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Recently, the topic of Casimir repulsion has received a great deal of attention, largely because of the

possibility of technological application. The general subject has a long history, going back to the self-

repulsion of a conducting spherical shell and the repulsion between a perfect electric conductor and a

perfect magnetic conductor. Recently, it has been observed that repulsion can be achieved between

ordinary conducting bodies, provided sufficient anisotropy is present. For example, an anisotropic

polarizable atom can be repelled near an aperture in a conducting plate. Here, we provide new examples

of this effect, including the repulsion on such an atom moving on a trajectory nonintersecting a conducting

cylinder; in contrast, such repulsion does not occur outside a sphere. Classically, repulsion does occur

between a conducting ellipsoid placed in a uniform electric field and an electric dipole. The Casimir-

Polder force between an anisotropic atom and an anisotropic dielectric semispace does not exhibit

repulsion. The general systematics of repulsion are becoming clear.
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I. INTRODUCTION

Although known since the time of Lifshitz’s work on the
subject [1], repulsive Casimir forces have recently received
serious scrutiny [2]. Experimental confirmation of the
repulsion that occurs when dielectric surfaces are separated
by a liquid with an intermediate value of the dielectric
constant has appeared [3], although this seems devoid of
much practical application. The context of our work is the
considerable interest in utilizing the quantum vacuum
force or the Casimir effect in nanotechnology employing
mesoscopic objects [4].

The first repulsive Casimir stress in vacuum was found
by Boyer [5], who discovered the surprising fact that the
Casimir self-energy of a perfectly conducting spherical
shell is positive. (This has become somewhat less myste-
rious since the phenomenon is part of a general pattern
[6–9].) Boyer later observed that a perfect electrical con-
ductor and a perfect magnetic conductor repel [10], but
this also seems beyond reach since the unusual electrical
properties must be exhibited over a wide frequency range.
The analogous effect for metamaterials also seem imprac-
ticable [11].

Thus, it was a significant advance when Levin et al.
showed examples of repulsion between conducting objects,
in particular, between an elongated cylinder above a con-
ducting plane with a circular aperture [2] (see also
Ref. [12]). They computed the quantum vacuum forces
between conducting objects by using impressive numerical

finite-difference time-domain and boundary-element
methods.
We subsequently showed [13] that repulsive Casimir-

Polder (CP) forces between anisotropic atoms and a
conducting half-plane, and even between such an atom
and a conducting wedge of rather large opening angle,
could be achieved. Of course, we must be careful to explain
what we mean by repulsion: the total force on the atom is
attractive, but the component of the force perpendicular to
the symmetry axis of the conductor changes sign when the
atom is sufficiently close to that axis. This is the only
component that survives in the case of an aperture in a
plane, so our analytic calculation provided a counterpart to
the numerical work of Ref. [2].
In this paper, we give further examples. After demon-

strating, in Sec. II, that Casimir-Polder repulsion between
two atoms requires that both be sufficiently anisotropic, we
show in Sec. III that the force between one such atom and a
conducting cylinder is repulsive for motion confined to a
perpendicular line not intersecting with the cylinder, pro-
vided the line is sufficiently far from the cylinder. The
analogous effect does not occur for a spherical conductor
(Sec. IV), as one might suspect, since at large distances
such a sphere looks like an isotropic atom. The classical
interaction between a dipole and a conducting ellipsoid
polarized by an external field is examined in Sec. V, which,
as expected, yields a repulsive region. In contrast, in
Sec. VI, we examine the Casimir-Polder interaction of an
anisotropic atom with an anisotropic dielectric half-space,
but this fails to reveal any repulsive regime.
In this paper, we set ℏ ¼ c ¼ 1, and all results are

expressed in Gaussian units except that Heaviside-
Lorentz units are used for Green’s dyadics.
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II. CASIMIR-POLDER
REPULSION BETWEEN ATOMS

The interaction between two polarizable atoms de-
scribed by general polarizabilities �1;2 with the relative

separation vector given by r is [14,15]

UCP ¼ � 1

4�r7

�
13

2
Tr�1 ��2 � 28Trð�1 � r̂Þð�2 � r̂Þ

þ 63

2
ðr̂ ��1 � r̂Þðr̂ � �2 � r̂Þ

�
: (2.1)

This formula is easily re-derived by the multiple-scattering
technique as explained in Ref. [16]. This reduces in the
isotropic case�i ¼ �i1 to the usual Casimir-Polder energy
UCP ¼ � 23

4�r7
�1�2. Suppose the two atoms are only polar-

izable in perpendicular directions, �1 ¼ �1ẑ ẑ , �2 ¼
�2x̂ x̂ . Choosing atom 2 to be at the origin, we obtain
the configuration shown in Fig. 1. Then, in terms of the
polar angle cos� ¼ z=r, the z-component of the force on
atom 1 is

Fz ¼ � 63

8�

�1�2

x8
sin10� cos�ð9–11sin2�Þ: (2.2)

In this paper, we are considering motion for fixed x ¼
r sin� in the y ¼ 0-plane. Evidently, the force is attractive
at large distances, vanishing as � ! 0; it must change
sign at small values of z for fixed x since the energy
also vanishes as � ! �=2. The force component in the

z-direction vanishes when sin� ¼ 3=
ffiffiffiffiffiffi
11

p
or � ¼ 1:130 or

25� from the x-axis.1

No repulsion occurs if one of the atoms is isotropically
polarizable. If both have cylindrically symmetric anisotro-
pies, but with respect to perpendicular axes,

�1 ¼ ð1� �1Þ�1ẑ ẑþ�1�11;

�2 ¼ ð1� �2Þ�2x̂ x̂þ�2�21;
(2.3)

it is easy to check that if both are sufficiently anisotropic,
repulsion occurs. For example, if �1 ¼ �2 repulsion in the
z-direction takes place close to the plane z ¼ 0 if � �
0:26.

III. REPULSION OF AN ATOM
BYA CONDUCTING CYLINDER

Now we turn to the Casimir-Polder interaction between
a polarizable body (‘‘atom’’) and a macroscopic body. That
interaction is generally given by

ECP ¼ �
Z 1

�1
d� tr� � �ðr; rÞ; (3.1)

where r is the position of the atom and � is the imaginary
frequency, in terms of the polarizability of the atom � and
the Green’s dyadic due to the macroscopic body, which for
a body characterized by a permittivity " satisfies the dif-
ferential equation�

1

!2
r� r��1"ðrÞ

�
� �ðr; r0Þ ¼ 1�ðr� r0Þ: (3.2)

In this paper, except for Sec. VI, we will consider perfect
conducting boundaries S immersed in vacuum. In this case,
we need to solve this equation with " ¼ 1 for �, subject to
the boundary conditions n̂� �ðr; r0Þjr2S ¼ 0, where n̂ is
the normal to the surface of the conductor, which just states
that the tangential components of the electric field must
vanish on the conductor.
Let us henceforth assume that the polarizability has

negligible frequency dependence (static approximation)
and, in order to maximize the repulsive effect, the atom
is only polarizable in the z-direction, the direction of the
trajectory (assumed not to intersect the cylinder), in which
case the quantity we need to compute for a conducting
cylinder of radius a is given by [18]

Z 1

�1
d�

2�
�zzðr; �Þ

¼ X1
m¼�1

Z 1

0

d�

ð2�Þ3
�

2a

1

Kmð�aÞK0
mð�aÞ

�
m2

r2
K2

mð�rÞ

þ �2K02
mð�rÞ � cos2��a½Imð�aÞKmð�aÞ�0

�
�
�m2

r2
K2

mð�rÞ þ �2K02
mð�rÞ

��
: (3.3)

The geometry we are considering is illustrated in Fig. 2.
Greater insight is provided by giving the transverse electric
(TE) and transverse magnetic (TM) contributions to the CP
energy

FIG. 1 (color online). Casimir-Polder interaction between two
atoms of polarizability �1 and �2 separated by a distance r.
Atom 1 is predominantly polarizable in the z direction, while
atom 2 is predominantly polarizable in the x direction. The force
on atom 1 in the z direction becomes repulsive when sufficiently
close to the polarization axis of atom 2, provided both atoms are
sufficiently anisotropic.

1After the first version of this paper was prepared, Ref. [17]
appeared, which rederived these results, and then went on to
extend the calculation to Casimir-Polder repulsion by an aniso-
tropic dilute dielectric sheet with a circular aperture. The authors
quite correctly point out that the statement that no repulsion is
possible in the weak-coupling regime, in Ref. [13], is erroneous.
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ETE
CP ¼ ��zz

4�

X1
m¼�1

Z 1

0
d��

I0mð�aÞ
K0

mð�aÞ

�
�
cos2�

r2
m2K2

mð�rÞ þ �2sin2�K02
mð�rÞ

�
; (3.4a)

ETM
CP ¼ �zz

4�

X1
m¼�1

Z 1

0
d��

Imð�aÞ
Kmð�aÞ

�
�
sin2�

r2
m2K2

mð�rÞ þ �2cos2�K02
mð�rÞ

�
: (3.4b)

The distance of the atom from the center of the cylinder is
r ¼ R= sin�, where R is the distance of closest approach
and � is the polar angle, which ranges from 0 when the
atom is at infinity to �=2 where the atom is closest to the
cylinder.

At large distances, the CP force is dominated by them ¼
0-term in the energy sum. Figure 3 shows that for m ¼ 0
the TM mode dominates except near the position of closest
approach, where only the TE mode is nonzero. This in-
dicates that there is a region of repulsion near � ¼ �=2
since the total energy has a minimum for small c ¼
�=2� �. This effect is partially washed out by including
higherm-modes as seen in Fig. 4, which shows the effect of
including the first five m-values. But the repulsion goes
away if the line of motion passes too close to the cylinder.
Numerically, we have found that to have repulsion close to
the plane of closest approach requires that a=R < 0:15.

IV. CP INTERACTION BETWEEN ATOM AND
CONDUCTING SPHERE

It is straightforward to derive the TE and TM contribu-
tions for the interaction between a completely anisotropic
atom and a conducting sphere as

ETM ¼ �zz

2�R4
cos4�

X1
l¼1

ð2lþ 1Þ
Z 1

0
dxglðxÞ; (4.1a)

ETE ¼ �zz

4�R4
cos6�

X1
l¼1

ð2lþ 1Þ
Z 1

0
dxflðxÞ; (4.1b)

where

glðxÞ¼x
s0lðxacos�=RÞ
e0lðxacos�=RÞ

�
1

2
cos2�e02l ðxÞþ

lðlþ1Þsin2�e2l ðxÞ
x2

�
;

(4.2a)

flðxÞ¼x
slðxacos�=RÞ
elðxacos�=RÞe

2
l ðxÞ; (4.2b)

FIG. 2 (color online). Interaction between an anisotropically
polarizable atom and a conducting cylinder of radius a. The
force on the atom along a line which does not intersect the
cylinder is considered. If the atom is only polarizable in that
direction and the line lies sufficiently far from the cylinder, the
force component along the line changes sign near the point of
closest approach.
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FIG. 3 (color online). m ¼ 0 contributions to the Casimir-
Polder energy between an anisotropic atom and a conducting
cylinder. The (generally) lowest curve (blue) is the TE contri-
bution, the second (magenta) is the TM contribution, and the top
curve (yellow) is the total CP energy. In this case, the distance of
closest approach of the atom is taken to be 10 times the radius of
the cylinder. The energy E is plotted as a function of c ¼
�=2� �.
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FIG. 4 (color online). The CP energy between an anisotropic
atom and a conducting cylinder. Plotted is the total CP energy,
the upper curve for the distance of closest approach R being 5
times the cylinder radius a, the lower curve for the distance of
closest approach 10 times the radius. The curves move up
slightly as more m terms are included, but have completely
converged by the time m ¼ 3 is included. Repulsion is clearly
observed when R=a ¼ 10, but not for R=a ¼ 5.
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in terms of the modified Riccati-Bessel functions are

slðxÞ ¼
ffiffiffiffiffiffiffi
�x

2

r
Ilþ1=2ðxÞ; elðxÞ ¼

ffiffiffiffiffi
2x

�

s
Klþ1=2ðxÞ: (4.3)

We expect, in the case of a sphere, not to see Casimir
repulsion at large distances. The reason is that far from the
sphere it appears to be an isotropic atom, which (as we
have seen above) will not give a repulsive force on another
completely anisotropic atom. Indeed, far from the sphere
we can replace the Bessel functions of argument xa=r by
their leading small argument approximations and easily
find

ETM � �zza
3

4�r7
ð13þ 7sin2�Þ; a=r ! 0: (4.4a)

The TE mode contributes

ETE � �zza
3

4�r7
7

4
cos2�; a=r ! 0: (4.4b)

We see here the expected isotropic electric polarizability of
a conducting sphere �sp;E ¼ 1a3. We note that the TM

result (4.4a) coincides with the result obtained from
Eq. (2.1). The TE contribution is, in fact, the coupling
between the electric polarizability of the atom and the

magnetic polarizability of the sphere �sp;M ¼ � a3

2 1 [19].

To see this, we first remind the reader of the CP inter-
action between isotropic atoms possessing both electric
and magnetic polarizabilities [20],

UCP¼� 23

4�r7
ð�E

1�
E
2 þ�M

1 �
M
2 Þþ

7

4�r7
ð�E

1�
M
2 þ�M

1 �
E
2 Þ:
(4.5)

When the atoms are not isotropic it is easy to deduce the
generalization of this, using the methods described in
Ref. [16], starting from the multiple-scattering coupling
term between electric and magnetic dyadics,

Eem ¼ � i

2
Tr lnð1þ�0T

E
1 ��0T

M
2 Þ

� � i

2
Tr�0 � VE

1�0 � VM
2 ; (4.6)

where the last form reflects weak coupling; we are consid-
ering the interaction between one object having purely
electric susceptibility and a second object having purely
magnetic susceptibility, so

VE
1 ¼ 4��E

1�ðr� r1Þ; VM
2 ¼ 4��M

2 �ðr� r2Þ: (4.7)

This formula is expressed in terms of the magnetic Green’s
dyadic (R ¼ r1 � r2),

� 0 ¼ � �2

4�R3
R� 1ðj�jRþ 1Þe�j�jR: (4.8)

Then, an immediate calculation yields the electric-
magnetic CP interaction

UCP;EM ¼ 7

8�R7
trðR̂� �EÞðR̂� �MÞ; (4.9)

which, indeed, for isotropic polarizabilities gives the sec-
ond term in Eq. (4.5). The result (4.4b) is now an immedi-
ate consequence for a conducting sphere interacting with
an atom only polarizable in the z-direction.
Evidently, no repulsion can occur in this CP limit where

the conducting sphere is regarded as an isotropically polar-
izable atom. In fact, numerical evaluation shows no repul-
sion occurs at any separation distance between the sphere
and the atom.

V. ELECTROSTATIC FORCE BETWEEN A
CONDUCTING ELLIPSOID AND A DIPOLE

In this section we return, for heuristic reasons, to the
electrostatic situation of the interaction between a fixed
dipole and a conducting body, which has been given con-
siderable attention lately [2,13,21]. Here, we consider the
interaction between a perfectly conducting ellipsoid polar-
ized by a constant electric field and a fixed dipole. The
polarization of the ellipsoid by the dipole is neglected at
this stage. This is a much simpler calculation than the more
interesting one of the interaction between a dipole and a
ellipsoid, but we justify the inclusion of the details of the
simpler calculation because it allows us to approach the
complexity of the full calculation. Elsewhere, we will
present that calculation and the corresponding quantum
Casimir-Polder calculation, building on the work of
Ref. [22].

A. Ellipsoidal coordinates

Consider a conducting uncharged solid ellipsoid with
semiaxes a > b > c centered at the origin x ¼ y ¼ z ¼ 0.
The semiaxis c lies along the z-axis. The electrostatic
potential� in the external region can be described in terms
of ellipsoidal coordinates 	, 
, � , corresponding to solu-
tions for u of the cubic equation

x2

a2 þ u
þ y2

b2 þ u
þ z2

c2 þ u
¼ 1: (5.1)

The coordinate intervals are in general

1>		�c2; �c2	
	�b2; �b2	�	�a2: (5.2)

We will henceforth assume axial symmetry around the
z-axis. In that case, b ! a, � ! �a2, and the ellipsoidal
coordinates 	, 
, � reduce to oblate spheroidal coordinates
	 and 
 restricted to the intervals

1> 	 	 �c2; �c2 	 
 	 �a2: (5.3)

If � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
denotes the horizontal radius in the plane

z ¼ constant, the cubic Eq. (5.1) reduces to the quadratic
equation
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u2 � ð�2 � a2 � c2 þ z2Þu� ð�2 � a2Þc2 � z2a2 ¼ 0

(5.4)

for u ¼ ð	;
Þ. The solution for u ¼ 	 corresponds to the
positive square root

	 ¼ 1

2
ð�2 � a2 � c2 þ z2Þ

þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�2 � a2 þ c2Þ2 þ z2ð2�2 þ 2a2 � 2c2 þ z2Þ

q
:

(5.5)

At the surface of the ellipsoid 	 ¼ 0, whereas in the
external region 	 > 0. Note that in the xy-plane (z ¼ 0)
the expression for 	 simplifies to 	 ¼ �2 � a2 when
� > a. The solution for u ¼ 
 corresponds to the same
expression (5.5) but with the negative square root.

Surfaces of constant 	 and 
 are oblate spheroids and
hyperboloids of revolution, the surfaces intersecting or-
thogonally. On the symmetry axis � ¼ 0, one has 	 ¼
�c2 þ z2, 
 ¼ �a2. The relations between 	, 
 and z, �
are

z¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð	þc2Þð
þc2Þ

c2�a2

s
; �¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð	þa2Þð
þa2Þ

a2�c2

s
: (5.6)

We will henceforth only be concerned with the half-space
z 	 0.

B. Ellipsoid situated in a uniform electric field

Assume now that the ellipsoid is placed in a uniform
electric field E0, directed along the z-axis. We take the
electrostatic potential� to be zero on the ellipsoid surface.
With quantities R	 and R
 defined as

R	¼ð	þa2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
	þc2

q
; R
¼ð
þa2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

þc2

q
; (5.7)

Laplace’s equation in the external region 	 	 0 can be
written as

r2� � 4

	� 


�
R	

	þ a2
@

@	

�
R	

@�

@	

�

� R



þ a2
@

@


�
R


@�

@


��
¼ 0: (5.8)

The potential due solely to E0 is

�0 ¼ �E0z; (5.9)

and we write the full potential � in the form

� ¼ �0½1þ Fð	Þ� (5.10)

so that �0F denotes the modification due to the ellipsoid.
The boundary condition at the surface is Fð0Þ ¼ �1.

Inserting Eq. (5.10) into Eq. (5.8), we find the following
equation for F:

d2F

d	2
þ dF

d	

d

d	
ln½R	ð	þ c2Þ� ¼ 0: (5.11)

The solution can be written as

� ¼ �0

2
41�

R1
	

ds
ðsþc2ÞRsR1

0
ds

ðsþc2ÞRs

3
5: (5.12)

We can also express the solution in terms of the incom-
plete beta function, defined as

Bxð�;�Þ ¼
Z x

0
t��1ð1� tÞ��1dt: (5.13)

Some manipulation yields

Z 1

	

ds

ðsþ c2ÞRs

¼ 1

ða2 � c2Þ3=2 Bða2�c2Þ=ð	þa2Þ
�
3

2
;� 1

2

�
;

(5.14)

and so we can write the final answer for the potential as

� ¼ �0

�
1� Bða2�c2Þ=ð	þa2Þð32 ;� 1

2Þ
B1�c2=a2ð32 ;� 1

2Þ
�
: (5.15)

For small values of x, the following expansion may be
useful:

Bxð�;�Þ ¼ x�

�
ð1� xÞ�

�
1þ X1

n¼0

Bð�þ 1; nþ 1Þ
Bð�þ �; nþ 1Þ x

nþ1

�
;

(5.16)

where Bð�;�Þ ¼ �ð�Þ�ð�Þ=�ð�þ �Þ is the complete
beta function. In our case, the limit x � 1 corresponds to
the minor semiaxis c being only slightly less than the major
semiaxis a.
In the following, we shall need the expression for the

z-component of the electric field, Ez ¼ �@�=@z, at an
arbitrary point ð�; zÞ in the exterior region. Here, it is
convenient to first differentiate the relation (5.4) (u ¼ 	)
with respect to z, keeping � constant, in order to obtain

�
@	

@z

�
�
¼ 2ð	þ a2Þ

	� 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð	þ c2Þð
þ c2Þ

c2 � a2

s
: (5.17)

With x ¼ ða2 � c2Þ=ð	þ a2Þ, we have

@Bxð32 ;� 1
2Þ

@z
¼ @	

@z

@x

@	

@Bxð32 ;� 1
2Þ

@x

¼ 2
ða2 � c2Þ

ð	þ c2Þð	� 
Þ ð�
� c2Þ1=2: (5.18)

Then, from Eq. (5.15),
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Ez ¼ E0

�
1� Bða2�c2Þ=ð	þa2Þð32 ;� 1

2Þ
B1�c2=a2ð32 ;� 1

2Þ

� 2ða2 � c2Þ1=2ð	þ c2Þ�1=2ð
þ c2Þ
B1�c2=a2ð32 ;� 1

2Þ
1

	� 


�
:

(5.19)

For large values of z and arbitrary � the influence from the
ellipsoid must evidently fade away, Ez ! E0.

In the xy-plane, where z¼0, 	þ a2 ¼ �2, 
þ c2 ¼ 0,
we have

Ezðz ¼ 0Þ ¼ E0

�
1� Bða2�c2Þ=�2ð32 ;� 1

2Þ
B1�c2=a2ð32 ;� 1

2Þ
�
: (5.20)

When � ¼ a (on the surface), then Ezðz ¼ 0Þ ¼ 0 as
expected.

C. Force on a dipole

Assume now that a dipole p ¼ pzẑ is situated at rest in
the position ð�; zÞ. The dipole is taken to be polarized in the
z-direction only. The value of zð	 0Þ is arbitrary, whereas
the value of � is assumed constant. Thus, writing � ¼ aþ
L, L is the constant horizontal distance between the dipole
and the edge of the ellipsoid, the force Fz on the dipole is

Fz ¼ rzðp � EÞ ¼ pz

@Ez

@z
: (5.21)

Note that we are ignoring the polarization of the ellipsoid
by the field of the dipole; the ellipsoid acquires a dipole
moment only because of the applied external field. Thus,
we have to differentiate the expression (5.19) with respect
to z. Performing the calculation along the same lines as
above, we obtain

Fz ¼ 6pzE0

B1�c2=a2ð32 ;� 1
2Þ

ða2 � c2Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
� c2
p

ð	þ c2Þð	� 
Þ

�
�
1� ð	þ a2Þð�
� c2Þ

ða2 � c2Þð	� 
Þ
þ 2

3

ð	þ c2Þð
þ c2Þð	þ 
þ 2a2Þ
ða2 � c2Þð	� 
Þ2

�
: (5.22)

At z ¼ 0, the force vanishes as it should, since
þ c2 ¼ 0.
Note that the force vanishes if c=a ! 0, that is, for a

disk, because the integral representing the incomplete beta
function diverges in the limit. (It is not to be interpreted as
its analytic continuation.) This is not surprising, for in the
limit of a disk, the electric field is just E0, the applied
constant field. This is because inserting a perfectly con-
ducting sheet perpendicular to the field line has no effect
on the boundary conditions. See also the discussion in
Chap. 4 of Ref. [23].

As a small check, we consider the limit of a sphere,
c2 ! a2. Then, according to Eq. (5.16), we have

B1�c2=a2

�
3

2
;� 1

2

�
! 2

3
a�3ða2 � c2Þ3=2 (5.23)

and

	 � �2 þ z2 � c2; 
 ¼ �c2 � �2z2

�2 þ z2
; (5.24)

in terms of the ultimately vanishing quantity �2 ¼ a2 � c2.
Then, we immediately obtain

Fz ¼ 3pzE0

a3z

ð�2 þ z2Þ7=2 ð3�
2 � 2z2Þ: (5.25)

This result also follows immediately from the dipole-
dipole interaction energy

U ¼ � 1

r5
ð3r � p1r � p2 � r2p1 � p2Þ (5.26)

when we take

p 1 ¼ pzẑ; p2 ¼ a3E0ẑ: (5.27)

The force on the sphere (5.25) is attractive at large distance
because the dipoles become essentially coaxial; the force
on the sphere is repulsive at small distance because the case
of parallel dipoles in a plane is approached in that situation.
The same features hold for a general ellipsoid. For short

distances, z2 � �2 � a2 þ c2, we have

	 ¼ �2 � a2 þOðz2Þ;


 ¼ �c2 � z2ða2 � c2Þ
�2 � a2 þ c2

þOðz4Þ;
(5.28)

and then the force is repulsive,

z ! 0: Fz ¼ 6pzE0

B1�c2=a2ð32 ;� 1
2Þ

zða2 � c2Þ3=2
ð�2 � a2 þ c2Þ5=2 ; (5.29)

which reduces in the spherical case to

c ! a: Fz ¼ 9pzE0a
3z

�5
; (5.30)

which agrees with Eq. (5.25). And in the large distance
limit, where 	 � z2, 
 � �a2, the force, in general, is
attractive,

z ! 1: Fz ¼ � 4pzE0ða2 � c2Þ3=2
B1�c2=a2ð32 ;� 1

2Þ
1

z4
; (5.31)

which again has the expected limit

c ! a: Fz ¼ � 6pzE0a
3

z4
: (5.32)
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VI. INTERACTION OFANISOTROPIC ATOM
WITH ANISOTROPIC DIELECTRIC

In view of the considerations of Sec. II, we might hope
that repulsion could be achieved if an anisotropic atom
were placed above an anisotropic dielectric medium.
Consider such an atom with polarizability only in the
z-direction, � ¼ �ẑ ẑ , a distance a above a dielectric
with different permittivities in the z-direction, and the
transverse directions

" ¼ diagð"?; "?; "kÞ: (6.1)

We will assume (see below) that "?, "k > 1. The Casimir-

Polder interaction is

ECP ¼ ��
Z 1

�1
d�ð�zz � �0

zzÞðR;RÞ; (6.2)

where the atom is located at R ¼ ð0; 0; aÞ. Here, we have
subtracted the free-space contribution. We can write the
Green’s dyadic in terms of a transverse Fourier transform

� ðr; r0Þ ¼
Z ðdk?Þ

ð2�Þ2 e
ik?�ðr�r0Þ?�ðz; z0Þ; (6.3)

where (assuming that k? lies in the þx direction)

� ðz; z0Þ ¼
1
"?

@
@z

1
"0?

@
@z0 g

H 0 ik?
"?"0k

@
@z g

H

0 ��2gE 0

� ik?
"0?"k

@
@z0 g

H 0
k2?
"k"0k

gH

0
BBB@

1
CCCA:
(6.4)

We have followed Ref. [24] and used the notation " ¼
"ðzÞ, "0 ¼ "ðz0Þ. Here, we have omitted �-function terms
that do not contribute in the point-splitting limit. The
transverse electric and transverse magnetic Green’s func-
tions satisfy the differential equations�

� @2

@z2
þ k2? �!2"?

�
gEðz; z0Þ ¼ �ðz� z0Þ; (6.5a)

�
� @

@z

1

"?
@

@z
þ k2?

"k
�!2

�
gHðz; z0Þ ¼ �ðz� z0Þ: (6.5b)

It is rather straightforward to solve these equations and
find the Casimir-Polder energy

ECP ¼ �

4�2

Z 1

�1
d�

Z
ðdk?Þ

k2?
2�

��� �

��þ �
e�2�a; (6.6)

where �2 ¼ k2? �!2, �� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2? �!2"kÞ="?"k

q
. Checks

of this result are

"? ! 1: ECP ! � �

8�a4
; (6.7)

one-third of the usual Casimir-Polder interaction of an
isotropic atom with a perfect conducting plate. This is
what we would have for such an anisotropic atom above
a isotropic conducting plate because taking "? ! 1

imposes the usual boundary condition that the tangential
components of E vanish on the surface. In the other limit,
we have no such simple correspondence,

"k ! 1: ECP ! �

8�a4

�
1þ 3

2

ffiffiffiffiffiffiffi
"?

p � 3"?

þ 3
ffiffiffiffiffiffiffi
"?

p ð"? � 1Þ ln
ffiffiffiffiffiffiffi
"?

p þ 1ffiffiffiffiffiffiffi
"?

p
�
; (6.8)

where the quantity in parentheses varies between�1=2 for
"? ¼ 1 and �1 as "? ! 1.
We can check that, in all cases, if we ignore dispersion,

Eq. (6.6) yields an attractive result: ECP scales like a�4

times a numerical integral, which is always negative be-
cause ��2 � �2 < 0. Repulsion does not occur in this case
because there is no breaking of translational invariance in
the transverse direction.
In fact, the electromagnetic force density in an aniso-

tropic nonmagnetic medium is (see Ref. [25], Eq. (1.2a))

f ¼ � 1

8�
EiEkr"ik: (6.9)

Assume that the single air-medium interface is flat, lying in
the xy-plane. Then, the only nonvanishing component of
the gradient r"ik is the vertical component @z"ik. If the
principal coordinate axes for "ij coincide with the x, y, z

axes, then the surface force density
R
fzdz (which is sub-

sequently to be integrated across the surface z ¼ 0) is
directed upwards because "k;? > 1. The surface force

acts in the direction of the optically thinner medium.
Now, momentum conservation of the total system asserts
that the force on a dipole above the surface acts in the
downward direction. The dipole force has to be attractive.
That " > 1 for an isotropic medium is a thermodynam-

ical result. For an anisotropic medium, oriented such that
the coordinate axes fall together with the crystallographic
axes, one must analogously have "k;? > 1. See, for in-

stance, Sec. 14 in Ref. [26].
Note the contrast with the force on a dipole outside a

conducting wedge, studied in Ref. [13]. In the latter case,
the normal surface force on the inclined (lower) surface has
a vertical (z) component that is downward directed. Thus,
momentum conservation for the total system no longer
forbids the force on the dipole to be repulsive.

VII. CONCLUSIONS

Earlier, we observed that Casimir-Polder repulsion
along a direction perpendicular to the symmetry axis of a
semi-infinite planar conductor or a conducting wedge and
an anisotropically polarizable atom could be achieved in
the region close to the conductor [13]. Here, we have
shown that anisotropically polarizable atoms can also repel
in this sense, provided they are sufficiently anisotropic and
have perpendicular principal axes. We further show that
such an atom may be repelled by a conducting cylinder
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provided, at closest approach, it is sufficiently far from the
cylinder, whereas no such phenomenon occurs for a sphere
and an anisotropic atom. We further discussed a new
example of classical repulsion by considering a polarized
ellipsoid interacting with a dipole. On the other hand, a
system of an anisotropically polarizable atom interacting
via fluctuation forces with an anisotropic dielectric
half-space does not exhibit repulsion. Apparently, spatial
anisotropy is also required for repulsion between electric
bodies.
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