanglement, and the degradation is
determined by the function fk (52). fk is periodic in 
1
with period 2�ðh=2Þ�1atanhðh=2Þ, which is the proper time
measured at the center of Rob’s cavity between sending
and recapturing a light ray that is allowed to bounce off
each wall once. fk is non-negative, and it vanishes only at
integer multiples of the period. fk is not even in k for
generic values of s, but it is even in k in the limiting case
s ¼ 0 in which the spectrum is symmetric between
positive and negative charges. fk diverges at large jkj
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proportionally to k2, and the domain of validity of our
perturbative analysis is jkjh 	 1. Plots for k ¼ �1 are
shown in Fig. 2.

Another, potentially useful measure of entanglement for
the states at hand would be the concurrence [25]. While a
perturbative computation of the concurrence would as such
be feasible, we have verified that obtaining the leading
order correction would require expanding the states (42)
to order h4. We have not pursued this expansion.

We now turn to nonlocality, as quantified by the viola-
tion of the CHSH inequality [11,12],

jhBCHSHi�j � 2; (55)

where BCHSH is the bipartite observable

B CHSH :¼ a 
 � � ðbþ b0Þ 
 �þ a0 
 � � ðb� b0Þ 
 �;
(56)

where a, a0, b and b0 are unit vectors in R3, and � is the
vector of the Pauli matrices. The inequality (55) is satisfied
by all local realistic theories, but quantum mechanics

allows the left-hand side to take values up to 2
ffiffiffi
2

p
. The

violation of (62) is hence a sufficient (although not neces-
sary [6,26]) condition for the quantum state to be
entangled.

To look for violations of (55), we proceed as in [6],
noting that the maximum value of the left-hand side in the
state � is given by [12]

hBmaxi� ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1 þ�2

p
; (57)

where �1 and �2 are the two largest eigenvalues of the
matrix Uð�Þ ¼ TT

�T� and the elements of the correlation

matrix T ¼ ðtijÞ are given by tij ¼ Tr½��i � �j�. In our

scenario,

Uð��
AR�Þ ¼

1� fk 0 0
0 1� fk 0
0 0 1

4 � fk

0
B@

1
CAþOðh4Þ; (58)

and working to order h2 we hence find

hBmaxi��
AR�

¼ 2
ffiffiffi
2

p �
1� 1

2fk

�
: (59)

The acceleration thus degrades the initially maximal vio-
lation of the CHSH inequality, and the degradation is again
determined by the function fk.

B. Entanglement between opposite charges

We finally turn to the entanglement between opposite
charges in the state j��

initiAR (47).

Expressing the density matrix in the Region III basis,
tracing over Rob’s unobserved modes and working pertur-
batively to order h2, we find that the only nonvanishing
elements of the reduced density matrix are within a 6� 6
block. Partially transposing Rob’s subsystem replaces the
last parenthesis in (48a) and (48b) by their respective
conjugates and shifts the particle-antiparticle off-diagonals
(48c) away from the diagonal. The only nonvanishing
elements of the partial transpose are thus within an 8� 8
block, which decomposes further into two 3� 3 blocks
that correspond, respectively, to (48a) and (48b) and the
2� 2 block

�1
2

0 GkGk0 jAð1Þ
kk0 j2þAkkAk0k0

G�
kG

�
k0 jAð1Þ

kk0 j2þA�
kkA

�
k0k0 0

0
@

1
A;

(60)

where the off-diagonal components are kept only to order
h2 in their small h expansion (49).
The only negative eigenvalue comes from the 2� 2

block (60). We find that the negativity is given by

N ½��
� � ¼ 1

2 � 1
4

X
p�k0

jAð1Þ
kpj2 � 1

4

X
p�k

jAð1Þ
k0pj2

¼ 1
2 � 1

4ðfk þ fk0 Þ þ 1
2jEk�k0

1 � 1j2jAð1Þ
kk0 j2: (61)

The entanglement is hence again degraded by the accel-
eration, and the degradation has the same periodicity in 
1
as in the cases considered above. The degradation now
depends however on k and k0 not just through the individual
functions fk and fk0 but also through the term proportional

to jAð1Þ
kk0 j2 in (61): this interference term is nonvanishing iff

k and k0 have different parity, and when it is nonvanishing,
it diminishes the degradation effect. In the charge-
symmetric special case of s ¼ 0 and k ¼ �k0, the degra-
dation coincides with that found in (51) for the two-mode
states (43).

FIG. 2 (color online). The plot shows fk=h
2 as a function of

u :¼ 1
2�1= lnðb=aÞ ¼ h
1=½4�atanhðh=2Þ�, over the full period

0 � u � 1. The solid curve (black) is for s ¼ 0 with k ¼ �1.
The dashed, dash-dotted and dotted curves are, respectively, for
s ¼ 1

4 , s ¼ 1
2 , and s ¼ 3

4 , for k ¼ 1 (blue) above the solid curve

and for k ¼ �1 (red) below the solid curve.
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VI. ONE-WAY JOURNEY

Our analysis for the Rob trajectory that comprises
Regions I, II and III can be generalized in a straightforward
way to any trajectory obtained by grafting inertial and
uniformly accelerated segments, with arbitrary durations
and proper accelerations. The only delicate point is that the
phase conventions of our mode functions distinguish the
left boundary of the cavity from the right boundary, and in
Sec. III A we set up the Bogoliubov transformation from
Minkowski to Rindler assuming that the acceleration is to
the right. It follows that the Bogoliubov transformation
from Minkowski to leftward-accelerating Rindler is ob-
tained from that in Sec. III A by inserting the appropriate
phase factors, Amn ! ð�1ÞmþnAmn, and in the expansions
(17) this amounts to the replacement h ! �h.

As an example, consider the Rob cavity trajectory that
starts inertial, accelerates to the right for proper time 
1 as
above, coasts inertially for proper time 
2 and finally
performs a braking manoeuver that is the reverse of the
initial acceleration, ending in an inertial state that has
vanishing velocity with respect to the initial inertial state.
Denoting the mode functions in the final inertial state by
~~c n, and writing

~~c m ¼ X
n

Bmnc n; (62)

we find

jBð1Þ
mnj2 ¼ jEm�n

1 � 1j2jðE1E2Þm�n � 1j2jAð1Þ
mnj2; (63)

where E2 :¼ expði

2=�Þ. For the two-mode initial states
j��

initiARþ and j��
initiAR� (43), the negativity and the

maximum violation of the CHSH inequality hence read,
respectively,

N ½��
AR�� ¼ 1

2ð1� ~~fkÞ; (64a)

hBmaxi��
AR�

¼ 2
ffiffiffi
2

p ð1� 1
2
~~fkÞ; (64b)

where

~~fk ¼
X1

p¼�1
jBð1Þ

kpj2

¼ 2½2Qð2kþ s; 1Þ � 2Qð2kþ s; E1Þ þQð2kþ s; E2Þ
� 2Qð2kþ s; E1E2Þ þQð2kþ s; E2

1E2Þ�h2: (65)

The negativity in the state j��
initiAR (47) reads

N ½��
� � ¼ 1

2 � 1
4ð~~fk þ ~~fk0 Þ þ 1

2jEk�k0
1

� 1j2jðE1E2Þk�k0 � 1j2jAð1Þ
kk0 j2: (66)

The degradation caused by acceleration is thus again
periodic in 
1 with period 2�ðh=2Þ�1atanhðh=2Þ, and it is
periodic in 
2 with period 2�. The degradation vanishes iff
E1 ¼ 1 or E1E2 ¼ 1, so that any degradation caused by the

accelerated segments can be canceled by fine-tuning the
duration of the inertial segment, to the order h2 in which

we are working. A plot of ~~fk is shown in Fig. 3.

VII. CONCLUSIONS

We have analyzed the entanglement degradation for a
massless Dirac field between two cavities in (1þ 1)-
dimensional Minkowski spacetime, one cavity inertial
and the other moving along a trajectory that consists of
inertial and uniformly accelerated segments. Working in
the approximation of small accelerations but arbitrarily
long travel times, we found that the degradation is quali-
tatively similar to that found in [10] for a massless scalar
field with Dirichlet boundary conditions. The degradation
is periodic in the durations of the individual inertial and
accelerated segments, and we identified a travel scenario
where the degradation caused by accelerated segments can
be undone by fine-tuning the duration of an inertial seg-
ment. The presence of charge allows however a wider
range of initial states of interest to be analyzed. As an
example, we identified a state where the entanglement
degradation contains a contribution due to interference
between excitations of opposite charge.
Compared with bosons, working in a fermionic Fock

space led both to technical simplifications and to technical
complications. A technical simplification was that the
relevant reduced density matrices act in a lower-
dimensional Hilbert space because of the fermionic statis-
tics, and this made it possible to quantify the entanglement
not just in terms of the negativity but also in terms of the
CHSH inequality. It would further be possible to investi-
gate the concurrence, although doing so would require
pushing the perturbative low-acceleration expansion to a
higher order than we have done in this paper.

FIG. 3 (color online). The plot shows ~~fk as a function of u :¼
h
1=½4�atanhðh=2Þ� and v :¼ 
2=ð2�Þ over the full period 0 �
u � 1 and 0 � v � 1, for s ¼ 0 and k ¼ 1. Note the zeroes at
u � 0 mod 1 and at uþ v � 0 mod 1.
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A technical complication was that when the boundary
conditions at the cavity walls were chosen in an arguably
natural way that preserves charge conjugation symmetry,
the spectrum contained a zero mode. This zero mode could
not be consistently omitted by hand, but we were able to
regularize the zero mode by treating the charge-symmetric
boundary conditions as a limiting case of charge-
nonsymmetric boundary conditions. All our entanglement
measures remained manifestly well defined when the regu-
lator was removed.

Another technical complication occurring for fermions
is the ambiguity [19] in the choice of the basis of the
two-fermion Hilbert space in (48). An alternative valid
choice of basis is obtained by reversing the order of the
single-particle kets in (48), which amounts to a change
of the signs in the off-diagonal elements of (48a) and
(48b). While our treatment does not remove this ambi-
guity, all of our results for the entanglement and the
nonlocality of these states are independent of the chosen
convention.

Our analysis contained two significant limitations. First,
while our Bogoliubov transformation technique can be
applied to arbitrarily complicated graftings of inertial and
uniformly accelerated cavity trajectory segments, the treat-
ment is perturbative in the accelerations and hence valid
only in the small acceleration limit. We were thus not able
to address the large acceleration limit, in which striking
qualitative differences between bosonic and fermionic en-
tanglement have been found for field modes that are not
confined in cavities [2–6].

Second, a massless fermion in a (1þ 1)-dimensional
cavity is unlikely to be a good model for systems realiz-
able in a laboratory. A fermion in a linearly accelerated
rectangular cavity in (3þ 1) dimensions can be reduced
to the (1þ 1)-dimensional case by separation of varia-
bles, but for generic field modes the transverse quantum

numbers then contribute to the effective (1þ 1)-
dimensional mass; further, any foreseeable experiment
would presumably need to use fermions that have a
positive mass already in (3þ 1) dimensions before the
reduction. It would be possible to analyze our (1þ 1)-
dimensional system for a massive fermion, and we an-
ticipate that the mass would enhance the magnitude of
the entanglement degradation as in the bosonic situation
[10]. A detailed analysis of a massive fermion could
become of experimental interest if guided by insights
as to how a massive fermion might be confined to a
cavity in a concrete laboratory setting.
We started this paper by emphasizing that a cavity local-

izes the quantum degrees of freedom in the worldtube of
the cavity, and our assumption of inertial initial and final
trajectory segments localizes the acceleration effects in a
finite interval of the cavity’s proper time. We should per-
haps end by emphasizing that we are not attempting to
localize measurements of the field at more precise space-
time locations within the worldtube of the cavity, and we
are hence not proposing cavities as a fundamental solution
to the open conceptual issues of a quantum measurement
theory in relativistic spacetime [27]. A cavity can however
reduce the measurement ambiguities from, say, megapar-
secs to centimeters, which may well suffice to resolve the
conceptual issues in specific experimental settings of in-
terest, gedanken or otherwise.
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