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I. INTRODUCTION

In this paper, the vacuum energy of the electromagnetic
field in the presence of two half-spaces characterized by a
permittivity " and separated by a gap (see Fig. 1) will be
considered in terms of the frequencies !J of the physical
modes, symbolically

E0 ¼ ℏ
2

X
J

!J: (1)

This is the vacuum energy, defined as the half sum of the
energies of all excitations, numbered by an index J, in the
sense of zero point energy following the approach used by
Casimir in [1]. At once, for the considered configuration,
this is equivalent to the well-known Lifshitz formula [2],
which is usually written in terms of imaginary frequencies,
! ¼ i�.

There are the following reasons to do this.
First, the corresponding mode sum [see Eq. (3), below]

was never written down correctly for the plasma model.
The point is that, besides the modes corresponding to
surface waves and traveling waves (photonic modes), in
(1) also waveguide modes must be included.

A second reason comes from a situation where the
permittivity "ð!Þ is frequency dependent and known for
real frequencies ! only (e.g., from experimental data). In
such case, the analytic continuation to "ði�Þmay introduce
additional complications and a real frequency representa-
tion is of interest.

A third reason comes from the discussion of the contri-
bution of surface modes to the Casimir effect a few years
ago in [3,4] which might need to be reconsidered.

The Lifshitz formula, written in terms of imaginary
frequencies, has the significant advantage to involve only
fast converging integrals. In contrast, integrations over the
real frequency axis are notoriously difficult to handle
because of the inherent oscillations. It will shown how
this problem can be handled.

In the following, we consider a frequency-dependent
permittivity as given by the plasma model,

"ð!Þ ¼ 1�!2
p

!2
; (2)

where !p is the plasma frequency. For the considered

configuration, the regularized, but yet unrenormalized
(equipped with a tilde) expression for vacuum energy,
following from (1), reads

~E 0 ¼ ℏ
2

Z dkjj
ð2�Þ2

�X
sf

!1�2s
sf þX

j

!1�2s
j

þ
Z 1ffiffiffiffiffiffiffiffiffiffiffi

!2
pþk2jj

p d!

�
!1�2s d

d!
�

�
; (3)

where s > 3
2 is the regularization parameter (in fact, ~E0 is

the zeta function for the considered configuration). The
modes include, for the TM polarization, the two surface
modes with frequencies !sf, and, for both polarizations,

the waveguide modes with frequencies !j (j ¼
1; . . . ; ½!p

� � þ 1) and the photonic modes with frequency

FIG. 1 (color online). The configuration of two half-spaces
with permittivity ", separated by a gap of width L.*bordag@itp.uni-leipzig.de

PHYSICAL REVIEW D 85, 025005 (2012)

1550-7998=2012=85(2)=025005(18) 025005-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.85.025005


! �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

p þ k2jj
q

(in units with c ¼ 1). The latter frequen-

cies constitute, for fixed kjj, the continuous part of the

spectrum and enter with a weight given by the scattering
phase shift � (its derivative is the mode density), see
Eqs. (43) and (44). The vector kjj denotes the momentum

in parallel to the interface. The details will be given in
Sec. II. It is natural that the vacuum energy needs for a
renormalization. It is only the force,

F ¼ � d

dL
E0; (4)

which is finite by itself (however, only after subtraction of
the empty space contribution). In Sec. II, we will see that
the renormalization gives a useful suggestion for the treat-
ment of the sums in (3).

The vacuum energy, following after renormalization
from (3), must coincide with the known representation in
terms of integration over imaginary frequencies which can
be written in the form

E0 ¼ 1

2

Z dkjj
ð2�Þ2

Z 1

0

d�

�
�

d

d�

�
ln

1

1� r2TEe
�2�L

þ ln
1

1� r2TMe
�2�L

�
; (5)

with the reflection coefficients

rTE ¼ ß� �

ßþ �
; rTM ¼ ß� "ði�Þ�

ßþ "ði�Þ� ; (6)

and the notations ß ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"ði�Þ�2 þ k2jj

q
, � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ k2jj

q
. The

integrations in (5) converge fast due to the exponential
factors. Therefore, no renormalization or regularization is
necessary in this formula. Also, it can be seen that it is
normalized in the correct way as to be vanishing for infinite
separation. In fact, for large separation L, one can put the
reflection coefficients (6) equal to unity (formally by
!p ! 1) and will recover the result originally obtained

by Casimir in [1].
Equation (5), or the force derived from it by means of

(4), is one of the many ways of representing the Lifshitz
formula in terms of imaginary frequencies (see, e.g.,
Eq. (12.29) in [5] for reference). Other representations of
this kind differ only by changed notations, by substitutions
of the integration variables, by integrating by parts in �, or
by considering finite temperature T. The latter can be
achieved by substituting the integration over � by the
Matsubara sum.

In general, the Lifshitz formula is used for more general
permittivities as (2) is. Thereby, it is always assumed that
"ði�Þ is real such that the energy (5) is real too. There are,
however, also representations of E0 with integration over
the real! axis, see Eq. (2.4) in [2] or Eq. (12.37) in [5], for
example. These representations look like Eq. (3) with the
! integration starting from ! ¼ 0 and no sums. It must be

mentioned that these representations were derived under
the assumption, motivated by dissipation or other physical
reasons, that Imð"ð!ÞÞ> 0 holds and that there are no
poles of the transmission coefficients on the real ! axis.
Such systems do not have eigenvalues in terms of real
frequencies ! in the sense as discussed above (see also
the discussion in [6]). For this reason, there is no direct
relation between such representations and Eq. (3).
The Lifshitz formula is of fundamental importance in

many areas of modern physics, including adhesion forces,
atom-wall interactions, van der Waals forces, and its
applications reach to nanotechnology and biology.
Accordingly, this formula has a long history. Originally,
it was obtained in [2] from the energy of the electromag-
netic field driven by fluctuating charges in the half-spaces,
the latter being thermally averaged following the theory by
Rytov. In [2], also the limiting cases were derived. For
large separation, Casimir’s result was shown to follow. For
small separation, a new formula for the van der Waals
force, acting between half-spaces, emerged from (5) by
putting in (6) !p ! 0 in ß. The corresponding interaction

energy can be written in the form

E0 ¼ ℏ
2

Z dkjj
ð2�Þ2

Z 1

0

d�

�
�

d

d�
ln

1

1� ð"ði�Þ�1
"ði�Þþ1Þ2e�2kjjL

: (7)

By rarefying the media in the half-spaces, also the known
Casimir-Polder and the London forces between molecules
emerged as limiting cases.
It must be mentioned that the understanding of the

Casimir and van der Waals forces appeared in [1] and in
[2] from completely different ideas. While Casimir started
from the zero-point energy of the electromagnetic field,
Lifshitz considered the fluctuations in the medium as
source. In the modern understanding, these two are equiva-
lent. However, the discussion about two ways continues
until present time, see, for example, [7].
In the historical development, the next step after [2] was

made in [8], by considering the problem in the general
framework of thermal quantum field theory. This proce-
dure was found very difficult and lengthy. Also, there was
an interest in understanding the Lifshitz formula in terms
of vacuum energy in the aim of Casimir. An important step
in this direction was made by the very influential paper [9]
in the nonretarded case starting from the vacuum energy
(1). For small separation, when the electromagnetic inter-
action happens instantaneously, the dominating contribu-
tion to the mode sum in (3) comes from the surface modes
present in the TM polarization. From these, in [9], the
limiting case (7) of the Lifshitz formula was obtained in
a short derivation on 2 pages. Soon after, this approach was
generalized to the nonretarded case. In [10], the idea in [9]
of the vacuum energy as resulting from the surface modes
was taken over literally to the nonretarded case by account-
ing for the full momentum dependence in the reflection
coefficients (6). The sum over these two modes in (3) was
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transformed into an integral over imaginary frequencies
and formula (5) was reobtained. Independently, in [11],
this result was obtained by the same method, admitting,
however, that, besides the surface modes, all evanescent
modes should be included.

It must be mentioned that in the papers [10,11] the
contributions from the photonic modes were missed. This
was compensated by ignoring the cut in the complex
frequency plane the functions generating the dispersion
relations have. These omissions were observed quite easily,
for example, in [12] and in [13] (see also, the thesis [14],1

p. 76), but did not receive due attention. This is another
reason for the present paper to clarify in detail the role of
the various modes in (3). It must be mentioned that the
waveguide modes, including those in planar waveguides,
are well known in electrodynamics, see [15], for example.
However, their role in the Casimir effect was, to the
author’s knowledge, never considered. One exception is
the paper [16], where these modes were discussed [using
different naming, see Eq. (8) there].2

In the following section, we consider the basic formulas
for determining the modes and point out their basic prop-
erties. In Sec. III, we consider the vacuum energy, sepa-
rately for both polarizations. The last section has some
conclusions. In the Appendices, we give a short description
of the reverse transitions, from imaginary to real frequen-
cies. In the following, we use units with ℏ ¼ c ¼ 1.

II. BASIC EQUATIONS AND MODES

In this section, we collect the basic formulas from
classical electrodynamics and identify the modes. We do
this in quite big detail. Although all these questions were
considered and solved long ago, there is still some con-
fusion about the question which modes are relevant for the
Casimir effect in the given configuration.

We consider two parallel half-spaces characterized by a
permittivity "ð!Þ [see Fig. 1]. These are separated by an
empty gap of width L with parallel interfaces and we have
" ¼ 1 in the gap. As it is well known, the solutions of the
Maxwell equations for this configuration separate into TE
and TMmodes. After taking Fourier transform in the time t
and in the directions xjj parallel to the interfaces, the

electric field strength E becomes proportional to

E � e�i!tþikjjxjj�ðzÞ (8)

and the Maxwell equations reduce to the equation

�
"ð!; zÞ!2 þ k2jj �

d2

dz2

�
�ðzÞ ¼ 0; (9)

where ! is the frequency and kjj is the two-dimensional

momentum in direction parallel to the interface. Since
Eq. (9) holds on the whole z axis, we have to consider
the permittivity "ð!; zÞwith "ð!; zÞ ¼ 1 for z 2 ½0; L� and
"ð!; zÞ ¼ "ð!Þ for z =2 ½0; L�. The components of the
function �ðzÞ have to fulfill the well-known matching
conditions on the interfaces. For example, for the compo-
nents corresponding to the electric field parallel to the
interface these demand

�ðzÞ and
d

dz
�ðzÞ ðTEmodeÞ

�ðzÞ and "ð!; zÞ d
dz

�ðzÞ ðTEmodeÞ (10)

to be continuous.
The solutions of Eq. (9) can be written in the form

�ðzÞ ¼
8<
:
eikz þ RðkÞe�ikz ðz < LÞ
�eiqz þ �e�iqz ð0< z < LÞ
TðkÞeikz ðL < zÞ

(11)

and represent a wave incoming from the left. Here, k has
the meaning of the momentum in direction of the z axis,
i.e., in perpendicular to the interfaces, outside the gap, and
q is the corresponding momentum inside the gap. In
Eq. (11), RðkÞ and TðkÞ are the reflection and transmission
coefficients, � and � are some more coefficients. We
indicate the momentum dependence of RðkÞ and TðkÞ keep-
ing in mind that for the TM case there is an additional
dependence on kjj.
From Eq. (9), i.e., from the Maxwell equations, for these

momenta the relations

"ð!Þ!2 ¼ k2jj þ k2; !2 ¼ k2jj þ q2 (12)

follow. For the permittivity given by Eq. (2), these relations
read

!2 ¼ !2
p þ k2jj þ k2; !2 ¼ k2jj þ q2: (13)

It is clear that out of the four quantities, !, kjj, k, and q,
only two are independent. Below, we will use different
choices of the independent ones; the remaining must be
expressed in terms of these using the above equations.
Using the matching conditions (10), all coefficients in

(11) can be determined. In the following, we need only the
transmission coefficients, which take the well-known form

TTEðkÞ ¼ 4qke�ikL

ðqþ kÞ2e�iqL � ðq� kÞ2eiqL ;

TTMðkÞ ¼ 4"ð!Þqke�ikL

ð"ð!Þqþ kÞ2e�iqL � ð"ð!Þq� kÞ2eiqL ;
(14)

for the two polarizations. For later use, we rewrite these
expression in the form

1This thesis can be ordered from the library of the University
of Utrecht; the book number is UB-ND MAG DISS UTRECHT
QU 1975-25.

2I am indebted to the authors of that paper for the hint.
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TTEðkÞ ¼ TTE
1 ðkÞ 4qk

ðqþ kÞ2 e
iðq�kÞL;

TTMðkÞ ¼ TTM
1 ðkÞ 4"ð!Þqk

ð"ð!Þqþ kÞ2 e
iðq�kÞL;

(15)

with

TTE
1 ðkÞ ¼ 1

1� r2TEe
i2qL

; TTM
1 ðkÞ ¼ 1

1� r2TMe
i2qL

;

(16)

where

rTE ¼ k� q

kþ q
; rTM ¼ k� "ð!Þq

kþ "ð!Þq (17)

are the reflection coefficients on a single interface.
By Eq. (9) and the matching conditions (10), a spectral

problem is set up. The spectrum consists of all real !,
allowed by these equations and conditions. This problem
can be illustrated by establishing a relation to a simple
quantummechanical Schrödinger equation by rewriting (9)
in the form �

d2

dz2
þ VðzÞ

�
�ðzÞ ¼ !2�ðzÞ; (18)

with a potential

VðzÞ ¼
8<
:!2

p þ k2jj ðz =2 ½0; L�Þ;
k2jj ðz 2 ½0; L�Þ: (19)

With the matching conditions (10) for the TE mode, this is
a simple exercise with a piecewise constant potential, the
so-called finite square well. For the TMmode, the potential
is more complicated. But anyway, we can determine the
spectrum. In relation to the electromagnetic problem, given
by Eq. (9), it must be understood that we consider a
problem with fixed but arbitrary kjj.

For the TE mode, the solution of the spectral problem is

obvious. We have scattering states with ! �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

p þ k2jj
q

and bound states with kjj � ! �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

p þ k2jj
q

, the latter

having imaginary momenta,

k � iß ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

p þ k2jj �!2
q

; (20)

outside the box. As concerns the TMmode, it is known that
it has the same properties (except for some bound states
which can be located in 0 � ! � kjj too), although that is a
bit more complicated to show.

From the scattering problem, it is known that the trans-
mission coefficients, TTEðkÞ and TTMðkÞ, are meromorphic
functions in the upper half of the complex k plane with
simple poles on the upper part of the imaginary axis and a
continuous continuation to the real k axis. The location of
the poles is just the momenta k ¼ iß corresponding to
bound states. For the function �ðzÞ, this results in an

exponential decrease for jzj ! 1. Finally, we mention
the property

Tð�kÞ ¼ T�ðkÞ (21)

for real k under complex conjugation. It is this relation
which motivates us to indicate the dependence on the
argument k explicitly.
Returning to electrodynamics, we can identify the fol-

lowing modes,

(i) photonic modes with ! �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

p þ k2jj
q

,

(ii) surface and waveguide modes with 0 � ! �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

p þ k2jj
q

.

The photonic modes correspond to the quantum mechani-
cal scattering states and have a continuous spectrum. The
waveguide and surface modes correspond to the bound
states. Accounting for the momentum kjj, these form a

tower of continuous states. It must be mentioned that all
electromagnetic waves in this problem are propagating
waves having real frequency !. The difference between
them is that the photonic modes do propagate in all spatial
directions whereas the surface modes do propagate only in
direction in parallel to the interface and the waveguide
modes do propagate only inside the gap (including
zigzag-like propagation). It should be mentioned that com-
monly waves with !< kjj are called evanescent waves

(see [5], p. 289). In Fig. 2, this corresponds to the region
below the dotted line.

1 L 2

p

2 4 6 8 10
k

2

4

6

8

10

12

FIG. 2 (color online). The spectrum of the electromagnetic
field for !p ¼ 2:7�. Solid lines represent, from bottom to top,

the frequencies of the symmetric and of the antisymmetric
surface modes and, further, of the TM waveguide modes !TM

j

(j ¼ 1, 2, 3). The dashed lines are the frequencies of the TE
waveguide modes !TE

j (j ¼ 1, 2, 3). The dotted line corresponds

to ! ¼ kjj and separates imaginary (! � kjj) from real values of

the momentum q [see Eq. (12)]. The shaded region has ! �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

p þ k2jj
q

and represents the photonic modes.
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Now, we consider the waveguide modes in more detail.
First, we take the TE case, which is easier since the trans-
mission coefficient TTEðkÞ does not depend on kjj. As al-
ready mentioned, these modes correspond to the quantum
mechanical bound states and their location is given by the

poles of TTEðkÞ. These appear for imaginary k ¼
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

p � q2
q

. From Eq. (14), or (16) together with (17),

the conditionsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

p � q2
q

q
¼

8<
: tanqL2 ðsymmetricÞ
� cotqL2 ðantisymmetricÞ; (22)

follow, which are for convenience written in terms of the
variable q, see Eq. (13). The symmetry properties refer to
the function �ðzÞ, (11), with respect to reflection on the
middle of the gap. These conditions are exactly the same as
that defining the mentioned bound states. The solutions
of Eqs. (22) will be denoted by qTEj with j ¼
1; 2; . . . ; ½!p

� � þ 1, where ½. . .� denotes the integer part.

Using (13), we define the corresponding frequencies,

!TE
j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2jj þ ðqTEj Þ2

q
; (23)

for which

kjj � !TE
j �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

p þ k2jj
q

(24)

holds. The momenta k, related to these solutions, are
imaginary, k ! ißTEj , with

ßTEj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

p � ðqTEj Þ2
q

: (25)

The numbering is done in a way that

!TE
j < !TE

jþ1 (26)

holds. Solving Eqs. (22) numerically, pictures for the fre-
quencies !TE

j as function of kjj can be generated. This is

shown in Fig. 2. It must be mentioned that there is at least
one such state for any fixed value of !p.

A characteristic property of the waveguide modes is that
these, for !p ! 1, turn into the modes known for ideally

conducting walls, qTEj ! 2�j
L , with j ¼ 1; 2; . . . . This can

be seen directly in Eq. (22) and this is equivalent to an
infinite square well in place of (19).

Now, we consider the TM modes. The condition for
TTMðkÞ, Eq. (14), to have poles,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

p � q2
q
"ð!Þq

¼
8><
>:
tanqL2 ðsymmetricÞ
� cotqL2 ðantisymmetricÞ; (27)

differs from (22) by the presence of the permittivity,

"ð!Þ ¼ q2 þ k2jj �!2
p

q2 þ k2jj
; (28)

only, where (13) was used to express ! in terms of q. We
denote the solutions of (27) by qTMj . For kjj � !p, we see

immediately that, because of "ð!Þ< 1 in the left-hand side
of (27), the TM solutions are larger than the corresponding
TE solutions,

qTMj � qTEj ;

�
j ¼ 1; 2; . . . ;

�
!p

�

�
þ 1

�
: (29)

By means of (13), a similar relation holds for the frequen-
cies,

!TM
j � !TE

j ; (30)

where we defined

!TM
j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2jj þ ðqTMj Þ2

q
: (31)

For kjj ! 1, we have "ð!Þ ! 1 and both kinds of solu-

tions coincide. In this way, we observe a one-to-one cor-
respondence between the TE and the TM modes. For
kjj <!p, the picture changes since "ð!Þ as a function of

q goes through zero. In this case, the mentioned correspon-
dence persist, but an additional solution, qTM0 with a cor-

responding frequency !TM
0 [also obeying the inequality

(26)] appears provided kjj � !p=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ!pL=2

q
holds.

Now, since all qTMj are real, for the frequencies the

inequalities

kjj � !TM
j �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

p þ k2jj
q

(32)

hold like Eq. (24) in the TE case. Also for these modes, the
momenta k ! ißTMj , with

ßTMj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

p � ðqTMj Þ2
q

; (33)

are imaginary.
There is one more relation between the TE and the TM

modes. For kjj ! 0, Eq. (27) for the TM modes turns into

Eq. (22) for the TE modes. Thereby, the correspondence
changes by one. In this way, the inequality

!TM
j�1 � !TE

j � !TM
j ;

�
j ¼ 1; 2; . . . ;

�
!p

�

�
þ 1

�
(34)

can be established. The left equality is reached for kjj ! 0
and the right one for kjj ! 1.

In addition to the TM modes considered above, there are
also poles of the reflection coefficient for imaginary mo-
mentum, q ! i�, for which Eqs. (27) can be rewritten in
the form

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

p þ �2
q
"ð!Þ� ¼

8<
: tanhqL2 ðsymmetricÞ
cothqL2 ðantisymmetricÞ; (35)

and the permittivity expressed in terms of � reads
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"ð!Þ ¼ k2jj �!2
p � �2

k2jj � �2
: (36)

Each of these equations has one solution which we denote
by �sf (sf ¼ s, a according to symmetry). The corre-

sponding frequencies are

!sf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2jj � �2

sf

q
: (37)

Of course, also in this case the momenta k are imaginary,
k ! iß, with

ßsf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

p þ �2
sf

q
: (38)

These two solutions, !s and !a, correspond to waves
decreasing exponentially to each side of each interface in
opposite to the waveguide modes which decrease only
outside the gap but oscillate inside.

It is known that, for L ! 1, these solutions turn into the
surface plasmons well known in the physics of metals. In
this limit, the right-hand side of Eq. (35) equals unity and
the equation allows for an explicit solution,

!single ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

p

2
þ k2jj �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
!2

p

2

�
2 þ k4jj

svuut
: (39)

At large separation, such solution exists on each interface.
At finite separation, the frequency !single splits into two,

!s and !a, for which the inequality

!s � !single � !a (40)

holds.
There is one peculiarity about the antisymmetric surface

plasmon. It is a solution of Eq. (35) only if the inequality

!pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ !pL

2

q � kjj (41)

holds. In that case, the momentum in the gap, q ¼ i�a, is
imaginary. For smaller kjj, this mode matches the solution

!TM
0 which was found among the waveguide modes if just

the opposite to (41) holds. It is clear that these constitute
one single mode which must be identified with the anti-
symmetric surface mode. We mention that the question of
whether to include the lower part of the antisymmetric
surface plasmon, where its frequency is given by !TM

o ,
into the vacuum energy, was discussed in [16,17].

The frequencies of the surface modes are shown in
Fig. 2, too. The antisymmetric one crosses the line ! ¼
kjj just for kjj ¼ !p=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ!pL=2

q
. For lower kjj, it is given

by !TM
0 , Eq. (31), and, for larger kjj, by !a, Eq. (37).

Finally, we mention, as a quite special property of the
surface modes, that their frequencies have an upper bound,

!sf � !pffiffiffi
2

p : (42)

This can be seen by mentioning that !sf are monotone

functions increasing with increasing kjj. For large kjj, the
solutions � of the Eq. (35) grow proportional to kjj.
Consequently, the hyperbolic functions in the right-hand
side of these equations turn into unity and we are left with
the equation for a single surface plasmon. From the corre-
sponding energy, Eq. (39), one can then infer the bound
(42).

III. VACUUM ENERGYAS MODE SUM

In this section, we consider the vacuum energy of the
electromagnetic field in the sense of Eq. (1) and will give
Eq. (3) a precise meaning. We start with mentioning that
the spectrum, if accounting for kjj, is completely continu-

ous. Hence, one needs to separate the empty space contri-
bution. This can be done in numerous different approaches.
We follow that used in [18]. There, a large box was
introduced, whose volume was subsequently tended
to infinity. As a result, Eq. (3) appears with the scattering
phase shift expressed in terms of the transmission
coefficient,

� ¼ 1

2i
ln
TðkÞ
TðkÞ� : (43)

Another, equivalent, form of writing is

� ¼ ImðlnTðkÞÞ; (44)

which is also frequently used in literature.
Because of the separation of polarizations in the consid-

ered problem, the energy consist of two parts,

~E 0 ¼ ~ETE þ ~ETM: (45)

In the next subsection, we consider the contribution from
the TE polarization. It is easier to handle. In a subsequent
subsection, we consider the TM case.

A. TE case

For the TE polarization, we have to consider waveguide
and photonic modes. Accordingly, we divide the regular-
ized vacuum energy,

~E TE ¼ ~ETE
wg þ ~ETE

cont; (46)

into the waveguide contribution,

~E TE
wg ¼ 1

2

Z dkjj
ð2�Þ2

X
j

ðk2jj þ ðqTEj Þ2Þð1=2Þ�s; (47)

and the contribution from the photonic modes,

~ETE
cont ¼ 1

2

Z dkjj
ð2�Þ2

Z 1

0

dk

2i�
ð!2

p þ k2jj þ k2Þð1=2Þ�s

� d

dk
ln
TTEðkÞ
TTEðkÞ� : (48)
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As compared to Eq. (3), we changed the variable of inte-
gration from ! to k using (13). It must be mentioned that
both above expressions carry ultraviolet divergencies and
one needs to keep the regularization with s > 3

2 .

Now, we carry out the integration over kjj, which can be
done in the TE case since neither TTEðkÞ nor qTEj depend on

kjj [note q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

p þ k2
q

from Eq. (13)]. The integration is

simple and we come to

~E TE
wg ¼ �1

4�ð3� 2sÞ
X
j

ðqTEj Þ3�2s; (49)

and

~ETE
cont ¼ �1

4�ð3� 2sÞ
Z 1

0

dk

2i�
ð!2

p þ k2Þð3=2Þ�s

� d

dk
ln
TTEðkÞ
TTEðkÞ� : (50)

In the waveguide contribution ~ETE
wg, the analytic continu-

ation can now be carried out simply by putting s ¼ 0.
However, we postpone this. The second contribution will
be split, using the factorization in (15),

~E TE
cont ¼ ETE

cont þ EL1
; (51)

into

ETE
cont ¼ �1

4�ð3� 2sÞ
Z 1

0

dk

2i�
ð!2

p þ k2Þð3=2Þ�s

� d

dk
ln
TTE
1 ðkÞ

TTE
1 ðkÞ� ; (52)

and

EL1
¼ �L

42�ð3� 2sÞ
Z 1

0

dk

�
ð!2

p þ k2Þð3=2Þ�s d

dk
ðq� kÞ:

(53)

Note that the factor 4qk=ðkþ qÞ2 dropped out since k and
q are real here.

The latter contribution is proportional to the width L of
the gap and it can be calculated explicitly,

EL1
¼ �!2ð2�sÞ

p L

12�2
h1ðsÞ; (54)

with

h1ðsÞ ¼ 1

2ðs� 2Þ �
ffiffiffiffi
�

p
�ðs� 2Þ

2�ðs� 3
2Þ

: (55)

The function h1ðsÞ has a pole in s ¼ 0,

h1ðsÞ ¼ �3

16s
þOð1Þ; (56)

which results from ultraviolet divergence.

In the first contribution, ETE
cont, it is possible to put s ¼ 0,

ETE
cont ¼ �1

12�

Z 1

0

dk

�
ð!2

p þ k2Þ3=2 d

dk
ImðlnT1ðkÞÞ; (57)

since the integral is convergent due to the decrease,

lnTTE
1 ðkÞ � !4

p

16k4
e2ikL for k ! 1; (58)

which can be checked using (15).
Taken in the form of Eq. (52), we can calculate ETE

cont

numerically since it is represented by a convergent integral.
For technical purposes, it is useful to turn the integration
path slightly up into the complex plane, k ! kei� with
� * 0. Under such substitution, ETE

cont does not change, but
the integral converges much more rapidly.
Next, we establish the relation to the representation on

the imaginary frequency axis in order to get the TE part of
the Lifshitz formula, (5). We start from (50), which we
rewrite in the form

~E TE
cont ¼ �1

4�ð3� 2sÞ
Z 1

0

dk

2i�
ð!2

p þ k2Þð3=2Þ�s d

dk

� ln
TTEðkÞ
TTEð�kÞ ; (59)

using (21) and keep s > 3
2 . We are going to change the

integration path in (50) following the procedure in [18].
The complex k plane is shown in Fig. 3. The integration in

p
2 k2

Re k

Im k

FIG. 3. The complex k plane. The dots represent the poles of
the integrands in (61) and (106) resulting from zeros of the
reflection coefficients, the crosses represent poles resulting from
the poles of the reflection coefficients. Their locations corre-
spond to the waveguide and surface modes whose frequencies
are shown in Fig. 2. The paths �	 and � are used in Eqs. (61) and
(106). On the imaginary axis, there is a cut, starting from !p in

the TE case [see Eq. (65)] or from
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

p þ k2jj
q

(TM case [see Eq.

(109)]).
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(59) is over the real k axis, k 2 ½0;1Þ. On the imaginary
axis, the integrand has simple poles with residua equal to
(� 1) at the locations k ¼ ißTEj , Eq. (25). Above, starting

from k ¼ i!p, a cut starts which results from the factor

ð!2
p þ k2Þ3=2�s in the integrand. Furthermore, we mention

that TTEðkÞ has a zero in k ¼ 0. In the quotient in the
logarithm in (59), these zeros cancel and the integrand is
regular in k ¼ 0.

Now, we represent the logarithm in (51) as a difference,
lnTTEðkÞ � lnTTEð�kÞ, and split the integral into two ac-
cordingly. In the second integral, we change the variable,
k ! �k. In doing this, we pay attention to the pole in
k ¼ 0. Therefore, we write

~ETE
cont ¼ �1

4�ð3� 2sÞ lim	!0

�Z �	

�1
þ

Z 1

	

�

� dk

2i�
ð!2

p þ k2Þð3=2Þ�s d

dk
lnTTEðkÞ: (60)

It is our intention to move the integration path upward in
the complex plane. For this, we need to close the path by
adding and subtracting a path half encircling the pole in
k ¼ 0,

~ETE
cont ¼ �1

4�ð3� 2sÞ lim	!0

�Z
�
þ
Z
�	

�
dk

2i�
ð!2

p þ k2Þð3=2Þ�s

� d

dk
lnTTEðkÞ: (61)

The paths �	 and � are shown in Fig. 3. In the limit 	 ! 0,
the contribution from the path �	 picks up half a pole in
k ¼ 0 and the path � becomes independent of 	. We get

~ETE
cont ¼ �1

4�ð3� 2sÞ
�
1

2
!3�2s

p þ
Z
�

dk

2i�
ð!2

p þ k2Þð3=2Þ�s

� d

dk
lnTTEðkÞ

�
: (62)

Now, we move the path � upward to k ¼ i!p. We cross

the poles in k ¼ ißTEj which delivers just the sum ~ETE
wg,

Eq. (49), with opposite sign. After that, we tighten the path
around the cut on the imaginary axis, k ! iß, and with

ð!2
p þ ðißÞ2Þð3=2Þ�s � ð!2

p þ ð�ißÞ2Þð3=2Þ�s

¼ �2i cosð�sÞðß2 �!2
pÞð3=2Þ�s (63)

we get

~E TE
cont ¼ �1

4�ð3� 2sÞ
�
1

2
!3�2s

p � ~ETE
wg

�
þ ~ETE

imag; (64)

where

~E TE
imag ¼

cosð�sÞ
4�2ð3� 2sÞ

Z 1

!p

dßðß2 �!2
pÞð3=2Þ�s d

dß

� lnTTEðißÞ (65)

is the unrenormalized vacuum energy represented as inte-
gral over the imaginary axis. It is, however, still different
from the corresponding expression in (5) in having the
transmission coefficient TTE instead of TTE

1 in (5). To
proceed, we make use of the factorization (15) which,
analytically continued to the imaginary axis, takes the form

TTEðißÞ ¼ TTE
1 ðißÞ 4�ß

ðßþ �Þ2 e
�ð��ßÞL: (66)

For the analytic continuation of the momenta, we use the
notations k ¼ iß, q ¼ i�. The relation q2 ¼ !2

p þ k2, fol-

lowing from (13), translates into �2ß2 ¼ �!2
p. According

to (66), we split

~E TE
imag ¼ ETE

imag þHTE þ EL2
; (67)

where, from the first factor in (66),

ETE
imag ¼

cosð�sÞ
4�2ð3� 2sÞ

Z 1

!p

dßðß2 �!2
pÞð3=2Þ�s d

dß

� lnTTE
1 ðißÞ; (68)

from the second factor

HTE ¼ cosð�sÞ
4�2ð3� 2sÞ

Z 1

!p

dßðß2 �!2
pÞð3=2Þ�s d

dß

� ln
4�ß

ðßþ �Þ2 ; (69)

and from the third factor

EL2
¼ � cosð�sÞL

4�2ð3� 2sÞ
Z 1

!p

dßðß2 �!2
pÞð3=2Þ�s d

dß
ð�� ßÞ

(70)

follow. The latter contribution is proportional to the sepa-
ration L and can be calculated easily,

EL2
¼ �!2ð2�sÞ

p L

12�2
h2ðsÞ: (71)

The function h2ðsÞ can be expressed in terms of hyper-
geometric functions. It has a pole in s ¼ 0,

h2ðsÞ ¼ �3

16s
þOð1Þ; (72)

with the same residuum as h1ðsÞ, Eq. (56). In the following,
we will need only the relation

lim
s!0

ðh1ðsÞ � h2ðsÞÞ ¼ �1
4: (73)

Now, we consider ETE
imag, Eq. (68). First, we note that the

function
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TTE
1 ðißÞ ¼ 1

1� r2TEe
�2�L

; (74)

with rTE given by Eq. (6), is just the same as in the first
logarithm in (5). Since it is exponentially decreasing for
ß ! 1, we can remove the regularization by simply put-
ting s ¼ 0. Finally, we perform a substitution of variables,

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ß2 �!2

p

q
,

ETE
imag ¼

1

12�2

Z 1

0
d��3 d

d�
lnTTE

1 ðißÞ; (75)

where

TTE
1 ðißÞ ¼ 1

1� ðß��
ßþ�Þ2e�2�L

(76)

is the transmission coefficient on the imaginary axis ap-
pearing in (5) after carrying out the integration over kjj.
Expression (75) can be considered final. Because of the
convergence, it is also possible to integrate by parts,

ETE
imag ¼ � 1

4�2

Z 1

0
d��2 lnTTE

1 ðißÞ: (77)

Equations (75) and (77) are variants of representing the
well-known TE part of the vacuum energy calculated on
the imaginary frequency axis. We mention that these differ
from ~ETE

imag, which we initially got from moving the inte-

gration path, by the addendumHTE, which does not depend
on the separation L, and by EL2

, which is proportional to L.

In the sense of a renormalization, it is natural to remove
these two contributions and to consider ETE

imag as the renor-

malized vacuum energy. Of course, ETE
imag has the necessary

behavior for large separation,

ETE
imag ! � �2

1440L3
for L ! 1: (78)

It is also easy to obtain the behavior for small separation.
One can put L ¼ 0 in the integrand in (75) since the
remaining integral converges. A short calculation gives

ETE
imag ! � 3�� 8

72�2
!3

p for L ! 0: (79)

This limit coincides with that found in [18], Eq. (41). In the
complete energy, this contribution is subleading. The lead-
ing contributions come from the TM polarization,
Eq. (121).

It remains to considerHTE, Eq. (69). The integration can
be carried out explicitly,

HTE ¼ cosð�sÞ
4�ð3� 2sÞ

�
1

2
� 4

3�

�
!3�2s

p : (80)

With this, we return to ~ETE
cont, Eq. (64), and, inserting from

(67) and (80), we get

~E TE
cont ¼ � cosð�sÞ

3ð3� 2sÞ�2
!3�2s

p þ ~ETE
imag þ EL2

: (81)

The contribution from the half pole in k ¼ 0 canceled. We
mention that we have to keep s > 3

2 (in fact, s > 0 is

sufficient) in this expression because of the pole in EL2
.

The Eqs. (81) and (46), together with (47) and (51), are two
representations for ~ETE, one with integration on the imagi-
nary axis, and the other with summation and integration on
the real axis,

~E TE ¼ � cosð�sÞ
3ð3� 2sÞ�2

!3�2s
p þ ETE

imag þ EL2

¼ ~ETE
wg þ ETE

cont þ EL1
: (82)

It is needless to stress that these are equal, at least for
s > 3

2 . Now, we perform the renormalization by subtracting

from both sides the first two contributions in the first line.
The first of these does not depend on L and the other, EL2

,

is proportional to L. Thus, we define

ETE ¼ ~ETE þ cosð�sÞ
3ð3� 2sÞ�2

!3�2s
p � EL2

(83)

as the renormalized vacuum energy. It has all necessary
properties since from (82) and (83)

ETE ¼ ETE
imag (84)

follows by definition, for which these properties are
known. Now, we insert the second line from (82) into
(83) and come to

ETE ¼ ETE
wg þ ETE

cont; (85)

where ETE
cont is given by Eq. (52), and where we defined

ETE
wg ¼ ~ETE

wg þ cosð�sÞ
3ð3� 2sÞ�2

!3�2s
p þ EL1

� EL2
: (86)

Now, we are finally in a position to remove the regulari-
zation. The pole in s ¼ 0 is present only in the last two
terms in (86) and cancels. Using (73) together with (54)
and (71), we get for s ¼ 0

ETE
wg ¼ � 1

12�

X
j

ðqTEj Þ3 þ !3
p

9�2
þ !4

pL

48�2
: (87)

We included the contribution proportional to L, resulting
from EL1

and EL2
, and the constant contribution, resulting

from H, into the waveguide contribution for the following
reason. It can be shown, that the sum in (87) has for large L
an asymptotic behavior

~E TE
wg ¼ � !4

pL

48�2
� !3

p

9�2
þ . . . ; (88)

where the dots denote bounded, but oscillating
contributions.
In (87), the first two terms are just subtracted. Hence,

ETE
wg, Eq. (87), at most oscillates for L ! 1, which justifies

considering it as the contribution from the waveguide
modes to the vacuum energy after renormalization.
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Collecting from (84) and (85), we have with

ETE ¼ ETE
imag ¼ ETE

wg þ ETE
cont (89)

two representations of the renormalized vacuum energy
resulting from the TE polarization, one with integration
over the imaginary axis, which coincides with the corre-
sponding part in the Lifshitz formula, and another one with
summation and integration over real frequencies, i.e., over
the spectrum. Both sides can be evaluated numerically.
Both must deliver the same numbers. Indeed, they do.
The results are represented in Fig. 4 as a function of !p

with L ¼ 1. It must be mentioned that, already for dimen-
sional reasons, the energy can be represented in the form

ETE ¼ 1

L3
fð!pLÞ; (90)

where fð!pLÞ is dimensionless [its limiting values can be

read off from Eqs. (78) and (79)]. Thus, a plot of ETE as
function of !p is equivalent to a plot of ETEL3 as function

of L.
In Fig. 4, also ETE

wg and ETE
cont are shown as functions of

!p. These show an oscillating behavior with strong com-

pensation in a way that their sum is just the much smaller
ETE
imag, shown as a thick solid line.

B. TM case

In this subsection, we consider the TM part of the
vacuum energy. We start from the unrenormalized one,
~ETM, in Eq. (45). According to the spectrum of modes
described in Sec. II, it is a sum,

~E TM ¼ ~Esf þ ~ETM
wg þ ~ETM

cont; (91)

of surface modes,

~E sf ¼ 1

2

Z dkjj
ð2�Þ2 e

��kjj
X
sf

!1�2s
sf ; (92)

of waveguide modes,

~E TM
wg ¼ 1

2

Z dkjj
ð2�Þ2 e

��kjj
X
j

ð!TM
j Þ1�2s; (93)

and of photonic modes,

~ETM
cont ¼ 1

2

Z dkjj
ð2�Þ2 e

��kjj
Z 1

0

dk

2i�
ð!2

p þ k2jj þ k2Þð1=2Þ�s

� d

dk
ln

TTMðkÞ
ðTTMðkÞÞ� : (94)

It must be mentioned that we are forced to introduce an
additional regularization for the integration over the
momentum kjj. The reason is in the boundedness of the

frequencies of the surface modes, as expressed by
Eq. (42), which makes the zetafunctional regularization
effectless. This is some kind of additional divergence
which was not observed earlier. However, it does not
show up in the force. As we will see below, all terms
divergent for � ! 0 do not depend on the width L of the
gap.
The main problem, we are faced with, is to perform the

analytic continuation in the zetafunctional parameter s to
s ¼ 0. In the TE case, this was simple since, after perform-
ing the integration over kjj, we could perform the analytic

continuation explicitly. In the TM case, we cannot inte-
grate over kjj in such a simple way since it enters the

reflection coefficient. However, below we will show how
this problem can be solved.
We start with the surface mode contribution (92). Here,

we can make use of the circumstance discussed at the end
of Sec. II, that the frequencies, for large kjj, approach the

frequency !single, (39), of a surface plasmon on a single

interface. Therefore, we subtract !single and add it back,

~Esf ¼ Esf þ 2Esingle; (95)

where

Esf ¼ 1

2

Z dkjj
ð2�Þ2 e

��kjj
X
sf

½ð!sfÞ1�2s � ð!singleÞ1�2s�

(96)

is the subtracted energy of the surface modes and

Esingle ¼ 1

2

Z dkjj
ð2�Þ2 e

��kjj
X
sf

ð!singleÞ1�2s (97)

is the energy of a plasmon on a single interface. In the
energy Esf , one can remove the regularizations, i.e., one
can put s ¼ 0 and � ¼ 0, and the emerging integral turns
out to be convergent. The integral in Esingle, Eq. (97), is

quite simple and can be calculated explicitly for s ¼ 0 and
� ! 0,

2 4 6 8 10 12
p

0.015

0.010

0.005

0.000

0.005

0.010

0.015

FIG. 4. The contributions to the vacuum energy for the TE
polarization as function of !p for L ¼ 1. The solid line repre-

sents the vacuum energy, ETE
imag ¼ ETE

wg þ ETE
cont, the thin solid line

represents the contribution from the photonic modes, ETE
cont, and

the dashed line is the contribution from the waveguide modes,
ETE
wg. The curves are equivalent to represent the energies multi-

plied by L3 as function of L for!p ¼ 1. The jumps appear when

!p goes through multiples of �.
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Esingle ¼
�
1� 12 ln2þ 6 ln!p

192
ffiffiffi
2

p
�

þ lnð�!pÞ þ �Þ
32

ffiffiffi
2

p
�

�
!3

p

þ 1

4
ffiffiffi
2

p
�

!p

�2
þOð�Þ; (98)

where � is the Euler constant. It has two terms divergent
for � ! 0, one quadratic and one logarithmic. We mention
that Esingle does not depend (by construction) on the sepa-

ration L and therefore all these terms depend on !p only.

Next, we turn to the waveguide mode contribution,
Eq. (93). First, we mention that we can remove there the
additional regularization putting � ¼ 0. This is because the
frequencies !TM

j of the waveguide modes grow propor-

tional to kjj for kjj ! 1 and the zetafunctional regulariza-

tion is effective here. In order to perform the analytic
continuation in s, we subtract the frequencies of the TE
waveguide modes and add them back,

~E TM
wg ¼ �Ewg þ ~ETE

wg; (99)

where

�Ewg ¼ 1

2

Z dkjj
ð2�Þ2

X
j

½ð!TM
j Þ1�2s � ð!TE

j Þ1�2s� (100)

has the differences of the frequencies and ~ETE
wg is the TE

contribution (47). The latter has been treated in the pre-
ceding subsection and the analytic continuation in s is
given by Eq. (49). The difference energy, �Ewg, can be

continued in s simply by putting s ¼ 0 in (100) since both
frequencies approach each other for kjj ! 1, as mentioned

after Eq. (31).
Finally, we consider the energy ~ETM

cont, (94), of the pho-
tonic modes in (91). We proceed similarly as just above
and subtract the corresponding TE frequencies,

~E TM
cont ¼ �Econt þ ~ETE

cont; (101)

where ~ETE
cont is given by Eq. (48) and its analytic continu-

ation by the subsequent equations in the preceding sub-
section. The difference energy,

�Econt ¼ 1

2

Z dkjj
ð2�Þ2 e

��kjj
Z 1

0

dk

2i�
ð!2

p þ k2jj þ k2Þð1=2Þ�s

� d

dk

�
ln

TTMðkÞ
ðTTMðkÞÞ� � ln

TTEðkÞ
ðTTEðkÞÞ�

�
; (102)

has the property that on can put s ¼ 0 directly since the
remaining integrals do converge. Also, we can put � ¼ 0
since dangerous terms cancel in the ratios inside the log-
arithms. For numerical evaluation, we used

�Econt ¼ 1

4�2

Z 1

0
dk

Z 1

0
dkjjkjjð!2

p þ k2jj þ k2Þ1=2

� d

dk
Im

�
ln
TTMðkÞ
TTEðkÞ

�
; (103)

which differs from (102) by simple rewriting, including a
change in the order of the integrations.
Now, after having clarified how to make the analytic

continuation in the contributions from the real frequencies,
we turn to the imaginary frequencies. Again, we follow the
procedure used in the preceding subsection. We are going
to transform the integration path of the k integration. We do
this for fixed kjj. For that reason, it is useful to start from

the contribution of the photonic modes, ~ETM
cont, (94), which

we represent in the form

~E TM
cont ¼ 1

2

Z dkjj
ð2�Þ2 e

��kjjFðkjjÞ; (104)

with, using (21),

FðkjjÞ ¼
Z 1

0

dk

2i�
ð!2

p þ k2jj þ k2Þð1=2Þ�s d

dk
ln

TTMðkÞ
TTMð�kÞ :

(105)

The transmission coefficient TTMðkÞ has properties similar
to TTEðkÞ, except for an additional zero for k ¼ ikjj. For
instance, it has a zero in k ¼ 0. So, from the ratio inside the
logarithm, we split the logarithm as a difference of two
and, further, the integral as a difference of two with sub-
stitution k ! �k in the second. Accounting for the pole of
the integrand in k ¼ 0, we come to

FðkjjÞ ¼ lim
	!0

�Z �	

�1
þ
Z 1

	

�
dk

2i�
ð!2

p þ k2Þð3=2Þ�s d

dk

� lnTTMðkÞ: (106)

We proceed by closing the integration path around k ¼ 0 as
explained in the TE case resulting in

FðkjjÞ ¼ lim
	!0

�Z
�
þ

Z
�	

�
dk

2i�
ð!2

p þ k2Þð3=2Þ�s d

dk

� lnTTMðkÞ: (107)

Now, as mentioned, we have an additional pole in k ¼ ikjj.
It may be located inside the contour �	 or outside in
dependence on kjj. It can be seen, that the case, when

this pole is located inside, results in a contribution to
(104) having an integration over kjj with kjj � 	 which

has for 	 ! 0 an additional smallness �	2 and the corre-
sponding contribution vanishes in the limit. So, we are left
with the case that this pole is outside. Then, the contribu-
tion from �	 can be calculated directly and, as before, �
becomes independent on 	, and we get

FðkjjÞ ¼ 1

2
ð!2

p þ k2jjÞð1=2Þ�s þ
Z
�

dk

2i�

� ð!2
p þ k2jj þ k2Þð3=2Þ�s d

dk
lnTTMðkÞ: (108)

Now, we move the path upward until k ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

p þ k2jj
q

,

crossing poles of the integrand. These result from the poles
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of TTMðkÞ in the points k ¼ ißsf (corresponding to the

surface modes) and from the poles of TTMðkÞ in the points
k ¼ ißj (corresponding to the waveguide modes) having

residua with negative sign. Further, we have a pole from
the zero of TTMðkÞ in k ¼ ikjj (which was not present in

the TE case). Finally, we tighten the path around the

cut starting now from k ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

p þ k2jj
q

and come to the

representation

FðkjjÞ¼1

2
ð!2

pþk2jjÞð1=2Þ�sþ!1�2s
p �X

sf

!ð1=2Þ�s
sf

�X
j

ð!TM
j Þð1=2Þ�sþcosð�sÞ

�

Z 1ffiffiffiffiffiffiffiffiffiffiffi
!2

pþk2jj
p

�dßðß2�!2
p�k2jjÞð1=2Þ�s d

dß
lnTTMðißÞ: (109)

We mention that the cosine appears with opposite sign as
compared to (63) because of the different number in front
of s in the exponential.

Now, we insert (109) into (104). The integration over kjj
can be carried out in the first two contributions; for the next
two we use (92) and (93) and come to

~E TM
cont ¼ � !3

p

24�
þ 1

4�2

!p

�2
� ~Esf � ~ETM

wg þ ~ETM
imag; (110)

where we defined

~ETM
imag ¼

cosð�sÞ
2�

Z dkjj
ð2�Þ2 e

��kjj
Z 1ffiffiffiffiffiffiffiffiffiffiffi

!2
pþk2jj

p
� dßðß2 �!2

p � k2jjÞð1=2Þ�s d

dß
lnTTMðißÞ: (111)

The latter is the unrenormalized vacuum energy repre-
sented as an integral over the imaginary axis. It differs
from the corresponding contribution in (5) by the different
transmission coefficients, TTMðißÞ here and TTM

1 ðißÞ,
Eq. (16), in (5).

Now, we consider this difference using (15), analytically
continued to the imaginary axis, where it takes the form

TTMðißÞ ¼ TTM
1 ðißÞ 4"ði�Þ�ß

ð"ði�Þßþ �Þ2 e
�ð��ßÞL: (112)

We use the same notations as in Eq. (66) and, in addition,
the analytic continuation, ! ¼ i�, of the frequency, result-

ing in the relations � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ß2 �!2

p � k2jj
q

and "ði�Þ ¼ 1þ
!2

p

�2 ¼ ß2�k2jj
ß2�k2jj�!2

p
, which must be used in (112).

According to the factors in (112), we split

~E TM
imag ¼ ETM

imag þHTM þ EL2
; (113)

where EL2
is the same as in the TE case, Eq. (70) with its

analytic continuation (71). In the first contribution, we can

remove the regularization since the integrations are con-
vergent such that it takes the form

ETM
imag ¼

1

2�

Z dkjj
ð2�Þ2

Z 1ffiffiffiffiffiffiffiffiffiffiffi
!2

pþk2jj
p dßðß2 �!2

p � k2jjÞ1=2

� d

dß
lnTTM

1 ðißÞ: (114)

The reflection coefficient on the imaginary axis is

TTM
1 ðißÞ ¼ 1

1� r2TMe
�2�L

; (115)

with rTM given by Eq, (6). Thus, Eq. (114) is just the TM
contribution in the Lifshitz formula (5). It can be rewritten
also by making a change of the integration variable ß for �,

ETM
imag ¼

1

4�2

Z 1

0
dkjj

Z 1

0
d��

d

d�
lnTTM

1 ðißÞ; (116)

or, by integrating by parts, in the form

ETM
imag ¼

�1

4�2

Z 1

0
dkjjkjj

Z 1

0
d� lnTTM

1 ðißÞ: (117)

In (116) and (117), the variables must be expressed accord-
ing to

ß¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2þ!2

pþk2jj
q

; �¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2jj þ�2

q
; "ði�Þ¼1þ!2

p

�2
:

(118)

For later use, we define the difference between the corre-
sponding TM and TE contributions,

�Eimag ¼ ETM
imag � ETE

imag: (119)

The TM contributions has the following asymptotic prop-
erties. For large separation L, or, equivalently, for large!p,

it turns into the ideal conductor expression,

ETM
imag ! � �2

1440L3
for L ! 1; (120)

in parallel to (78). For small separation, or small !p, we

make in (117) the substitution � ! !p�. After that, one

can put !p ¼ 0 in the integrand and come to

ETM
imag ! �c2

!p

L2
; (121)

where the remaining integral,

c2 ¼ 1

4�2

Z 1

0
dkjjkjj

Z 1

0
d� ln

�
1� e�2kjj

ð1þ 2�2Þ2
��1

;

(122)

is a number, c2 ’ 0:003 91, which coincides with that
found in [18], Eq. (41) and earlier in Eq. (14) in [19] and
in [20], where a sum representation was derived. This
expression can also be calculated starting from the contri-
bution of the surface modes, Eq. (147). The corresponding
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calculation is shown in Appendix B. We mention that
Eq. (121) with (122) is the same as (7) with (2) inserted.

Finally, the contribution

HTM ¼ cosð�sÞ
2�

Z dkjj
ð2�Þ2 e

��kjj
Z 1

0
d��1�2s d

dß
gðkjj; �Þ

(123)

in (113), resulting from the middle factor in (112), needs to
be considered. In (123), we changed the integration over ß
for � [(118) must be used] and introduced the notation

gðkjj; �Þ ¼ ln
4"ði�Þ�ß

ð"ði�Þßþ �Þ2 : (124)

To proceed, we represent this function as a sum of three,

gðkjj; �Þ ¼ gA þ gB þ gTE; (125)

where

gA¼ ln
4ð!2

pþ�2Þ�2

ð!2
pþ2�2Þ2 ; gB¼2ln

4ð!2
pþ2�2Þðßþ�Þ

2�2ðßþ"ði�Þ�Þ ;

gTE¼ ln
4�ß

ð�þßÞ2 : (126)

According to the splitting (125), we represent (123) as a
sum,

HTM ¼ HA þHB þHTE: (127)

The last term, following from the function gTE, is the same
as appeared in the TE case, Eq. (69) and can be treated in
the same way as in the preceding subsection. The result is
given by Eq. (80).

Now, we consider HA. Since gA depends on � only, the
integrations can be carried out easily. For s ¼ 0 and � ! 0,
we get

HA ¼
ffiffiffi
2

p � 1

4�

!p

�2
þOð�Þ: (128)

This term has a quadratic divergence in the regularization
parameter �. This is, after ~Esf [see Eqs. (95) and (98)], the

second place where it appears.
Finally, we consider HB,

HB ¼ cosð�sÞ
2�

Z dkjj
ð2�Þ2 e

��kjj
Z 1

0
d��1�2s d

dß
gB; (129)

with gB given by the second line in (126). In order to
perform the continuation to s ¼ 0 and to � ¼ 0, we sub-
tract and add back the asymptotics of gB for kjj ! 1,

gB � 1

2ð!2
p þ 2�2Þð!2

p þ k2jjÞ
; (130)

splitting HB into two parts,

HB ¼ HB1
þHB2

: (131)

In the first part, HB1
, the integrations converge for s ¼ 0

and � ¼ 0,

HB1
¼ 1

2�2

Z dkjj
ð2�Þ2

Z 1

0
d��

d

dß

�
�
gB � 1

2ð!2
p þ 2�2Þð!2

p þ k2jjÞ
�
: (132)

These integrations can be carried out numerically, resulting
in

HB1
¼ c

2�2
!3

p; (133)

with c ’ 0:067 77. In the second part,

HB2
¼ 1

2�2

Z dkjj
ð2�Þ2

Z 1

0
d��

d

dß

1

2ð!2
p þ 2�2Þð!2

p þ k2jjÞ
;

(134)

the integration can be carried out analytically in the limit
� ! 0 for s ¼ 0,

HB2
¼ ðlnð!p�Þ þ �Þ

16
ffiffiffi
2

p
�

!3
p þOð�Þ; (135)

where � is the Euler constant. Together, from (133) and
(135), we get

HB ¼
�

c

2�2
þ ðlnð!p�Þ þ �Þ

16
ffiffiffi
2

p
�

�
!3

p þOð�Þ: (136)

This must be inserted, together with (128) and (80), into
(127),

HTM ¼
�

1

24�
� 1

9�2
þ c

2�2
þ ðlnð!p�Þ þ �Þ

16
ffiffiffi
2

p
�

�
!3

p

þ
ffiffiffi
2

p � 1

4�

!p

�2
þOð�Þ; (137)

which completes the analytic continuation in ~ETM
imag,

Eq. (113). Now, we insert this expression into ~ETM
cont,

Eq. (110) and obtain

~E TM
cont ¼ � ~Esf � ~ETM

wg þ
�

c

2�2
� 1

9�2

þ ðlnð!p�Þ þ �Þ
16

ffiffiffi
2

p
�

�
!3

p þ ETM
imag þ EL2

; (138)

whereby four terms canceled. The last step in this sequence
of calculations is to insert this expression for ~ETM

cont into (91),

~ETM ¼
�

c

2�2
� 1

9�2
þ ðlnð!p�Þ þ �Þ

16
ffiffiffi
2

p
�

�
!3

p

þ ETM
imag þ EL2

; (139)
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whereby the contributions from the surface and waveguide
modes canceled.

With Eq. (139), the transition from the summations and
integration over real frequencies to the integration over
imaginary frequencies, including the analytic continua-
tions, is finished. Now, we can define the renormalized
vacuum energy resulting from the TM polarization. We
proceed similar to the TE case and define

ETM ¼ ~ETM �
�

c

2�2
� 1

9�2
þ ðlnð!p�Þ þ �Þ

16
ffiffiffi
2

p
�

�
!3

p � EL2
:

(140)

This coincides, by definition, with the vacuum energy
ETM
imag on the imaginary axis,

ETM ¼ ETM
imag: (141)

As already mentioned, ETM
imag is just the TM contribution to

the Lifshitz formula (5).
In order to get the corresponding expression on the real

axis, we insert for ~ETM in (140) from (91). We get

ETM ¼ ETM
sf þ ETM

wg þ ETM
cont; (142)

where we defined

ETM
cont ¼ ~ETM

cont � EL1
: (143)

Using (101) and (51), this can be rewritten as

ETM
cont ¼ ETE

cont þ �Econt; (144)

and represents the renormalized contribution from the TM
photonic modes. It is represented as the sum of the corre-
sponding TE modes and the difference between TM and
TE mode’s contribution.

The first contribution in ETM, Eq. (142), is defined as

Esf ¼ ~ETM
sf � 1

2
ffiffiffi
2

p
�

!p

�2
�

�ðlnð!p�Þ þ �Þ
16

ffiffiffi
2

p
�

þ 1� 12 ln2

96
ffiffiffi
2

p
�

�
!3

p; (145)

and the second is defined as

ETM
wg ¼ ~ETM

wg þ
�
� c

2�2
þ 1

9�2
þ1�12ln2

96
ffiffiffi
2

p
�

�
!3

pþEL1
�EL2

:

(146)

The terms, which are subtracted in these two expressions,
follow from the definition (140) of the renormalized vac-
uum energy. Thereby, the definition (145) is motivated
from Eq. (98) in the sense that just the doubled contribution
from a plasmon on a single surface is subtracted and

Esf ¼ ~Esf � 2Esingle (147)

holds. After that, the subtractions left for (146) are already
uniquely determined. These can be shown to be just
that subtraction, which makes ETM

wg vanishing for large

separation, L ! 1, thus making ETM
wg the correctly renor-

malized contribution to the vacuum energy. The waveguide
contribution can be also split into the TE contribution and a
remainder,

ETM
wg ¼ ETE

wg þ �Ewg; (148)

where ETE
wg was defined in (87) and �Ewg, is

�Ewg ¼ �~Ewg þ
�
� c

2�2
þ 1� 12 ln2

96
ffiffiffi
2

p
�

�
!3

p; (149)

with �~Ewg defined in (100) taken with s ¼ 0 and (73) was

used.
Collecting from the above formulas, we have with (141)

and (142) two representations of the vacuums energy re-
sulting from the TM polarization,

ETM ¼ ETM
imag ¼ ETM

sf þ ETM
wg þ ETM

cont: (150)

One is with integration over imaginary frequencies, the
other is over real frequencies, i.e., over the real spectrum.
Like the TE case, both can be evaluated numerically and
must deliver the same numbers. Indeed, we checked, they
do. For technical reasons, we represent the results as the
difference between the TM and TE cases

�E � ETM � ETE: (151)

Using (119), (144), and (148), together with (89), we get

�E ¼ �Eimag ¼ ETM
sf þ �Ewg þ �Econt: (152)

The surface modes appear in the TM part only, therefore
these remain without TE counterpart which could be sub-
tracted. The constituent energies in Eq. (152) are shown in
Fig. 5 as functions of the plasma frequency !p. Like in the

TE case in Fig. 4, there are oscillations and compensation.

2 4 6 8 10 12
p

0.020

0.015

0.010

0.005

0.005

FIG. 5 (color online). The difference between the contribu-
tions to the vacuum energies resulting from TM and TE polar-
izations from the photonic modes (solid line) and from the
waveguide modes (dashed line) as function of !p for L ¼ 1.

The dotted line represents the sum of the energies of the surface
plasmons. The thick solid line is the difference between the
complete contributions from the TM and the TE polarizations.
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All curves decrease for large !p showing that the differ-

ence between TE and TM becomes subleading for large
separation or large plasma frequency.

IV. CONCLUSIONS

In this paper, we have discussed the role of the electro-
magnetic modes contributions to the vacuum energy for
two half-spaces characterized by a permittivity " and
separated by a gap of width L with " ¼ 1. In this configu-
ration, the renormalized vacuum energy can be represented
as sum of contributions from the TE and the TM
polarizations,

E0 ¼ ETE þ ETM; (153)

where ETE is given either in terms of integration over
imaginary frequency, (84) for ETE and (117) for ETM, or
in terms of real frequencies, (89) for ETE and (142) for
ETM. Of course, both kinds of representations are equiva-
lent, and for both we derived representations suitable for
numerical evaluation. The corresponding numbers have
been checked to coincide within the confines of reasonable
numerical precision. Results are shown in Figs. 4 and 5.

The representation in terms of imaginary frequency is,
of course, identical to the Lifshitz formula, Eq. (5). As
discussed in the Introduction, the representation in terms of
real frequencies, considered here for the plasma model,
cannot be compared directly with those representations
assuming Im"ð!Þ> 0 which can be found in literature.
Restricted to the plasma model considered in this paper, it
is important to stress that the spectrum, i.e., the set of
contributing real frequencies, consists of surface (for TM
polarization), waveguide, and photonic modes. While the
surface modes are well known to contribute, the role of
waveguide and photonic modes is less clear in literature.
As already mentioned in the Introduction, in [10] only the
surface modes were considered, in [11], in addition, all
evanescent waves were included. Also, in [4], it was not
observed that there is a difference between waveguide and
photonic modes. However, in [16] attention was paid to this
difference. However, that remained without consequences
for the calculations and conclusions of the mentioned
papers (and many others) since all calculations were per-
formed in fact on the imaginary frequency axis and only
the contribution from the surface plasmons were calculated
on the real frequency axis. The photonic and the waveguide
contributions were never calculated separately for the
plasma model.3

In Sec. 3, with Eqs. (89) and (142), we derived repre-
sentations of the vacuum energy in terms of real frequen-
cies. The renormalization was done in a way as to ensure
decrease for L ! 1. This was archived, in the TE part, by
Eq. (83), and, for the TM part, by Eq. (140). In each case,

the subtraction has a term which is independent on the
separation and one term which is proportional to L. The
latter appears as part of the subtraction of the empty space
contribution (another piece of this kind was already sub-
tracted during the derivation of Eq. (3), see [18] for de-
tails). The first subtraction term ensures that the vacuum
energy decreases for L ! 1. Also, we mention that this
term does not enter the force. In this way, the renormal-
ization done is well justified.
We went the way from the initial mode sum (1) to

imaginary frequencies, where we performed the renormal-
ization, and back to real frequencies.
Motivated by the initial mode sum (1) in Secs. II, we

went the way from real frequencies to imaginary frequen-
cies, where we performed the renormalization, and back to
real frequencies. In Appendix A, we demonstrated how to
go the other way round, from imaginary to real frequen-
cies. Here, we started directly from the renormalized vac-
uum energy (84) shortening the calculation significantly. It
is needless to stress that both ways are equivalent. An
interesting by-product is relation (A19) which may serve
as a check for the transmission coefficient.
As already mentioned, the two representations, one in

terms of imaginary frequencies, the other in terms of real
frequencies, coincide and that in terms of imaginary fre-
quencies is just the well-known one. In opposite, that in
terms of real frequencies has some unexpected features.
First, there are the contributions from the waveguide
modes and from the photonic modes already in the TE
case. In the TM case, the surface modes come in addition.
Second, the waveguide and the photonic modes show
oscillations which do not decrease for large separation.
This is clearly seen in Fig. 4 for the TE case. For the TM
case, the same holds since the difference between both
cases, shown in Fig. 5, decreases for L ! 1.
This result is somehow counterintuitive. For large sepa-

ration (equally, for large!p), the half-spaces become ideal

conductors and the spectrum consists of the waveguide
modes only (take, for example, !p ! 1 in Fig. 2).

However, for any fixed L (or !p), we have a sum, ETE
wg þ

ETE
cont, where the oscillations compensate each other to a

large extent. As seen in Eq. (89), the sum equals ETE
imag,

Eq. (89), which deceases �L�3.
It must be mentioned that the attempt to identify the

contributions from the physical modes to the vacuum en-
ergy works well for small separation. Best, it works in the
limitL ! 0 (nonretarded case), where the surfacemodes of
the TM polarization dominate the vacuum energy,

E0 ��c2
!p

L2
for L ! 0; (154)

[see Eqs. (121)], while the contributions from the wave-
guide and photonic modes of both polarizations are sub-
leading. However, as shown in [4], for increasing
separation, there is a compensation between the two surface

3In [22], the contributions from the photonic and from the
evanescent waves were calculated.
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modes, and further increasing L, there is a compensation
between the sum of the contributions from the surface
modes and from the remaining modes.4 In [4], this remain-
ing part was calculated as the difference between the energy
calculated on the imaginary axis and the surface modes’s
contribution. This remaining part was called ‘‘photonic.’’
But, nowwe see that it consists of two parts, waveguide and
photonic, and we observe also large compensations be-
tween these two.

As a problem for further investigations, we mention that
the compensations between the waveguide and the pho-
tonic modes for large separation, possibly, can be handled
analytically. This would make calculation of the vacuum
energy in terms of real frequencies easier.

In the present paper, we considered the plasma model
with permittivity given by Eq. (2). It should be mentioned
that the separation into waveguide and photonic modes will
appear also in the easier case of a constant permittivity
(one needs either to take " < 1 or to consider a suitable ep
in the gap). And, of course, this separation will show up if
considering more complicated permittivities, at least such
without dissipation.
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APPENDIX A: FROM IMAGINARY
TO REAL FREQUENCIES

In the main text, in Sec. III, we considered the transition
from real frequencies in the vacuum energy, to be inserted
into the mode sum, Eq. (1), to imaginary frequencies in
order to establish the relation with Eq. (5). In this
Appendix we consider the reversed transition, from imagi-
nary frequencies as used in Eq. (75), to real frequencies, as
used in Eq. (85). Of course, both are equivalent. However,
in Sec. III we started from the unrenormalized vacuum
energy, whereas here we can start from the already renor-
malized one, which makes the calculations easier. Further,
we restrict ourselves to the TE case. The corresponding
formulas for the TM case can be written down too, but that
would not bring new insights.

We start from representation (75) of the renormalized
vacuum energy in terms of imaginary frequencies,

ETE
imag ¼

1

12�2

Z 1

0
d��3 d

d�
lntð�Þ; (A1)

where we denoted, using (76),

tð�Þ � TTE
1 ði�Þ ¼ 1

1� ðß��
ßþ�Þ2e�2�L

; (A2)

with ß ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

p þ �2
q

. In the complex ! plane (see Fig. 6),

we integrate in (A1) over the imaginary axis, ! ¼ i�. We
note that the integrand, considered as function of �, has
poles in � ¼ 	iqTEj , which correspond to the frequencies

(23) of the waveguide modes. Note that in Eq. (A1), the
integration over the momenta kjj is already carried out and
the relation between the momenta and the frequency is
given by Eq. (13) with formally set kjj ¼ 0.
Now, we turn the integration path in (A1) to the right,

� ! �i!. Using �3 ! i!3, we get

ETE
imag ¼

i

12�2

Z 1

0
d!!3 d

d!
lntð�ið!þ i0ÞÞ; (A3)

where 0 þ i0 indicates that the integration path approaches
the real ! axis from above. We separate this expression
into two parts,

ETE
imag ¼ Aþ B; (A4)

where

A ¼ i

12�2

Z !p

0
d!!3 d

d!
lntð�ið!þ i0ÞÞ (A5)

has the integration region ! 2 ½0; !p�. This region corre-

sponds to the waves which are usually called evanescent.
Accounting for the poles of the integrand, we represent this
integral as the sum of the residua from passing these poles
[entering with a factor �i� since tð�i!Þ has poles] and a
Vp integral,

A ¼ ~ETE
wg þ i

12�2
Vp

Z !p

0
d!!3 d

d!
lntð�i!Þ: (A6)

pp

i pi p

FIG. 6. The complex ! plane. On the real axis, the crosses
denote the poles corresponding the to waveguide modes. The
dashed lines indicate ways to rotate the integration path.

4The latter compensation was mentioned earlier in [3].
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The residua collect just into the sum over the waveguide
modes, Eq. (49), for s ¼ 0. In the transmission coefficient

entering this integral, we note that ß ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

p �!2
q

is real.

Hence,

tð�i!Þ ¼ 1

1� ðßþi!
ß�i!Þ2e2i!L

(A7)

can be rewritten as

tð�i!Þ ¼ e�i


�2i sinð
Þ ; (A8)

with the phase


 ¼ 1

i
ln
ßþ i!

ß� i!
þ!L: (A9)

This allows separating the Vp integral into real and imagi-
nary parts,

A ¼ ~ETE
wg þ 1

12�2

Z !p

0
d!!3 d

d!



� i

12�2
Vp

Z !p

0
d!!3 d

d!
lnð�2i sinð
ÞÞ: (A10)

The integral containing the phase
, Eq. (A9), has no poles
in its integrand and it can be calculated easily,

1

12�2

Z !p

0
d!!3 d

d!

 ¼ !3

p

9�2
þ !4

pL

48�2
: (A11)

It combines in (A10) with ~ETE
wg just into ETE

wg, Eq. (87).

Hence, the real part of A is simply

Re ðAÞ ¼ ETE
wg: (A12)

The imaginary part of A is the remaining Vp integral [the
last term in Eq. (A10)], which we keep as is for the
moment.

Now, we turn to the remaining part of the integration
region, ! 2 ½!p;1Þ, i.e., to part B in (A4), which we

represent in the form

B ¼ � 1

12�2

Z 1

!p

d!!3 d

d!
½Imðlntð�i!ÞÞ

� iReðlntð�i!ÞÞ�: (A13)

Here, we note ß ¼ �ik with k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 �!2

p

q
and

tð�i!Þ ¼ TTE
1 ðkÞ (A14)

is just the same transmission coefficient as used in (52). In
this way, we get for the real part of B,

Re ðBÞ ¼ � 1

12�2

Z 1

!p

d!!3 d

d!
ImðlnTTE

1 ðkÞÞ; (A15)

which differs from Eq. (52) merely by a change of the
integration variable. So, we have

Re ðBÞ ¼ ETE
cont: (A16)

Collecting from (A12) and (A16), we get from the rotation
� ! �i! of the integration path,

ETE ¼ ETE
wg þ ETE

cont; (A17)

which is just the same as (85).
The imaginary parts, appearing in A and in B, must add

up to zero,

ImðAÞþ ImðBÞ¼ �1

12�2

Z !p

0
d!!3 d

d!
lnð�2isinð
ÞÞ

þ 1

12�2

Z 1

!p

d!!3 d

d!
ReðlnTTE

1 ðkÞÞ;¼0;

(A18)

since the initial expression, Eq. (A1), is real. We mention
that the two integrals in (A18) can be joined into one using
(A8), such that the relation

1

12�2

Z 1

0
d!!3 d

d!
ReðlnTTE

1 ðkÞÞ ¼ 0 (A19)

holds.
There is also the possibility to turn the integration path

the other way round, � ! i!, i.e., to the left in Fig. 6. All
calculations done above can be repeated with correspond-
ing changes of signs. As a result, one obtains just the same
real parts, i.e., Eq. (A17). The imaginary parts appear also
the same as Eq. (A18), but with opposite sign.
In this way, we demonstrated how to go the way back in

the complex frequency plane as compared to Sec. III. A
difference is that we used in Sec. III the variable k for the
rotation, in this Appendix we use the variable !, which
appears to be more instructive. It is needless to stress that
both options are equivalent. We obtained, as expected, the
same relation (85) as before. The procedure represented in
this Appendix appears easier than that in Sec. III. This is so
since we consider here the vacuum energy after renormal-
ization, Eq. (83). It is interesting to note that the subtrac-
tion terms in the renormalized energy of the waveguide
modes, Eq. (87), appear also from the integral over the
frequencies of the evanescent modes, Eq. (A11), without
explicit reference to the renormalization.
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APPENIDX B: CONTRIBUTION FROM THE
SURFACE PLASMONS AT SMALL SEPARATION

In this Appendix, we calculate the individual contribu-
tions from both surface plasmons to the vacuum energy at
small separation. These dominate the energy and their sum
is the same as given by Eq. (121).

The contribution from a surface plasmon to the vacuum
energy is given by Eq. (96) with s ¼ � ¼ 0, which we
consider now for !p ! 0. For this, we need the momenta

�sf [see Eq. (37)], which are solutions of Eqs. (35). From

this equation, it follows that for !p < kjj the inequalityffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2jj �!2

p

q
; �sf < kjj (B1)

holds. This motivates, for small !P, the ansatz

�sf ¼ kjj � �sf!
2
p þ . . . : (B2)

Inserting the ansatz into Eq. (35), we get

�s ¼ 1

2kjj
1

1þ coth
kjjL
2

; �a ¼ 1

2kjj
1

1þ tanh
kjjL
2

:

(B3)

From here, using (39) and (37), the expansions of the
frequencies follow,

!s�!single¼
0
@ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þcoth
kjjL
2

q � 1ffiffiffi
2

p
1
A!pþOð!3

pÞ;

!a�!single¼
0
@ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ tanh
kjjL
2

q � 1ffiffiffi
2

p
1
A!pþOð!3

pÞ:
(B4)

Inserting these into (39) and (37) and integrating over kjj,
one comes to

Es ¼ cs
!p

L2
þ . . . ; Ea ¼ ca

!p

L2
þ . . . ; (B5)

with

cs ¼
�2 � 24ð1þ ð�1þ 1

2 ln2Þ ln2Þ
24

ffiffiffi
2

p
�

;

’ �0:030 576;

ca ¼ 1

2
ffiffiffi
2

p
�
½2ð�1þ ffiffiffi

2
p Þ þ ð2� ln2Þ ln2þ arcsinhð1Þ

� ð2ð�1þ ln2Þ � arcsinhð1ÞÞ � Li2ð3� 2
ffiffiffi
2

p ÞÞ�;
’ 0:026 670 8: (B6)

The sum of these gives Eq. (121).
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