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The mass and interactions of a quantum ’t Hooft-Polyakov monopole are measured nonperturbatively

using correlation functions in lattice Monte Carlo simulations. A method of measuring the form factors for

interactions between the monopole and fundamental particles, such as the photon, is demonstrated. These

quantities are potentially of experimental relevance in searches for magnetic monopoles.
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I. INTRODUCTION

Everyday experience tells us that there are no isolated
magnetic charges, i.e., magnetic monopoles, but there are
strong theoretical hints that they may still exist. Their
existence would explain the quantization of electric charge
[1], and they are an inevitable consequence of grand uni-
fication [2,3]. As stable particles, magnetic monopoles
produced in the early Universe would still exist [4,5], but
there are very strong astrophysical bounds on their number
density (as outlined by the review in Ref. [6]). However,
monopoles could also be produced in particle accelerators
provided that their mass is low enough. This would clearly
not be possible for grand unified theory monopoles, for
which the mass would be around 1016 GeV. It is, however,
entirely consistent to consider monopoles which are much
lighter than this, perhaps even around 1 TeV. They can then
be produced in the LHC, where they are being searched for
by the MoEDAL experiment [7].

If the search is successful, it would open up a new
window on high-energy physics. The monopoles could
have interesting and unusual properties—such as the abil-
ity to catalyze baryon decay [8]—which reflect physics
beyond the standard model and yet, because they are stable
and interact strongly with the electromagnetic field, they
would be relatively easy to study. Curiously, effective
excitations with nonzero magnetic charge exist also in
condensed matter systems [9,10], where their physics can
be studied with simple tabletop experiments.

To benefit from any experimental discovery of magnetic
monopoles and to link their properties to high-energy
physics, one needs a reliable way to calculate their
properties from theory. Calculations of their scattering
amplitudes typically treat them as point particles and are
hampered by their strong magnetic coupling (see Ref. [11]
for a review). However, in actual theories of high-energy
physics they usually appear as topological solitons known
as ’t Hooft-Polyakov monopoles [2,3], which are extended
objects. These solutions have been studied extensively in
classical field theory [12], but quantum results generally

only exist in supersymmetric theories in which quantum
corrections are straightforward. In nonsupersymmetric
theories, results have been limited to leading logarithmic
corrections to the monopole mass at the one-loop level
[13,14], although the monopole mass has also been calcu-
lated nonperturbatively using numerical lattice field theory
methods [15].
In previous work [16,17], we developed a technique to

calculate form factors of topological solitons using lattice
Monte Carlo simulations. In this paper, we apply this
technique to ’t Hooft-Polyakov monopole, and calculate
the form factor of the magnetic monopole for scalar and
magnetic fields. The latter describes the interaction be-
tween the monopole and the photon, and it is therefore
the key observable if one is ever in a position to study
magnetic monopoles experimentally. Furthermore, it needs
to be calculated in the full quantum theory because the
semiclassical result is that of a pointlike Dirac monopole,
and therefore any nontrivial properties of the monopole
appear only in quantum theory.
We investigate the SU(2) Georgi-Glashow model with

the Lagrangian

L ¼ �1
4 TrF��F

�� þ Tr½D�;��½D�;��
�m2 Tr�2 � �ðTr�2Þ2 (1)

with the covariant derivative D� ¼ @� þ igA�. The field

� is in the adjoint representation of the SU(2) gauge
group and can be parametrized by the Pauli matrices as
� ¼ �a�a.
In the broken phase, which occurs classically form2 < 0

in the parametrization chosen here, a vacuum expectation
value Tr�2 ¼ �m2=2� ¼ v2 forms, and the SU(2) sym-
metry is broken to U(1). In this phase, the theory has
monopole solutions with an extended scalar field [2,3].
Even in continuum, the classical profile of this mono-

pole solution must be obtained numerically except in the
BPS limit where � ! 0. The classical mass of the mono-
pole can be written as

M ¼ 4�mW

g2
fðzÞ; (2)*a.rajantie@imperial.ac.uk
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where fðzÞ is a function of the ratio z ¼ mH=mW,

mH ¼ ffiffiffi
2

p jmj is the Higgs mass, and mW ¼ gjmj= ffiffiffiffi
�

p
is

the mass of the charged W� bosons. For nonzero z, the
function fðzÞ needs to be calculated numerically or as a
Taylor expansion [18,19].

Two length scales can be associated with the quantum
monopole. The first is the Compton wavelength deter-
mined by the monopole mass M; the other is the core
size of the monopole which is determined by the perturba-
tive masses mH and mW. Equation (2) shows that at weak
coupling there is a large hierarchy between these scales,
M � mW; mH.

II. LATTICE IMPLEMENTATION

In order to study the theory (1) using Monte Carlo
simulations, we Wick rotate it to four-dimensional
Euclidean space and discretize it. Our Euclidean lattice
action is

Slat ¼ 2
X
�

½Tr�ð ~xÞ2 � Tr�ð ~xÞU�ð ~xÞ�ð ~xþ �̂ÞUy
�ð ~xÞ�

þ 2

g2
X
�<�

½2� TrU��ð ~xÞ� þm2 Tr�2 þ �ðTr�2Þ2

(3)

with link matrices parametrized as U� ¼ 1þ i�aua. We

have set the lattice spacing to unity, and therefore are left
with the gauge coupling g, bare mass m, and quadratic
coupling � as free parameters.

In the symmetry broken phase, a residual U(1) symme-
try persists. We can derive link variables u� corresponding

to this smaller gauge group [20,21]

u� ¼ �þðxÞU�ðxÞ�þðxþ �̂Þ; (4)

where �þ ¼ 1
2 ð1þ �̂Þ and �̂ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=Tr�2

p
, giving an

Abelian field strength tensor1

��� ¼ 2

g
arg Tru�ðxÞu�ðxþ �̂Þuy�ðxþ �̂Þuy�ðxÞ (5)

and an expression for the lattice magnetic field,

Bi ¼ 1
2�ijk�jk: (6)

Gauss’s law for a magnetic field in standard U(1) elec-
trodynamics is r �B ¼ 0. In our lattice formulation, the
corresponding equation becomes

X3
i¼1

½Biðxþ {̂Þ � BiðxÞ� ¼ 	MðxÞ ¼ 4�n

g
; (7)

where n is an integer, which can be nonzero. This means
that the theory allows magnetic charges. In the classical
limit, these charges correspond to ’t Hooft-Polyakov
monopoles [2,3]. Note that even on the lattice, the mag-
netic charge is quantized and localized in one lattice cell.
We simulate the theory of Eq. (3) on a Euclidean lattice

of size2 L3 � T. To create nonzero magnetic charge, we
apply twisted boundary conditions on each time slice [20],
while retaining periodic boundary conditions in the time
direction. The twisted spatial boundary conditions are

�ðxþ L{̂Þ ¼ �i�ðxÞ�i; Uðxþ L{̂Þ ¼ ��iUðxÞ�i

(8)

in the ith direction, where �i is the appropriate Pauli
matrix. These boundary conditions force the magnetic
charge to be odd. If T is large enough then the contribution
to the partition function for the simulation with these
boundary conditions must come predominantly from the
one-charge sector as tunneling is heavily suppressed.
Specifically, we have a partition function

Ztw ¼ 2Z0

�
Z1e

�MT þ 1

3!
Z3
1e

�3MT þ . . .

�
; (9)

where

Z1 ¼ ðmL2=2�TÞ3=2 (10)

is the partition function for an isolated pointlike monopole
(and, in fact, the usual partition function for a point particle
at temperature 1=T—see footnote 2).
Similar arguments apply to the C-periodic boundary

conditions [23]

�ðxþ L{̂Þ ¼ �2�ðxÞ�2; Uðxþ L{̂Þ ¼ ��2UðxÞ�2;

(11)

which are locally gauge equivalent to the twisted ones (8),
but not globally. These boundary conditions permit only
even magnetic charges, with the resulting partition func-
tion taking the form

ZC ¼ Z0 þ 2Z0

�
Z2
1

1

2!
e�2MT þ . . .

�
: (12)

1Other definitions for the effective U(1) field have been used in
the literature [22]. We choose this one because it preserves the
topological nature of the original ’t Hooft tensor [2] and there-
fore defines an exactly quantized and localized magnetic charge,
and because it is symmetric under lattice rotations. However, one
should bear in mind that because we are dealing with an
interacting theory, none of these expressions will be the exact
creation operator for the real physical photon state. Therefore,
one should really use a correlation matrix for a set of operators
with the correct quantum numbers, which is the standard ap-
proach in lattice mass measurements.

2We choose this notation to be consistent with earlier litera-
ture. Note that our T is not temperature, and even though we
work in four-dimensional Euclidean space one should not inter-
pret it as the imaginary time formulation of finite-temperature
field theory. If one were to use that interpretation, the tempera-
ture of the system would be 1=T.
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Note that the magnetic field defined by Eq. (6) is anti-
periodic with both twisted and C-periodic boundary con-
ditions (see Fig. 1). In contrast, with standard periodic
boundary conditions the magnetic field is periodic, and
therefore the total magnetic charge has to be zero.

III. FREE ENERGYAS THE RESPONSE
TO ATWIST

The conventional technique for studying magnetic
monopoles and other topological defects with lattice
Monte Carlo simulations has consisted of measuring their
mass via their free energy [15,24–26].

The mass of the monopole is obtained from the differ-
ence in free energies in the two different topological sec-
tors. This, in turn, must be obtained from the partition
functions through

�F ¼ Ftw � FC ¼ � ln
Ztw

ZC

: (13)

From this, we can obtain the mass using Eqs. (9) and (12),
which give

�F ¼ MT � ln2� 3

2
ln
mL2

2�T
þOðe�2MTÞ: (14)

We cannot measure partition functions in Monte Carlo
simulations (though we can, in principle, measure the
ground-state–energy difference using other nonperturba-
tive techniques [27]). Instead, one can integrate along
a path from a point in parameter space where the free

energy (and mass) of the monopole are known to vanish
to the point where the mass is required,

�F ¼
Z

dg

��
@Slat
@g

�
tw
�

�
@Slat
@g

�
C

�
: (15)

Derivatives of the free energy along the path are given
by expectation values, which can be measured using
Monte Carlo simulations. Several different integration
paths have been considered in the literature.
We use this approach as a benchmark to compare our

results with. We choose to varym2, and integrate from high
m2 where the system is in the symmetric phase and the
monopole has zero mass, to low m2 where the system is in
the broken phase and the monopole is massive. In common
with most of the literature, we use finite differences instead
of a continuous derivative. The details of this calculation
are given in Appendix A.

IV. TWO-POINT FUNCTIONS

In Ref. [17], we introduced an alternative approach,
which uses correlation functions calculated with twisted
boundary conditions, and allows us to calculate not only
the mass of the monopole but also its form factors. For any
local operator O, one can define the corresponding form
factor as

fðp2;p1Þ ¼ hp2jÔð0Þjp1i; (16)

where jpi is a quantum state with one monopole in a
momentum eigenstate with momentum p. We normalize
these states in a Lorentz-invariant way as

hp0jpi ¼ ð2�Þ3
ð3Þðp0 � pÞEp: (17)

The form factor is closely related to the scattering ampli-
tude between the monopole and the particle created by
operator O.
In this section, we start by looking at analytical and

semiclassical results for the form factor of the monopole
with various quantities, then go on to generalize the results
of Ref. [17] to the present case. These results will allow us
to relate quantities measured in lattice simulations to
scalar-monopole and photon-monopole form factors.

A. Form factors: semiclassical results

In the semiclassical limit, the form factor is given by the
Fourier transform of the classical profile OclðxÞ of the
quantity O in the monopole configuration,

fðp2;p1Þ ¼ hp2jÔð0Þjp1i
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ep2

Ep1

q Z
d3xeiðp2�p1Þ:xOclðxÞ

� M
Z

d3xeiðp2�p1Þ:xOclðxÞ; (18)

where the last line is valid in the nonrelativistic limit, when
jp1j, jp2j � M. In this case, to which we shall restrict

FIG. 1. A two-dimensional spatial slice through the system
with boundary conditions of Eq. (8). The magnetic field lines are
shown, and the antiperiodicity of the magnetic field components
can be deduced. The simulated box is shaded, with ‘‘image’’
magnetic charges shown in the neighboring boxes. It can be seen
that moving from the boundary on one side of the lattice to the
other requires that the magnetic field be reversed.

NONPERTURBATIVE STUDY OF THE ’t HOOFT- . . . PHYSICAL REVIEW D 85, 025003 (2012)

025003-3



ourselves, the form factor becomes a function of the mo-
mentum difference k 	 p2 � p1 only, as a direct conse-
quence of Galilean invariance, so we will denote it by fðkÞ.

To determine what we should expect from our lattice
simulations, let us evaluate this for the magnetic and scalar
field operators. First, let us take our operator to be

O ¼ Tr�2: (19)

There is no analytic expression for the classical (non-BPS)
’t Hooft-Polyakov monopole solution, but in continuum
the scalar field has the ‘‘hedgehog’’ form

�ðrÞ ¼ vffiffiffi
2

p HðrÞ� � x
r

; (20)

where r ¼ jxj, and HðrÞ is a function which approaches 1
at r ! 1 with the asymptotic behavior [19]

HðrÞ � 1
 e�mHr

mHr
(21)

for mH < 2mW . The Fourier transform of the classical
profile Tr�2 ¼ v2HðrÞ2 has a delta function peak at
k ¼ 0, but otherwise it is finite and approaches a constant
value at low momenta

hkjTr�̂2j0i 
Mv2

m3
H

as k ! 0: (22)

For more precise comparison, we will use gradient flow to
find the classical monopole configuration �, U numeri-
cally for our chosen lattice sizes.

Let us then consider the magnetic field BðxÞ. This form
factor is the most directly measurable quantity character-
izing magnetic monopoles, because it determines their
scattering amplitude with photons. For a semiclassical
monopole, this has the standard Coulomb form,

B ðxÞ ¼ 1

g

x

x3
; (23)

which has the Fourier transform

hkjB̂ð0Þj0i ¼ i
4�M

g

k

k2
: (24)

Note that this result is the same as for a pointlike
monopole, which means that the semiclassical calculation
is not sensitive to the size or internal structure of the
monopole in any way. Therefore, it is not useful for prob-
ing the properties of magnetic monopoles, and one needs a
quantum mechanical result instead.

B. Form factors from two-point functions

To calculate form factors in quantum theory, we adapt
our method given in Ref. [17] for obtaining the scalar form
factor from simpler two-dimensional lattice simulations
(and associated one-dimensional defects) to the present
case. Matrix elements like f cannot be computed directly

using Monte Carlo simulations. Instead, the basic observ-
able is the field correlation function, which we consider in
the ground state j0i of the one-monopole sector. We cal-
culate this correlation function in momentum space, taking
the Fourier transform in space but not in the Euclidean time
direction, and write a spectral expansion in terms of energy
eigenstates j�i with energies E�,

hOð0;kÞOðt;qÞi ¼ X
�

h0jÔðkÞj�ih�jÔðqÞj0i
h0j0i e�tðE��E0Þ;

(25)

where E0 ¼ M is the energy of the single-monopole
ground state.
Furthermore, the Euclidean spacetime is necessarily

finite in actual Monte Carlo simulations. We denote the
length of the system in the time direction by T and in the
three space directions by L. We apply twisted boundary
conditions (8) to the spatial boundaries. In addition to
creating an odd magnetic charge, this has the effect that
all observables that are odd under charge conjugation such
as B are antiperiodic, and even observables such as Tr�2

are periodic. Their momenta k and q in Eq. (25) are
therefore also quantized accordingly,

ki ¼
� ð2ni þ 1Þ�=L; for odd operators;

2ni�=L; for even operators;
(26)

with ni 2 Z.
In the time direction, we impose periodic boundary

conditions. The correlator can then be written as

hOð0;kÞOðt;qÞi
¼ 1

Z
TrÛðT � tÞÔðqÞÛðtÞÔðkÞ

¼ 1

Z

X
�;�0

h�0jÔðqÞj�ih�jÔðkÞj�0ie�E�0 ðT�tÞ�E�t; (27)

where ÛðtÞ ¼ expð�ĤtÞ is the Euclidean time evolution

operator, and Z ¼ TrÛðTÞ.
With twisted boundary conditions, the states j�i, j�0i

must have odd magnetic charge, and because of momen-
tum conservation, they must also have opposite overall
momentum k ¼ �q. The lowest such state is the single-
particle state of a monopole with momentum k, which has
energy

Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

p
� Mþ k2

2M
: (28)

The next states in the spectrum are two-particle states with
a monopole moving at momentum k0 and a photon with
momentum k� k0. In a box of size L, the momentum of
the photon is quantized, and therefore there is a large gap

�=L � k2=2M between the single-particle state and the
lowest two-particle state.
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At long time separation, we can therefore approximate Eq. (27) by an integral over single-particle momentum
eigenstates jki,

hOð0;kÞOðt;qÞi ¼ 1

Z

Z d3k0

ð2�Þ3Ek0

d3k00

ð2�Þ3Ek00
hk0jÔðqÞjk00ihk00jÔðkÞjk0ie�Ek0 ðT�tÞ�Ek00 t

¼ 1

Z
ð2�Þ3
ð3Þðqþ kÞ

Z d3k0

ð2�Þ3
jfðk0 � k;k0Þj2

Ek0�kEk0
e�Ek0 ðT�tÞ�Ek0�kt: (29)

Similarly, we can write the partition function as

Z ¼
Z d3k0

ð2�Þ3Ek0
hk0jÛðTÞjk0i ¼ L3

Z d3k0

ð2�Þ3 e
�Ek0T

� L3
Z d3k

ð2�Þ3 e
�ðMþðk2=2MÞÞT ¼ L3

�
M

2�T

�
3=2

e�MT:

(30)

This partition function is the individual contribution to the
partition function from each monopole’s worldline in
Eq. (9), and using Eq. (10) it can be written as

Z ¼ Z1e
�MT: (31)

To calculate the integral (29), we use the saddle-point
approximation. The saddle point k0 is found by minimiz-
ing the action

Sðk0Þ ¼ Ek0 ðT � tÞ þ Ek0�kt�MT (32)

for given t. By approximating the integral by a Gaussian
around the saddle point, we obtain

hOð0;kÞOðt;qÞi¼ 1

Z
ð2�Þ3
ð3ÞðqþkÞ

�
Z d3k0

ð2�Þ3
jfðk0 �k;k0Þj2

Ek0�kEk0

�e�Sðk0Þ�ð1=2Þðk0�k0Þ�Mðk0Þ�ðk0�k0Þ; (33)

where Mðk0Þ is the Hessian matrix with components

Mijðk0Þ ¼ @2Sðk0Þ
@k0i@k0j

								k0¼k0

: (34)

In the limit of large t and T � t, the Gaussian approaches a
delta function and we can calculate the integral3

hOð0;kÞOðt;qÞi ¼ 1

Z1

ð2�Þ3
ð3Þðqþ kÞ jfðk0 � k;k0Þj2
Ek0�kEk0

� 1

ð2�Þ3=2Wðk0Þ
e�Sðk0Þ; (35)

where

Wðk0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detMðk0Þ

q
: (36)

In the nonrelativistic limit k � M, where the form
factor is a function of the momentum difference only, we
find

hOð0;kÞOðt;qÞi � ð2�Þ3
ð3Þðkþ qÞ
L3

�
T

M

�
3=2

� jfðkÞj2
Ek0�kEk0

Wðk0Þ e
�Sðk0Þ; (37)

where we have substituted the expression (10) for Z1.
We can use Eq. (37) to determine the form factor from

the field correlator. For given k and t, we obtain the saddle
point k0 by minimizing Eq. (32), and the form factor is
finally given by

fðkÞ ¼ �i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihOð0;kÞOðt;�kÞip �

M

T

�
3=4

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ek0�kEk0

Wðk0Þ
q

eSðk0Þ=2 (38)

forO odd. The factor of i is not present for even operators,
due to parity considerations.

C. Mass measurements

The time separation t enters into Eq. (38) directly—in
parametrizing the two-point function—as well as indi-
rectly, in the saddle-point calculation for k0. However,
since k � M in the current calculation we can take the
nonrelativistic limit of the action in Eq. (32) and let
k0 ¼ kt=T for arbitrary t. To order k, there are no
t-dependent quantities outside of the action in our expres-
sion for the form factor. Thus, as expected, at low momenta
we effectively have

hOð0;kÞOðt;qÞi

¼ jfj2
M2

e�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2þk0ðtÞ2

p
t�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2þðk�k0ðtÞÞ2

p
ðT�tÞþMT: (39)

3We have corrected a typographical error in Eqs. (17) and (19)
of Ref. [17] where the square root erroneously extends over the
energies as well as the normalization factor in the denominator,
but not the action Sðk0Þ. The expressions used in the numerical
analysis were correct and so the results of that paper are
unaffected.
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We can use this result to conduct a fit to the correlator,
noting that this is merely one contribution to the two-point
function; the other most significant contribution (particu-
larly at shorter distances) will be from the lightest particle
that the operator O can create propagating in the bulk.
Hence, if we take O ¼ Bi then this will be the photon,
which we will treat as massless; for O ¼ Tr�2 it will be

the bulk scalar particle, which has a mass mH ¼ ffiffiffi
2

p jmj.
As always, we are assuming in using this calculation that

the particles created by the correlation function either
interact directly with the monopole, propagate solely in
the bulk, or are annihilated by the vacuum.

V. RESULTS

Simulations were carried out using a 163 � 48 lattice

with � ¼ 0:1 and g ¼ 1=
ffiffiffi
5

p
. For simplicity, the parame-

ters are the same as those of Ref. [15]. For these parame-
ters, the theory has a second-order (or possibly very weakly
first-order) phase transition at m2

c � �0:27 between the
confining phase at m2 >m2

c and the Coulomb phase at
m2 <m2

c.
Configurations were created by generating a classical

‘‘cold’’ monopole and then ‘‘heating’’ the configuration
gradually toward the phase transition. Once thermalization
of Tr�2 had occurred for a given parameter choice, the
resulting configuration was used as the input for the next
value of m2. In this way, a set of configurations was
generated which could then be simulated separately. We
thermalized the system initially deep in the broken phase,
and then gradually increasing the value of m2, because
moving through the phase transition in the opposite direc-
tion produces extra monopoles which would take a very
long time to annihilate [4,28].

The system seems very susceptible to the creation of
metastable states, particularly long-lived monopole-
antimonopole pairs as well as what appear to be excited
states of the monopole. After thermalization of Tr�2,
additional checks on the histogram of total charge of the
system were carried out; fluctuations due to the finite
volume [indicated by Eq. (9)] were to be expected, but
any skewness in the distribution led us to reject the ther-
malization and try again.

A. Mass measurements and comparison

Three methods were used to measure the mass of the
monopole. The first was the well-established response to a
twist obtained from Eq. (15), used previously in Ref. [15]
and described in detail in Appendix A. The lattices in that
work were considerably smaller in the Euclidean time
direction but the response to a twist measured here is in
good agreement with the L ¼ 16 data that were obtained.
The measurements are plotted as a continuous line in both
Figs. 2 and 3, for reasons discussed at length in Sec. III.
The thickness of the line is the estimated error.

It was found that, for the histograms to offer sufficient
overlap that the free energy estimates (A4) and (A5)
agreed within errors, a measurement spacing of at most

m2 ¼ 0:001was required. The solid line plotted therefore
required in excess of 150 separate simulations to keep
systematic errors at an acceptable level, although
Eq. (A4) gives consistently a lower value than Eq. (A5).
The twist measurements clearly have a finite size effect

(also seen in Ref. [15]) that affects the measurements of the
monopole mass when the physical size of the monopole
almost fills the box. The curve of the twist results changes
concavity as the monopole becomes smaller than the box
size. Deeper in the broken phase, the monopole mass
behaves in a manner similar to the classical monopole
mass.
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FIG. 3. Plot of the monopole mass obtained from the magnetic
field correlator, with twist measurement overplotted for com-
parison. The momenta used are k ¼ ð3�=L;�=L;�=LÞ, and
permutations. The results are similar to the scalar field case.
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FIG. 2. Plot of the monopole mass obtained from the scalar
field correlator, with twist measurement overplotted for com-
parison. The scalar field correlator with k ¼ ð2�=L; 0; 0Þ and
permutations is used, the lowest permitted nonzero momentum.
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The errors were obtained using the methods described in
Appendix A. No attempt was made to account for the
nonzero covariance between adjacent mass interval mea-
surements, but it is felt that this would not give a major
systematic contribution to the error.

Let us now turn our attention to the use of the two-point
correlator to calculate masses as described in Sec. IVC.
We carried out a fit to Eq. (39), plus a bulk field which we
expect will be either the scalar or the photon, depending on
the operator used:

CðtÞ ¼ C1e
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2þk0ðtÞ2

p
t�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2þðk�k0ðtÞÞ2

p
ðT�tÞþMT

þ C2ðe�Ebulkte�EbulkðT�tÞÞ: (40)

To ensure that our error estimates are robust despite the
clear correlations between data points at different separa-
tions exhibited by the two-point function, we use a jack-
knifed nonlinear least squares fit method. The error
estimates obtained from this technique are (in the present
work) in agreement with those from our previous use of
bootstrapping, but there exist results demonstrating the
robustness of the jackknife technique for residuals that
are not independently and identically distributed [29].

The length of each simulation run was about 10 times
that for each simulation used in the response to a twist
technique discussed above. On the other hand, for the
single point at m2 ¼ �0:4, the results of 150 such simu-
lations in two topological sectors are required for the twist
calculation (given the conditions above of a spacing where
the two measurements f1 and f2 agree to within 2�),
whereas just one measurement in the topologically non-
trivial sector is needed with the correlator calculation.
Added to the difficulty of thermalizing every one of those
300 ensembles and avoiding metastability, it becomes clear
that it is computationally less demanding to use the corre-
lator measurement deep in the broken phase—if it can be
relied upon. Close to the phase transition, the finite size
effects of either technique are severe in such a small box.
We therefore leave it to future work to study the dynamics
of quantum monopoles at strong coupling near the critical
point [15].

Based on Fig. 2, it seems that there are some small
systematic discrepancies between the twist and correlator
results when the correlator of the scalar field is used. Given
the relatively small lattice sizes used, it is not inconceiv-
able that this is due to the finite size effect in one of the two
quantities measured, but long-lived metastable states are
another possibility. Note that we do not anticipate any
major lattice artifacts playing a role in the monopole
dynamics until mH � 1, when the scalar mass is about
the inverse lattice spacing, at which time the monopole
will become small enough to feel the potential due to the
discretized lattice more severely [30].

The results for the magnetic field correlator are shown in
Fig. 3. Since the magnetic field operator couples to the

photon, we anticipate that part of the signal in this case
comes from a massless photon field propagating in the
bulk. This assumption seems borne out by the failure of
our fitting ansatz for k ¼ ð�=L;�=L;�=LÞ, and the need
to go to k ¼ ð3�=L;�=L;�=LÞ to see the correlator ex-
pected of the monopole signal.
Despite the apparent systematic discrepancy, the fits

yielding the data for Fig. 3 are very good, and the form
of the correlator given in Eq. (39) seems to be the right one;
the long-distance ‘‘plateau’’ behavior is a good fit.

B. Form factor measurements

Having studied the mass using the low-momentum cor-
relator measurements, we now move on to the form factor
measurements. From the results of the Monte Carlo simu-
lations, we use Eq. (38) to obtain the form factor, and
compare with semiclassical expectations. To minimize
sources of systematic error, we use the twist results for
the value of M in computing form factors.
We start by looking at the scalar field form factor

f�ðkÞ ¼ hkjTr�̂2j0i, for which there is a semiclassical
comparison available. The classical monopole configura-
tion can be obtained on the lattice using gradient flow.
Following Eq. (18), the form factor can then be recovered
by Fourier transforming Tr�2, for comparison with the
measurement from the Monte Carlo simulation.
The minimization was started from a classical hedgehog

(20) with a trivial gauge fieldU�ðxÞ ¼ 1. A local minimum

of the Euclidean action was obtained using gradient flow
(see Appendix B for details). The resulting field configu-
rations were used to obtain the scalar field Tr�2 in the
presence of the classical monopole. As a by-product, the
classical mass was obtained (for comparison with the twist
results above), by looking at the difference in energy
between topologically trivial and topologically nontrivial
configurations,

Mclðm2Þ ¼ Etwðm2Þ þm4

4�
L3: (41)

Our results deep in the broken phase are shown in Fig. 4.
In this plot, a single value of m2 ¼ �0:4 has been used for
the Monte Carlo simulations, and the classical monopole
with the closest matching mass was used for the compari-
son. There is, unsurprisingly, good agreement between the
two. The semiclassical agreement demonstrates that our
technique generalizes reliably from the relatively straight-
forward case of the kink to higher dimensions.

The magnetic field form factor fBðkÞ ¼ hkjB̂j0i is per-
haps physically more interesting. It is a vector quantity, but
in continuum its direction is always parallel to k because
of rotation invariance, and therefore only its length
fBðkÞ ¼ jfBðkÞj is nontrivial. On the other hand, in the
simulations it is easiest to consider its individual compo-
nents ½fBðkÞ�i, but because of the boundary conditions we
cannot choose the momentum to be parallel to a coordinate
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axis. Instead, we note that the length of the vector can be
written as

fBðkÞ ¼ k

ki
½fBðkÞ�i: (42)

This quantity is shown for various values ofMðm2Þ and k in
Fig. 5. For k � mH, we are probing wavelengths longer
than the monopole core size, and therefore the curve
approaches the expected Coulomb result of Eq. (24). In
the semiclassical calculation, this behavior extends to ar-
bitrarily high momenta, which corresponds to a pointlike
charge, but our results show that in the quantum theory

there is a clear deviation from the Coulomb result at shorter
wavelengths, when k * mH. One interpretation for this is
that because of quantum fluctuations, the magnetic charge
is spread out over distance 
1=mH.
In Fig. 6, we highlight two fixed values of m2 and plot

the form factor for various values of k. Changing the value
of m2 can be interpreted as changing the physical lattice
spacing. Moving closer to the critical point, i.e., toward
higher m2, corresponds to taking the continuum limit. In
Fig. 6, we see that closer to the continuum limit, the charge
distribution becomes more spread out in physical units. On
physical grounds, we would expect that it approaches a
finite continuum limit.

C. A note on algorithms and performance

Previous nonperturbative studies of topological solitons
have typically employed a standard Metropolis update
algorithm. It would seem, however, that excitations corre-
sponding to an extended defect’s worldline are not going to
be quickly thermalized or decorrelated by updates that are
local in space. Indeed, the classical topological soliton is a
solution of the field equations, so an obvious way to
improve ergodicity would seem to be to use one of the
family of algorithms which relies on real-time dynamics.
For this reason, despite the added computational cost—and
the complexity arising from the twisted boundary
conditions—it was decided to investigate the performance
of a hybrid Monte Carlo (HMC) algorithm. This showed
promise previously when fighting critical slowing down in
our studies of the form factors of critical kinks. We hy-
pothesized that this was due to the fact that the defects obey
the equations of motion, and so using an update method
that integrates the equations of motion (or a generalization
thereof) improves ergodicity for observables associated
with the quantum topological soliton. In contrast, a single
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FIG. 4. Plot of the monopole form factor for the scalar field
f�ðkÞ. The measurement is deep in the broken phase with m2 ¼
�0:4. For comparison, the semiclassical result is also shown;
renormalization conditions have been used such that the vacuum
expectation value for the gradient flow monopole matches that
measured in the nonperturbative simulation; its classical mass is
then Mcl ¼ 30:9, to be compared with M ¼ 34:9� 0:1 for the
quantum monopole.
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Metropolis update step will not significantly alter the po-
sition or configuration of a topological defect.

In the current situation, however, it was difficult to
detect an advantage to using HMC. While the autocorre-
lation time was in many cases the same, the CPU time
required to integrate a single trajectory was longer than a
single Metropolis checkerboard sweep; the staples must be
recalculated for every step in the trajectory. This poor
performance may be due to our being at relatively weak
coupling, with severe finite size effects that mask any
critical slowing down. It may also be due to inadequate
tuning of the HMC algorithm to give an optimal accep-
tance rate.

Lastly, to improve statistics for the magnetic field cor-
relator we considered an overrelaxation step for the SU(2)
gauge fields, coupled to an accept-reject step to account for
the covariant derivative term in the action. We made use of
the SU(2) move U ! U0U

�1U0. This leaves the Wilson

term unchanged when U0 ¼ V�1
ffiffiffiffiffiffiffiffiffiffi
detV

p
, where V is the

‘‘staple’’ [31]. Unfortunately, we did not notice any sub-
stantial improvement to the statistics as a result of adding
this step.

VI. CONCLUSIONS

We have used correlation functions to measure proper-
ties of the ’t Hooft-Polyakov monopole nonperturbatively.
For the monopole mass, we found good agreement with
previous studies that used the response to twisted boundary
conditions.

We also calculated the form factors of the monopole for
scalars and photons. The form factor for the photon is
physically more relevant, because it describes the interac-
tion of the monopole with photons and the pair creation of
monopoles through the Drell-Yan process. It is, therefore,
the most relevant quantity for accelerator experiments [32].
It has been argued [33] that for ’t Hooft-Polyakov mono-
poles it is suppressed relative to pointlike Dirac monopoles
by many orders of magnitude. However, in order to calcu-
late the pair creation rate from our results we would have to
analytically continue the form factor to imaginary mo-
menta, which is not straightforward. On the other hand,
if monopoles are produced at the LHC, then one can
envisage further experiments that probe their properties
in much more detail such as scattering involving other
particles. The form factor for real momenta, which we
have calculated, is directly relevant for such processes.

For the scalar, we find good agreement with the semi-
classical results, which was expected because of the weak
coupling. The semiclassical form factor for the photon is
that of a pointlike magnetic charge, but our results indicate
a smooth charge distribution in the full quantum theory.
This shows that a proper quantum calculation is ab-
solutely necessary in order to probe the internal structure
of monopoles using photons. The continuum limit deserves
to be explored using the same techniques.

It should be reiterated that although our expression for
the magnetic field—Eq. (6)—has attractive properties, it is
not the exact creation operator for asymptotic photon states
in the full quantum theory. In principle, a numerical ap-
proximation for the correct creation operator could be
obtained by a diagonalization procedure.
In Ref. [21], it was shown how to generalize the twisted

boundary conditions to other SUðNÞ þ Higgs models, N
even. Although odd N is arguably of greater phenomeno-
logical interest, the techniques demonstrated here should
be equally valid in these cases.
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APPENDIX A: TWIST MEASUREMENT

To determine the monopole mass from the free energy
difference, as discussed in Sec. III, one needs to inte-
grate its derivative along a path in the parameter space
[15,24–26]. The free energy of an ensemble is defined as
F ¼ � lnZ, where

Z ¼
Z

DUiD�e�Slat (A1)

is the partition function. The derivative of the free energy
difference (13) is therefore

@�F

@g
¼

��
@Slat
@g

�
tw
�

�
@Slat
@g

�
C

�
; (A2)

where the subscripts indicate expectation values calculated
in the two ensembles. In our calculations, we take g ¼ m2,
yielding

@�F

@m2
¼ ½hTr�2itw � hTr�2iC�: (A3)

Integrating this expression from the symmetric phase
where M ¼ 0 through the phase transition to our desired
value of m2 will, in principle, yield the mass M. However,
it is difficult to obtain reliable error estimates from this
technique; it is important that we keep the error estimates
under control.
In practice, one uses finite differences instead of the

derivative (A3). The free energy difference between two
different values of m2 can be written in two ways,

f1 ¼ � ln

�
e
�ðm2

2
�m2

1
ÞP

x

Tr�2�
1

(A4)

and
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f2 ¼ ln

�
e
�ðm2

1
�m2

2
ÞP

x

Tr�2�
2
; (A5)

where the expectation values are calculated at m2
1 and m2

2.
Having established that the two measurements are in
agreement, the change in the monopole free energy is

�Fðm2
2Þ � �Fðm2

1Þ ¼ 1
2ðftw1 þ ftw2 � fcl1 � fcl2 Þ; (A6)

where we have chosen to average f1 and f2 with equal
weights. The errors for f1 and f2 for each sector are added
in quadrature and therefore we have

�½�Fðm2
2Þ ��Fðm2

1Þ�2
¼ 1

4½�f21;tw þ�f22;tw þ ðf1;tw � f2;twÞ2
þ �f21;C þ �f22;C þ ðf1;C � f2;CÞ2�: (A7)

We know M ¼ 0 in the symmetric phase, so we start
summing the differences from a value of m2 where the
symmetry is not yet broken. Whereas the errors in each f
for a change from m2

1 to m2
2 are themselves independent,

there is a small nonzero covariance for two different ad-
jacent steps. Some care is therefore needed when summing
all the errors in a mass measurement.

As a check, we should make sure that our measurements
of f1 and f2 are concordant, since they measure the same
thing. This ensures that the two ensembles atm2

1 andm
2
2 are

thermalized and at equilibrium, and the spacing is suffi-
ciently small that the histograms of data for Tr�2 overlap
adequately. Ferrenberg and Swendsen’s work encourages
us to see this process as the reweighting of a histogram of
measurements, and their formula immediately yields

Pm2
2
ðTr�2Þ ¼ Pm2

1
ðTr�2Þeðm2

2�m2
1Þ Tr�2

P
Tr�2

Pm2
1
ðTr�2Þeðm2

2
�m2

1
Þ Tr�2 (A8)

for the observed distribution of Tr�2 sampled at m2
1 and

evaluated at m2
2 [34]; interchanging m2

1 and m2
2 gives the

expression for measurements sampled at m2
2 evaluated at

m2
1. The equality f1 ¼ f2 then follows, but the importance

of this approach is the realization that the measurements

will not agree unless sufficient overlap of the histograms
for Tr�2 at both m2

1 and m2
2 are available. This over-

lap means that the difference in the actions, �Slat ¼P
xðm2

2 �m2
1ÞTr�2, should be relatively small.

Less overlap means the inferred value of Tr�2 is an
overestimate (or underestimate), being closer to the origi-
nal value than required. This will make f1 and f2 too big,
so the free energy will be overestimated. A similar over-
estimate will occur in both topological sectors, althoughP

x Tr�
2 is smaller in the topologically nontrivial sector.

Because we can use this approach to accurately inter-
polate the free energy of the monopole at any value of m2,
the result is plotted continuously on Figs. 2 and 3. If we
encounter difficulty obtaining good statistics, then this
technique would be ideal to use alongside parallel temper-
ing (replica exchange Monte Carlo), due to the necessarily
small separations between values of m2 [35]. In our case,
replica exchange would have been usable if the measure-
ment spacings were slightly smaller, but would have led to
substantial wait times with our computer cluster.

APPENDIX B: GRADIENT FLOW

The equations we used to minimize the classical action
were

�aðx;�þ
�Þ¼�aðx;�Þ
þ
�

�
�½4ð8þm2Þþ8�Tr�2��aðx;tÞ

þX
j

½�aUjðx;tÞ�ðxþ |̂;tÞUy
j ðx;tÞ�

�
(B1)

and

Uiðx; �þ 
�Þ ¼ exp

�
i
t�a

�
��

2

X
staple

Trf�aUijðx; �Þg

þ 2Trf�aUiðx; �Þ�ðx; �ÞUy
i ðx; �Þ

��ðxþ {̂; �Þ � H:c:g
�

Uiðx; �Þ: (B2)

The length T of the Euclidean time direction is not relevant
for this process and so we could set T ¼ 1.

[1] P. A.M. Dirac, Proc. R. Soc. A 133, 60 (1931).
[2] G. ’t Hooft, Nucl. Phys. B79, 276 (1974).
[3] A.M. Polyakov, JETP Lett. 20, 194 (1974).
[4] T. Kibble, J. Phys. A 9, 1387 (1976).
[5] J. Preskill, Phys. Rev. Lett. 43, 1365 (1979).
[6] K. Nakamura et al. (Particle Data Group), J. Phys. G 37,

075021 (2010).

[7] J. L. Pinfold (MOEDAL), Nucl. Phys. B, Proc. Suppl. 78,
52 (1999).

[8] V. Rubakov, Rep. Prog. Phys. 51, 189 (1988).
[9] T. Fennell, P. P. Deen, A. R. Wildes, K. Schmalzl, D.

Prabhakaran, A. T. Boothroyd, R. J. Aldus, D. F.
McMorrow, and S. T. Bramwell, Science 326, 415
(2009).

ARTTU RAJANTIE AND DAVID J. WEIR PHYSICAL REVIEW D 85, 025003 (2012)

025003-10

http://dx.doi.org/10.1098/rspa.1931.0130
http://dx.doi.org/10.1016/0550-3213(74)90486-6
http://dx.doi.org/10.1088/0305-4470/9/8/029
http://dx.doi.org/10.1103/PhysRevLett.43.1365
http://dx.doi.org/10.1088/0954-3899/37/7A/075021
http://dx.doi.org/10.1088/0954-3899/37/7A/075021
http://dx.doi.org/10.1016/S0920-5632(99)00522-8
http://dx.doi.org/10.1016/S0920-5632(99)00522-8
http://dx.doi.org/10.1088/0034-4885/51/2/002
http://dx.doi.org/10.1126/science.1177582
http://dx.doi.org/10.1126/science.1177582


[10] S. Ladak, D. E. Read, G. K. Perkins, L. F. Cohen, and
W.R. Branford, Nature Phys. 6, 359 (2010).

[11] K. A. Milton, Rep. Prog. Phys. 69, 1637 (2006).
[12] N. S. Manton and P. Sutcliffe, Topological Solitons

(Cambridge University Press, Cambridge, England, 2004).
[13] V. G. Kiselev and K.G. Selivanov, Phys. Lett. B 213, 165

(1988).
[14] V. G. Kiselev, Phys. Lett. B 249, 269 (1990).
[15] A. Rajantie, J. High Energy Phys. 01 (2006) 088.
[16] A. Rajantie and D. J. Weir, J. High Energy Phys. 04 (2009)

068.
[17] A. Rajantie and D. J.Weir, Phys. Rev. D 82, 111502 (2010).
[18] T.W. Kirkman and C.K. Zachos, Phys. Rev. D 24, 999

(1981).
[19] P. Forgacs, N. Obadia, and S. Reuillon, Phys. Rev. D 71,

035002 (2005).
[20] A. C. Davis, T.W. B. Kibble, A. Rajantie, and H.

Shanahan, J. High Energy Phys. 11 (2000) 010.
[21] S. Edwards, D. Mehta, A. Rajantie, and L. von Smekal,

Phys. Rev. D 80, 065030 (2009).
[22] V. Bornyakov, E.-M. Ilgenfritz, V. Mitrjushkin, A.

Zadorozhnyi, and M. Muller-Preussker, Z. Phys. C 42,
633 (1989).

[23] A. S. Kronfeld and U. Wiese, Nucl. Phys. B357, 521
(1991).

[24] J. C. Ciria and A. Tarancon, Phys. Rev. D 49, 1020
(1994).

[25] K. Kajantie et al., Nucl. Phys. B546, 351 (1999).
[26] P. de Forcrand, M. D’Elia, and M. Pepe, Phys. Rev. Lett.

86, 1438 (2001).
[27] J. Haegeman, B. Pirvu, D. J. Weir, J. I. Cirac, T. J.

Osborne, H. Verschelde, and F. Verstraete,
arXiv:1103.2286.

[28] A. Rajantie, Phys. Rev. D 68, 021301 (2003).
[29] J. Shao and D. Tu, The Jackknife and Bootstrap (Springer-

Verlag, Berlin, 1996).
[30] J.M. Speight, Nonlinearity 12, 1373 (1999).
[31] M. Creutz, Phys. Rev. D 36, 515 (1987).
[32] M. Fairbairn, A. Kraan, D. Milstead, T. Sjostrand, P. Z.

Skands et al., Phys. Rep. 438, 1 (2007).
[33] A. K. Drukier and S. Nussinov, Phys. Rev. Lett. 49, 102

(1982).
[34] A.M. Ferrenberg and R.H. Swendsen, Phys. Rev. Lett. 61,

2635 (1988).
[35] R. H. Swendsen and J.-S. Wang, Phys. Rev. Lett. 57, 2607

(1986).

NONPERTURBATIVE STUDY OF THE ’t HOOFT- . . . PHYSICAL REVIEW D 85, 025003 (2012)

025003-11

http://dx.doi.org/10.1038/nphys1628
http://dx.doi.org/10.1088/0034-4885/69/6/R02
http://dx.doi.org/10.1016/0370-2693(88)91018-0
http://dx.doi.org/10.1016/0370-2693(88)91018-0
http://dx.doi.org/10.1016/0370-2693(90)91254-9
http://dx.doi.org/10.1088/1126-6708/2006/01/088
http://dx.doi.org/10.1088/1126-6708/2009/04/068
http://dx.doi.org/10.1088/1126-6708/2009/04/068
http://dx.doi.org/10.1103/PhysRevD.82.111502
http://dx.doi.org/10.1103/PhysRevD.24.999
http://dx.doi.org/10.1103/PhysRevD.24.999
http://dx.doi.org/10.1103/PhysRevD.71.035002
http://dx.doi.org/10.1103/PhysRevD.71.035002
http://dx.doi.org/10.1088/1126-6708/2000/11/010
http://dx.doi.org/10.1103/PhysRevD.80.065030
http://dx.doi.org/10.1007/BF01557669
http://dx.doi.org/10.1007/BF01557669
http://dx.doi.org/10.1016/0550-3213(91)90479-H
http://dx.doi.org/10.1016/0550-3213(91)90479-H
http://dx.doi.org/10.1103/PhysRevD.49.1020
http://dx.doi.org/10.1103/PhysRevD.49.1020
http://dx.doi.org/10.1016/S0550-3213(99)00033-4
http://dx.doi.org/10.1103/PhysRevLett.86.1438
http://dx.doi.org/10.1103/PhysRevLett.86.1438
http://arXiv.org/abs/1103.2286
http://dx.doi.org/10.1103/PhysRevD.68.021301
http://dx.doi.org/10.1088/0951-7715/12/5/311
http://dx.doi.org/10.1103/PhysRevD.36.515
http://dx.doi.org/10.1016/j.physrep.2006.10.002
http://dx.doi.org/10.1103/PhysRevLett.49.102
http://dx.doi.org/10.1103/PhysRevLett.49.102
http://dx.doi.org/10.1103/PhysRevLett.61.2635
http://dx.doi.org/10.1103/PhysRevLett.61.2635
http://dx.doi.org/10.1103/PhysRevLett.57.2607
http://dx.doi.org/10.1103/PhysRevLett.57.2607

