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The possibility of Lorentz symmetry breaking (LSB) has attracted considerable attention in recent

years. Spontaneous LSB, in particular, offers the attractive prospect of the graviton as a Nambu-Goldstone

boson. Here we consider the question of spontaneous LSB in lattice gauge theories via formation of

fermion condensates in the strong coupling and large N limits. We employ naive massless fermions in a

fermionic hopping expansion in the presence of sources coupled to various condensate operators of

interest. The expansion is summed in the large N limit in two equivalent ways: (i) direct summation of all

leading N graphs and (ii) construction of the corresponding large N effective action for composite

operators. When sources are turned off, a variety of fermionic condensates are found to persist. These

include the chiral symmetry breaking condensates—thus recovering previous results—but also some LSB

condensates, in particular, axial vector and rank-2 tensor condensates. Furthermore, in the presence of

internal (global) symmetry groups, formation of condensates ‘‘locking’’ internal and external (Lorentz

subgroup) symmetries is found to also become possible. Some implications and open questions are briefly

discussed.
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I. INTRODUCTION

Over the last several years there has been a surge of
interest in the possibility of explicit or spontaneous break-
ing of Lorentz symmetry. This has been motivated by a
variety of phenomenological and theoretical reasons that
cannot all be reviewed here. In this paper we focus on the
possibility of spontaneous dynamical breaking of Lorentz
symmetry in field theory. The idea goes back to Bjorken
[1], who proposed that the photon be viewed as the
Goldstone boson of such breaking. The same idea was
soon afterwards applied to the graviton [2]. The application
to the graviton is particularly attractive. AGoldstone gravi-
ton offers a potential avenue to a quantum gravity theory
that evades the well-known difficulties of quantizing the
metric field of general relativity as an elementary field. In
fact the similarity of the basic mathematical constructs in
general relativity and effective Lagrangians for nonlinearly
realized broken symmetries was generally noted when
chiral models were introduced in the late 1960s.

The idea of the Goldstone graviton has been revived
more recently [3], and a number of effective field theory
analyses have been performed [3–5]. In an effective field
theory analysis one assumes that Lorentz symmetry break-
ing takes place at a certain scale. One then proceeds to
examine the consequences at lower scales and, in particu-
lar, construct the effective theory describing the interac-
tions of the resulting Goldstone bosons among themselves
and other surviving light degrees of freedom. The effective
theory of course involves nonrenormalizable interactions.
A central question then is whether the assumed symmetry
breaking can actually take place in some underlying theory

which is UV complete. It appears very difficult to come up
with an UV healthy, or at least perturbatively renormaliz-
able, model in which Lorentz symmetry breaking occurs at
weak coupling. (At least this author is not aware of any
such satisfactory model.) This may not be surprising since
one naturally expects dynamical Lorentz symmetry break-
ing to take place at strong coupling.
Here we examine this question in SUðNÞ or UðNÞ lattice

gauge theories in the strong coupling and large N limits.
The lattice theory at strong bare coupling provides a good,
tractable model for first exploring such nonperturbative
issues. The lattice spacing represents the scale at which
couplings are strong and nonperturbative dynamics takes
place. Indeed, as is well-known, the model exhibits all the
salient nonperturbative features of QCD-like theories, in
particular, confinement and chiral symmetry breaking. The
model is of course far from the continuum limit [6].
Chiral symmetry breaking via formation of fermionic

condensates in strongly coupled lattice gauge theory is a
prototypical example of dynamical symmetry breaking. It
is natural then to ask whether further condensates can
form that break other global symmetries such as Lorentz
symmetry. ‘‘Lorentz’’ symmetry here actually refers to the
SOðdÞ symmetry after Wick rotation to the d-dimensional
Euclidean space of the lattice formulation, which is further
reduced to hypercubic symmetry due to the lattice discre-
tization. This discretization, however, is irrelevant here;
one is interested in true dynamical breaking through
condensate formation picking out particular directions in
(latticized) space-time.
Formation of a variety of fermionic condensates can, in

fact, be related to the structure of one physical quantity.
Consider fermionic bilinears of the form �c ðxÞ�Ac ðxÞ,
where �A stands for any Clifford algebra element. The*tomboulis@physics.ucla.edu
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vacuum expectation value (vev) of such a bilinear is related
to the fermion 2-point function Gðx; yÞ ¼ hc ðxÞ �c ðyÞi at
x ¼ y:

h �c ðxÞ�Ac ðxÞi ¼ �tr½Gðx; xÞ�A� ; (1)

where the trace is over spinor and color indices. Thus, a
condensate for �c ðxÞ�Ac ðxÞ will form if trCGðx; xÞ has
nonvanishing projection onto �A. Note that trCGðx; xÞ,
where trC denotes trace over color, is a gauge-invariant
quantity. Determining the structure of Gðx; xÞ then allows
one to examine the formation of various condensates, e.g.,
the chiral condensate for scalar �A ¼ 1, or Lorentz break-
ing condensates for, say, vector or axial vector �A.
Condensates involving nearest-neighbor lattice sites (de-
rivatives in the continuum) can also, as we will see, be
related to Gðx; xÞ.

In this paper we derive an equation for determining
Gðx; xÞ in the strong coupling and large N limits (Sec. II).
The large N limit allows one to identify a well-defined
infinite set of dominant graphs in a fermion hopping ex-
pansion that can then be summed. The summation may be
performed by diagrammatic means (cf. [7,8]) leading to a
self-consistent equation for the full Gðx; xÞ in this limit
(Sec. II A). Alternatively, and more elegantly, the same
equation follows from directly constructing and then vary-
ing the effective action for composite operators [9] at large
N (Sec. II B). From this equation one recovers previous
results on the formation of chiral symmetry breaking con-
densates [7,8,10]. One finds, however, that other conden-
sates may also form via (1), in particular, axial vector and
tensor Lorentz breaking condensates (Sec. III).

When internal (global) symmetry groups are present
another possibility arises, namely, ‘‘locking’’ of internal
and external groups via condensate formation (Sec. IV).
Locking among internal groups is common. Chiral sym-
metry breaking in QCD is in fact an example: the left and
right chiral rotation groups are locked by the chiral con-
densate to equal rotations forming the unbroken diagonal
subgroup. Color superconductivity arising from the forma-
tion of condensates locking color and flavor symmetries
[11] provides a more elaborate example. Locking of inter-
nal and external groups is not normally considered. The
one well-known example is the locking of angular momen-
tum and isospin in the field of a magnetic monopole [12].
Internal-external-group locking condensates can serve as a
dynamically generated vierbein field. This presents an
approach to a quantum theory of composite (Goldstone)
gravitons that has not been explored before. In the context
of the strongly coupled gauge models considered here
internal-external locking presents no special problems in
Euclidean space where groups are compact. Upon rotation
to Minkowski space, however, where external groups such
as the Lorentz group become decompactified, obvious
problems can arise, in particular, with respect to unitarity.
This is discussed in Sec. IV. The concluding Sec. V

provides some further discussion of these results, open
questions and future directions. A condensed account has
appeared in [13].

II. LARGE N SUMMATION
AND EFFECTIVE ACTION

We use standard lattice gauge theory notations and
conventions. We work on a Euclidean hypercubic
d-dimensional lattice with lattice sites denoted by their
lattice coordinates x ¼ ðx�Þ, and lattice unit vectors in
the �th direction by �̂. We generally indicate dimension
dependence by d even though we are actually interested
only in the d ¼ 4 case. The gauge field bond variable Ub

on bond b ¼ ðx; �̂Þ is more explicitly denoted by U�ðxÞ,
and the fermion fields on site x by �c ðxÞ and c ðxÞ. The
gauge group is taken to be SUðNÞ or UðNÞ, but the method
developed below (Secs. II A and II B) can be applied to
other groups. The Euclidean gamma matrices satisfying
f��; ��g ¼ 2g��1 with g�� ¼ ��� are Hermitian, ��y ¼
��. We also define (d ¼ 4): �5 ¼ �1�2�3�4, so that
�5y ¼ �5.
We employ the lattice action with naive massless

fermions:

S¼X
p

�

�
1� 1

N
RetrUp

�
þ X

b¼ðx;�Þ

1

2
½ �c ðxÞ��U�ðxÞc ðxþ�̂Þ

� �c ðxþ�̂Þ��U
y
�ðxÞc ðxÞ�: (2)

Naive fermions, which automatically provide an anomaly-
free chirally invariant model, are indeed well-suited for our
purposes since fermion doubling is irrelevant here—in
fact, as it turns out, the more degrees of freedom (color
and flavor) the better. The use of naive versus other fermion
formulations is further discussed in Sec. III . We will be
concerned with expectations of operators of the form
�c ðxÞ�Ac ðxÞ, where �A may stand for a Clifford algebra
element, such as �S ¼ 1, �

�
V ¼ ��, or �

�
A ¼ i�5��, or

some other choice. Operators involving nearest-neighbor
sites (derivatives in the continuum) will also be considered
below. It should be noted that any such Lorentz breaking
condensates may also violate some discrete symmetries.
Thus, for example, a nonvanishing vector condensate
would also violate C, whereas an axial vector condensate
would violate P.
Since the operator �c ðxÞ�Ac ðxÞ is a fermion bilinear its

vev is related to the fermion 2-point function (full propa-

gator) Ga;b
�;�ðx; yÞ ¼ hc a

�ðxÞ �c b
�ðyÞi in the limit x ¼ y:

h �c ðxÞ�Ac ðxÞi ¼ �tr½Gðx; xÞ�A� (3)

¼ �trD½ �Gðx; xÞ�A� (4)

with the second equality written explicitly in terms of the
gauge-invariant quantity �Gðx; xÞ � trCGðx; xÞ. Here tr de-
notes trace over spinor and color indices, whereas trC and
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trD denote traces over color (Latin letters) and Dirac spinor
(Greek letters) indices, respectively.

To study such expectations we add an external source
KA coupled to the operator �c ðxÞ�Ac ðxÞ. More generally,
one introduces a source for Gðx; xÞ of the form K ¼ �K1C,
where 1C denotes the unit matrix in color space, and �K is
an arbitrary (invertible) matrix in spinor space. Coupling to
any one particular fermion bilinear then amounts to a
particular form of �K; for example, �K ¼ kn���, where k

is an arbitrary number and n� an arbitrary unit vector, gives
a source of magnitude k and direction n� coupled to
�c ðxÞ��c .

We write the action (2) in the presence of the external
source more concisely in the form

S ¼ X
p

�

�
1� 1

N
Re trUp

�
þX

x;y

�c ðxÞKx;yðUÞc ðyÞ; (5)

where

K x;yðUÞ ¼ Mx;yðUÞ þKx;y (6)

with

Mx;yðUÞ� 1
2½��U�ðxÞ�y;xþ�̂���U

y
�ðx��̂Þ�y;x��̂�; (7)

K x;y � K�x;y ¼ �K1C�x;y: (8)

Note that K and M are matrices in spinor and color space
as well as in lattice coordinate space. If the fermions in (2)
are taken to also carry a flavor index, both (7) and (8)
should be multiplied by the flavor unit matrix 1F.

In the strong coupling limit � ! 0 the plaquette term in
(5) is dropped. The corrections due to this term can be
taken systematically into account within the strong cou-
pling cluster expansion, which, for sufficiently small �,
converges. Hence they do not produce any qualitative
change in the behavior obtained below at � ! 0.

Setting � ¼ 0 in (5) then, Gðx; xÞ is given by

Gðx;xÞ¼ 1R½DU�DetKðUÞ
Z
½DU�DetKðUÞK�1

x;x ðUÞ (9)

¼
R½DU�Det½1þK�1MðUÞ�½½1þK�1MðUÞ��1K�1�x;xR½DU�Det½1þK�1MðUÞ� ;

(10)

in the presence of arbitrary source K. The vev of
�c ðxÞ�Ac ðxÞ in the presence of the source is then obtained
from (3). The part projected out in (3) can be picked out at
the outset by restricting the source to the appropriate form
coupling to the operator of interest.

A. Large N graph summation

We evaluate (10) in the hopping expansion. This
amounts to expanding (10) treating M as the interaction
and taking K as defining the inverse bare propagator:

K�1
x;y ¼ �K�11C�x;y : (11)

The textbook version of the expansion is the scalar case
where K is a mass term. Note that K is purely local,
whereas M has only nearest-neighbor nonvanishing ele-
mentsMx;xþ�̂ ¼ 1

2��U�ðxÞ andMx;x��̂ ¼ � 1
2��U

y
�ðx�

�̂Þ. In the absence of the plaquette term, and since M is
linear in the bond variables Ub, integration over the gauge
field results in nonvanishing contributions only if at least
two M factors with an equal (mod N) number of Ub’s and

Uy
b ’s occur on each bond b.
The expansion of theK�1

x;x ðUÞ is represented by all paths
starting and ending at x, whereas that of the DetKðUÞ by
all closed paths [14,15]. Consistent with the above con-
straint on each bond resulting from theU integrations, after
the cancellation of all disconnected graphs between nu-
merator and denominator the connected graphs giving the
expectation (10) naturally fall into two classes: ‘‘tree
graphs’’ and ‘‘loop graphs.’’
The tree graphs consist of paths starting and ending at x

and enclosing zero area [Fig. 1(a)]; they arise entirely from
the expansion of the K�1

x;x ðUÞ. The loop graphs, such as

those depicted in Fig. 1(b), consist of paths from the
expansion of K�1

x;x ðUÞ and loops from that of DetKðUÞ
coupled by theU integrations in the numerator in (10) [16].
We note in passing the well-known fact (see, e.g., [14])
concerning the hopping expansion that there are no restric-
tions on how many times a bond is revisited in drawing all
such possible connected graphs [17].
Now, the set of tree graphs is the leading contribution in

N. Loop graphs are down by powers of 1=N relative to tree
graphs [7]. Thus, the set of tree graphs in the hopping
expansion give the large N limit of the theory. The sum
of all tree graphs attached at site x then constitutes the full
propagator Gðx; xÞ in this limit.

)b()a(

FIG. 1. (a) Some tree graphs and (b) some loop graphs at-
tached to site x.

FIG. 2. Nearest-neighbor trees with one, two or three trunks at
site x.
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The lowest order contribution is just the bare propa-
gator (11). The full set of trees at x is generated by the
expansion of ½½1þK�1MðUÞ��1K�1�x;x in (10). We first

consider trees extending from site x to nearest-neighbor
(nn) sites. The simplest such tree has only one ‘‘trunk’’
extending to any one of the 2d nn sites to x (Fig. 2) and
gives

Gð1Þ
nnðx; xÞ ¼

X
��̂

Z
dUx;xþ�̂ � ½K�1

x;xMx;xþ�̂ðUÞK�1
xþ�̂;xþ�̂

�Mxþ�̂;xðUÞK�1
x;x � : (12)

But there are also contributions from nn trees with n
trunks (Fig. 2), with each trunk extending to any one of the
2d nn sites, given by

GðnÞ
nn ðx; xÞ ¼

X
TðnÞ
nn

Z Y
b2TðnÞ

nn

dUb

��Yn
j¼1

K�1
x;xMx;xþ�̂j

ðUÞK�1
xþ�̂j;xþ�̂j

Mxþ�̂j;x
ðUÞ

�
K�1

x;x

�
: (13)

The sum is over the set TðnÞ
nn of such n-trunk nn trees

obtained by letting each trunk independently extend in
all possible ��̂ directions from site x to a nn site.

TheU integrations in (12) and (13) are essentially trivial
since, as it is easily seen, the product of Ub ’s along the
closed path forming each tree yields the unit matrix in
color space. (This is true for any, not just nearest-neighbor,
trees.)

Starting from these nearest-neighbor trees the set of all
trees at x can be generated in a recursive manner [7] by
attaching trees at each site xþ �̂j, (j ¼ 1; . . . ; n) of every

n-trunk nn tree at x. As noted in [8], however, this grouping
does not give a one to one labeling of the set of all trees
unless a further constraint is introduced. This is illustrated
in Fig. 3.

To obtain a one to one labeling one proceeds as follows.
First note that any tree graph attached at x is specified by a
sequence of directions �̂1; �̂2; �̂3; . . . , �̂2l tracing a path
of 2l steps starting and ending at x as, e.g., in Fig. 1(a). An
irreducible tree (IT) graph at x is now defined [8] as a tree
for which this sequence cannot be truncated at some inter-
mediate step �̂k and still result in a tree graph attached at x.
A general IT graph attached at x is then specified by the
initial direction �̂1 followed by attaching a sequence of IT
graphs at xþ �̂1; the tree is then completed by the last step
necessarily in the direction ��̂1 from xþ �̂1 back to x.
This is illustrated in Fig. 4.

If the sum of all IT graphs at a point y is denoted by
GIðy; yÞ, this recursive building of irreducible trees imme-
diately implies the self-consistency relation graphically
represented in Fig. 5. Using the explicit expressions (11)
and (7) the graphical equation in Fig. 5 gives

GI ¼
�
1C þ X1

n¼1

�ð�1Þ
4

�K�1 ð2d� 1Þ
2d

2��GI��

�
n
�
�K�1

¼
�
1C þ 1

2
�K�1 ð2d� 1Þ

2d
��GI��

��1
�K�1

¼
�
�K1C þ 1

2

ð2d� 1Þ
2d

��GI��

��1
: (14)

Note that, for space-independent source K, GIðx; xÞ is in
fact x-independent by translation invariance. The hopping
expansion which, in the largeN limit, gave the series in the
first equality in (14) converges for sufficiently large jjKjj.
The summed expression (14), however, can be contin-
ued to all K. In particular, one is interested in possible
solutions to (14) for K ! 0.

Let GðnÞðx; xÞ denote the ‘‘full n-bottom-trunk’’ tree
defined by attaching the complete set of IT graphs, i.e.,
GI, at each site xþ �̂j, j ¼ 1; 2; . . . ; n, of every n-trunk nn

tree at x. This amounts to replacing K�1
xþ�̂j;xþ�̂j

in (13) by

GIðxþ �̂j; xþ �̂jÞ. The complete set of trees at x, com-

prising the full tree propagatorGðx; xÞ, is now recovered by
summing all these full n-bottom-trunk trees including the
zeroth-order n ¼ 0 [no bottom trunk, i.e., bare propagator
(11)] term:

(a) (b)

FIG. 3. The nearest-neighbor 2-trunk tree at site x in (b) is
contained in the set of 1-trunk trees at x depicted in (a) if all 2d
directions are allowed at xþ �̂, i.e., backtracking is allowed.

FIG. 4. A general IT at site x: at each branching only further IT
graphs can be attached; i.e., at each branch junction no back-
tracking along the preceding step is allowed leaving (2d� 1)
available directions to move in.
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Gðx; xÞ ¼ K�1
x;x þ

X1
n¼1

GðnÞðx; xÞ: (15)

This is represented graphically in Fig. 6. Explicitly, (15)
then gives

G ¼
�
1C þ X1

n¼1

�ð�1Þ
4

�K�12��GI��

�
n
�
�K�1

¼
�
1C þ 1

2
�K�1��GI��

��1
�K�1

¼
�
�K1C þ 1

2
��GI��

��1
: (16)

Note that, since all trees, and hence the sum GI, are
diagonal in color space [cf. remarks following (13)]
Eqs. (14) and (15) are essentially equations for the
gauge-invariant quantity �G � trCG.

It is of some interest to note how the result (14) and (16)
for this largeN summation is altered were one to ignore the
labeling ambiguities dealt with by the introduction of ITs.
This is in fact what was done in the original argument given
in [7]. It simply amounts to attaching all trees rather than
only ITs at each nn tree, resulting in a slight overcounting
of graphs, and (16) being replaced by

G ¼
�
1C þ X1

n¼1

�ð�1Þ
4

�K�12��G��

�
n
�
�K�1

¼
�
�K1C þ 1

2
��G��

��1
; (17)

i.e., a self-consistent equation directly for G. It is clear that
if nontrivial solutions to (14) exist for a particular conden-
sate operator, so do they in the case of (17), and vice versa.
Indeed the predictions of the exact Eqs. (14), (16) for the

various condensates considered below differ from those of
(17) only by inessential numerical factors (see Sec. III).
These are the correction factors due to the small volume
exclusion effect included in the ITs and not taken into
account in (17).

B. Large N composite operator effective action

An alternative method to summing the (infinite) set of
graphs contributing to the expectation in the large N limit
is the direct construction of the corresponding effective
action. By this we mean the standard field-theoretic
definition of effective action, i.e., that functional of the
expectation of an operator which is defined as the Legendre
transform of the free energy with respect to the source
coupled to the operator. Since here we deal with composite,
viz. bilinear fermion operators, this is the effective action
for composite operators [9].
We note in passing that the effective action can be

constructed graphically by proceeding further along the
lines of the previous subsection. The tree graph summation
there was effected by replacing the bare propagator by a
dressed propagator on top of each trunk in the general nn
tree. Complete replacement of all bare propagators by
dressed propagators in the set of graphs for an expectation,
or, more appropriately, the vacuum graphs giving the free
energy, is not straightforward as double-counting has to be
taken properly into account. But it can be carried out
systematically to construct the effective action. A much
more convenient and concise derivation, however, is ob-
tained by functional techniques, and the final result is
easily stated [9].
We can straightforwardly apply the general recipe for

the effective action given in [9] to the theory (2) in the
strong coupling limit to obtain the effective action for our
object of interest Gðx; xÞ ¼ hc ðxÞ �c ðxÞi. We write the ac-
tion (2) without the plaquette term with the addition of a
source K ¼ �K1C:

S ¼ X
x;y

�c ðxÞMx;yðUÞc ðyÞ þX
x

�c ðxÞKc ðxÞ ; (18)

with Mx;y defined in (7). The Legendre transform of the

free energy

W½K� ¼ � lnZ½K� ¼ � ln
Z
½DU�½D �c �½Dc �e�SðU; �c ;c Þ

(19)

FIG. 5. Self-consistent equation for the sum GI (heavy square) of ITs. The first branch extends from x to the nearest-neighbor site in
some direction �̂. On the right-hand side, for each subsequent branch attached at xþ �̂, no backtracking along the direction of the
previous step is allowed and summation over the allowed (2d� 1) directions is understood.

FIG. 6. The equation for the sum of trees attached at x, i.e.,
Gðx; xÞ (heavy circle). On the right-hand side, even though
drawn separated for convenience, all trunks are connected lo-
cally in sequence at site x, and independent summation of each
trunk over the available 2d directions is understood.
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defines the effective action:

�̂½G� ¼ W½K� þX
x

trGðx; xÞK : (20)

Apart from the source term everything in (18) is treated as
interaction terms, which in fact makes for a simplified
version of the general expression in [9]. Apart from an

inessential additive constant then, �̂½G� is given by

�̂½G� ¼ X
x

tr lnGðx; xÞ � �̂2½G� ; (21)

where �̂2½G� denotes the sum of all 2-particle-irreducible
vacuum graphs computed with the interactions defined in
(18). In classifying these graphs, however, let us, for sim-
plicity, ignore the slight overcounting resulting from drop-
ping any restrictions on backtracking in trees. Then the
large N limit results into a great simplification: only one

graph (Fig. 7) contributes to �̂2½G�. Its straightforward
evaluation gives then

�̂ 2½G� ¼ 1

4

X
x;�

trGðx; xÞ��Gðxþ �̂; xþ �̂Þ�� : (22)

Seeking translation-invariant solutions to the variational
equation

�

�Gðx; xÞ �̂½G� ¼ K (23)

now gives

G�1 ¼ ½K þ 1
2�

�G��� : (24)

This reproduces (17). As already remarked, and will be
seen explicitly in the following section, use of (24) gives,
except for some small numerical corrections, the same
results as the exact treatment leading to (16). Identical
results to those of the direct summation of the previous
section are thus obtained, as expected. This is in fact a nice
example of the elegance and efficacy of the effective action
formalism: only one graph needs to be considered instead
of the infinite summation of the previous section [18].

C. Use of alternate approaches

Our approach above was based on (9)–(10) which was
obtained by integrating out the fermion fields. Next, carry-
ing out the gauge field integrations within the hopping
expansion, the set of dominant graphs in the large N limit
could be identified and summed either directly or by
construction of the corresponding composite operator ef-
fective action. Here we want to briefly comment on a
related alternative approach that has also been used to
discuss chiral symmetry breaking in the same limit [10].
It is based on the fact that in the strong coupling limit the
action becomes a sum of one-bond terms allowing one, in
principle, to first carry out the integrations over each gauge
field bond variable:

Z½K� ¼
Z
½DU�½D �c �½Dc �e�SðU; �c ;c Þ

¼
Z
½D �c �½Dc �e½wð �A;AÞ� �cKc � ; (25)

where Aa
�b � 1

2
�c bðxþ �̂Þ��c ðxÞa and �Aa

�b �
� 1

2
�c bðxÞ��c ðxþ �̂Þa. Expressions for wð �A; AÞ are

known in several cases [20] and, in particular, for UðNÞ
in the N ! 1 limit [21]. In the latter case, the so-called
strong coupling phase expression for wð �A; AÞ is given in
terms of functions that can be expanded in series in powers
trð �AAÞk, k > 0, [21]. The method in [10] consists of in-
troducing

NMðxÞ ¼ trCc ðxÞ �c ðxÞ ; (26)

reexpressing powers of tr½ �AA=N2�k in terms ofM and then
rewriting (25) in the form

Z½K� ¼ ewðð1=NÞð@=@KÞÞ Z ½D �c �½Dc �etr½ðc �c ÞK�

¼ ewðð1=NÞð@=@KÞÞ Z ½DM�e½w0ðMÞþNtrMK� (27)

¼
Z
½DM�e½wðMÞþw0ðMÞþNtrMK� : (28)

In (27) the free (pure source) fermionic integral is first
formally rewritten as a bosonic integral in terms ofMwith
w0ðMÞ ¼ ½�Ntr lnMþ constant�, leading to the full
‘‘bosonized’’ form (28) [22]. The final step is to argue
that in the N ! 1 limit it suffices to evaluate the integral
(28) in the saddle-point approximation; i.e., one deter-
mines the expectation of M as the stationary points of
the action in the integrand in (28).
The method yields essentially the same results (with the

provisos of Ref. [22]) as above. It is, however, restricted for
N ! 1 to just UðNÞ. Furthermore, due to the unwieldy
form of w the ensuing computations are ugly and rather
nonilluminating compared to the cleaner direct schemes
above, and will not be considered here any further.

FIG. 7. Single graph in terms of G contributing to the effective
action at large N.
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III. CONDENSATE FORMATION

An operator whose expectation can be related toGðx; xÞ,
as, for example, in (3), may acquire a nonvanishing vev
through a nontrivial solution to (14). This will happen if the
expression relating the vev to Gðx; xÞ projects out a non-
vanishing part of the solution.

We will not make a general study of solutions to (14)
here. It suffices to consider particular branches of solutions
that are picked out by appropriate choice of the source �K.
In all cases, at large jj �Kjj a solution always exists that
reproduces the hopping expansion perturbative solution.
This is clear from the construction that leads to (14) and
(16). We are, however, ultimately interested in solutions at
vanishing external sources.

In the scalar case, �K ¼ k1D, the solution is GI ¼
gIðkÞ1D1C, with, from (14), gIðkÞ satisfying

ð2d� 1Þ
4

g2I þ kgI � 1 ¼ 0 : (29)

Then, from (16), G ¼ gðkÞ1D1C with gðkÞ ¼ ½kþ
dgIðkÞ=2��1. Solving (29) one finds gð0Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2d� 1Þp

=d,
and hence a scalar condensate [23]

h �c ðxÞc ðxÞi ¼ �NS

ffiffiffi
2

d

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

2d

s
; (30)

where S ¼ tr1D is the number of spinor components. This
reproduces the result in [8,10].

If instead one solves (17) for the scalar condensate, one
reproduces the result given in [7]. It differs from (30) by the

absence of the factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð1=2dÞp

. This is the correction
factor for the volume exclusion effect accounted for by the
use of ITs (cf. Fig. 4) and omitted in the derivation of (17).

For vector sources, �K ¼ k� � n, where � stands for
either ��

V or ��
A . Noting that in either case one has

ð� � nÞ�1 ¼ ð� � nÞ, solutions to (14) are of the form

GI ¼ gIðkÞð� � nÞ�11C ; (31)

where now

1
2��g

2
I þ kgI � 1 ¼ 0 (32)

with �A ¼ ðd� 2Þð1� ð1=2dÞÞ for the axial vector case,
and �V ¼ ��A for the vector case. Then

G ¼ gðkÞð� � nÞ�11C (33)

with, from (31) and (16), gðkÞ ¼ ½k� ðd� 2ÞgIðkÞ=2��1,
where the plus (minus) sign corresponds to axial vector

(vector) source. Now gIð0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2=��

p
. Hence, in the axial

vector case one gets gð0Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðd� 2Þp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ð1=2dÞp
. This

then gives an axial vector condensate

h �c ðxÞi�5��c ðxÞi ¼ �NS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ðd� 2Þ

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

2d

s
n�: (34)

In the vector case, however, the resulting vev is imaginary.
Indeed, it turns complex for small source magnitude k,
which would appear to indicate that no vector condensate
actually forms. This does not necessarily imply, however,
that other condensates induced in the presence of a vector
source may not persist at vanishing source.
Again, the same results are obtained from simply solv-

ing (17) except for the omission of the correction factorsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð1=2dÞp

present in the exact result (34).
Another operator whose condensate is of interest

for Lorentz symmetry breaking induced gravity theories
is �c ðxÞ 12 ð�5����	 þ ��	�

��5Þc ðxÞ, where ��	 ¼
i
2 ½��; �	�. This condensate is induced in the presence of

an axial vector source, and indeed survives in the
vanishing-source limit:

h �c ðxÞ 1
2
ð�5����	 þ ��	�

��5Þc ðxÞi

¼ �NS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ðd� 2Þ

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

2d

s
½g�� n	 � g

�
	 n�� : (35)

Other chiral or Lorentz symmetry breaking condensates
that may be induced involve more complicated operators
than those considered so far. They may, in particular,
involve lattice nearest-neighbor (continuum derivative)
couplings, for example, �c ðxÞ��U�ðxÞc ðxþ �̂Þ or
�c ðxÞ��U�ðxÞc ðxþ �̂Þ. The latter is of particular interest
since it, in its continuum limit, corresponds to the tensor
operator �c ðxÞ��@�c ðxÞ, for which a nonvanishing con-

densate is a natural starting point for a theory of the
graviton as a Goldstone boson [3].
Consider then the expectation of the (gauge-invariant)

operator

O��ðxÞ � �c ðxÞ��U�ðxÞc ðxþ �̂Þ
� �c ðxÞ��U

y
�ðx� �̂Þc ðx� �̂Þ (36)

in the strong coupling limit of the theory (5) with an axial
vector source:

S¼X
x;y

�c ðxÞMx;yðUÞc ðyÞþX
x

k �c ðxÞði�5��n�Þc ðxÞ: (37)

The lowest order contribution given by the graph in
Fig. 8(a) is easily evaluated:

hO��ið0Þ ¼ �2N

��i

2k

��
i

2k

�
trD½�����5���	�5�n�n	

¼ �2NS

�
1

2k

�
2½2n�n� � g��� : (38)

Higher order corrections are obtained by attaching
n-trunk tree structures to both ends in Fig. 8(a) as shown
in Fig. 8(b). Summing these trees as in the previous
section leads to the full expectation, represented by the
graph in Fig. 9, in terms of Gðx; xÞ which satisfies (16).
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Evaluating the graph and using the solution (31)–(33)
one obtains

hO��i ¼ 1
2 tr½��G��G� (39)

¼ �1
2NSgðkÞ2½2n�n� � g��� ; (40)

which for vanishing source k ¼ 0 gives

hO��i ¼ � 1

2
NS

�
2

d� 2

��
1� 1

2d

�
½2n�n� � g��� : (41)

Equation (41) is a nonvanishing tensorial condensate not
proportional to g��, i.e., a SOð4Þ breaking (Lorentz

breaking) condensate. (A tensorial condensate propor-
tional to the metric tensor is not Lorentz breaking.)

It should be noted that employing vector sources can
also induce such a condensate since the attached pair of full
tree structures (Fig. 9) can be a pair of complex conjugate
solutions of the vector version of (32) thus giving a real
condensate for all k.

Equation (41) represents partial symmetry breaking. The
same mechanism, however, can result in any pattern of
breaking, partial or complete, by including fermions of
different flavors. Different flavors may be coupled to
sources of different orientation n

�
i for each fermion flavor

c iðxÞ. In physical terms, this may be easily envisioned as
initial random fluctuations due to some additional flavor-
dependent interactions, which are much weaker than the
strong color forces at the scale (the lattice spacing in our
model) where the latter drive condensate formation. If NF

flavors are present, (41) becomes (d ¼ 4)

hO��i ¼ 7

16
NNFS

�
g�� � 2

NF

X
i

ni�n
i
�

�
: (42)

Clearly, any degree of symmetry breaking can be induced
in this manner. The strongly coupled lattice model consid-
ered here provides in fact an explicit realization of the
scenario envisioned in [3].
That the tensor condensates (41) and (42) were here

arrived at by the introduction of axial sources is not ulti-
mately relevant in the following sense. When all sources
are turned off the surviving condensate gives the actual
ground state. Thus, if it corresponds to, say, complete
symmetry breaking, other Lorentz noninvariant operators,
like vectors and axial vectors, may in general have nonzero
expectations in this state.
One may, for contrast, also consider the effect of the

scalar condensate on (36). Repeating the calculation with a
scalar source replacing the axial vector source in (37), one
now easily obtains

hO��i ¼ 1

d

�
1� 1

2d

�
NNFSg�� (43)

instead of (42). Thus, as expected, no Lorentz symmetry
breaking is induced by the scalar condensate (30).
Let us also comment here on the use of other fermion

formulations, in particular, staggered fermions. The naive
fermion degrees of freedom (in d ¼ 4), i.e., 4-component
Dirac spinors on each site and their 16 doublers, are
equivalent in the staggered formulation to four flavors of
Dirac fermions each coming in four ‘‘tastes.’’ Recall (see,
e.g., [14]) that this is shown by a ‘‘spin diagonalization’’
transformation c ðxÞ ¼ Ax
ðxÞ by a unitary matrix Ax such
that, written in terms of the fields 
ðxÞ, the naive fermion
action becomes diagonal in the Dirac indices. With the
Dirac components decoupled, one can keep just a single
component per site which gives the standard minimal
staggered fermion formulation. The single component
fields on the 2d vertices of a hypercube are then taken to

describe the 2d=2 components of a Dirac field with dd=2

flavors. If k fields are retained at every site there are k

(a)

(b)

FIG. 8. (a) Lowest order graph contribution; (b) sum of graphs for the large N expectation after attaching all trees at both ends of
lowest order graph. The short lines represent the different directions of the ��, �� factors in the expectation.

FIG. 9. Summation of trees in Fig. 8(b) giving single graph in
terms of G for the expectation.
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tastes, and the theory possesses a UðkÞ or, in the massless
case, a UðkÞ �UðkÞ global symmetry; k ¼ 4 corresponds
to the d ¼ 4 naive fermion case.

Consider then our various condensate operators above
such as �c ðxÞ�Ac ðxÞ. The corresponding operators in the
staggered fermion formulation are clearly not obtained
simply by a spin diagonalization rewriting in terms of the
staggered fields 
ðxÞ since the latter are not assigned spinor
transformation properties in the same way as naive fermi-
ons. One cannot obtain quantities with definite transforma-
tion properties (spinor, vector, etc.) formed only from 
, �

fields at site x. Indeed, recall (e.g., [14]) that the flavor-
spinor content of staggered fermions is displayed by taking
appropriate linear combinations of the fields on the 2d

vertices of a hypercube, i.e., going to the flavor basis. If
x� ¼ 2y� þ ��, with � ¼ 0, 1, denote the vertex coordi-

nates of a hypercube labeled by coordinates y� (even

length lattice), the block fields qai� ðyÞ � ���
a
�;�


ið2yþ
�Þ are Dirac spinors (� ¼ 1; . . . ; 2d=2), with 2d=2 flavors
indexed by a and k tastes indexed by i. (An explicit
realization of the �� matrices is given by �� ¼
��1

1 ��2

1 . . .��d

d .) In terms of these fields then the condensate

operators of interest here are

�q aiðyÞ��qaiðyÞ; �qaiðyÞ�5��qaiðyÞ; etc: (44)

It is well-known that though the ‘‘local’’ staggered for-
mulation in terms of the 
ðxÞ, �
ðxÞ fields and the flavor
representation in terms of the ‘‘block’’ qðyÞ, �qðyÞ fields are
unitarily equivalent for free fermions, this is not true in the
presence of interactions. Various undesirable features are
known to occur [24] in the flavor (or Dirac-Kähler) repre-
sentation of the theory solely in terms of the qðyÞ, �qðyÞ
fields. For this reason it is generally not used. In the present
context this means that one would, as usual, employ the
local form of the staggered action and view the operators of
interest (44) as defined in terms of linear combinations of
the 
ðxÞ, �
ðxÞ. With minimal staggered fermions (k ¼ 1)
the number of flavors due to doublers is reduced by a factor
of 4. This, however, is of no significance in the present
context. On the contrary, extra flavors are welcome and can
be put to good use as we saw in connection with conden-
sates such as (42) and as we will see in the next section.
Clearly, there appears to be no particular advantage in
using staggered fermions. Naive fermions offer a simpler
and more elegant and straightforward framework, and are
indeed best suited for our purposes.

IV. LOCKING OF INTERNAL AND
SPACE-TIME SYMMETRIES

When internal (global) symmetry groups are present,
the formation of the SOð4Þ (Lorentz) symmetry breaking
condensates considered so far is not the only possibility.
A further possibility arises, i.e., condensate formation
that ‘‘locks’’ space-time and internal symmetries. This

possibility can be equally well explored within our
strong coupling lattice gauge models.
The most straightforward example is provided by taking

the internal symmetry to be a copy of the (Euclidean)
space-time symmetry, i.e., an internal SOð4Þ group with
the fermions transforming as Dirac spinors under it.
Denoting the gamma matrices acting on the internal space
by �m and �̂5, consider the operators

On
V� ¼ �c ðxÞ�nði�5��Þc ðxÞ ;

On
A� ¼ �c ðxÞ�̂5�n�5��c ðxÞ (45)

involving an external axial vector and an internal vector or
axial vector. Nonvanishing vevs of such fermion bilinears
can lead to locking between the corresponding groups.
To compute these vevs we proceed as before. We in-

troduce a source coupled to either of these operators in the
action so that it is given by (18) but now with the fermions
carrying also an internal group index. Gðx; xÞ is a matrix in
color, spinor and internal spinor space, and the source �K is
defined as

�K ¼ kð�m
I lmÞði�5��n�Þ : (46)

In (46) the shorthand �m
I , I ¼ V, A, stands for either

�m
V ¼ �m or �m

A ¼ i�̂5�m, and n� and lm denote arbitrary
unit vectors in the external and internal carrier space,
respectively.
With these substitutions one has only to repeat our

previous computation leading to (14) and (16) with �K
given by (46). So now (14) is solved by

GI ¼ gIðkÞð�I
mlmÞ�1ði�5��n

�Þ�11C ; (47)

where gIðkÞ again satisfies (32) for the axial case, i.e.,

gIð0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2=�A

p
with �A ¼ ðd� 2Þð1� ð1=2dÞÞ; and

G ¼ gðkÞð�I
mlmÞ�1ði�5��n

�Þ�11C is determined by sub-

stituting in

G�1 ¼ ½kð�I
mlmÞði�5��n

�Þ1C þ 1
2�

�GI��� : (48)

The vev for (45) is then given by

hOI�
ni ¼ �tr½G�I

nði�5��Þ� : (49)

Taking an internal axial vector one thus obtains

h �c ðxÞ�̂5�n�5��c ðxÞi ¼ NS2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ðd� 2Þ

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

2d

s
lnn� :

(50)

Different fermion flavors can be coupled to different
sources. Take the number of flavors to be (a multiple of)
four in d ¼ 4 space-time dimensions. Let n�ðiÞ and nmðiÞ,
i ¼ 1; . . . ; 4, denote a set of orthonormal tetrads in external
and internal space, respectively. Coupling source
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�K ðiÞ ¼ kð�I
mnðiÞmÞði�5��n

�
ðiÞÞ (51)

to the ith (subset of) flavor, and repeating the calculation
leading to (50), one now gets

h �c ðxÞ�̂5�n�5��c ðxÞi ¼
ffiffiffi
7

8

s
NS2

X
i

nnðiÞnðiÞ� ¼
ffiffiffi
7

8

s
NS2�n

� :

(52)

Equation (52) represents complete locking of the internal
and external symmetry, i.e., breaking to the diagonal SOð4Þ
subgroup of the original symmetry: SOð4Þ � SOð4ÞI !
SOð4ÞD. The condensate remains invariant only under
simultaneous equal internal and external rotations. There
is, of course, no flavor breaking after the sources are
turned off.

It is interesting to note that, in the present context, the
lattice fermion doublers can be taken to supply additional
flavors. It is indeed amusing to observe that, in terms of the
equivalent staggered fermions, the model would automati-
cally possess an SUð4Þ � SUð4Þ chiral invariance, which,
after formation of the condensate (30), would break to the
diagonal subgroup providing precisely four flavor degrees
of freedom. At any rate, by varying the fermion content,
models exhibiting partial or complete locking between the
external and internal groups can be produced by nonvan-
ishing condensates such as (50). In particular, generaliza-
tions can be considered where the internal group SOð4ÞI
above is replaced by any internal global symmetry group
possessing an SOð4Þ subgroup and an operator transform-
ing as (axial) vector under this subgroup.

This may be all well and good in Euclidean space, where
the external group is compactified. At this point, however,
the obvious question is: how can such locking work in
Minkowski space? This issue does not arise in the case of
the condensates considered in the previous sections. There
passage to Minkowski space involves nothing more than
the standard Wick rotation, after which any condensates
such as (34) and (42) simply transform under the uncom-
pactified external SOð3; 1Þ. In the case of locking between
the external and an internal group, however, the passage to
Minkowski clearly requires more consideration. There ap-
pear to be two possible choices.

One choice is the standard procedure. One makes the
usual passage to Minkowski space by the standard Wick
rotation. The external group gets decompactified to
SOð3; 1Þ, whereas the internal group remains compact.
The condensate (52) is now invariant only under simulta-
neous SOð3Þ (spatial) rotations, i.e., SOð3; 1Þ � SOð4ÞI !
SOð3ÞD.

The second possibility is to define the passage to
Minkowski space to also involve a ‘‘Wick rotation’’ of
the internal group decompactifying it. Full locking then
is preserved; i.e., (52) remains invariant under SOð3; 1ÞD.
This, however, presents an obvious difficulty: one now

has an internal noncompact group, such as SOð3; 1Þ, which
possesses only nonunitary finite-dimensional representa-
tions. This, of course, leads in general to unitarity viola-
tion. (Unwanted negative signs in propagator residues
introduced by the indefinite internal group metric are com-
monly the most direct manifestation of this.) The only way
out is to take the fermions to transform under a unitary, i.e.,
an infinite dimensional representation of the internal
noncompact group. There appears to be no problem of
principle in doing so. Contrary to the case of external
(space-time) groups, for an internal symmetry the usual
formalism applies whether one uses finite or infinite di-
mensional unitary representations [25].

V. DISCUSSION AND OUTLOOK

We have examined the formation of fermionic conden-
sates in lattice gauge theories in the limits of strong cou-
pling and large N. We noted that a variety of condensates
are directly related to the fermion 2-point function at
coincident points, Gðx; xÞ. A self-consistent equation sat-
isfied by this object was then derived. This was done in two
equivalent ways: either by resummation of the dominant
graphs at large N in the fermion hopping expansion at
strong coupling or by direct computation of the effective
action for composite operators at large N and strong cou-
pling. Solutions to the resulting equation for Gðx; xÞ allow
then for formation of various condensates. Previous results
concerning the formation of the chiral symmetry breaking
condensate in this limit were recovered. Furthermore, cer-
tain nonvanishing Lorentz symmetry breaking condensates
were obtained. These include the axial vector condensate
and the rank-2 tensor condensate.
The efficacy of axial vector couplings in Lorentz

breaking condensate formation (Sec. III) is noteworthy.
Intimations of the importance of axial coupling were ob-
tained before in the context of condensate formation at
finite chemical potential (which introduces explicit
Lorentz symmetry breaking) [26], but also from other
more general arguments [27]. All this may suggest that
chiral gauge theories in a strong coupling regime perhaps
possess the right dynamics for Lorentz breaking phases.
Our results on condensate formation were obtained in

the largeN limit. In the case of chiral symmetry breaking it
is of course known, by standard QCD phenomenology and
ab initio Monte Carlo simulation, that the condensate
actually persists for all N. It is not known at this stage
what the fate of the Lorentz breaking condensates is asN is
varied, even within the strong coupling limit. The large N
limit provides a well-defined gauge-invariant nonperturba-
tive model that is tractable. The nonleading 1=N correc-
tions, however, are much harder to treat. One can expect
that the results persist for sufficiently large N when the
corrections are small. This is important since strictly infi-
nite N may prevent taking the continuum limit by the
presence of phase transitions (see [28] for review). When
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the corrections become sizable by sufficiently lowering N,
however, the question of the fate of any particular conden-
sate becomes entirely open. As we saw, already at infinite
N apparently certain condensates form but not others. The
difference between the vector and axial vector cases, in
particular, can be traced to the different signs in corre-
sponding contributing graphs. When finite N corrections
become important, the signs of their contributions will
be crucial in determining the stability of a particular
condensate. In this connection, it should be recalled
that effective field theory analysis shows that sufficiently
large N is crucial for the stability of the low energy
effective theory under radiative corrections [3]. All this
might indicate that a large number of degrees of freedom
is necessary for formation of stable Lorentz breaking
condensates.

It would certainly be worthwhile to try to answer these
questions byMonte Carlo simulations. The strong coupling
lattice model provides the simplest case for an initial
exploration, even though signals will be quite noisy. Any
simulation attempts, however, will be hampered by not
knowing how large ‘‘sufficiently large’’ N has to be.

In this paper we also found that, within our large N
strong coupling lattice models, another type of condensate
may form, namely, condensates locking internal and exter-
nal symmetries. This possibility appears not to have been
considered before in the context of dynamical symmetry
breaking via condensate formation. As discussed in the
previous section, complete locking with the Lorentz group
in Minkowski space requires noncompact internal groups,
and this necessitates fields transforming under unitary,
hence infinite dimensional, representations of such internal
groups. There appears to be no problem in principle with
such an assignment. At any rate, motivated by the lattice
model result, one could postulate the existence of a con-
densate which locks the Lorentz group to an internal non-
compact group G containing an SOð3; 1Þ subgroup by
breaking down to the diagonal SOð3; 1Þ subgroup. The
resulting low energy theory is then invariant under the

unbroken diagonal SOð3; 1Þ with the condensate providing
a dynamically generated background vierbein field
connecting internal and external indices. This is an ap-
proach to the potential construction of a quantum gravity
theory that has not been explored before. It would certainly
be interesting to work out the low energy effective theory
for the Goldstone bosons of the nonlinearly realized sym-
metry for different choices of the group G.
An important issue we have not addressed here is the

following. We considered the formation of each specific
condensate in isolation, induced by the introduction of an
appropriate external source which is eventually turned off.
We did not consider the interference or competition be-
tween different condensates. Formation of a symmetry
breaking condensate generally implies the formation of a
tower of ‘‘higher’’ ones, both in the chiral and Lorentz
cases. There may, however, be competition between dis-
tinct classes of condensates leaving different subgroups
intact, one class resulting in a lower vacuum energy state
than another. An example could be the formation of com-
plete Lorentz symmetry breaking condensates versus that
of internal-external symmetry-locking condensates that
leave a Lorentz subgroup intact. Though certainly possible
to explore such questions with the techniques used here, in
particular, the composite operator effective action, it re-
quires more involved computations than those carried
out here.
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80, 1455 (2008).

[12] R. Jackiw and C. Rebbi, Phys. Rev. Lett. 36, 1116 (1976);
P. Hasenfratz and G. ’t Hooft, Phys. Rev. Lett. 36, 1119
(1976).

[13] E. T. Tomboulis, Proc. Sci., LAT2010 (2010) 290
[arXiv:1011.1534].

[14] H. J. Rothe, Lattice Gauge Theories (World Scientific,
Singapore, 2005), 3rd ed..

[15] I. O. Stamatescu, Phys. Rev. D 25, 1130 (1982).
[16] Closed paths not so coupled give disconnected graphs

canceling against the denominator.
[17] Indeed, the rules of Grassmann integration automatically

take into account the exclusion principle: the path-integral
(signed) summation over all fermionic configurations
gives the appropriate cancellations between configurations
contributing to connected and disconnected graphs. As a
result, after the factoring of disconnected graphs, one is
left with unrestricted sums for the remaining connected
graphs [14].

[18] Another similar example [9] is the large N limit of the
OðNÞ model, where again a single 2-PI graph replaces the
direct summation [19] of the infinite set of leading N
graphs.

[19] S. Coleman, R. Jackiw, and H.D. Politzer, Phys. Rev. D
10, 2491 (1974).

[20] K. E. Eriksson, N. Svartholm, and B. S. Skagerstam, J.
Math. Phys. (N.Y.) 22, 2276 (1981); I. Bars, J. Math. Phys.
(N.Y.) 21, 2678 (1980); S. Samuel, J. Math. Phys. (N.Y.)
21, 2695 (1980).

[21] E. Brezin and D. J. Gross, Phys. Lett. 97B, 120 (1980);
R. C. Brower and M. Nauenberg, Nucl. Phys. B180, 221
(1981).

[22] Picking out particular choices of pairs in products of
Grassmann variables inside a Grassmann integral to be
replaced by bosonic variables is tricky. Any approxima-
tions generally render the procedure ambiguous. In the
present case note that the powers of �AA can be reexpressed
as powers of different pairings of Grassmann fields by

Fierz rearrangements. In this manner one may equally
well introduce other composite fields that may be similarly
replaced by bosonic variables. Any subsequent approxi-
mations lead to the ambiguities of what becomes essen-
tially an ad hoc Hartree-Fock type of approximation. An
appeal to special factorization properties at large N may in
certain cases justify such manipulations.

[23] For non-vanishing-source k one obtains

h �c ðxÞc ðxÞik ¼ �NS
½dðk2 þ 2d� 1Þ1=2 � kðd� 1Þ�

ðd2 þ k2Þ :

[24] M. F. L. Golterman and J. Smit, Nucl. Phys. B245, 61
(1984); P. Mitra and P. Weisz, Phys. Lett. 126B, 355
(1983).

[25] Starting with Majorana’s seminal work in the early 1930s,
attempts have been made over the decades to employ
infinite dimensional unitary representations in field theory.
Replacing the customary finite-dimensional nonunitary
representations for external groups, such as the Lorentz
group, with infinite dimensional unitary representations
can lead to problems of physical interpretation with regard
to particle spectrum, e.g., the existence of spacelike con-
tinuum spectrum solutions, as well as the spin-statistics
connection. The potential use of noncompact groups be-
came a popular subject in the heyday of current algebras in
the 1960s in connection with relativistic extensions of
SUð6Þ. Another application that emerged from that time
is that of noncompact algebras as ‘‘spectrum generating
algebras’’; see, e.g., A. Bohm, Y. Ne’eman, and A.O.
Barut, Dynamical Groups and Spectrum Generating
Algebras (World Scientific, Singapore, 1988).

[26] F. Sannino, in Review of Vector Condensation at High
Chemical Potential, AIP Conf. Proc. No. 688 (AIP,
New York, 2003), p. 121.

[27] A. Adams, A. Jenkins, and D. O’Connell,
arXiv:0802.4081.

[28] R. Narayanan, Proc. Sci., LAT2007 (2007) 272
[arXiv:0709.4494].

E. T. TOMBOULIS PHYSICAL REVIEW D 85, 024042 (2012)

024042-12

http://dx.doi.org/10.1016/S0550-3213(98)00668-3
http://dx.doi.org/10.1016/S0550-3213(98)00668-3
http://dx.doi.org/10.1103/RevModPhys.80.1455
http://dx.doi.org/10.1103/RevModPhys.80.1455
http://dx.doi.org/10.1103/PhysRevLett.36.1116
http://dx.doi.org/10.1103/PhysRevLett.36.1119
http://dx.doi.org/10.1103/PhysRevLett.36.1119
http://arXiv.org/abs/1011.1534
http://dx.doi.org/10.1103/PhysRevD.25.1130
http://dx.doi.org/10.1103/PhysRevD.10.2491
http://dx.doi.org/10.1103/PhysRevD.10.2491
http://dx.doi.org/10.1063/1.524760
http://dx.doi.org/10.1063/1.524760
http://dx.doi.org/10.1063/1.524368
http://dx.doi.org/10.1063/1.524368
http://dx.doi.org/10.1063/1.524386
http://dx.doi.org/10.1063/1.524386
http://dx.doi.org/10.1016/0370-2693(80)90562-6
http://dx.doi.org/10.1016/0550-3213(81)90416-8
http://dx.doi.org/10.1016/0550-3213(81)90416-8
http://dx.doi.org/10.1016/0550-3213(84)90424-3
http://dx.doi.org/10.1016/0550-3213(84)90424-3
http://dx.doi.org/10.1016/0370-2693(83)90180-6
http://dx.doi.org/10.1016/0370-2693(83)90180-6
http://arXiv.org/abs/0802.4081
http://arXiv.org/abs/0709.4494

