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We analyze a recent conjecture regarding the perturbative construction of nonlinear deformations of all

classically duality-invariant theories, including N ¼ 8 supergravity. Starting with an initial quartic

deformation, we engineer a procedure that generates a particular nonlinear deformation (Born-Infeld) of

the Maxwell theory. This procedure requires the introduction of an infinite number of modifications to a

constraint which eliminates degrees of freedom consistent with the duality and field content of the system.

We discuss the extension of this procedure toN ¼ 1 andN ¼ 2 supersymmetric theories, and comment

on its potential to either construct new supergravity theories with nonlinear Born-Infeld type duality, or to

constrain the finiteness of N ¼ 8 supergravity.
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I. INTRODUCTION

From our first and most familiar gauge theory, classical
electromagnetism, to the theoretical triumph of maximally
supersymmetric supergravity in four dimensions, N ¼ 8
supergravity [1], we have at our disposal examples of
theories whose equations of motion respect a particularly
constraining duality invariance: the rotation of the electric
field (or its analog) into the magnetic field. Their covariant
actions, however, must transform nontrivially for the clas-
sical duality symmetry of the equations of motion to be
preserved [2–4]. Introducing deformations of the action
must be undertaken with a certain amount of care if one
wishes to maintain this invariance. If one is able to con-
sistently include such deformations, exciting generaliza-
tions of known theories are possible. Additionally, one
would have the ability to introduce counterterms that might
otherwise seem to conflict with the known symmetries of
duality-invariant theories. In this paper, we will discuss
procedures which, starting from a classical action and
quantum generated counterterms, allow us to construct a
covariant effective action whose equations of motion are
invariant under the same duality transformations as the
classical action.

Linear duality has been an integral part of supergravity
theories since their beginning [5,6]. Nonlinear duality
models, where the action depends on quartic and higher-
order powers of vector fields, are well known for gauge
theories: these models are generalized Born-Infeld (BI)
theories discovered in Refs. [7,8], with a supersymmetric
version later constructed in [9]. Studied extensively in
[2–4,10–15], they have natural supersymmetric general-
izations, as reviewed in Refs. [3,4]. Some attempts to
construct the supergravity analog of the Born-Infeld
models of nonlinear duality have been made in N ¼ 1
supergravity (see, e.g., Refs. [14,15]), but, as of yet, no
models with nonlinear duality have ever been constructed
forN � 2 supergravity. The possibility that there may exist

systematic procedures which can generate them is indeed
intriguing.
At present, the ultraviolet properties of N ¼ 8 super-

gravity are believed to be related, at least in part, to the
duality symmetry of its equations of motion under E7ð7Þ
transformations. The UV properties of N ¼ 8 supergrav-
ity in D ¼ 4 have long been studied, starting with the
construction of candidate L-loop order counterterms for
L � 3 [16–18]. The 3-loop UV divergence supported by
the R4 þ ð@FÞ4 þ R2ð@FÞ2 þ � � � candidate counterterm
[16,18] was shown by explicit computations [19] to be
absent. One set of explanations for this is based on E7ð7Þ
symmetry [20–22]. E7ð7Þ-invariant non–BPS candidate on-

shell counterterms with nonlinear supersymmetry appear
starting at the 8-loop order [16,17] and a 1=8 BPS E7ð7Þ
candidate counterterm is available at the 7-loop order [23].
From a different perspective, it has been argued [24] that

locality forbids all counterterms in the real light-cone
superspace; this provides an alternative explanation of
the result of the 3-loop computation and an argument in
favor of all-loop finiteness of N ¼ 8 supergravity.
Through a pure spinor worldline formalism, manifest
maximal supersymmetry gives another explanation of
the 3-loop UV finiteness, but suggests a 7-loop four-
dimensional divergence [25], similar to its string theory
counterpart [26].
Recently, an argument for the all-loop order UV finite-

ness of perturbative N ¼ 8 supergravity, in an explana-
tion of observed cancellations [19,27,28], was presented in
Ref. [29] based on the conservation of the Noether-
Gaillard-Zumino (NGZ) E7ð7Þ duality current [2]. As we

will review in later sections, conservation of the duality
current requires the action to transform in a specific way.
The argument of Ref. [29] is based on the observation that
a deformation of the classical N ¼ 8 supergravity action
by an E7ð7Þ-invariant counterterm leads to an action with

different transformation properties and thus to a violation
of the E7ð7Þ NGZ current conservation.
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It was suggested, however, by Bossard and Nicolai [30],
based on previous work on dualities [31,32], that there
exist procedures which always allow a duality-consistent
perturbative nonlinear deformation of general theories—
including N ¼ 8 supergravity—which exhibit duality-
invariant classical equations of motion. An elegant
covariant procedure is described that allows a nonlinear
deformation of classical electromagnetism through a modi-
fication of the linear vector field self-duality constraint.
This constraint exists to eliminate degrees of freedom to
comply with the field content of the theory and to avoid a
double counting of vector fields. We find that this proce-
dure, at least unmodified, does not reproduce another
simple nonlinear deformation of classical electromagne-
tism: the Born-Infeld theory [7,8]. By actively expanding
the known Born-Infeld deformation, we are able to
a posteriori derive a procedure that does reproduce it.
We formulate a procedure general enough to find such
deformations. For U(1) theories the deformation is
external—i.e., it may be generated by interactions outside
Maxwell’s theory. In interacting theories it is generated by
the interactions of the fields of the theory and may either be
the result of finite or divergent counterterms. The proce-
dure we propose has the potential to exclude counterterms
that are incompatible with various expectations of the form
of the final action.

Extensive analysis suggests that manifestly duality-
invariant local actions are not available in the presence of
Lorentz invariance.1 Manifestly duality-invariant actions
with hidden Lorentz invariance were initially constructed
for two-dimensional scalar fields in [35,36] based on ideas
described in [37].2 The generalization of duality-symmetric
actions for vector fields in four dimensions (as well as
m-forms in d dimensions) was explicitly discussed in
[39]. While Lorentz invariance of the manifestly duality-
invariant actions is hidden, it emerges on-shell at the clas-
sical level and, assuming absence of anomalies, will also
be visible at the level of the quantum scattering matrix.
Thus, in such a formulation, the scattering matrix may be
expected to be constrained by both manifest Lorentz and
duality invariance.3 Analyzing the duality invariance of the
effective equations of motion of a covariant formulation of
these theories, as we will do in this paper, may be inter-

preted as an intermediate step toward an analysis of the
scattering matrix.
Reference [30] also proposes an explicit noncovariant

construction of duality-invariant theories using the
Henneaux-Teitelboim formulation [32,38]. In our paper,
for the examples limited to the nonlinear deformations of
the Maxwell theory, we will also discuss the Hamiltonian
approach to the problem which has a simple relation to the
covariant solution.
We should spend a few words on terminology. Maxwell

theories have no interaction, so the introduction of a non-
linear deformation is, of course, a choice. In supergravity
theories, on the other hand, ‘‘experimentally’’ identified
counterterms (i.e., counterterms arising from explicit
calculations) may force deformations upon us. We will
use the word counterterm to specifically mean changes to
the action necessitated by explicit calculation (or conjec-
tured explicit calculation). In general, the form of a given
counterterm will not alone be sufficient to deform the
action in a way consistent with the duality. The procedures
discussed in this paper will generate from these counter-
terms a final deformed action compatible with duality
symmetries. In Maxwell theories, the role of supergravity
counterterms is taken by initial deformation sources gen-
erated by external interactions. Analogously to supergrav-
ity theories, the procedures discussed in later sections will
take these initial sources and generate final deformed
actions.
The paper is organized as follows. In Sec. II we intro-

duce the simplest examples of duality-invariant theories,
Maxwell’s electromagnetism, and two of its nonlinear
deformations. In Sec. III, we introduce constraints de-
signed to help make duality symmetry manifest, and which
allow a framework for introducing deformation. In Sec. IV
we introduce the necessary generalization to supergravity,
and reproduce the procedure of Ref. [30], for generating
nonlinear deformations but in notation we will find it easier
to generalize from. In Sec. V we derive the procedure
required to introduce the Born-Infeld deformation. In
Sec. VI we discuss the applicability of these procedures
in a supersymmetric context. We conclude in Sec. VII. In
Appendix A we discuss duality in supergravity and in
Appendix B we present the Hamiltonian solutions
of the duality-invariant Bossard-Nicolai (BN) and BI
models.

II. MAXWELL DUALITY-INVARIANT THEORIES

For an excellent review of duality rotations in nonlinear
electrodynamics, which in this section we follow closely,
please see Ref. [4]. We begin by considering perhaps the
most familiar duality-invariant theory, classical electro-
magnetism in a vacuum. Maxwell’s equations are given

@tB¼�r�E; r�B¼0; @tD¼r�H; r�D¼0;

(2.1)

1However, Pasti-Soroki-Tonin actions [33] are available,
which are Lorentz covariant and duality invariant due to a special
choice of gauge symmetries and a nonpolynomial (e.g., inverse
powers) dependence on auxiliary fields. In particular, there is an
action of this kind with manifest duality for maximally super-
symmetric D ¼ 6 supergravity [34].

2The ideas of [37] have also been used in [38] for the
construction of actions for self-dual form fields in 2 modulo 4
dimensions.

3In the context of the N ¼ 8 supergravity, certain aspects of
the E7ð7Þ duality may be probed at the level of the scattering
matrix through soft-scalar limits [40].
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in addition to relations between the electric field E, the
magnetic field H, the electric displacement D, and the
magnetic induction B. In a vacuum, D ¼ E, and H ¼ B.
The Hamiltonian H ¼ 1

2 ðE2 þ B2Þ and the equations of

motion are invariant under rotations

E
B

� �
�

�
cos� � sin�
sin� cos�

�
E
B

� �
: (2.2)

Note that the Lagrangian, however,L ¼ 1
2 ðE2 � B2Þ is not

invariant, for small rotations � one finds that it transforms
as

�L ¼ ��EB: (2.3)

This suggests that nonlinear deformations ofLwill require
modifications which are also noninvariant. Indeed, the
most straightforward nonlinear modification is the intro-
duction of a chargeless medium. In such a medium we will
now have nonlinear relations:

D ¼ DðE;BÞ; H ¼ HðE;BÞ: (2.4)

It is convenient to continue the discussion more cova-
riantly through the introduction of four-component nota-
tion. Quite generally, duality transformations may be
realized in the path integral as a Legendre transform (see
also, e.g., [11]). Given some Lagrangian LðFÞ, depending
only on the field strength of a vector field, one constructs

eLðF;GÞ ¼ LðFÞ � 1
2�

����F��@� ~A�; (2.5)

in which F is treated as a fundamental field. On the one

hand, integrating out ~A� one finds that F should obey the
Bianchi identity �����@�F�� ¼ 0, i.e., that F may be ex-

pressed in terms of a vector potential in the usual way.

Plugging this into eLðF;GÞ one finds that it reduces to the
original Lagrangian LðFÞ. On the other hand, the classical
equations of motion for F require that G�� ¼ @� ~A� �
@� ~A� is related to F by

~G�� ¼ 2
@LðFÞ
@F��

; (2.6)

through

G�� ¼ �1
2�����

~G��;

~G�� ¼ 1
2�

����G��:
(2.7)

The Lagrangian LDðGÞ, dual to LðFÞ, is obtained by
eliminating F between Eqs. (2.5) and (2.6). Regardless of
the form of the original Lagrangian, the Bianchi identity
and the equations of motion of the original Lagrangian,
expressed in terms of F and G, are

@� ~F�� ¼ 0; @� ~G�� ¼ 0; (2.8)

and are formally mapped into linear combinations of them-
selves by a GLð2Þ transformation. Further requiring that

the transformed G may be obtained from the action eval-
uated on the transformed F though Eq. (2.6) and that the
resulting action is a deformation of Maxwell’s theory L¼
�1

4F
2þOðF4Þ restricts [4] the possible transformations to

�
F
G

� �
¼ 0 B

�B 0

� �
F
G

� �
: (2.9)

In other words, the duality transformation exchanges the
Bianchi identity and the equations of motion of the original
Lagrangian. The original Lagrangian is self-dual if L and
LD have the same functional form. It is easy to check that
Maxwell’s theory, with LðFÞ ¼ � 1

4F
2, is such a theory.

In the derivation above, the dual field strength is deter-
mined by Eq. (2.6) and is not an independent field. Since
duality transformations (2.9) mix the field strength and its
dual, it is convenient to interpret G as an independent field
and relate it to F by introducing constraint equations as we
discuss in Sec. III.
For theories with nv vector fields, the strategy for con-

structing the dual Lagrangian is unchanged. The equations
of motion and the Bianchi identities remain of the form
(2.8) but are invariant under a much larger set of
transformations:

�
F
G

� �
¼ A B

C D

� �
F
G

� �
; (2.10)

AT ¼ �D; BT ¼ B; CT ¼ C: (2.11)

Here A; B; C;D are the infinitesimal parameters of the
transformations, arbitrary real n� n matrices, and the
transformations (2.10) generate the Spð2nv;RÞ algebra.
For more general theories, when scalar fields are present,
we would also include a ��ðA; B; C;DÞ.
Consistency of the duality constraint can be expressed as

requiring that the Lagrangian must transform under duality
in a particular way, defined by the NGZ identity [2]. The
NGZ current conservation requires universally4 that for
any duality group embeddable into Spð2nv;RÞ,

�L ¼ 1
4ð ~GBGþ ~FCFÞ: (2.12)

This leads to the NGZ identity since the variation
�LðF;�Þ can be computed independently using the chain
rule and the information about �F and ��.
For example, in the case of a U(1) duality (2.9),

A ¼ D ¼ 0; C ¼ �B; (2.13)

we see that Eq. (2.12) reduces to �L ¼ 1
4 ð ~GBG� ~FBFÞ.

Taking into account that in the absence of scalars,

4Here we discuss theories with actions depending on the field
strength F but not on its derivatives. When derivatives are
present, an analogous relation is given by a functional derivative
over F of the action; see Appendix A.
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�LðFÞ ¼ @LðFÞ
@F��

�F�� ¼ 1

2
~GBG; (2.14)

the NGZ identity which follows from (2.12) requires that

1
2
~GBG ¼ 1

4ð ~GBG� ~FBFÞ: (2.15)

In this case, the NGZ identity simplifies to the following
relation:

F ~FþG ~G ¼ 0: (2.16)

The NGZ identity can be alternatively be presented by as
follows. First consider the generalization of the action (2.5)
to the presence of scalars, LðFÞ � LðF;�Þ written in

terms of the dual field strength eLðF;�Þ ¼ LðF;�Þ �
1
4F

~G. Now we consider its invariance under duality trans-

formations (2.10) and ��. Annotating the transformed

F; ~G as F0; ~G0, and the transformed � as a �0, the invari-
ance of this action implies that

Z eLðF;�Þ ¼ Sinv ¼ S½F0; �0� � 1

4

Z
F0 ~G0

¼ S½F;�� � 1

4

Z
F ~G: (2.17)

According to (2.10) and (2.11)

�ðF ~GÞ ¼ ðAFþ BGÞ ~Gþ FðC ~FþD ~GÞ ¼ ~GBGþ ~FCF;

(2.18)

implying that Sinv is invariant under the transformations
(2.10), provided that (2.12) is satisfied.

We may also present the NGZ identity as follows:

~G� F
� ~G

�F
¼ 4

�Sinv
�F

; (2.19)

which is just the derivative of the defining relation of Sinv
with respect to F under the assumption that there is some
relation between F and G. We can call it a ‘‘reconstruction
identity’’ since it follows from the form of the action,

S ¼ 1

4

Z
F ~Gþ Sinv; (2.20)

reconstructed using the duality symmetry. When the theory
only has linear duality (e.g., only F2 terms in the action)
�Sinv=�F vanishes. So, Eqs. (2.19) and (2.20) tell us that
any higher-order dependence (F4, F6, etc.) must be part
of Sinv.

The NGZ identity, in conjunction with Eq. (2.6), can be
solved to find GðFÞ and various Lagrangians providing a
duality symmetry between the equations of motion and
Bianchi identities. We will discuss two cases of nonlinear
deformations of the Maxwell theory for models depending
only on F’s without derivatives.

A. Born-Infeld Lagrangian

The Born-Infeld Lagrangian, perhaps the most vener-
able nonlinear deformation of Maxwell’s theory, is

L BI¼g�2ð1�
ffiffiffiffi
�

p
Þ¼�1

4F
2þ 1

32g
2ððF2Þ2þðF ~FÞ2Þþ���;

(2.21)

where g is the coupling constant, and �¼1þ2g2ðF2=4Þ�
g4ðF ~F=4Þ2. Using Eq. (2.6), we find the following expres-
sion for G:

G�� ¼ ������

@LðFÞ
@F��

; (2.22)

¼ 1ffiffiffiffi
�

p
�
~F�� þ g2

1

4
ðF ~FÞF��

�
: (2.23)

A little algebra shows that the NGZ identity, Eq. (2.16), is
readily verified and that the dual Lagrangian constructed as
described above has the same functional form as LBI. It is
worth noting that classical electromagnetism corresponds
to g2 ! 0.
For relative compactness, and to compare this

Lagrangian with the next deformed theory, we introduce
the following notation for the two possible Lorentz
invariants:

t ¼ 1
4F

2; z ¼ 1
4F

~F: (2.24)

With these field variables, one can rewrite the Born-Infeld
Lagrangian simply as

LBI ¼ g�2

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2g2t� g4z2

q �
; (2.25)

and expand it as

LBI ¼ �tþ 1
2g

2ðt2 þ z2Þ � 1
2g

4tðt2 þ z2Þ
þ 1

8g
6ðt2 þ z2Þð5t2 þ z2Þ

� 1
8g

8tðt2 þ z2Þð7t2 þ 3z2Þ þ � � � : (2.26)

We continue the discussion of the BI case soon, but first
we will discuss a distinct nonlinear deformation of elec-
tromagnetism. While superficially complicated, this next
deformation is, in fact, much easier to generate from pure
Maxwell electrodynamics. Indeed, we will see a trade-off
between the relative simplicity of the deformed action in
the BI case and the complicated initial deformation source
required to generate it, and the relative simplicity of the
initial deformation source which results in the superficially
complicated action we will now present.

B. Bossard-Nicolai model

With the same variables, t and z, one can write the
following NGZ–consistent Lagrangian:
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LBI¼�tþ 1
2g

2ðt2þz2Þ� 1
2g

4tðt2þz2Þ
þ 1

4g
6ðt2þz2Þð3t2þz2Þ� 1

8g
8tðt2þz2Þð11t2þ7z2Þ

þ 1
32g

10ðt2þz2Þð91t4þ86t2z2þ11z4Þ
� 1

8g
12tðt2þz2Þð51t4þ64t2z2þ17z4Þ

þ 1
64g

14ðt2þz2Þð969t6þ1517t4z2þ623t2z4þ43z6Þ
þ��� : (2.27)

One simply keeps adding terms necessary so as to maintain
the consistency of Eq. (2.16) order by order, specifically
via a procedure we will discuss in Sec. III C. Unlike the
Born-Infeld action, we do not know if this has a closed-
form expression. Note that this Lagrangian differs from
LBI starting at Oðg6Þ.

It is not difficult to verify that Eq. (2.16) is maintained

order by order. Using, ~G ¼ 2 @L
@F ¼ ð@tLÞFþ ð@zLÞ ~F and

G¼�ð@tLÞ ~Fþð@zLÞF, we can rewrite the NGZ identity as

ðð@tLÞ2 � ð@zLÞ2 � 1Þz� ð2ð@zLÞð@tLÞÞt ¼ 0: (2.28)

Although the explicit Lagrangian, Eq. (2.27), is not
provided in Ref. [30], it is indeed the nonlinear deforma-
tion of classical electrodynamics that is produced5 order by
order as we will describe shortly.

III. TWISTED SELF-DUALITY CONSTRAINTS

While the duality constraints are readily checked in the
two above examples, BI and BN, note that, by hand, we
forced a functional form of G in terms of F through
Eq. (2.6). The very act of doing so, prioritizing the primacy
of one over the other, makes the duality between F and G
no longer manifest. We can avoid this by introducing what
has been called a ‘‘twisted self-duality’’ constraint—a
constraint that guarantees that only one vector field from
the duality doublet will ever be independent, but without
establishing priority for one over the other. This constraint
generalizes Eq. (2.6), in that it can be considered more
fundamental than the Lagrangian L which it, in fact,
determines. The symmetry between F and G will only be
broken by the solution to this constraint.

A. Schrödinger’s BI solution

In the Born-Infeld example, such a constraint was first
found by Schrödinger in 1935 [8]. To describe
Schrödinger’s construction in the form given in [11] it is
useful to consider the duality symmetry in a complex basis
where

T ¼ F� iG; T� ¼ Fþ iG; (3.1)

and the U(1) duality symmetry is

�
F� iG

Fþ iG

 !
¼ iB 0

0 �iB

 !
F� iG

Fþ iG

 !
: (3.2)

Schrödinger suggested the following exact duality cova-
riant cubic self-duality constraint:

T��ðT ~TÞ � ~T��T
2 ¼ g2

8
~T�
��ðT ~TÞ2: (3.3)

It is straightforward to verify that, if this constraint is
solved perturbatively, one finds the unique Born-Infeld
solution of the NGZ identity,

T ~T� ¼ F ~FþG ~G ¼ 0: (3.4)

And, even better, there is an action which is manifestly
duality invariant [8,11],

LSchðTÞ ¼ 4
T2

ðT ~TÞ ; LSch ¼ �L�
Sch: (3.5)

This fascinating Lagrangian is a ratio of two duality in-
variants

T2 ¼ ðF� iGÞ2 ¼ F2 � 2iFG�G2; (3.6)

T ~T ¼ ðF� iGÞð ~F� i ~GÞ ¼ F ~F� 2iF ~G�G ~G: (3.7)

The cubic constraint (3.3) is equivalent to the requirement
that the derivative of the Schrödinger action LSchðTÞ over
T defines the conjugate ~T�:

~T�
�� � g�2 @LSch

@T�� : (3.8)

It follows that

@LSch

@T��
¼ 8

�
T��

1

ðT ~TÞ �
~T��

T2

ðT ~TÞ2
�
¼ g2 ~T�

��: (3.9)

Contraction with T�� demonstrates that (3.4) holds.
To make contact with the supergravity formalism and

the discussion in Appendix A, we introduce self-dual
notation,

T� ¼ 1
2ðT � i ~TÞ; (3.10)

such that Tþ
��T

��� ¼ 0 and

T� ¼ ðT�Þþ þ ðT�Þ�; ðT�Þ� ¼ 1
2ðT� � i ~T�Þ: (3.11)

Recalling that ð ~TÞ2 ¼ �T2, we have

T2 � iðT ~TÞ ¼ TðT � i ~TÞ ¼ 2TT� ¼ 2ðT�Þ2: (3.12)

We can now rewrite the cubic self-duality constraint,
Eq. (3.8), as

Tþ
��ðT�Þ2 þ g2

16
ðT�Þþ��ðT ~TÞ2 ¼ 0; (3.13)

or

5Strictly speaking, Ref. [30] presents this model with negative
g2 so as to generate a positive Hamiltonian, as discussed in
Appendix B.
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Tþ
��ðT�Þ2 � g2

16
T�þ
��ððTþÞ2 � ðT�Þ2Þ2 ¼ 0; (3.14)

and the NGZ identity (2.16) is

T�þTþ � T��T� ¼ 0: (3.15)

This formulation of the NGZ identity will be useful in later
sections.

B. Maxwell case

Note that in the Maxwell case with g ¼ 0 there is a
particularly simple duality covariant linear twisted self-

duality constraint G ¼ ~F and F¼� ~G, which in self-dual
notation is

Tþ ¼ Fþ � iGþ ¼ 0; (3.16)

and does indeed follow from the g2 ! 0 limit of Eq. (3.14).
The conjugate of (3.16) is ðTþÞ� ¼ F� þ iG� ¼ 0. It
should be noted, however, that Eq. (3.14) cannot be inter-
preted as a local perturbative deformation of (3.16).

C. BN case

In contrast, the model in Eq. (2.27), which is consistent
with NGZ identity, satisfies a local deformation of (3.16),
in which the right-hand side is modified as

Tþ
�� ¼ g2

16
T�þ
��ðT�Þ2: (3.17)

Using Eqs. (2.6), (3.1), and (3.10), and

Gþ ¼ 1
2ðGþ i ~GÞ ¼ 1

2ðFþ i ~FÞð@zLþ i@tLÞ
¼ Fþð@zLþ i@tLÞ; (3.18)

we can translate Eq. (3.17) back into constraints on deriva-
tives of the action,

0 ¼ ð1þ @tL� i@zLÞ

� g2

8
ðt� izÞð1� @tL� i@zLÞ2ð1� @tLþ i@zLÞ:

(3.19)

Foreshadowing slightly—requiring analyticity of L for
small values of F—one may introduce an ansatz in terms
of monomials in g2, t ¼ F2=4, and z ¼ F ~F=4,

L¼
0
@g�2

X
m¼0;p¼0

g2ðpþ2mÞcðp;2mÞtpz2m
1
A�cð0;0Þg�2; (3.20)

and solve Eq. (3.19) algebraically, order by order in g2,
fixing the constant coefficients cði;jÞ. Doing so results in a

Lagrangian which satisfies the NGZ equation, and repro-
duces Eq. (2.27).

Indeed, as we will see, the covariant procedure proposed
in Ref. [30] is to modify the linear twisted self-duality con-
straint to a nonlinear duality constraint by the introduction

of a single deformation (or counterterm) as we just did to go
from Eq. (3.16) to Eq. (3.17). It so happens that in the cases
studied in Ref. [30], as with Eq. (3.17), a single such defor-
mation was sufficient. We can see already, given the cubic
nature of the BI constraint, that, in general, we will require a
procedure which introduces an infinite number of such de-
formations to the linear twisted self-duality constraint.
Indeed, the noncovariant procedure of Floreanini, Jackiw,
Henneaux, and Teitelboim [37,38], discussed in Ref. [30],
has the potential to allow an infinite amount of information.
Reference [30] seemed to constrain its constants of integra-
tion to explicitly reproduce the covariant procedure de-
scribed above and more generally in Sec. IVA. This need
not be so. The generalization of the covariant procedure
discussed in Sec. V can be arrived at noncovariantly by
allowing arbitrary constants of integration that satisfy the
relevant NGZ relation. We have, in fact, verified that the
Born-Infeld Hamiltonian can be obtained in this approach;
see Appendix B.

IV. BOSSARD-NICOLAI PROPOSAL

We start by explicitly providing an algorithm for the
covariant procedure introduced in Ref. [30]. We subse-
quently review the provided supporting examples.

A. Covariant BN procedure

Bossard and Nicolai posit [30] the existence of proce-
dures which would allow the deformation of all classically
duality-invariant theories, including N ¼ 8 supergravity.
This proposal was worked out on three examples in
Ref. [30], and here we reconstruct the covariant procedure
in detail.
A convenient language for extended supergravities

comes from the fact that any candidate counterterm would
depend on the graviphoton.6 More specifically, the counter-
term would depend on the conjugate self-dual field
strength �TþAB and the anti-self-dual field strength T�

AB. In
the G=H coset space, AB are the indices of the antisym-
metric representation of the group H. For example, for
N ¼ 8 supergravity these would be SU(8) indices (in
the 28-dimensional representation) and G=H is
E7ð7Þ=SUð8Þ. For U(1) the deformation source depends on

T�þ and T�. In this procedure, as with the generalized
procedure we present in Sec. VB, we will include the
H-symmetry indices. The same procedures work for U(1)
with the indices elided.
One starts with an initial action Sinit with a conserved

duality current and a manifestly duality-invariant counter-
term, or deformation, �S. It is assumed that �S can be
expressed as a manifestly duality-invariant function of F
and G or, equivalently, on �TþAB and T�

AB. Classically

6See Eq. (A4) for a definition of this particular combination of
F and G and scalars for supergravities with scalars in the G=H
coset space.
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Tþ
AB ¼ 0 is the linearized twisted self-duality constraint,

which we will be deforming. The goal is to construct a
Lagrangian Lfinal that incorporates the counterterm (or
deformation) yet still conserves the duality current. For
the general case, this means satisfying the NGZ identity
given in Eqs. (A6) and (A7), and the simpler (2.16) for U
(1). Of course, one should also require that it possesses the
field content and other relevant symmetries of Sinit. The
construction proceeds as follows:

(1) Take the variation of the counterterm with respect to
the field strength, and express as a function of T�
and �Tþ which we will call the initial deformation

source I ð1Þ,

��S

� �TþAB
! �I ð1ÞðT�

AB;
�TþABÞ

� �TþAB
: (4.1)

(2) Constrain the self-dual field strength to the variation
of this initial source:

Tþ
AB ¼ �I ð1ÞðT�

AB;
�TþABÞ

� �TþAB
: (4.2)

This is a modification of the linear twisted self-
duality constraint TþAB ¼ 0.7

(3) Translate Eq. (4.2) to a differential constraint on
Sfinal, cf. Sec. III C for the U(1) case.

(4) Introduce an ansatz forLfinal in terms of the Lorentz
invariants, cf. Eq. (3.20), again, for the U(1) case.
This will be more complicated, of course, for the
generic case.

(5) Solve for the ansatz order by order in the coupling
constant, at each step verifying the consistency
of the relevant NGZ relation, the presence of
additional desired symmetries of the target
Lagrangian and enlarging the ansatz if one runs
into an inconsistency.

In contrast to Ref. [30] we do not call I ð1Þ the
‘‘initial deformation.’’ As we will see in the generalized
procedure, in order to even recover the Born-Infeld action
we will need to include an infinite number of terms to
modify the covariant twisted self-duality constraint.
One can integrate those infinite deformations to achieve a
final IBI, but this will not be the final deformation of the
action LMax �LBI, rather it is simply the complete
source of the deformations to the linear twisted self-duality
constraint required to generate the BI deformation
of the action through the generalized procedure. For

consistency, then, we refer to I ð1Þ as the initial deformation
source.

B. Three BN examples

Two examples of the deformation of the linear twisted
self-duality condition discussed in Ref. [30] relate to
Maxwell electrodynamics and one to a toy model ofN ¼
8 supergravity.
The first example, from Sec. 2 of Ref. [30], is a Maxwell

deformation analogous to anN ¼ 8 supergravity counter-
term. The deformation is quadratic in F, with derivatives

of the Maxwell field, I ð1Þ 	 C2ðdFÞ2. The dependence on
derivatives necessitates the following deformed twisted
self-duality constraint [41]:

�

�FðyÞ
Z

d4xð ~GBGþ ~FBFÞ ¼ 0: (4.3)

In this case, G is linear in F and the action remains
quadratic in F. The reconstruction is based on NGZ iden-

tity in the form S ¼ 1
4F

~G, which is valid only for the

actions quadratic in F when Sinv ¼ 0 in Eqs. (2.17) and
(2.19). As the result of the deformation (4.2) the recon-
structed action SðFÞ has some nonpolynomial nonlocal
terms required to complete the deformation in the action.
This example, however, has linear duality since G remains
a linear function of F even with the deformation caused by

I ð1Þ 	 C2ðdFÞ2.
A closely related example in Sec. II is a toy model of an

N ¼ 8 supergravity deformation caused by the part of the
3-loop counterterm which is quadratic in F and
quadratic in Weyl curvatures. The quartic in F terms
ð@FÞ4 present in the N ¼ 8 3-loop counterterm,
C4 þ ð@FÞ4 þ C2ð@FÞ2 þ � � � , are not taken into account
in this example. This example, therefore, is also of the type

given in Eqs. (2.17) and (2.19) where S ¼ 1
4

R
F� ~G� þ

Sinv and �Sinv
�F ¼ 0. In the toy model, ~G remains a linear

function of F, in absence of the contribution to the right-

hand side of Eq. (2.19) from �Sinv
�F ¼ 0, and therefore the

linear duality of the classical action is preserved by defor-
mation. Note that, in the case of linear duality, the action is
easily reconstructed, all dependence on vectors is in

Svect ¼ 1
4

R
F� ~G� and it satisfies NGZ identity as ex-

plained in (2.18). Thus, this example also does not imme-
diately shed light on cases of nonlinear duality when the
vector dependent part of Sinv is present and contains ð@FÞ4
terms, which require the presence of all increasing powers
of F.
In both examples of Sec. 2 in Ref. [30], a Lorentz

covariant single term deformation of the undeformed con-
straint is employed as shown in Eq. (4.2).
The third example is the deformation we discussed as

the BN model earlier in Sec. III C. Without derivatives in
F, the manifestly U(1) invariant ‘‘initial’’ deformation
source, quartic in F, is used in the Lorentz covariant cubic
deformation of the linear constraint (4.2), and its equivalent
Hamiltonian formulation. The proposed procedure is
equivalent to the one worked out earlier: introduce the

7When I ð1Þ has only terms quadratic in T [as in U(1) and the
toy model N ¼ 8 examples of Sec. 2 in Ref. [30] ], the right-
hand side of Eq. (4.2) remains linear in T so the deformation of
the linear constraint remains linear.
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initial source, and then solve the twisted self-duality con-
straint for a Lagrangian order by order by introducing an
ansatz polynomial in the available Lorentz invariants.

Any procedure must require that the deformed action,
reconstructed using the deformed twisted self-duality con-
straint (4.2), satisfies the relevant NGZ constraints (2.16).
All examples considered in [30] have the nice property that

the only input into the right-hand side of (4.2) is a term I ð1Þ
quadratic or quartic in field strengths, and they indeed
satisfy the relevant NGZ constraints: (4.3) in the case
with derivatives and (2.16) in models without derivatives
on F. No allowance is made, however, for cases when the
solution of Eq. (4.2) is inconsistent with direct higher-loop
calculations, as neither of the examples indicated the need
for such a possibility.

We will see that the Born-Infeld model requires the
presence of an infinite set of deformations of the linear
constraint (3.16). Instead of Eq. (4.2), we will find that a
general procedure will impose

Tþ
AB¼

�I ð1Þ

� �TþAB
þ���þ �I ðnÞ

� �TþAB
þ���¼�IðT�

AB;
�TþAB;gÞ

� �TþAB
;

(4.4)

where the various terms need not be related to the initial

I ð1Þ. In the following section we present a procedure that
successfully reproduces the Born-Infield deformation.

V. GENERALIZED COVARIANT PROCEDURE

First, we present the procedure that we use to recover the
Born-Infeld deformation in the BN framework, and see
that it does, indeed, require an infinite number of modifi-
cations to the linear twisted self-duality constraint.
Learning from this example, we modify the procedure of
Sec. IVA so as to handle the more general case.

A. Finding the Born-Infeld deformation

We can begin by introducing an ansatz for the deforma-
tion source IðT�; T�þ; gÞ in terms of a series expansion,
i.e.,

Tþ
��¼g2

16
T�þ
��ðT�Þ2

�
1þX

n¼0

dn

�
1

4
g4ðT�þÞ2ðT�Þ2

�
n
�
; (5.1)

where dn are real parameters to be constrained so as to
reproduce the Born-Infeld deformation. Since we are look-
ing to reproduce the BI Lagrangian, and we know it ahead
of time, we may simply set L to Eq. (2.21). It is not
difficult to check [by multiplying with �Tþ and subtracting
from the result the product between T� and the conjugate
of (5.1)] that there exist solutions obeying the NGZ identity
(3.15).

As in Sec. III C, we can translate Eq. (5.1) into con-
straints on derivatives of the BI action using Gþ ¼
Fþð@zLþ i@tLÞ,

0 ¼ ð1þ @tL� i@zLÞ

� g2

8
ðt� izÞð1� @tL� i@zLÞ2ð1� @tLþ i@zLÞ

�
�
1þ X

n¼0

dn½g4ðt� izÞð1� @tL� i@zLÞ2

� ðtþ izÞð1� @tLþ i@zLÞ2�n
�
: (5.2)

We expand in a series of the coupling constant and solve
for dn order by order. We indeed find an infinite series
which we can express as a generalized hypergeometric
function so the BI twisted self-duality constraint can be
given,

Tþ
��¼ 1

16g
2 �Tþ

��ðT�Þ23F2ð12;34;54;43;53;� 1
27g

4ð �TþÞ2ðT�Þ2Þ: (5.3)

Writing Eq. (5.3) as

Tþ
�� ¼ �IðT�; �Tþ; gÞ

� �Tþ
��

; (5.4)

we find that the required deformation source takes the
following form:

IðT�; �Tþ;gÞ
¼ 6

g2

�
1�3F2

�
�1

2
;�1

4
;
1

4
;
1

3
;
2

3
;� 1

27
g4ð �TþÞ2ðT�Þ2

��
:

(5.5)

The procedure then for deforming to BI is to modify
Eq. (3.16) to Eq. (5.3) and then to introduce an ansatz for
the Lagrangian to be solved for order by order. The result-
ing Lagrangian should be analytic for small values of the
field strength.
We have therefore constructed (5.5), a deformation

source IðT�; �Tþ; gÞ which, like Schrödinger’s action

LSchðTÞ ¼ 4 T2

ðT ~TÞ via Eq. (3.8), yields a twisted self-duality

constraint whose solution is the Born-Infeld action. The
differences between the two expressions are striking;
moreover, while both are duality invariant, their natural
variables and, consequently, the resulting deformed twisted
self-duality constraints, (3.9) and (5.3), are different. This
opens the possibility that there may exist other deforma-
tions, different from them, which nevertheless generate the
same duality-invariant action. It would be interesting to
explore this possibility as well as the relation between
these actions.

B. Generalized covariant procedure

Thus, to reproduce a sufficiently general action with a
conserved duality current, we must allow the counterterm
to be a general function of the coupling constant and
duality invariants which is analytic for small values of
fields. As before, we present this discussion in terms of
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graviphoton field strengths (see appendix A), but the U(1)
examples follow by simply dropping the indices.

We start with a duality-conserving initial action Sinit, and
a duality-invariant counterterm, or deformation, �S. We
assume, as BN, that �S can be expressed as a function the
conjugate self-dual field strength �TþAB. We wish to arrive
at a LagrangianLfinal that incorporates the counterterm yet
still conserves the duality current. We proceed as follows:

(1) Take the variation of the counterterm with respect to
the field strength, and express as a function of T�,
and �Tþ,

��S

� �TþAB
! �IðT�

AB;
�TþAB; gÞ

� �TþAB
: (5.6)

(2) Introduce an ansatz for the deformation source
IðT�

AB; �T
þAB; gÞ. In general, this may be taken to

depend on all possible duality invariants.8

(3) Constrain the self-dual field strength to this variation:

Tþ
AB ¼ �IðT�

AB;
�TþAB; gÞ

� �TþAB
: (5.7)

(4) Translate Eq. (5.6) to a differential constraint on
Lfinal, cf. Sec. VA for the U(1) case. The differential
constraint in general is more complicated; see (A6)
and (A7).

(5) Introduce an ansatz for Lfinal, which is analytic
around the origin in terms of the Lorentz invariants.
For the case of U(1), again, this was not so difficult
[Eq. (3.20)], but in general this is unknown and can
depend on other fields (e.g. scalars) in nontrivial
ways.

(6) Solve for both the I ansatz parameters, as well as
the Lagrangian ansatz parameters, order by order in
the coupling constant, enforcing the consistency of
the relevant NGZ consistency equation [in the U(1)
case any of the Eqs. (2.16) and (3.15) or (2.28)], and
additional desired symmetries of the target
Lagrangian, enlarging the ansatz if one runs into
inconsistency.

The procedure given in Sec. IVA is recovered by re-
stricting to the lowest order term in the small g expansion
of I . We also see that, at least for deformations of
Maxwell’s theory, there are an infinite number of classical
solutions recoverable by this procedure, consistent with the
findings of Refs. [10,11], where it was shown that the NGZ
identity (2.16) has infinitely many solutions.

There exists the possibility that the counterterms gen-

erated by iterating on some first counterterm I ð1Þ differ at
some loop level from counterterms discovered by explicit
calculation. Unlike the original procedure, if the difference
is a duality invariant, our strategy can accommodate it by a
suitable modification of �IðT�

AB;
�TþAB; gÞ. In the super-

symmetric context discussed in the next section, this allows
for complete supersymmetric invariants to be indepen-
dently included starting at some loop order higher than
the one at which the first counterterm appears.
It is important to note that in the U(1) case without

derivatives and scalars, a Hermitian deformation and man-
ifestly U(1) invariant deformation IðT�; T�þ; gÞ guaran-
tees that the NGZ equation is satisfied. Indeed, using (5.7)
it is easy to see that

T�þ�IðT�;T�þ;gÞ
�T�þ �T��IðT�;T�þ;gÞ

�T� ¼T�þTþ�T��T�

¼0: (5.8)

This was manifestly the case for the deformation ansatz for
any real choice of dn in Eq. (5.1). This is in contrast to the
NGZ equations relevant for supergravity as we will discuss
in appendix A.

VI. NONLINEAR U(1) DUALITY
AND SUPERSYMMETRY

The NGZ condition for U(1) duality invariance (2.16)
has infinitely many solutions, which are analytic for suffi-
ciently small field strength [10,11]. As we saw in earlier
sections, the BN deformed self-duality constraint selects
one such solution. In the case of Maxwell’s theory de-
formed by a quartic interaction the resulting action, while
self-dual, differs from the Born-Infeld action starting from
the sixth order terms. By allowing higher-order deforma-
tions it is possible to accommodate the Born-Infeld action
in the deformed self-duality framework. This generaliza-
tion of the BN proposal, while necessary to include known
examples of nonlinear duality in this framework, also leads
to an apparent loss of predictive power by allowing us to
freely deform the action order by order in perturbation
theory. Assuming that we did not know of the Born-
Infeld action, we would like to find a physical principle
that singles it out of this infinite family of duality-invariant
actions. More generally, we would like to find a principle
that selects physically relevant actions.
Since Maxwell theory can be supersymmetrized up to

maximal supersymmetry, it is natural to require that this
feature survives the nonlinear extension. A similar require-
ment arises naturally if one considers applying the twisted
self-duality ideas to (maximal) supergravity. We will
therefore explore the conditions under which twisted
self-duality is compatible with minimal and extended su-
persymmetry. In this discussion of supersymmetry and

8In the case of the nonlinear U(1) duality we assumed that I is
an analytic function of g4ð �TþÞ2ðT�Þ2. There is, however, in more
general theories, no reason to forbid higher-order counterterms.
In other words, if we have to worry about adding counterterms,
we might as well worry about adding all counterterms allowed
by the known symmetries. For example, forN ¼ 8 supergravity
we should at least include in the ansatz all E7ð7Þ invariants.
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self-duality we follow mostly the work by Kuzenko and
Theisen [3] and Ketov [42].

A. N ¼ 1 supersymmetric nonlinear electrodynamics

Models with nonlinear U(1) duality and N ¼ 1 super-
symmetry are constructible in superspace; see [3,4,9]. The
action is constructed from the standard (anti)chiral field-
strength superfields,

W� ¼ �1
4
�D2D�V; �W _� ¼ �1

4D
2 �D _�V; (6.1)

defined in terms of a real unconstrained prepotential V. The
Bianchi identities,

D�W� ¼ �D _�
�W _�; (6.2)

are automatically satisfied. Similarly to the bosonic case,
the dual (anti)chiral field strengths, �M _� and M�, are de-
fined from the action S½W; �W� as follows:

iM�½W��2
�

�W�S½W; �W�; �i �M _�½W��2
�

� �W _�

S½W; �W�:
(6.3)

The equations of motion for the vector multiplet may be
expressed in terms of M and �M as

D�M� ¼ �D _�
�M _�: (6.4)

The superysmmetric generalization of the NGZ relation
requires that

Im
Z

d4xd2	ðW�W� þM�M�Þ ¼ 0: (6.5)

One may understand the structure of this relation by recall-
ing that the bosonic NGZ relation is quadratic in field
strengths in addition to being invariant under the infinitesi-
mal duality rotation

�F ¼ 
G; �G ¼ �
F: (6.6)

The Bianchi identities (6.2) and the equations of motion
(6.4) are therefore invariant under a similar transformation
acting on W and M. Moreover, the supersymmetric NGZ
identity, Eq. (6.5), is also invariant under this transforma-
tion. It is worth noting that this equation reduces to the
bosonic NGZ relation, Eq. (2.16), upon setting the fermion
and auxiliary fields to zero.

The N ¼ 1 Maxwell theory is a solution of Eq. (6.5).
To construct interacting theories which solve the super-
symmetric NGZ relation one may start, following Ref. [3],
with a general action,

S ¼ 1

4

Z
d6zW2 þ 1

4

Z
d6 �z �W2

þ 1

4

Z
d8zW2 �W2�

�
1

8
D2W2;

1

8
�D2 �W2

�
; (6.7)

parametrized by the real analytic function of one complex
variable�ðu; �uÞ. Constructing the dual superfield strengths

(6.3) it is not difficult to find that the NGZ constraint
requires that � be a solution of

Im f@uðu�Þ � �uð@uðu�ÞÞ2g ¼ 0: (6.8)

This partial differential equation has infinitely many solu-
tions, parametrized, e.g., by the coefficients of the terms
ðu �uÞn with n � 2 in the expansion around u ¼ 0 (as well as
the coefficient of u �u2). This freedom is sufficient to ac-
commodate all the solutions of the bosonic deformed
self-duality constraints discussed in earlier sections.
Indeed, taking the integral over the fermionic superspace

coordinates, and setting the gauginos and auxiliary fields9

to zero, we find

L ¼ � 1

2
ðuþ �uÞ þ u �u�ðu; �uÞ;

u � 1

8
D2W2j	¼0;D¼0;c¼0 ¼ 1

4
F2 þ i

4
F ~F � !:

(6.9)

It is not difficult to see that it is possible to choose func-
tions � such that this Lagrangian reproduces the two
solutions discussed explicitly in Sec. II. The choice of �
for the Born-Infeld Lagrangian, Sec. II A, is well known
[3]:

LBI¼ 1

g2
f1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�detð�abþgFabÞ

q
g

¼ 1

g2
½1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þg2ð!þ �!Þþ1

4
g4ð!� �!Þ2

s
�;

�BI¼ g2

1þ 1
2g

2ð!þ �!Þþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þg2ð!þ �!Þþ 1

4g
4ð!� �!Þ2

q :

(6.10)

The Lagrangian obtained with the BN deformation,
Sec. II B, may be expressed in terms of ! as

L ¼ � 1

2
ð!þ �!Þ þ g2

2
! �!� g4

4
! �!ð!þ �!Þ

þ g6

8
! �!ðð!þ �!Þ2 þ 2! �!Þ � g8

16
! �!ð!þ �!Þ

� ðð!þ �!Þ2 þ 7! �!Þ þ g10

32
! �!ðð!þ �!Þ4

þ 16! �!ð!þ �!Þ2 þ 11ð! �!Þ2Þ þ � � � ; (6.11)

implying that �ð!; �!Þ is

9This is consistent, as the auxiliary fields always appear
squared after all supersymmetric covariant derivatives are eval-
uated in Eq. (6.7).
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�¼1

2
�g4

4
ð!þ �!Þþg6

8
ðð!þ �!Þ2þ2! �!Þ

�g8

16
ð!þ �!Þðð!þ �!Þ2þ7! �!Þ

þg10

32
ðð!þ �!Þ4þ16ð!þ �!Þ2þ11ð! �!Þ2Þþ��� :

(6.12)

More generally, both the general deformation consid-
ered in Eq. (5.1) and the function � have one free coeffi-
cient for every fourth power of the field strength,
suggesting that there should exist a one to one map be-
tween the two functions. Thus, N ¼ 1 supersymmetry
does not seem to rule out any of the solutions with positive
energy constructed using either Sec. IVA or more gener-
ally, Sec. VB: for every such model one may easily find �
(at least perturbatively) and thus construct an action in
N ¼ 1 superspace whose bosonic component reproduces
the initial bosonic action. This result is not completely
surprising; it was shown in [3] that all solutions of the
bosonic NGZ equation have an N ¼ 1 supersymmetric
completion. Since all relevant solutions of the deformed
self-duality constraint (5.7) are solutions of the NGZ rela-
tion, the same conclusion must apply to them as well.

B. N ¼ 2 supersymmetric nonlinear
U(1) duality models

While all actions constructed in earlier sections have an
N ¼ 1 supersymmetric extension, most of them do not
have a known extended supersymmetric counterpart. It
may be also useful to recall here the results of [43,44],
namely, that the Born-Infeld action is unique in that it has 4
linearly realized and 4 nonlinearly realized supercharges.

TheN ¼ 2 global superspace is parametrized by ZA ¼
ðxa; 	�i ; �	i_�Þ, with i ¼ 1; 2 being the SU(2) R-symmetry
index. Actions describing the dynamics of N ¼ 2 vector
multiplets are written in terms of the (anti)chiral superfield

strengths, �W andW , which satisfy the Bianchi identities10

D ijW ¼ DijW : (6.13)

They determine the superfield strength in terms of an un-
constrained prepotential Vij;

W ¼ D4DijVij; W ¼ D4DijVij; (6.14)

where D4 is a chiral projector: Di
�D

4U ¼ 0 for any
superfield U.

As in the case of N ¼ 1 supersymmetric models one
may define, following [3], dual (anti)chiral superfields, M
and M, as

iM�4
�

�W
S½W ;W �; �iM�4

�

�W
S½W ;W �;

(6.15)

in terms of which the equations of motion are

D ijM ¼ DijM: (6.16)

To construct the N ¼ 2 analog of the NGZ relation we
note that, similarly to the N ¼ 1 setup, the Bianchi iden-
tities (6.13) and the equations of motion (6.16) have the
same functional form and are mapped into each other by
the infinitesimal U(1) duality transformations,

�W ¼ 
M; �M ¼ �
W : (6.17)

Considering the fact that the N ¼ 2 NGZ identity should
reduce to Eq. (6.5) upon ignoring the fields in the N ¼ 1
chiral multiplet, we are left with [3]Z

d8ZðW 2 þM2Þ ¼
Z

d8ZðW 2 þM2Þ (6.18)

as the only possible N ¼ 2 extension of (6.5). Solutions
of this equation have not been easy to find. The free N ¼
2 supersymmetric Maxwell action,

Sfree ¼ 1

8

Z
d8ZW 2 þ 1

8

Z
d8ZW 2

; (6.19)

satisfies this constraint. The one other known action obey-
ing the constraint (6.18) was discovered by Ketov in [42].
It is

S ¼ 1

4

Z
d8ZX þ 1

4

Z
d8ZX; (6.20)

where the chiral superfieldX is a functional ofW andW
and is a solution of the constraint

X ¼ XD4X þ 1
2W

2: (6.21)

Upon solving the constraint (6.21), the action becomes
[3,14,42,45]

SN¼2 ¼ Sfree þ
Z

d4xd8	W 2W 2YðD4W 2;D4W 2Þ
þOð@�W Þ; (6.22)

where Y is a Born-Infeld-type functional which, in the
N ¼ 0, limit reduces to �BIð!; �!Þ in Eq. (6.10).
The system (6.20) and (6.21) was introduced in [42] as

the N ¼ 2 generalization of the Born-Infeld action. In
N ¼ 1 language, theN ¼ 2 vector multiplet splits into a
vector and chiral N ¼ 1 multiplets. By truncating away
the chiral multiplet the equations above correctly repro-
duce the system (6.7), (6.8), and (6.10).
The extra terms with derivatives @�W appear to be

required for N > 1 actions. Moreover, the only solutions
presented explicitly in the literature which have manifest
N ¼ 2 supersymmetry and are compatible with the

10The derivatives, Dij and Dij, are defined as Dij ¼ Di�Dj
�

and Dij ¼ Di
_�D

j _�.
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duality condition also have the structure of the BI
action but exhibit additional terms containing space-time
derivatives.11 They also share the property that they are

associated with the D3-brane actions LD3�brane ¼
1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� detð�ab þ Fab þ @a �’@b’Þ

p
. It was shown in [3]

that an N ¼ 2 self-dual action is given by

S BI ¼ Sfree þ Sint; (6.23)

Sint¼1

8

Z
d4xd8	W 2W 2

�
1þ1

2
ðD4W 2þD4W 2Þ

þ1

4
ððD4W 2Þ2þðD4W 2Þ2Þþ3

4
ðD4W 2ÞðD4W 2Þ

�

þ 1

24

Z
d12Z

�
1

3
W 3hW 3þ1

2
ðW 3hW 3ÞD4W 2

þ1

2
ðW 3

hW 3ÞD4W 2þ 1

48
W 4h2W 4

�
þOðW 10Þ:

(6.24)

The unique term with no fermionic or space-time deriva-

tivesW 2W 2
yields the known F4 term of the Born-Infeld

action. The six-order terms, apart from W 3hW 3
terms

with space-time derivatives, also correspond to the BI
model. This action was confirmed in [14,45].

At the current level of understanding of N ¼ 2 super-
symmetric duality-symmetric theories it is not clear yet
what role will be played by the BN proposal to deform the
twisted self-duality equation. The terms with space-time
derivatives of the superfields are not likely to be generated
by the initial deformation of the self-duality equation,
unless one allows for deformations which contain deriva-
tives of the field strength.12

VII. DISCUSSION

The question whether duality symmetries of equations
of motion survive quantization and constrain the effective
action of the theory is very interesting and with far
reaching implications both for gravitational and nongravi-
tational theories. A direct construction based on the clas-
sical Lagrangian and some number of (perhaps quantum
generated) local counterterms would extend the tally of
duality-invariant theories and could shed light on the

quantum properties of the theory. For supergravity theories
in general, and for N ¼ 8 supergravity, in particular, it
may constrain the existence of higher-loop counterterms
not immediately amenable to explicit calculations. In cases
in which only the classical equations of motion are invari-
ant under duality transformations (while the action is not),
the construction is complicated by the fact that simply
adding to the action a duality-invariant counterterm leads
[29] to duality-noninvariant deformed equations of motion
and a nonconserved NGZ duality current.
In Ref. [30] a procedure, which we have broken into five

steps in Sec. IVA, was suggested such that an action
exhibiting a conserved NGZ duality current is constructed
if the procedure can be carried out. This directly follows if
the first counterterm (or deformation) is manifestly duality
invariant. The deformations discussed in Ref. [30] are
assumed to depend on fields transforming linearly under
duality transformations; in supergravity theories they are
the vector fields. The action constructed following the BN
procedure has infinitely many terms which, in the presence
of derivatives acting on the field strengths, may also be
nonlocal though local order by order in a weak coupling
expansion.
To understand and test this proposal, we studied in detail

a simple example—that of nonlinear electrodynamics. We
found that, while an action can always be constructed, this
action typically does not have desirable properties unless
one assumes the existence of higher-order deformations of
a specific form. In particular, using known results of super-
symmetric nonlinear actions for Abelian vector multiplets,
we find that the Bossard-Nicolai action generated by the

first I ð1Þ 	 F4 deformation of the linear twisted self-
duality constraint, may not have a supersymmetric general-
ization beyond N ¼ 1 supersymmetry. To recover the
known N ¼ 2 actions of the BI type, the deformation of
the linear twisted self-duality constraint must be modified

to include all order terms I ðnÞ 	 F4n. The generalized
construction, extending that of BN, is detailed in
Sec. VB. Moreover, for N > 1 the action must depend
on space-time derivatives of the superfields and, corre-
spondingly, on space-time derivatives of F��. Therefore,

it is not clear what kind of deformed linear twisted duality
constraint will provide the action consistent with N > 1
supersymmetry and duality.
In the extended supersymmetric case of nonlinear elec-

trodynamics the higher-order counterterms (or deforma-
tions) may be found by simply requiring that the resulting
duality-invariant action has more than 8 supercharges. We
believe that a similar requirement will generally restrict the
large class of actions allowed by our construction.
It is possible that, in general, the required higher-order

counterterms may be found by simply requiring that, order
by order in perturbation theory, the action generated by our
procedure can be supersymmetrized. It is unclear, however,
whether this requirement is sufficient to generate a correct

11This state of affairs appears to be different from the statement
[30] that the extension of the BN construction to a supersym-
metric setup does not encounter any difficulties. It is not clear to
us whether this statement refers to minimal or extended super-
symmetry. In our discussion, there is a fundamental difference
between minimal and extended supersymmetry, the former ac-
commodating indeed any solution of the deformed self-duality
equation.
12With such a deformation it possible that the resulting action is
nonlocal (though perturbatively local), as demonstrated
in [30] for the case of a C2ðdFÞ2 deformation of maximal
supergravity.
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or unique action. In an interacting theory, the terms found
in such a manner may very well be incompatible with those
generated by standard perturbation theory. It is possible
that terms that are separately invariant under supersymme-
try transformations may need to be added.

As we have seen, the perturbative deformation of the
linear twisted self-duality constraint suggested in ref. [30]
requires in addition the presence of infinitely many terms
to recover the Born-Infeld action. The nonuniversality (i.e.
the fact that they are not uniquely determined by the first
deformation (or counterterm) and the duality constraint) of
the higher-order terms is somewhat troublesome. It does
not indicate that the BN procedure leads to an uncondi-
tional success for all nonlinear duality theories. We have
also discussed an alternative twisted self-duality con-
straint—initially suggested by Schrödinger—which leads
to the Born-Infeld action while not requiring order by order
corrections. The fundamental difference between this ap-
proach and the perturbative one is that the Schrödinger
constraint is completely cubic; attempting to reconstruct
the perturbative deformation of the linear self-duality con-
straint necessarily leads to terms with nonanalytic depen-
dence on T�, as follows from (3.14). The existence of two
twisted self-duality relations that yield the Born-Infeld
action suggests it may be a general feature of this con-
struction of duality-invariant actions.

Part of the motivation behind understanding the con-
struction of actions exhibiting nonlinear duality symme-
tries is provided by applications to supergravity theories. In
maximal four-dimensional supergravity it was shown from
several standpoints [16,17], [22–26], that the first E7ð7Þ
duality-invariant potential counterterm may occur at 7 or
8 loops. Supersymmetry considerations, as well as the
structure of scattering amplitudes of N ¼ 8 supergravity,
imply that this counterterm necessarily contains terms
quartic in vector fields. Assuming that the E7ð7Þ duality

symmetry should survive quantization, one is therefore to
attempt to construct nonlinear duality models13 with maxi-
mal supersymmetry and with scalar field dependence
which twists nontrivially the classical duality constraint.
Such models have never been constructed before. Our
generalization of the BN proposal, which accounts for
known models of nonlinear duality, offers a wide pool of
bosonic models among which there may exist one which
admits a maximally supersymmetric completion. The
nontrivial way in which a supersymmetric Born-Infeld
action emerged from such an analysis makes it difficult
to conclude, however, that such a model must exist and
what is its precise structure and relation to the first counter-
term. Further detailed analysis is necessary to unravel
this issue; along the way to maximal supersymmetry and

supergravity, we may find novel models of nonlinear dual-
ity which are interesting in their own right.
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APPENDIX A: GENERALIZATION
TO SUPERGRAVITY

1. Duality and supergravity

The action of the n vector fields of an N > 2 extended
supergravity theory is

Lvectors ¼ iN ��F
��F�� þ H:c:; (A1)

where N ��ð�Þ is a scalar field-dependent symmetric
matrix. The scalar fields � parametrize a coset G=H with
the theory-specific duality group G and its subgroup H
isomorphic to the R-symmetry group. For N ¼ 8 super-
gravity G ¼ E7ð7Þ and H ¼ SUð8Þ. The self-duality con-

straint derived from (2.6) is twisted by this matrix and may
be written either as a G covariant constraint

Gþ
� ¼ N ��F

þ�; G�
� ¼ N ��F

��; (A2)

or as an H covariant one

Tþ
AB ¼ 0; (A3)

where

T� � h�ABF
�� � f�ABG

p
�m; (A4)

and where the kinetic term matrixN ��ð�Þ is constructed
out of the scalar field-dependent sections of an Spð2nv;RÞ
bundle over the G=H coset space h�AB and f�AB; they
transform in an antisymmetric representation of H—see
[2,4,46] for details. The equations in (A3) are the super-
gravity analog of Eq. (3.16).
An infinitesimal Spð2nv;RÞ transformation acts on a

duality vector field doublet in a real representation exactly
as given in Eq. (2.10). Here, as there, A; B; C;D are the
infinitesimal parameters of the transformations, arbitrary
real nv � nv matrices satisfying (2.10). The vector kinetic
matrix transforms projectively under Spð2nv;RÞ,

13Such models are expected to contain arbitrary powers of the
vector field strength. Presumably, these terms should be related
to terms identified in the analysis of [22] as required for having
vanishing soft-scalar limits for multipoint S-matrix elements.
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N 0 ¼ ðCþDN ÞðAþ BN Þ�1: (A5)

The case of the graviphoton in the absence of scalars and
of additional vector fields, A ¼ D ¼ 0 and B ¼ �C, the
Uð1Þ 	 SOð2Þ, follows the Maxwell discussion of Sec. II
identically.

In N ¼ 8 supergravity, for E7ð7Þ, the NGZ identity

requires that the following functional differential equation
be satisfied:

�

�FðyÞ
�
�S� 1

4

Z
d4xð ~GBGþ ~FCFÞ

�
¼ 0; (A6)

where �S is the variation of the action under E7ð7Þ,

�S ¼ �S

�F
�Fþ �S

��
��; (A7)

and �F and �� are the variations of vectors and scalars,
respectively, under E7ð7Þ. Here the E7ð7Þ symmetry trans-

formations in the real basis for the doublet (F;G) are
defined by an Spð2n;RÞ embedding,

A B

C D

 !
¼ Re�� Re� Im�þ Im�

�Im�þ Im� Re�þ Re�

 !
; (A8)

� are parameters of SU(8) and � are the SU(8)-orthogonal
parameters of E7ð7Þ, which control the familiar infinitesi-

mal shift of scalars �� ¼ �þ . . . .

2. Modification of procedures

The modification to the procedures of section IVA and
VB is actually quite minimal in terms of the algorithms.
What grows in complexity, which may be the reason there
are no nonlinear examples currently worked out in super-
gravity, is the complexity of the NGZ identity that must be
maintained. In the N ¼ 8 supergravity case it is actually
Eq. (A6) which must be satisfied order by order.

APPENDIX B: BORN-INFELD AND
BOSSARD-NICOLAI HAMILTONIANS

In U(1) duality-invariant models there is a simple rela-
tion between the Lagrangian and the Hamiltonian formu-
lations [10,11]. The NGZ constraint discussed above can
be expressed as a differential equation with solutions,
perturbative in g2, codified in an arbitrary function of
one real variable.

The Lagrangian can be expressed in terms of t ¼ 1
4F

2

and on z ¼ 1
4F

~F. We introduce the following (copious)

notation to touch the (equally copious) literature:

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ z2

p
; (B1)

y ¼ �1
2z

2; (B2)

Y ¼ x2; (B3)

X ¼ t: (B4)

We can write the same Hamiltonian as two different func-
tional formsHðX; yÞ ¼ VðX; YÞ. Similarly we can write the
same Lagrangian as two different functional forms
Lðt; zÞ ¼ kðt; xÞ.
The nice relation between U(1) duality-conserving

Lagrangians and Hamiltonians is simply

L ðt; zÞ ¼ kðt; xÞ ¼ �HðX; yÞ ¼ �VðX; YÞ: (B5)

These represent general solutions of the differential
equation,

ð@tkÞ2 � ð@xkÞ2 ¼ 1; (B6)

which is simply another way of writing the NGZ con-
straint, [cf. Eq. (2.28)].
For example, for Maxwell and for Born-Infeld the re-

spective functional forms are simply

LMaxðt;zÞ¼�t;

LBIðt;zÞ¼�g�2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2g2t�g4z2

q
�1

�
;

(B7)

HMaxðX;yÞ¼X;

HBIðX;yÞ¼g�2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2g2Xþ2g4y

q
�1

�
;

(B8)

VMaxðX;YÞ¼X;

VBIðX;YÞ¼g�2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2g2Xþg4X2�g4Y

q
�1

�
:

(B9)

For the BN model (see Secs. II B and III C), we have

LBNðt; z; g2Þ ¼ �tþ 1
2g

2ðt2 þ z2Þ � 1
2g

4tðt2 þ z2Þ
þ 1

4g
6ðt2 þ z2Þð3t2 þ z2Þ � 1

8g
8tðt2 þ z2Þ

� ð11t2 þ 7z2Þ þ 1
32g

10ðt2 þ z2Þ
� ð91t4 þ 86t2z2 þ 11z4Þ

� 1
8g

12tðt2 þ z2Þð51t4 þ 64t2z2 þ 17z4Þ
þ 1

64g
14ðt2 þ z2Þð969t6 þ 1517t4z2

þ 623t2z4 þ 43z6Þ þ � � � : (B10)

It follows that

VBNðX;Y;g2Þ¼X�1
2g

2Yþ1
2g

4XY�1
4g

6Yð2X2þYÞ
þ1

8g
8XYð4X2þ7YÞ

� 1
32g

10Yð16X4þ64X2Yþ11Y2Þ
þ1

8g
12XYð4X4þ30X2Yþ17Y2Þ

� 1
64g

14Yð32X6þ400X4Yþ494X2Y2

þ43Y3Þþ���: (B11)
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The sign of g2 can be adjusted in the noncovariant
procedure through a suitable choice for the first integration
constant. Notice that when we make a choice g2 ¼ �1,
which is the choice made in Ref. [30], we find

VBNðX; Y; g2 ¼ �1Þ
¼ X þ 1

2Y þ 1
2XY þ 1

4Yð2X2 þ YÞ þ 1
8XYð4X2 þ 7YÞ

þ 1
32Yð16X4 þ 64X2Y þ 11Y2Þ

þ 1
8XYð4X4 þ 30X2Y þ 17Y2Þ

þ 1
64Yð32X6 þ 400X4Y þ 494X2Y2 þ 43Y3Þ þ � � �

¼ X þ 1
2YðX þ X2 þ X3 þ � � �Þ þ 1

4Y
2 þ � � � : (B12)

The last line is in agreement with Ref. [30]. It also
explains the choice of g2 ¼ �1, since it provides a
positive definite Hamiltonian at each order. Since the
BN solution does not have a closedform expression,14

the choice of g2 ¼ �1 for the positivity of H means
that the quartic deformation of the action has a sign
opposite to the BI model. Note that the BI Hamiltonian
is not positive definite at each order, only the closedform
expression is positive.
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