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We analyze the physical properties of boson stars, which possess counterparts in flat space-time,

Q-balls. Applying a stability analysis via catastrophe theory, we show that the families of rotating and

nonrotating boson stars exhibit two stable regions, separated by an unstable region. Analogous to the case

of white dwarfs and neutron stars, these two regions correspond to compact stars of lower and higher

densities. Moreover, the high density phase ends when the black hole limit is approached. Here another

unstable phase is encountered, exhibiting the typical spiralling phenomenon close to the black hole limit.

When the interaction terms in the scalar field potential become negligible, the properties of mini-boson

stars are recovered, which possess only a single stable phase.
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I. INTRODUCTION

After stars have consumed their nuclear fuel, they end
their lives as compact astrophysical objects, and turn into
white dwarfs, neutron stars (or their variants), or black
holes, depending on their initial mass. When one inves-
tigates the equilibrium properties of compact stellar con-
figurations, as discussed, for instance, by Shapiro and
Teukolsky [1], one finds two stable phases for such com-
pact stellar objects. These stable phases correspond to the
white dwarf phase and the neutron star phase, where
equilibrium is achieved by the electron and the neutron
degeneracy pressure, respectively. The two stable phases
are separated by an intermediate unstable phase. Moreover,
the stable neutron star phase is followed by an unstable
phase, exhibiting a spiralling behavior (when the mass is
considered as a function of the radius). As seen in Fig. 1,
the stable neutron star phase ends and the unstable phase
sets in, when the black hole limit is approached.

Representing hypothetical astrophysical objects, boson
stars have received considerable attention since being pro-
posed by Feinblum and McKinley [2], Kaup [3], and
Bonazzola and Ruffini [4]. Boson stars are obtained
when a massive complex scalar field is coupled to gravity.
The conserved Noether current associated with the global
U(1) symmetry is related to their particle number Q. The
physical properties of boson stars depend crucially on the
rest mass of the bosons and on the presence and type of
self-interaction of the bosons (see e.g. the review articles
[5–9]).

When only a mass term is present but no self-interaction
of the scalar field, the resulting family of mini-boson stars
possesses one stable branch of solutions, which ends at the
maximal mass configuration and is followed by an unstable
set of solutions with spiralling behavior. The maximal
mass Mmax is on the order of the Planck mass squared,
divided by the boson mass: M2

Pl=mB. When a repulsive

quartic self-interaction is included, the resulting family of
boson stars retains a single stable branch, but the maximal

mass Mmax is now on the order of
ffiffiffiffi
�

p
M3

Pl=m
2
B, where � is

the self-coupling constant [10]. Thus, as shown by Colpi,
Shapiro, and Wasserman [10], boson stars with much
larger masses are obtained.
Friedberg, Lee, and Pang [11] considered boson stars

with a self-interaction of the scalar field that allows for
nontopological soliton solutions, also called Q-balls, even
in the absence of gravity. They estimated that the maximal
mass of such boson stars is on the order of M4

Pl=m
3
B [5].

Boson stars are obtained as stationary solutions of the
coupled Einstein-scalar field equations, when the scalar
field has a harmonic time dependence. The associated
frequency !s is bounded from above by the scalar mass
mB, while its lower bound depends on the details of the
model. Boson stars may rotate [12–18]. Since their total
angular momentum is quantized in terms of their particle
number, J ¼ nQ, boson stars may change their angular
momentum only in discrete steps [12].
Also, boson stars with two complex scalar fields have

been considered, leading to interesting phenomena due to
their interaction [19–21]. The influence of a negative cos-
mological constant has been investigated in [22].
The stability of boson stars has been addressed from

various points of view. Whereas Lee and Pang [23] per-
formed a linear stability analysis of boson stars with re-
spect to small oscillations, Kusmartsev, Mielke, and
Schunck [24,25] applied catastrophe theory to extract the
stable branches of families of boson stars. Catastrophe
theory has been introduced by Thom in the 1960s [26],
with further developments made by Zeeman [27], Poston
and Stewart [28,29], Arnol’d [30,31], and many others.
Applications to solitons have been discussed by
Kusmartsev [32].
Here we analyze the properties and, in particular, the

stability of boson stars obtained with quartic and sextic
self-interaction terms, as introduced by Friedberg, Lee, and
Pang in their nontopological soliton model [11,33]. Indeed,
the existence of a flat space-time limit is of profound
importance for the properties of these boson stars, as we
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will show below. With respect to stability we adapt the
procedure of Tamaki and Sakai [34,35]. They analyzed the
stability of spherically symmetric Q-balls and boson stars
via catastrophe theory under primarily mathematical points
of view. Here we extend this analysis to rotating boson
stars.

In Sec. II we present the action, the equations of motion,
and the definition of the global charges for nonrotating and
rotating boson stars. In Sec. III we analyze the physical
properties of the families of boson stars, presenting first the
results for the nonrotating case and then for the rotating
case. We give our conclusions in Sec. IV. The Appendix
addresses briefly the construction of the solutions.

II. MODEL

A. Action

We consider the action of a self-interacting complex
scalar field � coupled to Einstein gravity,

S ¼
Z �

R

16�G
� 1

2
g��ð��

;��;� þ��
;��;�Þ �Uðj�jÞ

�

� ffiffiffiffiffiffiffi�g
p

d4x; (1)

where R is the curvature scalar,G is Newton’s constant, the
asterisk denotes complex conjugation,

�;� ¼ @�

@x�
; (2)

and U denotes the potential

Uðj�jÞ ¼ �j�j2ðj�j4 � aj�j2 þ bÞ
¼ �ð�6 � a�4 þ b�2Þ; (3)

with j�j ¼ �. The potential is chosen such that nontopo-
logical soliton solutions [11], also referred to as Q-balls,
exist in the absence of gravity. The potential has a mini-
mum at� ¼ 0, Uð0Þ ¼ 0, and a second minimum at some

finite value of j�j. The boson mass is given bymB ¼ ffiffiffiffiffiffi
�b

p
.

Variation of the action with respect to the metric leads to
the Einstein equations

G�� ¼ R�� � 1
2g��R ¼ ��T��; (4)

with �� ¼ 8�G and stress-energy tensor T��,

T�� ¼ g��LM � 2
@L

@g�� (5)

¼ �g��

�
1

2
g��ð��

;��;� þ��
;��;�Þ

þUð�Þ
�
þ ð��

;��;� þ��
;��;�Þ: (6)

Variation with respect to the scalar field leads to the matter
field equation,

�
hþ @U

@j�j2
�
� ¼ 0; (7)

where h represents the covariant d’Alembertian operator.
Equations (4) and (7) represent the set of coupled Einstein-
Klein-Gordon equations.

B. Ansatz

To obtain stationary axially symmetric solutions, we
impose on the space-time the presence of two commuting
Killing vector fields, 	 and 
, where

	 ¼ @t; 
 ¼ @’ (8)

in a system of adapted coordinates ft; r; �; ’g. In these
coordinates the metric is independent of t and ’, and can
be expressed in isotropic coordinates in the Lewis-
Papapetrou form [36–39]

ds2 ¼ �fdt2 þ l

f

�
hðdr2 þ r2d�2Þ

þ r2sin2�

�
d’�!

r
dt

�
2
�
: (9)

The four metric functions f, l, h, and! are functions of the
variables r and � only.
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FIG. 1 (color online). Schematic diagram of the mass versus the radius (left panel) and the mass versus the central density (right
panel) of compact stars, following Shapiro and Teukolsky [1].
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The symmetry axis of the space-time, where

 ¼ 0, corresponds to the z axis. The elementary flatness
condition

X;� X;�

4X
¼ 1; X ¼ 
�
� (10)

then imposes on the symmetry axis the condition [36]

hj�¼0 ¼ hj�¼� ¼ 1: (11)

For the scalar field�we adopt the stationary ansatz [12]

�ðt; r; �; ’Þ ¼ �ðr; �Þei!stþin’; (12)

where �ðr; �Þ is a real function, and !s and n are real
constants. Single-valuedness of the scalar field requires

�ð’Þ ¼ �ð2�þ ’Þ; (13)

thus the constant n must be an integer, i.e., n ¼
0;�1;�2; . . . . We refer to n as the rotational quantum
number, since for n � 0 axially symmetric rotating boson
stars arise, whereas for n ¼ 0 spherically symmetric non-
rotating boson stars are obtained.

Solutions with positive and negative parity satisfy,
respectively,

�ðr; �� �Þ ¼ �ðr; �Þ; (14)

�ðr; �� �Þ ¼ ��ðr; �Þ: (15)

C. Global charges

The mass M and the angular momentum J of stationary
asymptotically flat space-times can be obtained from their
respective Komar expressions [40],

M ¼ 1

4�G

Z
�
R��n

�	�dV (16)

and

J ¼ � 1

8�G

Z
�
R��n

�
�dV: (17)

Here � denotes an asymptotically flat spacelike hypersur-
face, n� is normal to�with n�n

� ¼ �1, dV is the natural

volume element on �, 	 denotes an asymptotically time-
like Killing vector field, and 
 is an asymptotically space-
like Killing vector field [40]. When the Ansatz Eq. (9) is
inserted into the Komar expressions Eqs. (16) and (17), the
integrals simplify, yielding the mass M and the angular
momentum J directly in terms of the asymptotic behavior
of the metric functions f and !, respectively [38],

M ¼ 1

2G
lim
r!1r

2@rf; J ¼ 1

2G
lim
r!1r

2!: (18)

A conserved charge Q is associated with the complex
scalar field�, since the Lagrange density is invariant under
the global phase transformation

� ! �ei� (19)

leading to the conserved current

j� ¼ �ið��@����@���Þ; j�;� ¼ 0: (20)

The conserved scalar charge Q is obtained from the time-
component of the current,

Q ¼ �
Z

jtjgj1=2drd�d’

¼ 4�!s

Z 1

0

Z �

0
jgj1=2 1

f

�
1þ n

!s

!

r

�
�2drd�: (21)

As first derived by Schunck andMielke [12], one obtains
a quantization relation for the angular momentum in terms
of the charge,

J ¼ nQ: (22)

Thus a spherically symmetric boson star has angular mo-
mentum J ¼ 0, because n ¼ 0.

D. Units

We choose for the potential Uð�Þ, Eq. (3), the following
set of fixed parameters [17,18,33]:

� ¼ 1; a ¼ 2; b ¼ 1:1 ¼ �2
0: (23)

The equations then depend only on the dimensionless
coupling constant �,

� ¼ 8�G

�
mB

�2
0

�
2
: (24)

Since � consists of a product of Newton’s constant and the
square of the boson mass, we may interpret a change of its
numerical value in two ways: either as a change of the
gravitational coupling for a fixed boson mass, or as a
change of the boson mass for a fixed value of the gravita-
tional coupling.
To obtain the respective dimensionful values of the

physical properties, Mphys, Qphys, Jphys, we have to scale
the numerically calculated values for the mass Mnum, the
charge Qnum, and the angular momentum Jnum appropri-
ately. Therefore we introduce the parameter q0,

q0 ¼
�
mPl

mB

�
2 1

8�
; (25)

where mPl is the Planck mass, and find

TABLE I. Scale factors for the physical properties.

mB q0 q0mB �

1 GeV=c2 � 1036 � 1036 GeV=c2 � 0:2�0 fm
10�19 GeV=c2 � 4� 1074 � Msun � 0:2�010

4 m
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Qphys ¼ �2
0 ��q0Q

num; Mphys¼ �0 ��q0mBM
num;

Jphys ¼ nℏQnum:
(26)

The length scale is set by

� ¼ �0

mB

� �0

mB½GeV� � 0:2� 10�15 m:

Two examples for the scales of the physical properties are
exhibited in Table I. The first corresponds to a scalar
particle with a mass on the order of the proton mass,
whereas the second corresponds to a very light scalar
particle, chosen such that the mass scale q0mB is set by
the solar mass.

III. BOSON STAR PROPERTIES

A. Spherically symmetric boson stars

1. Equilibrium space

Let us first consider the families of fundamental spheri-
cally symmetric boson stars (n ¼ 0) as obtained in [17,18].
(In fundamental boson stars the scalar field is a monotoni-
cally decreasing function, whereas in radially excited bo-
son stars, it possesses nodes.) For a fixed value of the
dimensionless coupling constant �, Eq. (24), a family of
stationary solutions exists in the frequency range !0ð�Þ �
!s � !max. The minimal frequency !0ð�Þ depends on �
and increases with �, tending to finite limits as � ! 0 and
� ! 1 [17]. The maximal frequency !max is always given
by the boson mass.

All families of solutions together form the equilibrium
space, which we denote by M ¼ f!s; �;Qg. To illustrate
the equilibrium space we have exhibited several families of
solutions in Fig. 2. For each family (with fixed �) the
frequency !s is shown versus the particle number Q. The
coupling constant � assumes values in the range 0:0002 �
� � 1 in the figure. We thus cover the full range of distinct
theoretical possibilities for the behavior of these boson star
solutions [17,18]. The equilibrium space may then be

pictured as the surface obtained when � varies continu-
ously from zero to infinity.
The families of solutions have two important features in

common. They all start from particle number Q ¼ 0 at the
upper limit of the frequency, and they all form spirals
towards their lower frequency limit. In between, however,
a qualitative change of the curves is observed, as the value
of � increases. The salient maximum value of Q in the
small frequency range as well as the finite (relative) mini-
mum value ofQ, which are both present for small values of
the coupling constant �, become less pronounced with
increasing �, until they merge and disappear altogether.
We may also consider the set of equilibrium solutions

with respect to another set of parameters. Instead of the
frequency !s we may consider the finite value �0 ¼ �ð0Þ
of the scalar field at the origin. (We recall that in these
fundamental boson star solutions the scalar field decreases
monotonically from the origin to zero at infinity.)
Moreover, instead of the particle number Q we may con-
sider the mass M of the solutions.
We exhibit the same families of solutions as above for

this choice of variables in Fig. 3. Here, for each family of
solutions (with fixed �) the value of the scalar field �0 is
shown versus the massM. We note, however, that the range
of �0 has been truncated in the figure, being limited to the
range 0 � �0 � 2. Inside the spiral �0 certainly assumes
larger values, and indeed increases monotonically as the
mass exhibits damped oscillations [17]. The equilibrium
space N ¼ f�0;M; �g may then again be pictured as the
surface obtained when � varies continuously from zero to
infinity.

2. Binding energy and cusp structure

To get a better physical understanding of these boson
stars that form the equilibrium space, let us next address
their binding energy B ¼ mBQ�M. We exhibit the bind-
ing energy B in Fig. 4 for two families of solutions,
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FIG. 2 (color online). Equilibrium space M ¼ f!s;Q; �g for fundamental boson stars in the range 0:0002 � � � 1.
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corresponding to typical examples in the lower � range,
namely, � ¼ 0:01 and � ¼ 0:02. While at first glance all
solutions seem to be bound, with their binding energy
increasing almost linearly with their particle number, a
closer look at the solutions in the high frequency range
(!s close to mB) reveals a bifurcation structure involving
two cusps.

Clearly, a first branch of bound boson star solutions
resides between the vacuumM ¼ Q ¼ 0 and a local maxi-
mum of the mass and charge,MA,QA, at the first cusp A. A
second branch, where the mass and charge decrease mono-
tonically, connects the first cusp A with the second cusp B,
where the mass and charge have a local minimum,MB,QB.
Most of this branch resides in the unbound region. The
third branch emerges from the second cusp B and extends
up to the third cusp C, where the mass and charge reach
their global maximum,MC,QC. Along this third branch the
mass and charge increase monotonically. The solutions are
unbound only in the vicinity of the second cusp B, since the
binding energy crosses the zero already at the point u,

located close by. At the third cusp C the binding energy
is also maximal.
We exhibit in Fig. 5 the physical characteristics of these

three cusps, A, B, and C. As � ! 0, the values of the mass
MA and the charge QA at the cusp A increase, tending to

infinity with the power ��1=2, as illustrated in Fig. 5 by
the curves MA;lim and QA;lim. The values of the mass

MB and the charge QB at the cusp B show a very
different behavior. They tend to constant values in the limit
� ! 0, corresponding to the values of the mass and the
charge of the unique minimum of the Q-ball solutions of
flat space-time. This is also illustrated in Fig. 5. At the cusp
C the values of the mass MC and the charge QC increase
again without bound as � ! 0. As extrapolated previously

[17], the limiting behavior is of the form MC � ��3=2,

QC � ��3=2, which is also shown in the figure.
Turning to the larger values of �, we note that the two

extrema B and C, and thus the two cusps B and C, merge
and disappear at a critical value �cr. Thus beyond �cr,
from the three cusps A, B, and C, only the cusp A is left.
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The large value of � means, from a physical point of
view, that the higher order terms in the potential become
relatively less important, and the solutions tend to the
well-known mini-boson star solutions. Indeed, for � !
1 the mini-boson star solutions are recovered after a
rescaling [17].

To complete the discussion of the branches of the fam-
ilies of boson star solutions, we still need to address their
behavior beyond the cusp C (or for large �, beyond the
cusp A). As seen in Fig. 2 the branches form a spiral when
considered in terms of the frequency !s and the charge Q
(or the mass M). Alternatively, when considered in terms
of the value of the scalar field at the origin and the massM
(or the charge Q) as in Fig. 3, a damped oscillation is seen.
Thus beyond C (or for large �, beyond A) the mass and the
charge reach a minimum D, then another maximum E,
another minimum F, etc., converging towards limiting
values Mlim, Qlim [17]. When the mass is considered as a
function of the charge, finally, this behavior translates into
an intricate cusp structure [11].

3. Size and black hole limit

There is no unique definition for the radius of a boson
star, and many proposals have been discussed in the litera-
ture (see e.g. [9]). Here we have chosen the definitions

R1 ¼
R
jtjgj1=2rdrR
jtjgj1=2dr ; R2

2 ¼
R
jtjgj1=2r2drR
jtjgj1=2dr (27)

for the spherically symmetric boson stars, where the radial
coordinate is not the isotropic coordinate introduced in
Sec. II, but a Schwarzschild-like coordinate, which has
an invariant circumferential meaning. Figure 6 (left panel)
shows that both definitions give rather similar results for
the size of the boson stars. From the radius and thus the size
of the boson stars together with their mass, we obtain an
estimate of their density.
Let us now discuss the relation between the mass and the

size of the boson stars, focusing on the smaller values of �
(away from the mini-boson star limit). As seen in Fig. 6,
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the mass increases along the first branch, while the radius
decreases. This is the behavior known from compact ob-
jects such as white dwarfs and neutron stars. The first
branch ends at the cusp A. Beyond A the mass decreases
until the second cusp B is reached, while the radius con-
tinues to decrease along this second branch. Beyond B the
mass increases again, and soon rises steeply along this third
branch. But the radius (soon) starts to increase as well, and
then rises further along this branch, almost up to the cusp
C. Such a behavior is known, in fact, for quark stars, whose
radius increases with increasing mass [41,42]. Thus, while
the boson stars are already compact objects on the first
branch, they become even much more compact objects
along the third branch.

This behavior is very reminiscent of the phases of com-
pact fermionic stars, where the lower density stars repre-
sent white dwarfs, while the higher density stars represent
neutron stars or their variants. The neutron stars cease to
exist when the black hole limit is reached. Close to this
limit, the solutions exhibit a spiralling behavior, as seen in
the schematic drawing in Fig. 1. And indeed, when we
include the black hole limit, given by the Schwarzschild
relation 2GM ¼ R, in the figure for the boson stars, Fig. 6
(right panel), we observe that the spiral is precisely formed,
when the family of boson star solutions approaches the
black hole limit.

Finally, in Fig. 7 we exhibit the mass of the boson stars
versus the central particle number density jtð0Þ (left panel)
and versus the central energy density 
cð0Þ (right panel).
Clearly, the first branch has much lower central density
than the third branch, just like the white dwarf branch
and the neutron star branch of the compact fermionic
stars [1].

4. Stability analysis

Let us now address the stability of these families of
spherically symmetric boson stars. The above observed
analogy between the branches of compact stars and the

branches of boson stars suggests to begin by recalling the
stability properties of the compact stars as indicated in
Fig. 1, following Shapiro and Teukolsky [1].
The white dwarf branch ending at the cusp A is stable. It

is followed by an unstable branch, ending at the cusp B.
The neutron star branch from B to C is again a stable
branch. The spiral beyond C is unstable. In particular,
one mode becomes unstable at A and turns stable again
at B. At C the mode becomes unstable again, and at each
following extremal point in the spiral, another mode turns
unstable. Thus there are two physically relevant stable
branches, the lower density white dwarf branch and the
higher density neutron star branch. The latter ends close to
the black hole limit.
For mini-boson stars a mode analysis has been per-

formed by Lee and Pang [23] to determine the stability
of the solutions. Mini-boson stars possess only a single
stable branch followed by the spiral. As in the case of the
compact fermionic stars, at each following extremal point
in the spiral, another mode of these boson stars turns
unstable.
On the other hand, the stability of boson stars has been

analyzed by invoking the arguments of catastrophe theory
[24,34,35]. Some standard references to catastrophe theory
can be found in [26–31]. We briefly recall the procedure
employed by Tamaki and Sakai [34,35], applying it to the
above family of boson star solutions.
An essential point in utilizing catastrophe theory is to

select an appropriate set of behavior variable(s) and control
parameter(s). A behavior variable should be a quantity that
describes the behavior of the system uniquely when the
control parameters change their values. Following Tamaki
and Sakai [34,35], we choose the coupling constant � and
the charge Q as the two control parameters, and we choose
the frequency !s as the single behavior variable. [In the
relevant range of solutions up to the cusp C (but not
beyond), the variable !s is indeed unique. In contrast,
the variable �0 is unique in the spiral beyond the cusp C,
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but is not necessarily unique in the vicinity of C right
before the cusp.]

To analyze the stability of these boson stars, we start
from the equilibrium space M ¼ f!s; �;Qg, exhibited in
Fig. 2. According to catastrophe theory, the stability

changes only at the turning points, where @Q
@!s

¼ 0 (for fixed

values of �). Therefore,
(i) we determine the turning points, where stability

changes, denoting them by A; B; C; . . . ;
(ii) we plot the values of the turning points A; B; C; . . .

versus � to obtain the control space C ¼ f�;Qg, to
identify the regions of stability, respectively,
instability.

We list the turning points in Table II together with the
extrapolated values of the limiting solutions Qlim at the
centers of the spirals [17].

Each point of the equilibrium space M ¼ f!s; �;Qg
represents a boson star configuration. The set of turning
points partitions this phase portrait into subareas. In catas-
trophe theory, ‘‘stability’’ means stability with respect to
local perturbations. According to catastrophe theory, pass-
ing a turning point means changing the stability of the
boson star configurations. The solutions between two turn-
ing points then form branches, where all the configurations
possess the same kind of stability (or instability). Thus
there are S andU branches representing stable and unstable
configurations [43,44].

This reveals the strength of catastrophe theory: stability
changes exclusively when passing a turning point, while all
configurations of the considered system between two turn-
ing points possess the same kind of stability (or instability).
Thus, it is sufficient to consider only a single configuration
of a branch to know the stability of all the other
configurations of the same branch with respect to local
perturbations.

For boson star solutions we see a cusp-catastrophe be-
cause (leaving the spiral aside) their equilibrium space M
shows the characteristics of a Whitney surface [32,45].
Therefore, we conclude that the branch from the vacuum
solution to the first turning pointQA is a stable one [32,35].

The next branch fromQA toQB is unstable, and the branch
from QB to QC is stable again [35]. This comprises a
complete Whitney surface with stable upper and lower
sheets and an unstable area in between. The next turning
points are part of the spiral. Such spirals are described by
Arnold [31] as ‘‘limit cycles,’’ where the equilibrium states
lose their stability. Then all configurations, which are part
of the spirals, are unstable. We note that this analysis is in
complete agreement with the discussion above for compact
fermionic stars.
The stability properties can also be illustrated schemati-

cally by the standard representation of the ‘‘potential’’ as a
function of the ‘‘ behavior variable’’ [32,34,35]. We exhibit
in Fig. 8 (schematically) the potential function for several
sets of configurations. The notation SX�Y indicates a solu-
tion on the branch extending between the cusp X (respec-
tively, vacuum 0) and the cusp Y, whereas SX corresponds
to the solution at the cusp X. Here we restrict to branches of
solutions up to the cusp C, which are relevant for the
discussion of the stability. The appearance of the different
branches of solutions is then seen in the figure for fixed
� < �cr and varying Q.
For Q<QB a single branch of stable solutions is

present, corresponding to the minimum in Fig. 8(a). A
saddle point appears for Q ¼ QB in Fig. 8(b). This saddle
point splits into a maximum and a minimum in Fig. 8(c) for
QB <Q<QA. The maximum corresponds to a solution on
the unstable branch, whereas the two minima correspond to
solutions on the two stable branches. The maximum and
the second minimum merge to form a saddle point, when
Q ¼ QA, as shown in Fig. 8(d). Thus the branch of un-
stable solutions disappears for Q>QA, and a single
branch of stable solutions remains in Fig. 8(e). We note
that for � > �cr the branch of unstable solutions between
the cusps B and C is not present.
Let us finally exhibit the stability properties of the boson

stars by presenting the control space C ¼ f�;Qg in Fig. 9.
The control space is the projection of the catastrophe map
�ðMÞ into the control plane. In the regions denoted by S1,
SiUði ¼ 1; 2Þ, andN, there is one stable solution, there are i

TABLE II. Values of the charge at the turning points A; B; C; . . . , and of the limiting solution Qlim at the center of the spiral for the
fundamental boson stars for several values of the coupling constant �. As indicated by the line, the cusps B and C have merged and
disappeared between � ¼ 0:4 and � ¼ 1.

� QA QB QC QD QE QF Qlim

0.0002 1174.78 40.2495 3:117� 107 2:040� 107 2:220� 107 2:181� 107 2:181� 107

0.0020 377.455 40.0820 864 746 553 687 605 046 593 437 5:954� 105

0.0100 169.834 39.9989 60 416.2 36 845.6 40 849.6 39 949.6 4:011� 104

0.0200 120.476 38.7401 17 702.5 10 350.7 11 593.1 11 307.0 1:136� 104

0.1000 52.22 33.91 684.741 331.677 391.874 378.274 380.4600

0.2000 35.763 28.668 134.72 61.19 72.96 70.463 70.8330

0.4000 23.66 21.47 28.89 15.85 17.85 17.46 17.5180

1.0000 12.22 – – 5.83 6.31 6.29 6.2114
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stable solution(s) and one or more unstable solution(s), and
there are no equilibrium solutions, respectively. The area
delimited by the turning pointsQC andQD contains, besides
one stable solution, all the unstable solutions of the spiral.

The control space reveals that there are two areas, where
only a single stable solution exists. The first area is asso-
ciated with the stable branch terminating at A. This is the
branch formed by the stable lower density boson stars. The
second area is associated with the branch from B to
(almost) C. This branch comprises the stable high density
boson stars. As the coupling constant � increases, the width
of the second area diminishes and shrinks to zero at the
critical value of �. This transition is consistent with the fact

that for large � the solutions tend to mini-boson star
solutions, which possess only a single stable branch.

B. Rotating boson stars

Let us now turn to rotating boson stars. These stationary
axially symmetric configurations have a finite angular
momentum proportional to their particle number, J ¼ nQ
[Eq. (22)], with the ‘‘quantum number’’ n � 0. In the
following we extend our above analysis of the physical
properties of boson stars to the rotating case, focusing on
solutions with n ¼ 1 and positive parity, i.e. n ¼ 1þ boson
stars that were obtained previously [17,18].
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1. Equilibrium space of n ¼ 1þ boson stars

As in the case of the spherically symmetric boson stars,
we begin our analysis of the n ¼ 1þ rotating boson stars by
considering the equilibrium spaceM ¼ f!s; �;Qg. Again,
for a fixed value of the dimensionless coupling constant � a
family of stationary solutions exists in the frequency range
!0ð�Þ � !s � !max, where !0ð�Þ increases with �,
whereas !max is still given by the boson mass [17]. This
is seen in Fig. 10, where we illustrate the equilibrium space
M ¼ f!s; �;Qg of the n ¼ 1þ boson stars.

Clearly, the structure of the equilibrium space M ¼
f!s; �;Qg of the n ¼ 1þ boson stars is very similar to
the one of the n ¼ 0 solutions. All families of solutions
(for fixed �) start from the vacuumQ ¼ 0 at the upper limit
of the frequency, and all form spirals at the lower end.
However, we note that as � increases, the n ¼ 1þ spirals
become more elongated in this equilibrium space with
respect to !s than their n ¼ 0 counterparts.

We could also consider the set of equilibrium solutions
with respect to other sets of parameters. For the n ¼ 0
boson stars we considered the alternative equilibrium
space N ¼ f�0;M; �g. Here we would have to replace
the variable �0 by another variable, however, since for
rotating boson stars �0 ¼ 0. Such an alternative variable
for n ¼ 1þ boson stars would be �0

0 ¼ �0ð0Þ [46].

2. Cusp structure of n ¼ 1þ boson stars

Let us next turn to the cusp structure of these rotating
boson stars. As in the case of the n ¼ 0 solutions, for not
too large values of the coupling constant � a first branch of
rotating boson star solutions resides between the vacuum
M ¼ Q ¼ 0 and the local maximum of the mass and
charge, MA, QA, at the first cusp A. Next, a second branch
connects the first cusp A with the second cusp B, where the
mass and charge have a local minimum, MB, QB. Then a
third branch emerges from the second cusp B and extends
up to the third cusp C, where the mass and charge reach
their global maximum,MC, QC. Beyond C, finally, a spiral
is formed. We list these turning points in Table III.
Analogous to the nonrotating case, the values of the

mass MA and the charge QA at the cusp A increase, as

� ! 0. Indeed, we observe the same ��1=2 dependence, as
seen in Fig. 11. The values of the mass MB and the charge
QB at the cusp B, on the other hand, are expected to tend to
constant values in the limit � ! 0, corresponding now to
the values of the mass and the charge of the unique mini-
mum of the rotating Q-ball solutions in flat space-time.
(The available data do not yet suffice to fully demonstrate
this behavior, however.) The values of the massMC and the
charge QC at the cusp C increase again without bound as
� ! 0. The available data do not yet exhibit the expected

limiting ��3=2 dependence, but a somewhat deviating �
dependence. This is analogous to the nonrotating case in
this range of values of the coupling constant �, where the

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1  100  10000  1e+06  1e+08

κ

Q

N

S1U

QA
QB
QC
QD
QE
QF
QG
QH

S1

S1

S2U

S1U

 0.0001

 0.001

 0.01

 0.1

 1

 1  100  10000  1e+06  1e+08

κ

Q

N

S1U

S1U

N

S1U

S1U QA
QB
QC
QD
QE

S1 S1

S2U

S1 S1

S2U

 0.0001

 0.001

 0.01

 0.1

 1

 1  100  10000  1e+06  1e+08

κ

Q

N

S1U

S1U

N

S1U

S1U

S1 S1

S2U

S1 S1

S2U

FIG. 9 (color online). Control space C ¼ f�;Qg for the fundamental boson stars. In the areas denoted by S1, SiUði ¼ 1; 2Þ, and N,
there is a single stable solution, there are i stable solution(s) and one or more unstable solution(s), and there is no equilibrium solution,
respectively. The axes are semilogarithmic (left panel) and double logarithmic (right panel).

 1
 10  100  1000

 0
 0.1

 0.2
 0.3

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

ω
s

κ = 0.04
κ = 0.06
κ = 0.10
κ = 0.20
κ = 0.30

Q
κ

ω
s

FIG. 10 (color online). Equilibrium space M ¼ f!s; �;Qg for
rotating boson stars with n ¼ 1þ in the range 0:04 � � � 0:3.

KLEIHAUS, KUNZ, AND SCHNEIDER PHYSICAL REVIEW D 85, 024045 (2012)

024045-10



limiting ��3=2 dependence is only approached for consid-
erably smaller values of �.

For larger values of �, however, we observe a somewhat
different pattern for the cusps A, B, and C in the case of the
rotating boson stars as compared to the nonrotating case. In
the rotating case, the extrema A and B merge, and disap-
pear at a critical value of � while C remains, as seen in
Table III and Fig. 11. In the nonrotating case it is B and C
which merge while A remains. In both cases, however, for
large values of � the solutions exhibit the same pattern as
the mini-boson stars: they possess a single physically
relevant branch, beyond which a spiral is formed.

3. Size of n ¼ 1þ boson stars

As in the case of the n ¼ 0 boson stars, we would like to
study the compactness of the rotating boson stars and their
proximity to the black hole limit. For that purpose we
consider several possibilities to obtain a measure for the
size of these axially symmetric boson star solutions. We
define area-type radii via introducing first the function
RðrÞ,

RðrÞ ¼
�
1

4�

Z
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g’’g��

p jrd�
�
1=2

; (28)

and then using this RðrÞ to obtain the measures for the size

RA ¼
R
jtRðrÞ ffiffiffiffiffiffiffi�g

p
d3r

Q
(29)

and

R2
A2 ¼

R
jtðRðrÞÞ2 ffiffiffiffiffiffiffi�g

p
d3r

Q
: (30)

Similarly, we define circumferential-type radii via first
introducing the function

RðrÞ ¼ 1

2�

Z
C

ffiffiffiffiffiffiffiffiffi
g’’

p jr;�¼�=2d’ (31)

and then using this RðrÞ to obtain RC as in Eq. (29) and R2
C2

as in Eq. (30). All these definitions give rather similar
results. We demonstrate this (in part) in Fig. 12, where
we compare the radii RA2, RA, and RC2.
The figure clearly shows that the dependence of the mass

on the size is very similar for rotating and nonrotating
boson stars. Focusing on the smaller values of � (away
from the mini-boson star limit) the mass increases along
the first branch, while the size decreases, until the cusp A is
reached, marking the end of the lower density phase.
Between A and B the mass decreases with decreasing
size. Beyond B the mass then rises steeply again, while
the size also increases along (most of) this third branch.
This high density phase of the rotating boson stars then
ends at the cusp C, where the spiral starts.

4. Black hole limit

As in the case of the nonrotating boson stars, we would
now like to address the black hole limit for these rotating
boson stars. For this purpose we employ these radii to
compare the boson star masses and sizes with those of
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TABLE III. Turning points for rotating boson stars with n ¼
1þ for several values of the coupling constant �.

� QA QB QC QD

0.04 226.888 135.570 5121.20 1630.19

0.06 184.8 130.123 2408.91 434.076

0.10 140.631 118.113 910.699 77.434

0.20 96.197 94.1 237.173 35.984

0.30 – – 110.958 23.462
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the corresponding rotating Kerr black holes. In particular,
for the set of values of the size RA2 and angular momentum
J of the boson stars, their mass M is compared with the
mass MBH of the corresponding Kerr black holes, which
are evaluated for the same values of RA2 and J, where RA2

is defined via the event horizon area. We exhibit this
comparison in Fig. 13 for � ¼ 0:04. We note that because
of this construction of the Kerr curve, it has as many
branches as the boson star curve. Interestingly, we observe
that as in the case n ¼ 0, also the rotating boson stars are
very close to the black hole limit when the spiral is formed,
as seen in Fig. 13 (left panel). (The spiral is enlarged in
the inset, which also features the Kerr black hole
branch corresponding to the steep high density boson star
branch.)

For a given mass MBH, the angular momentum JBH of a
Kerr black hole cannot exceed a certain bound, the Kerr
bound, JBH=M

2
BH � 1. The Kerr bound is saturated for

extremal black holes. Higher angular momenta correspond
to naked singularities. When considering this scaled angu-
lar momentum JBH=M

2
BH versus the scaled area ABH=M

2
BH

of the black holes, all Kerr black holes fall onto a single
line, starting from the point corresponding to the set of
Schwarzschild solutions and ending at the point corre-
sponding to the set of extremal Kerr solutions. The upper
part of this line representing fast rotating Kerr black holes
is exhibited in Fig. 13 (right panel).
In our comparison of the rotating boson stars with the

Kerr black holes, we would now like to know how close the
boson stars are to this Kerr bound when they are highly
compact. Therefore, we also show J=M2 versus RA2=M for
such a set of highly compact rotating boson stars in Fig. 13
(right panel). In particular, we have also indicated the point
C of the boson star curve, where the spiral starts, and the
pointD, which is located inside the spiral. We note that the
family of boson stars assumes at C its minimum value of
J=M2. For the case � ¼ 0:04, shown in the figure, J=M2 �
0:7 at C. When � increases, the value of J=M2 at C
increases (� ¼ 0:06 : 0:78, � ¼ 0:1 : 0:86, � ¼ 0:2 : 0:92,
� ¼ 0:3 : 0:94). Thus these highly compact boson stars
close to the black hole limit can rotate with angular mo-
menta close to the Kerr bound.
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In Fig. 13 (right panel) we have also indicated the point
beyond which the rotating boson stars possess ergoregions
[18]. For � ¼ 0:04, the formation of ergoregions arises
only inside the spiral. For larger values of � the ergoregion
formation starts already on the high density branch shortly
before C is reached. We therefore conclude that for these
n ¼ 1þ rotating boson stars, there appears to be a correla-
tion between approaching the black hole limit and devel-
oping an ergoregion.

5. Stability analysis of n ¼ 1þ boson stars

To address the stability of these rotating boson stars, we
turn to the control space C ¼ f�;Qg, presented in Fig. 14.
Since both n ¼ 0 and n ¼ 1þ boson stars have analogous
equilibrium spaces M ¼ f!s; �;Qg, the corresponding
discussion of their stability is also analogous. From the
analysis via catastrophe theory we conclude that there are
two areas which possess only a single stable solution. The
first area is associated with the stable branch terminating at
A, formed by the stable lower density boson stars. The
second area is associated with the branch from B to
(almost) C, comprising the stable high density boson stars.
As the coupling constant � increases, the width of the
second area diminishes and shrinks to zero at a critical
value of �. The width of the area labeled to represent two
stable solutions as well as unstable solutions also dimin-
ishes with increasing �. The width shrinks to zero at the
critical value of �, where the turning points A and Bmerge
and disappear, while only C remains (apart from the criti-
cal points of the spiral).

According to catastrophe theory arguments the branch
from the vacuum to the first turning point QA is a stable
one. The next branch from QA to QB is unstable, while the
branch from QB to QC should be stable again. The poten-
tial function for the rotating boson stars is analogous to
Fig. 8. However, we must also take into account the emer-
gence of ergoregions, which are associated with their own

kind of instability [47–50]. While for small values of �
ergoregions arise only beyond C somewhere in the spiral,
which is unstable anyway, for larger values of � (� 	 0:1)
ergoregions appear already along the higher density branch
from B to C, signaling an instability of these highly com-
pact rotating boson stars close to C [18,50].
Apart from this new type of instability, present only in

the rotating case, the boson star solutions for the nonrotat-
ing (n ¼ 0) and the rotating (n ¼ 1þ) case exhibit a similar
general pattern.

IV. CONCLUSIONS

We have addressed the physical properties of nonrotat-
ing and rotating boson stars, obtained with a self-
interaction potential of the scalar field, which allows for
nontopological soliton solutions in the absence of gravity.
Such a self-interaction potential is crucial to find a much
richer set of solutions than the ones obtained with only a
mass term (mini-boson stars) and with a repulsive j�j4
interaction.
In particular, we note that there are two stable regions

in the equilibrium space of the boson star solutions, when
this solitonic self-interaction potential is employed,
whereas there is only one such stable region for boson
stars which do not possess a flat space-time limit. In fact,
there is an interesting analogy to compact stars which
possess a lower density phase, the white dwarf phase,
and a high density phase, the neutron (or quark) star
phase, since the boson stars also exhibit a lower density
phase and a high density phase. Moreover, beyond the
neutron star phase the compact stars exhibit an unstable
spiralling phase very close to the black hole limit. Such an
unstable spiralling phase very close to the black hole limit
is also seen for the boson stars beyond their stable high
density phase.
A stable mini-boson star is an equilibrium state, where

the Heisenberg uncertainty principle�r�p� �ℏ provides
the means to balance gravity and avoid collapse below a
(small) critical mass of the mini-boson stars [16]. In boson
stars with a repulsive j�j4 potential term this self-
interaction allows for much larger stable boson stars [10].
The solitonic self-interaction potential, on the other hand,
has repulsive and attractive components, which dominate
the features of the solutions in a large region of the
equilibrium space, leaving only a minor role for gravity
to play here.
Indeed, for not too large values of the coupling constant

�, the properties of the solutions follow rather closely those
of the corresponding nontopological solitons. Only at the
boundaries of the domain of existence, gravity becomes
dominating. Here, in flat space-time, the solutions would
grow without limit. Thus the single infinitely long stable
branch of the nontopological solitons is reflected in the
finite (mostly) stable branch B� C of the boson stars.
Along (most of) this branch the radius increases as the
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mass increases. This branch ends when the boson star’s
compactness approaches the black hole limit. The soliton
solutions would simply cross this limit. But as long as the
coupling to gravity is finite, no matter how small it is, this
limit cannot be exceeded. Thus collapse is unavoidable, as
signaled by the formation of a spiral in the equilibrium
space of these stationary solutions.

The single infinitely long unstable branch of the non-
topological solitons, on the other hand, is reflected in the
finite unstable branch A� B of the boson stars. But
gravity allows for an additional stable branch 0� A,
present even in the case of no self-interaction. Here the
size of the solutions decreases as the mass increases,
which reveals the dominating influence of gravity for
this branch.

When comparing the nonrotating (n ¼ 0) and the rotat-
ing (n ¼ 1þ) boson stars, we note that many of their
features are very similar. While the high density soliton-
type boson star branch is bounded by the Schwarzschild
black holes in the n ¼ 0 case, it is bounded by the
Kerr black holes in the n ¼ 1þ case. Because the cen-
trifugal force will counteract the gravitational force, it is
expected that rotation stabilizes a boson star [16], and the
available data indeed show that, in the presence of rota-
tion, for given values of � higher masses are reached for
the rotating boson stars. However, rotation also comes
with a caveat for stability, since for globally regular
objects such as boson stars the presence of an ergoregion
implies an instability, associated with superradiant scat-
tering [47–50].

Thus, rotating boson stars become unstable, when they
develop an ergoregion. For the n ¼ 1þ boson stars consid-
ered, the ergoregion is formed either inside the spiral or
very close to the cusp C. Therefore, the possible presence
of ergoregions was put forward by Cardoso et al. [50] as a
means to scrutinize boson stars and various other black
hole doubles as potential horizonless candidates for com-
pact dark astrophysical objects. In particular, they inves-
tigated the instability time scales, showing that, depending
on the mass and the angular momentum of the objects,
these time scales could be rather short, such as between
0.1 sec and 1 week.

It remains to be seen whether boson stars with appro-
priate values of the physical parameters to fit observational
data will or will not suffer from such an ergoregion insta-
bility. For the unstable ones the corresponding instability
time scales will then have to be investigated. So far our
analysis shows that there are stable highly compact boson
stars close to the black hole limit, which are, at the same
time, close to the Kerr bound J=M2 ¼ 1.

Finally, we would like to address the case of rotating
boson stars with higher rotation quantum numbers n 	 2.
Such boson stars have been addressed by Ryan [13]. Since
the numerical analysis for these systems is difficult [17,18],
we have not yet accumulated a sufficient set of solutions to

give a similar discussion of their properties as for the n ¼ 0
and n ¼ 1þ boson stars. Still, we present in Fig. 15 a part
of the equilibrium space M ¼ f!s; �;Qg of the n ¼ 2þ
boson stars. Whereas still higher values of the mass are
reached on the soliton-type branch, we note that the onset
of the ergoregion instability happens earlier, thus decreas-
ing the viability range of these solutions.
Clearly, further calculations of fast rotating boson stars

are called for, not only in the solitonic model but also in
j�j4-type models, where a possible ergoregion instability
has not yet been considered. Most interesting, however,
will be an extension of the investigation of the dynamical
evolution of boson stars [43,44,51] to the rotating case.
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APPENDIX A. CONSTRUCTION OF THE
SOLUTIONS

1. Boundary conditions

The choice of appropriate boundary conditions must
guarantee that the boson star solutions are globally regular
and asymptotically flat, and that they possess finite energy
and finite energy density.
For spherically symmetric boson stars boundary condi-

tions must be specified for the metric functions fðrÞ and
lðrÞ and the scalar field function �ðrÞ at the origin and at
infinity. At the origin one finds the boundary conditions

@rfjr¼0 ¼ 0; @rljr¼0 ¼ 0; @r�jr¼0 ¼ 0: (A1)

Note that for spherically symmetric boson stars the scalar
field has a finite value �0 at the origin,

�ðrÞ ¼ �0 þOðr2Þ: (A2)
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FIG. 15 (color online). Equilibrium space M ¼ f!s; �;Qg for
rotating boson stars with n ¼ 2þ in the range 0:04 � � � 0:3.
The onset of the ergoregion is indicated by the asterisks.
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For r ! 1 the metric approaches the Minkowski metric

�� and the scalar field assumes its vacuum value � ¼ 0.

Accordingly, we impose at infinity the boundary conditions

fjr!1 ¼ 1; ljr!1 ¼ 1; �jr!1 ¼ 0: (A3)

For rotating axially symmetric boson stars appropriate
boundary conditions must be specified for the metric func-
tions fðr; �Þ, lðr; �Þ, hðr; �Þ, !ðr; �Þ, and the scalar field
function �ðr; �Þ at the origin, at infinity, on the positive z
axis (� ¼ 0), and, exploiting the reflection symmetry with
respect to � ! �� �, in the xy plane (� ¼ �=2). At the
origin we require

@rfjr¼0 ¼ 0; @rljr¼0 ¼ 0; hjr¼0 ¼ 1;

!jr¼0 ¼ 0; �jr¼0 ¼ 0: (A4)

At infinity the boundary conditions are

fjr!1 ¼ 1; ljr!1 ¼ 1; hjr!1 ¼ 1;

!jr!1 ¼ 0; �jr!1 ¼ 0; (A5)

and for � ¼ 0 and � ¼ �=2, respectively, we require the
boundary conditions

@�fj�¼0 ¼ 0; @�lj�¼0 ¼ 0; hj�¼0 ¼ 1;

@�!j�¼0 ¼ 0; �j�¼0 ¼ 0; (A6)

and for even parity solutions

@�fj�¼�=2 ¼ 0; @�lj�¼�=2 ¼ 0; @�hj�¼�=2 ¼ 0;

@�!j�¼�=2 ¼ 0; @��j�¼�=2 ¼ 0; (A7)

while for odd parity solutions �j�¼�=2 ¼ 0.

2. Numerical methods

First of all, because of the power law falloff of the metric
functions, we compactify space by introducing the com-
pactified radial coordinate

�r ¼ r

1þ r
: (A8)

Then the resulting set of equations is solved numerically
subject to the above boundary conditions.
For spherically symmetric nonrotating solutions (n ¼ 0)

the set of equations depends only on the radial coordinate.
It is solved numerically by employing a collocation
method for boundary-value ordinary differential equations
developed by Ascher, Christiansen, and Russell [52]. Here
the damped Newton method of quasilinearization is ap-
plied. At each iteration step a linearized problem is solved
by using a spline collocation at Gaussian points.
Rotating solutions are obtained when n � 0. The result-

ing set of coupled nonlinear partial differential equations is
solved numerically by employing a finite difference solver
[53], based on the Newton-Raphson method. The equations
are discretized on a nonequidistant grid in �r and �. Typical
grids used have sizes 90� 70, covering the integration
region 0 � �r � 1 and 0 � � � �=2.
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