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Constraining Lorentz-violating, modified dispersion relations with gravitational waves
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Modified gravity theories generically predict a violation of Lorentz invariance, which may lead to a
modified dispersion relation for propagating modes of gravitational waves. We construct a parametrized
dispersion relation that can reproduce a range of known Lorentz-violating predictions and investigate their
impact on the propagation of gravitational waves. A modified dispersion relation forces different
wavelengths of the gravitational-wave train to travel at slightly different velocities, leading to a modified
phase evolution observed at a gravitational-wave detector. We show how such corrections map to the
waveform observable and to the parametrized post-Einsteinian framework, proposed to model a range of
deviations from General Relativity. Given a gravitational-wave detection, the lack of evidence for such
corrections could then be used to place a constraint on Lorentz violation. The constraints we obtain are
tightest for dispersion relations that scale with small power of the graviton’s momentum and deteriorate

for a steeper scaling.
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I. INTRODUCTION

After a century of experimental success, Einstein’s fun-
damental theories, i.e. the special theory of relativity and
the General theory of Relativity (GR), are beginning to be
questioned. As an example, consider the observation of
ultra-high-energy cosmic rays. In relativity, there is a
threshold of ~5 X 10 eV (GZK limit) for the amount
of energy that charged particles can carry, while cosmic
rays have been detected with higher energies [1]. On the
theoretical front, theories of quantum gravity also generi-
cally predict a deviation from FEinstein’s theory at suffi-
ciently large energies or small scales. In particular, Lorentz
violation seems ubiquitous in such theories. These consid-
erations motivate us to study the effects of Lorentz viola-
tion on gravitational-wave observables.

Einstein’s theory will soon be put to the test through a
new type of observation: gravitational waves (GWs). Such
waves are (far-field) oscillations of spacetime that encode
invaluable and detailed information about the source that
produced them. For example, the inspiral, merger and
ringdown of compact objects (black holes or neutron stars)
are expected to produce detectable waves that will access
horizon-scale curvatures and energies. Gravitational waves
may thus provide new hints as to whether Einstein’s theory
remains valid in this previously untested regime.

Gravitational-wave detectors are today a reality.
Ground-based interferometers, such as the Advanced
Laser Interferometer Gravitational Observatory (Ad.
LIGO) [2-4] and Advanced Virgo [5], are currently being
updated, and are scheduled to begin data acquisition by
2015. Second-generation detectors, such as the Einstein
Telescope (ET) [6,7] and the Laser Interferometer Space
Antenna (LISA) [8,9], are also being planned for the next

1550-7998/2012/85(2)/024041(12)

024041-1

PACS numbers: 04.30.—w, 04.30.Nk, 04.50.Kd

decade. Recent budgetary constraints in the United States
have cast doubt on the status of LISA, but the European
Space Agency is still considering a descoped, LISA-like
mission (an NGO, or New Gravitational Observatory). The
detection of gravitational waves is, of course, not a cer-
tainty, as the astrophysical event rate is highly uncertain.
However, there is consensus that advanced ground detec-
tors should observe a few gravitational-wave events by the
end of this decade.

Some alternative gravity theories endow the graviton
with a mass [10]. Massive gravitons would travel slower
than the speed of light, but most importantly, their speed
would depend on their energy or wavelength. Since gravi-
tational waves emitted by compact binary inspirals chirp in
frequency, gravitons emitted in the early inspiral will travel
more slowly than those emitted close to merger, leading to
a frequency-dependent gravitational-wave dephasing,
compared to the phasing of a massless general relativistic
graviton. If such a dephasing is not observed, then one
could place a constraint on the graviton mass [11]. A
Lorentz-violating graviton dispersion relation leaves an
additional imprint on the propagation of gravitational
waves, irrespective of the generation mechanism. Thus a
bound on the dephasing effect could also bound the degree
of Lorentz violation.

In this paper, we construct a framework to study the
impact of a Lorentz-violating dispersion relation on the
propagation of gravitational waves. We begin by proposing
a generic, but quantum-gravitational inspired, modified
dispersion relation, given by

E? = p*c + myct + Ap*c?, (1)

where m, is the mass of the graviton and A and « are
two Lorentz-violating parameters that characterize the GR
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deviation (« is dimensionless while A has dimensions of
[energy]*~*). We will assume that A/(cp)*>~* < 1. When
either A = 0 or « = 0, the modification reduces to that of a
massive graviton. When a = (3, 4), one recovers predic-
tions of certain quantum-gravitation inspired models. This
modified dispersion relation introduces Lorentz-violating
deviations in a continuous way, such that when the pa-
rameter A is taken to zero, the dispersion relation reduces
to that of a simple massive graviton.

The dispersion relation of Eq. (1) modifies the gravita-
tional waveform observed at a detector by correcting the
phase with certain frequency-dependent terms. In the
stationary-phase approximation (SPA), the Fourier trans-
form of the waveform is corrected by a term of the form
Z(A)u*"!, where u = wMf is a dimensionless measure
of the gravitational-wave frequency with M the so-called
“chirp mass.” We show that such a modification can be
easily mapped to the recently proposed parametrized post-
Einsteinian (ppE) framework [12,13] for an appropriate
choice of ppE parameters.

In deriving the gravitational-wave Fourier transform we
must assume a functional form for the waveform as emitted
at the source so as to relate the time of arrival at the
detector to the gravitational-wave frequency. In principle,
this would require a prediction for the equations of motion
and gravitational-wave emission for each Lorentz-
violating theory under study. However, few such theories
have reached a sufficient state of development to produce
such predictions. On the other hand, it is reasonable to
assume that the predictions will be not too different from
those of general relativity. For example, we argued [11]
that for a theory with a massive graviton, the differences
would be of order (A/ /\g)z, where A is the gravitational
wavelength, and A, is the graviton Compton wavelength,
and A, > A for sources of interest. Similar behavior might
be expected in Lorentz-violating theories. The important
phenomenon is the accumulation of dephasing over the
enormous propagation distances from source to detector,
not the small differences in the source behavior. As a result,
we will use the standard general relativistic wave genera-
tion framework for the source waveform.

With this new waveform model, we then carry out a
simplified (angle-averaged) Fisher-matrix analysis to esti-
mate the accuracy to which the parameter {(A) could be
constrained as a function of «, given a gravitational-wave
detection consistent with general relativity. We perform
this study with a waveform model that represents a non-
spinning, quasicircular, compact binary inspiral, but that
deviates from general relativity only through the effect of
the modified dispersion relation on the propagation speed
of the waves, via Eq. (1).

To illustrate our results, we show in Table I the accuracy
to which Lorentz-violation in the @ = 3 case could be
constrained, as a function of system masses and detectors
for fixed signal-to-noise ratio (SNR). The case « = 3 is a
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TABLE I.  Accuracy to which graviton mass and the Lorentz-
violating parameter A could be constrained for the a = 3 case,
given a gravitational-wave detection consistent with GR. The
first column lists the masses of the objects considered, the
instrument analyzed and the signal-to-noise ratio (SNR).

Detector m, m, m(eV) AV
Ad. LIGO 1.4 1.4 371 X 1072 736X 1078
SNR = 10 1.4 10 3.56 X 1072 354 x 1077
10 10 3.51 X102  6.83x 1077
ET 10 10 299X 1072 232x 1078
SNR = 50 10 100 4.81 X 1072 1.12 X 107°
100 100 6.67 X 10723 334 x10°°
NGO 10* 10 3.05 X 107% 2,16 X 1072
SNR =100  10* 10° 2.46 X 1072 0.147
105 105 2.03 X 10725 0.189
10° 10° 2.09 X 10725 9.57
100 10° 1.49 X 10725 232

prediction of “doubly special relativity.” The bounds on
the graviton mass are consistent with previous studies
[11,14-18] (for a recent summary of current and proposed
bounds on m, see [19]). The table here means that given a
gravitational-wave detection consistent with GR, m, and A
would have to be smaller than the numbers on the third and
fourth columns, respectively.

Let us now compare these bounds with current con-
straints. The mass of the graviton has been constrained
dynamically tom, = 7.6 X 1072 eV through binary pulsar
observations of the orbital period decay and statically to
4.4 X 10722 ¢V with Solar System constraints (see e.g.
[19]). We see then that even with the inclusion of an addi-
tional A parameter, the projected gravitational-wave bounds
on m, are still interesting. The quantity A has not been
constrained in the gravitational sector. In the electromag-
netic sector, the dispersion relation of photon has been con-
strained: for example, for @ = 3, A < 107 eV ™! using
TeV y-rayobservations [20]. One should note, however, that
such bounds on the photon dispersion relation are indepen-
dent of those we study here, as in principle the photon and the
graviton dispersion relations need not be tied together.

We must stress that this paper deals only with Lorentz-
violating corrections to the gravitational-wave dispersion
relation, and thus, it deals only with propagation effects
and not with generation effects. Generation effects will in
principle be very important, possible leading to the exci-
tation of additional polarizations, as well as modifications
to the quadrupole expressions. Such is the case in several
modified gravity theories, such as the Einstein-Aether
theory and the Horava-Lifshitz theory [21-33].
Generically studying the generation problem, however, is
difficult as there does not exist a general Lagrangian den-
sity that can capture all Lorentz-violating effects. Instead,
one would have the gargantuan task of solving the genera-
tion problem within each specific theory.
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The goal of this paper, instead, is to consider generic
Lorentz-violating effects in the dispersion relation and
focus only on the propagation of gravitational waves.
This will then allow us to find the corresponding ppE
parameters that represent Lorentz-violating propagation.
Thus, if future gravitational-wave observations peak at
these ppE parameters, then one could suspect that some
sort of Lorentz-violation could be responsible for such
deviations from General Relativistic. Future work will
concentrate on the generation problem.

The remainder of this paper deals with the details of the
calculations and is organized as follows. In Sec. II,
we introduce and motivate the modified dispersion relation
(1), and derive from it the gravitational-wave speed as a
function of energy and the new Lorentz-violating parame-
ters. In Sec. III, we study the propagation of gravitons in a
cosmological background as determined by the modified
dispersion relation and graviton speed. We find the relation
between emission and arrival times of the gravitational
waves, which then allows us in Sec. IV to construct a
restricted post-Newtonian (PN) gravitational waveform
to 3.5 PN order in the phase [O(v/c)”]. We also discuss
the connection to the ppE framework. In Sec. V, we cal-
culate the Fisher information matrix for Ad. LIGO, ET, and
a LISA-like mission and determine the accuracy to which
the compact binary’s parameters can be measured, includ-
ing a bound on the graviton and Lorentz-violating
Compton wavelengths. In Sec. VI, we present some con-
clusions and discuss possible avenues for future research.

II. THE SPEED OF LORENTZ-VIOLATING
GRAVITATIONAL WAVES

In general relativity, gravitational waves travel at the
speed of light ¢ because the gauge boson associated with
gravity, the graviton, is massless. Modified gravity theo-
ries, however, predict modifications to the gravitational-
wave dispersion relation, which would in turn force the
waves to travel at speeds different than c¢. The most in-
tuitive, yet purely phenomenological modification one
might expect is to introduce a mass for the graviton,
following the special relativistic relation

E? = p’c* + mf,c“. 2)

From this dispersion relation, together with the defini-
tion v/c = p/p°, or v = ¢?p/E, one finds the graviton
speed [11]

3)

where m,, v,, and E are, respectively, the graviton’s
rest mass, velocity, and energy.

Different alternative gravity theories may predict differ-
ent dispersion relations from Eq. (2). A few examples of
such relations include the following:
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(i) Double Special Relativity Theory [34-37]: E> =
prct + mict + ng B2 + ..., where ngq is a pa-
rameter of the order of the Planck length.

(i1) Extra-Dimensional Theories [38]: E? =
prct + mict — aeqEY, where agy is a constant
related to the square of the Planck length;

(iii) Horava-Lifshitz Theory [39-42]: E* = p?*c* +
(ki u?,/16)p* + ..., where Ky, and uy, are con-
stants of the theory;

(iv) Theories with Non-Commutative Geometries [42—
44]: E*g3(E) = mic* + p*c*g3(E) with g, =1
and g = (1 — /@rez7/2)exp(—an, E*/E}), with
Qe & cOnstant.

Of course, the list above is just representative of a few
models, but there are many other examples where the
graviton dispersion relation is modified [45,46]. In general,
a modification of the dispersion relation will be accompa-
nied by a change in either the Lorentz group or its action
in real or momentum space. Lorentz-violating effects of
this type are commonly found in quantum-gravitational
theories, including loop quantum gravity [47] and string
theory [48,49].

Modifications to the standard dispersion relation are usu-
ally suppressed by the Planck scale, so one might wonder
why one should study them. Recently, Collins, et al. [50,51]
suggested that Lorentz violations in perturbative quantum
field theories could be dramatically enhanced when one
regularizes and renormalizes them. This is because terms
that would vanish upon renormalization due to Lorentz
invariance do not vanish in Lorentz-violating theories, lead-
ing to an enhancement after renormalization [52].

Although this is an appealing argument, we prefer here
to adopt a more agnostic viewpoint and simply ask the
following question: What type of modifications would
enter gravitational-wave observables because of a modified
dispersion relation and to what extent can these deviations
be observed or constrained by current and future
gravitational-wave detectors? In view of this, we postulate
the parametrized dispersion relation of Eq. (1).

One can see that this model-independent dispersion
relation can be easily mapped to all the ones described
above, in the limit where E and p are large compared to
m,, but small compared to the Planck energy E,. More
precisely, we have

(i) Double Special Relativity: A = 144 and a = 3.

(ii) Extra-Dimensional Theories: A = —a g and o = 4.

(iii) Hofava-Lifshitz: A = kj,ui,/16 and a = 4, but

with m, = 0.
(iv) Non-Commutative Geometries: A = 2ancg/Ef, and
a = 4, after renormalizing m, and c.

Of course, for different values of (A, @) we can parame-
terize other Lorentz-violating corrections to the dispersion
relation. One might be naively tempted to think that a p* or
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p* correction to the above dispersion relation will induce a
1.5 or 2PN correction to the phase relative to the massive
graviton term. This, however, would be clearly wrong, as p
is the graviton’s momentum, not the momentum of the
members of a binary system.

With this modified dispersion relation the modified
graviton speed takes the form

2 mzc4
Vs =1 - Z—AE“2<). )
cz E C
To first order in A, this can be written as
2 m?c* m2c*\a/2
L AE“‘Z(I - 5—2) NG
c? E E
and in the limit E > m it takes the form
2 m2 4
Ve — 1 — gz - AE*2, (6)
c? E

Notice that if A >0 or if mc*/E* > |A|E*"2, then the
graviton travels slower than light speed. On the other hand,
if A < 0and m2c*/E?* < |A|E*"2, then the graviton would
propagate faster than light speed.

III. PROPAGATION OF GRAVITATIONAL WAVES
WITH A MODIFIED DISPERSION RELATION

We now consider the propagation of gravitational waves
that satisfy the modified dispersion relation of Eq. (I).
Consider the Friedman-Robertson-Walker background

ds? = —di* + a*(1)[dx* + 22 (x)(d6* +sin*0dp?)], (7)

where a(7) is the scale factor with units of length, and ()
is equal to y, siny, or sinhy if the universe is spatially flat,
closed, or open, respectively. Here and henceforth, we use
units with G = ¢ = 1, where a useful conversion factor is
IMg = 4.925 X 107 s = 1.4675 km.

In a cosmological background, we will assume that the
modified dispersion relation takes the form

guwpp’ = —m; — Alpl*, ®)

where |p| = (g;;p'p’)"/*. Consider a graviton emitted ra-
dially at y = x, and received at y = 0. By virtue of the y
independence of the r — y part of the metric, the compo-
nent p, of its 4-momentum is constant along its worldline.
Using E = p°, together with Eq. (8) and the relations

X d/\/ _
% = E; PX =a 2p)() (9)
we obtain
1 2a? 2-a-(1/2)
ax _ _ —[1+m32" +A(i) ] . (10)
dt a Py Dy
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where p? = a*(1,)(E2 — m} — Alp|2). The overall minus
sign in the above equation is included because the graviton
travels from the source to the observer.

Expanding to first order in (m,/E,) <1, and
A/p>~* <1 and integrating from emission time
(x = x.) to arrival time (y = 0), we find

. dt 1 m2
xe=]l[ . )E2f a(t)dt

—%A(a(te)Ee)“’z / Ca('-edr. (1)

12

e

Consider gravitons emitted at two different times ¢,
and r,, with energies E, and E!, and received at corre-
sponding arrival times (y, is the same for both). Assuming
At, =1t, —t, < a/a, then

D 1 1
At, = (1+ Z)[At + 2/\02 (f —,2)

D, (1 1
2A27a (onz - /2705)]’ (12)
A e e

where Z = ay/a(t,) — 1 is the cosmological redshift, and
where we have defined

A= hAl/(a—Z)’ (13)

and where m,/E, = (A,f,)”", with f, the emitted
gravitational-wave frequency, E, = hf, and A, = h/m,
the graviton Compton wavelength. Notice that when
a = 2, then the A correction vanishes. Notice also that
Ap always has units of length, irrespective of the value
of a. The distance measure D, is defined by

D, = (1 * Z)l_a f"‘ a(n)'—ds, (14)

ap

where ay, = a(t,) is the present value of the scale factor.
For a dark energy-matter dominated universe D, and the
luminosity distance D; have the form

1+t rz  (1+7)*2d7
a= ,(15)
H, 0 Q1 +7)+Q,
+ /
1 Z dz (16)

JQM(I T

where Hy = 72 kms™! Mpc ™! is the value of the Hubble
parameter today and O, = 0.3 and Q, = 0.7 are the
matter and dark energy density parameters, respectively.
Before proceeding, let us comment on the time shift
found above in Eq. (12). First, notice that this equation
agrees with the results of [11] in the limit A — 0.
Moreover, in the limit & — 0, our results map to those of
[11] with the relation A, — A, + A;2. Second, notice
that in the limit & — 2, the (a(z,)E,)>”* in Eq. (11) goes to
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unity and the A correction becomes frequency-
independent. This makes sense, since in that case the
Lorentz-violating correction we have introduced acts as a
renormalization factor for the speed of light.

IV. MODIFIED WAVEFORM IN THE
STATIONARY-PHASE APPROXIMATION

We consider the gravitational-wave signal generated by
anonspinning, quasicircular inspiral in the post-Newtonian
approximation. In this scheme, one assumes that orbital
velocities are small compared to the speed of light (v < 1)
and gravity is weak (m/r < 1). Neglecting any amplitude
corrections (in the so-called restricted PN approximation),
the plus- and cross-polarizations of the metric perturbation
can be represented as

h(f) = A(t)e™ 10, (17)

®(1) = ®, + 27 f " o)t (18)

where A(f) is an amplitude that depends on the
gravitational-wave polarization (see e.g. Eq. (3.2) in
[11]), while f(z) is the observed gravitational-wave fre-
quency, and ®. and ¢, are a fiducial phase and fiducial
time, respectively, sometimes called the coalescence phase
and time.

The Fourier transform of Eq. (17) can be obtained
analytically in the stationary-phase approximation, where
we assume that the phase is changing much more rapidly
than the amplitude [53,54]. We then find

AW
Vi)

where f is the gravitational-wave frequency at the detector
and

h(f) = ey, (19)

i 4 M, 2/3
W(f) = 27T[f(l —1)df +2mft, — D, — . @1
fe 4

In these equations, M, = 1*/5m is the chirp mass of the
source, where n = m;m,/(m, + m,) is the symmetric
mass ratio.

We can now substitute Eq. (12) into Eq. (21) to relate the
time at the detector to that at the emitter. Assuming that
a # 1, we find

fe Dy
v =2 t, —t,)df, —
ail(f) W'/;Fw(e ec) fe fe)té
1 7D = T
_ a + 7 o _
(= a) flrapa 27 ft. — P, 1

(22)
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while for &« = 1, we find

fe 7TDO '7TD1 fe
q’a= ( ) =2 (te - tec)d e +— ll'l( )
: f fee f fe/\§ /\A fec
+ 277, and O, — % (23)

The quantities (7,,7,) and (., ¢.) are new coalescence
times and phases, into which constants of integration have
been absorbed.

We can relate ¢, — ¢,. to f, by integrating the frequency
chirp equation for nonspinning, quasicircular inspirals
from general relativity [11]:

df. _ 96 np[y o (748 U 2/3
= s ML) 1 (G )
+ 4W(Wmfe)], (24)

where we have kept terms up to 1PN order. In the calcu-
lations that follow, we actually account for corrections up
to 3.5PN order, although we do not show these higher-order
terms here (they can be found, e.g. in [55]).

After absorbing further constants of integration into
(7., @, 1, ®.), dropping the bars, and reexpressing every-
thing in terms of the measured frequency f at the detector
[note that f'/? = (df,/dt,)"?/(1 + Z)], we obtain

- A(f)e™D) ) for 0 < f < fiax
i) = { () f<f (25)
0, for > fiax
with the definitions
2
A(f) = -7/6 _ [mM
A(f) = e Au™"/°, A 30D, 26)
W(f) = Ver(f) + W (f),
Wor(f) = 2mfte = o~ 7
3 s < n/3
+ 5% u ,;[Cn + €, In(u)]u>,  (27)

where the numerical coefficient € = 1 for LIGO and ET,
but € = \/§ /2 for a LISA-like mission (because when one
angle-averages, the resulting geometric factors depend
slightly on the geometry of the detector). The coefficients
(cp €,) can be read up to n =7, for example, from
Eq. (3.18) in [55]. In these equations, u = 7w Mf is a
dimensionless frequency, while M is the measured chirp
mass, related to the source chirp mass by M =
(1 + Z)M,. The frequency fp,y represents an upper cutoff
frequency where the PN approximation fails.

The dephasing caused by the propagation effects takes a
slightly different form depending on whether o # 1 or
a = 1. In the general o # 1 case, we find

Wor(f) = —Bu" = fu™", (28)

024041-5



MIRSHEKARI, YUNES, AND WILL

where the parameters 8 and { are given by

_ 7T2D0M
B= m (29)
B 77.2*(1/ Da Ml*a
bar1 = I—a) A3 (1+2)« (30)

In the special @ = 1 case, we find

B\I,a:l(f) = _Buil + goz=l ln(u), (31)
where 8 remains the same, while

wD
{om1 = A—% (32)
A

and we have reabsorbed a factor into the phase of
coalescence.

As before, notice that in the limit A — 0, Eq. (28)
reduces to the results of [11] for a massive graviton. Also
note that, as before, in the limit &« — 0, we can map our
results to those of [11] with A;2 — A, 2 + A2, i.e. in this
limit, the mass of the graviton and the Lorentz-violating A
term become 100% degenerate. In the limit a — 2,
Eq. (12) becomes frequency-independent, which then im-
plies that its integral, Eq. (21), becomes linear in fre-
quency, which is consistent with the a — 2 limit of
Eq. (28). Such a linear term in the gravitational-wave phase
can be reabsorbed through a redefinition of the time of
coalescence, and thus is not observable. This is consistent
with the observation that the dispersion relation with
a = 2 is equivalent to the standard massive graviton one
with a renormalization of the speed of light. When o« = 1,
Eq. (12) leads to a 1/f term, whose integral in Eq. (21)
leads to a In(f) term, as shown in Eq. (23). Finally, notice
that, in comparison with the phasing terms that arise in the
PN approximation to standard general relativity, these
corrections are effectively of (1 + 3a/2)PN order, which
implies that the @ = 0 term leads to a 1PN correction as in
[11], the &« = 1 case leads to a 2.5PN correction, the « = 3
case leads to a 5.5PN correction and @ = 4 leads to a 7PN
correction. This suggests that the accuracy to constrain Ap
will deteriorate very rapidly as « increases.

Connection to the Post-Einsteinian framework

Recently, there has been an effort to develop a framework
suitable for testing for deviations from general relativity
in gravitational-wave data. In analogy with the parame-
trized post-Newtonian (ppN) framework [10,56-60],
the parametrized post-Einsteinian (ppE) framework
[12,13,61] suggests that we deform the gravitational-wave
observable away from our GR expectations in a well-
motivated, parametrized fashion. In terms of the Fourier
transform of the waveform observable in the SPA, the
simplest ppE meta-waveform is
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]’;ppE(f) = AGR(I + appEuappE)ei\PGR(f)ﬁ»i'BppEubppE; (33)

where (a5, dppEs Bppk» Pppe) are ppE, theory parameters.
Notice that in the limit ayr — 0 or B,z — 0, the ppE
waveform reduces exactly to the SPA GR waveform.
The proposal is then to match-filter with template fam-
ilies of this type and allow the data to select the best-fit
ppE parameters to determine whether they are consistent
with GR.

We can now map the ppE parameters to those obtained
from a generalized, Lorentz-violating dispersion relation:

(%

ppE — 0 BppE = bppE =a-— 1 (34)

Quantum-gravity inspired Lorentz-violating theories sug-
gest modified dispersion exponents & = 3 or 4, to leading
order in E/m,, which then implies ppE parameters
bppe = 2 and 3. Therefore, if after a gravitational wave
has been detected, a Bayesian analysis with ppE templates
is performed that leads to values of b that peak around 2
or 3, this would indicate the possible presence of Lorentz
violation [13]. Notice however that the &« = 1 case cannot
be recovered by the ppE formalism without generalizing it
to include Inu terms. Such effects are analogous to memory
corrections in PN theory.

At this point, we must spell out an important caveat. The
values of « that represent Lorentz violation for quantum-
inspired theories (o = 3, 4) correspond to very high PN
order effects, i.e. a relative 5.5 or 7PN correction, respec-
tively. Any gravitational-wave test of Lorentz violation
that wishes to constrain such steep momentum dependence
would require a very accurate (high PN order) modeling of
the general relativistic waveform itself. In the next section,
we will employ 3.5PN accurate waveforms, which are the
highest order known, and then ask how well { and 8 can be
constrained. Since we are neglecting higher than 3.5PN
order terms in the template waveforms, we are neglecting
also any possible correlations or degeneracies between
these terms and the Lorentz-violating terms. Therefore,
any estimates made in the next section are at best optimis-
tic bounds on how well gravitational-wave measurements
could constrain Lorentz violations.

V. CONSTRAINING A MODIFIED GRAVITON
DISPERSION RELATION

In this section, we perform a simplified Fisher analysis,
following the method outlined for compact binary inspiral
in [62-64], to get a sense of the bounds one could place on
(Ag, Ap) given a gravitational-wave detection that is con-
sistent with general relativity. We begin by summarizing
some of the basic ideas behind a Fisher analysis, introduc-
ing some notation. We then apply this analysis to an Adv.
LIGO detector, an ET detector, and a LISA-like mission.
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A. General considerations

Given a noise power spectrum, S,(f), we can define the
inner product of signals /; and &, as
= iy + Rk,

where &, and h, are the Fourier transforms of signals 1 and
2, respectively, and star superscript stands for complex
conjugation. The SNR for a given signal & is simply

plh] = (nlh)"/2. (36)

If the signal depends on a set of parameters #¢ that we wish
to estimate via matched filtering, then the root-mean-
square error on parameter 6¢ in the limit of large SNR is
(no summation over a implied here)

AGe = (67 — (9)2) = VZ. (37)

The quantity 39 is the (a, @) component of the variance-
covariance matrix, which is the inverse of the Fisher infor-
mation matrix, I',;,, defined as

oh . oh
T,=(—]—) 38
ab (aeﬂlaeb) (38)

————df, (35)

The off-diagonal elements of the variance-covariance ma-
trix give the parameter correlation coefficients, which we
define as

e = 3b S easPh, (39)

We will work with an angle-averaged response function,
so that the templates depend only on the parameters:

9¢ = (InA, O, fot., InM, Inm, B, {), (40)

where each component of the vector 6 is dimensionless.
We recall that A is an overall amplitude that contains
information about the gravitational-wave polarization
and the beam-pattern function angles. The quantities @,
and ¢, are the phase and time of coalescence, where f is a
frequency characteristic of the detector, typically a “knee”
frequency, or a frequency at which S, (f) is a minimum.
The parameters M and 7 are the chirp mass and symmet-
ric mass ratio, which characterize the compact binary
system under consideration. The parameters (B, ) de-
scribe the massive graviton and Lorentz-violating terms,
respectively.
The SNR for the templates in Eq. (25) is simply

p =26 A(Mm) ORI 2SR @4

where we have defined the integrals

o 00 xiq/:;
o= [0 @)
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with x = f/f,. The quantity g(x) is the rescaled power
spectral density, defined via g(x) = S,(f)/S, for the
detector in question, and S is an overall constant. When
computing the Fisher matrix, we will replace the amplitude
A in favor of the SNR, using Eq. (41). This will then lead
to bounds on (B, {) that depend on the SNR and on a
rescaled version of the moments J(g) = I(g)/1(7).

In the next subsections, we will carry out the integrals in
Eq. (42), but we will approximate the limits of integration
by certain x,;, and x,,,, [15]. The maximum frequency will
be chosen to be the smaller of a certain instrumental
maximum threshold frequency and that associated with a
gravitational wave emitted by a particle in an innermost-
stable circular orbit (ISCO) around a Schwarzschild black
hole (BH): fiux = 6 2/27 '35 M~". The maximum in-
strumental frequency will be chosen to be (10°, 10, 1) Hz
for Ad. LIGO, ET, and LISA-like, respectively. The mini-
mum frequency will be chosen to be the larger of a certain
instrumental minimum threshold frequency and, in the
case of a space mission, the frequency associated with a
gravitational wave emitted by a test-particle 1 yr prior to
reaching the ISCO. The minimum instrumental frequency
will be chosen to be (10, 1, 107°) Hz for Ad. LIGO, ET,
and a LISA-like mission, respectively.

Once the Fisher matrix has been calculated, we will
invert it using a Cholesky decomposition to find the
variance-covariance matrix, the diagonal components of
which give us a measure of the accuracy to which parame-
ters could be constrained. Let us then define the upper
bound we could place on (B, ¢) as AB = AY2/p and
AL =A%)/ p, where A and A are numbers. Combining
these definitions with Egs. (29) and (30), we find, for
«a # 1, the bounds:

pDyM
(1+2)AV%

(43)

[1—al A2 Mo
T Dop (1 +2)«7V

Ag2 < (44)

Notice that the direction of the bound on A4 itself depends
on whether @ > 2 or e < 2; but because A = (Ay/h)* 2,
all cases yield an upper bound on A. For the case o = 1,
we find

mD,

AAO{=1 > m pP-

(45)

In the remaining subsections, we set 8 =0 and { =0
in all partial derivatives when computing the Fisher
matrix, since we derive the error in estimating 8 and
about the nominal or a priori general relativity values,

(B.0) = (0,0).
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B. Detector spectral noise densities

We model the Ad. LIGO spectral noise density via [65]

So ©

i

Here, f, = 215 Hz, S, = 107% Hz™ !, and f, = 10 Hz is
a low-frequency cutoff below which S, (f) can be consid-
ered infinite for all practical purposes.

The initial ET design postulated the spectral noise
density [65]

=1
00, f < f‘\'r
47)

Su(f) _ [ larx™ + apx™ + asx® + agx T,
So

where f, = 100 Hz, S, = 107 Hz™!, f, = 1 Hz, and

a; =239%X 1072, a, = 0.349,
as = 176, ag = 0409,
) (48)
b = —15.64, b, = —2.145,
by = —0.12, b, = 1.10.

The classic LISA design had an approximate spectral
noise density curve that could be modeled via (see, eg.
[15,66]):

Sp(f) = min{SPA(f)/ exp(= kT igiondN/df), SPA(f)

+ SE(PY + s, (49)
where
-40
10 New ET ——
Classic ET -
104 |
10744 L
[y
&

1 0-46 L

1 0-48 L

1 0-50 L L L
10° 10’ 102 10° 10*
f (Hz)

FIG. 1 (color online).
(solid).

Su(f) {1016—4<xfo-7-9>2 +2.4 X 10762x750 + 0.08x % + 123.35(M), f=f.

1+0.17x2 (46)
<t
[
—4
SNSA(f) = [9.18 X 10—52(L> +1.59 X 10741
1 Hz
f 2
+9.18 X 10*38<—> ] Hz ! (50)
1 Hz

) -1/3
gl =21x%x1 —45< s ) Hz ! 1
Sy () 0", z7h,  (51)
_ -7/3
sEl(f) =42 % 10*47< ) ) Hz !, 52
n () i z (52)
and
dN 1 Hz\11/3
oF =2 103 Hz—l( Z) ; (53)
with Af =T, L. the bin size of the discretely Fourier

transformed data for a classic LISA mission lasting a time
Tission @and « = 4.5 the average number of frequency bins
that are lost when each galactic binary is fitted out.

Recently, the designs of LISA and ET have changed
somewhat. The new spectral noise density curves can be
computed numerically [67-69] and are plotted in Fig. 1.
Notice that the bucket of the NGO noise curve has shifted
to higher frequency, while the new ET noise curve is more
optimistic than the classic one at lower frequencies. The
spikes in the latter are due to physical resonances, but these
will not affect the analysis. In the remainder of this paper,
we will use the new ET and NGO noise curves to estimate
parameters.

-36
10 New LISA ——
Classic LISA -----

10°%7 |

1 0-38 L

Sn(f)

1 0—39 L

1 0-40 L

107 102 107
f (Hz)

ET (left) and LISA (right) spectral noise density curves for the classic design (dotted) and the new NGO design
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10 Mgr10 My ——
10 Mgt100 Mg -
10% | 100 Mg100 Mg -

AdLIGO

New LISA
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FIG. 2 (color online).

0 0.5 1 15 2 25 3 35 4

o

Bounds on parameter ¢ for different values of «, using AALIGO and p = 10 (left panel), ET and p = 50

(center panel), and NGO and p = 100 (right panel). Vertical lines at @ = (0, 2) show where the { correction becomes 100% degenerate
with other parameters. Each panel contains several curves that show the bound for systems with different masses.

C. Results

We plot the bounds that can be placed on { in Fig. 2 as a
function of the « parameter. The left panel corresponds
to the bounds placed with Ad. LIGO and p =10
(Dy ~ 160 Mpc, Z ~ 0.036 for a double neutron-star in-
spiral), the middle panel corresponds to ET and p = 50
(D ~ 2000 Mpc, Z ~ 0.39 for a double 10M, BH inspi-
ral), and the right panel corresponds to NGO and p = 100
(D, ~ 20000 Mpc, Z ~ 2.5 for a double 10°M,, BH in-
spiral). When @ = O or & = 2, { cannot be measured at all,
as it becomes 100% correlated with either standard massive
graviton parameters. Thus we have drawn vertical lines in
those cases. As the figure clearly shows, the accuracy to
which { can be measured deteriorates rapidly as & becomes
larger. In fact, once o > 4, we find that { cannot be con-
fidently constrained anymore because the Fisher matrix
becomes noninvertible (its condition number exceeds 109).

Attempting to constrain values of a >5/3 becomes
problematic not just from a data analysis point of view,
but also from a fundamental one. The PN templates that we
have constructed contain general relativity phase terms up

TABLE II.

to 3.5PN order. Such terms scale as u?/3, which corre-
sponds to a = 5/3. Therefore, trying to measure values
of @ = 5/3 without including the corresponding 4PN and
higher-PN order terms is not well-justified. We have done
so here, neglecting any correlations between these higher-
order PN terms and the Lorentz-violating terms, in order to
get a rough sense of how well Lorentz-violating modifica-
tions could be constrained.

The bounds on B and ¢ are converted into a lower bound
on A, and upper bound on A in Table II for @ = 3 and
binary systems with different component masses. Given a
gravitational-wave detection consistent with general relativ-
ity, this table says that A, and A5 would have to be larger and
smaller than the numbers in the seventh and eight columns of
the table, respectively. In addition, this table also shows the
accuracy to which standard binary parameters could be
measured, such as the time of coalescence, the chirp mass,
and the symmetric mass ratio, as well as the correlation
coefficients between parameters. Different clusters of num-
bers correspond to constraints with Ad. LIGO (top), New ET
(middle), and NGO (bottom—see caption for further details).

Root-mean-squared errors for source parameters, the corresponding bounds on A, and Aa, and the correlation

coefficients, for the case @ = 3 and for systems with different masses in units of M. The top cluster uses the Ad. LIGO S, (f),
p = 10, A, is in units of 10'2 km, A4 is in units of 107'¢ km and At, is in msecs. The middle cluster uses the ET S,,(f), p = 50, Agis
in units of 10'3 km, Ap is in units of 10™1> km and At. is in msecs. The bottom cluster uses a NGO S, (f), p = 100, A, is in units of

10" km, An is in units of 107'° km and Az, is in secs.

Detector m; m, |Ad. At. AM/M An/n AA Ay CMy Cmp Cop cme Cot  Cpg
Ad. LIGO 14 14 3.61 1.80 0.0374%  6.80% 3.34 0911 —0.962 —0.991 0989 —0.685 0.803 0.740
1.4 10 334 999 0.267% 12.8% 3.48 4.36 —-0.977 —0.993 0917 -0.830 0923 0.875
10 10 |416 31.0 240% 722% 3.53 8.40 —0.978 —0.994 0995 -0.874 0947 0915
ET 10 10 0528 1.59 0.0174% 1.70% 4.15 0.0286 —0.952 —0.986 0.988 —0.742 0.875 0.813
10 100 | 1.12 445 0259% 6.67% 2.58 1.38 —-0.974 —0.993 0993 —-0.872 0951 00915
100 100 | 3523 203 4.03% 67.6% 1.86 4.12 —0.983 —0.995 0996 —0.914 0969 0.947
NGO 10 10* | 0264 1.05 0.00124% 0.368% 4.06 0266 —0.957 —0.990 0.986 —0.636 0.761 0.687
104 105 | 0264 542 0.00434% 0.383% 5.04 1.81 —0.955 —0.991 0984 —0.757 0.884 0.809
10° 10° | 0295 954 00163% 1.33% 6.12 2.33 —0.944 —-0.983 0986 —0.749 0.891 0.823
10° 10° | 0351 142 0.0574% 2.03% 5.93 118 —0.961 —0.990 0989 —0.938 0.942 0.891
10° 10° | 0415 228 0.138% 533% 8.30 286 —0.956 —0.986 0990 —0.820 0.935 0.885
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FIG. 3 (color online).

Although Fig. 2 suggests bounds on ¢ of @(10°~10°) for
the o = 3 case, the dimensional bounds in Table II suggest
a strong constraint on Ax. This is because in converting
from { to Ay one must divide by the D5 distance measure.
This distance is comparable to (but smaller than) the
luminosity distance, and thus, the longer the graviton
propagates the more sensitive the constraints are to pos-
sible Lorentz violations. Second, notice that the accuracy
to which many parameters can be determined, e.g.
(t., AM, Am), degrades with total mass because the num-
ber of observed gravitational-wave cycles decreases.
Third, notice that the bound on the graviton Compton
wavelength is not greatly affected by the inclusion of
an additional parameter in the a =3 case, and is
comparable to the one obtained in [11] for LIGO. In
fact, we have checked that in the absence of Ay we
recover Table II in [11].

We now consider how these bounds behave as a function
of the mass ratio. Figure 3 plots the bound on the graviton
Compton wavelength (left) and the Lorentz-violating
Compton wavelength Ap (right) as a function of 7 for Ad.
LIGO and « = 3, with systems of different total mass.
Notice that, in general, both bounds improve for comparable
mass systems, even though the SNR is kept fixed.

With all of this information at hand, it seems likely that
gravitational-wave detection would provide useful infor-
mation about Lorentz-violating graviton propagation. For
example, if a Bayesian analysis were carried out, once a
gravitational wave is detected, and the ppE parameters
peaked around b,z = 2 or 3, this could possibly indicate
the presence of some degree of Lorentz violation.
Complementarily, if no deviation from general relativity
is observed, then one could constrain the magnitude of A
to interesting levels, considering that no bounds exist to
date.

VI. CONCLUSIONS AND DISCUSSION

We studied whether Lorentz symmetry-breaking in the
propagation of gravitational waves could be measured with

PHYSICAL REVIEW D 85, 024041 (2012)
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Bounds on A, (left) and A, (right) as a function of 7 for different total masses, Ad. LIGO, p = 10, and @ = 3.

gravitational waves from nonspinning, compact binary
inspirals. We considered modifications to a massive gravi-
ton dispersion relation that scale as Ap®, where p is the
graviton’s momentum while (A, ) are phenomenological
parameters. We found that such a modification introduces
new terms in the gravitational-wave phase due to a delay in
the propagation: waves emitted at low frequency, early in
the inspiral, travel slightly slower than those emitted at
high frequency later. This results in an offset in the relative
arrival times at a detector, and thus, a frequency-dependent
phase correction. We mapped these new gravitational-
wave phase terms to the recently proposed ppE scheme,
with ppE phase parameters byp = a — 1.

We then carried out a simple Fisher analysis to get a
sense of the accuracy to which such dispersion relation
deviations could be measured with different gravitational-
wave detectors. We found that indeed, both the mass of the
graviton and additional dispersion relation deviations
could be constrained. For values of a >4, there is not
enough information in the waveform to produce an inver-
tible Fisher matrix. Certain values of «, like &« = 0 and 2,
also cannot be measured, as they become 100% correlated
with other system parameters.

In deriving these bounds, we have made several approx-
imations that force us to consider them only as rough
indicators that gravitational waves can be used to constrain
generic Lorentz-violation in gravitational-wave propaga-
tion. For example, we have not accounted for precession or
eccentricity in the orbits, the merger phase of the inspiral,
the spins of the compact objects or carried out a Bayesian
analysis. We expect the inclusion of these effects to modify
and possibly worsen the bounds presented above by
roughly an order of magnitude, based on previous results
for bounds on the mass of the graviton [11,14,16,70-72].
However, the detection of N gravitational waves would
lead to a /N improvement in the bounds [19], while the
modeling of only the Lorentz-violating term, without in-
cluding the mass of the graviton, would also increase the
accuracy to which A, could me measured [13].
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Future work could concentrate on carrying out a more
detailed data analysis study, using Bayesian techniques. In
particular, it would be interesting to compute the evidence
for a general relativity model and a modified dispersion
relation model, given a signal consistent with general
relativity, to see the betting-odds of the signal favoring
GR over the non-GR model. A similar study was already
carried out in [13], but there a single ppE parameter was
considered. Another interesting avenue for future research
would be to consider whether there are any theories
(quantum-inspired or not) that predict fractional « powers
or values of « different from 3 or 4.
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