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It is widely acknowledged that, for formal purposes, a minimally coupled scalar field is equivalent to an

effective perfect fluid with equation of state determined by the scalar potential. This correspondence is not

complete because the Lagrangian densities L1 ¼ P and L2 ¼ ��, which are equivalent for a perfect

fluid, are not equivalent for a minimally coupled scalar field. The exchange L1 $ L2 amounts to

exchanging a canonical scalar field with a phantom scalar field.
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I. INTRODUCTION

Scalar fields have been present in the literature on grav-
ity and cosmology for many decades and are particularly
important in the contexts of inflation in the early universe
and of quintessence in the late universe. It is widely
recognized that a minimally coupled scalar field in
General Relativity can be represented as a perfect fluid
(see, e.g., Ref. [1] for a detailed discussion). From the
conceptual point of view, it is clear that a scalar field and
a perfect fluid are very different physical systems; a fluid is
obtained by averaging microscopic quantities associated
with its constituent particles, and the fluid laws can be
obtained via a kinetic theory using microscopic models of
the fluid particles and of their interactions. A scalar field,
instead, is more fundamental and does not derive from an
average; it is not made of pointlike particles and does not
need an average to be defined—it is already a continuum.
As a consequence, the scalar field stress-energy tensor
[given by Eq. (2) below] involves first order derivatives
of the scalar field, while the perfect fluid stress-energy
tensor Tab ¼ ðPþ �Þuaub þ Pgab does not involve de-
rivatives explicitly but can be described using only the
energy density �, pressure P, and four-velocity field ua.
Hence, the fluid description of a scalar field is not an
identification, but only a convenient correspondence for
formal purposes. However, while regarding the scalar field/
perfect fluid duality as a formal one, one still needs to be
careful because this correspondence is not perfect even for
purely formal purposes. In this short note we discuss a
property of perfect fluids which is not satisfied by the
effective fluid associated with a scalar field, namely, the
possibility of describing a perfect fluid with the two
equivalent Lagrangian densities L1 ¼ P and L2 ¼ ��.
These two Lagrangian densities, which are equivalent for a
perfect fluid [2,3], are not equivalent for a scalar field
‘‘fluid’’, as shown in the following section. This property
leads to a caveat against regarding the fluid/scalar field
duality as a perfect one, which is relevant in the light of the

recent interest in this correspondence motivated by the
possibility of computing inflationary perturbations on one
side of the duality by using the other side ([4,5], see
also [6]).
The nonequivalence between these two Lagrangian den-

sities for a perfect fluid coupling explicitly to the Ricci
curvature of spacetime (which has been suggested as a
possible alternative to dark matter in galaxies [7]) has
been recently discussed in [8], and the equivalence be-
tween a k-essence scalar field and a barotropic perfect fluid
was discussed in [5].
We adopt the notations of Ref. [9]; in particular, the

signature of the spacetime metric is �þþþ .

II. MIMICKING A PERFECT FLUID WITH A
MINIMALLY COUPLED SCALAR FIELD

Let us mimic a perfect fluid using a minimally coupled
scalar field � in a curved spacetime self-interacting
through a potential Vð�Þ. We assume standard General
Relativity and the issue is to determine whether both
Lagrangian densities L1 ¼ P and L2 ¼ �� correctly de-
scribe the scalar field effective fluid. It is well known that
these Lagrangian densities are equivalent for a perfect
fluid [2].
A minimally coupled scalar field � obeys the Klein-

Gordon equation

h�� dV

d�
¼ 0; (1)

which is obtained (when rc� does not vanish identically)
from the covariant conservation equation rbTab ¼ 0 for
the scalar field energy-momentum tensor

Tab½�� ¼ ra�rb�� 1

2
gabrc�rc�� Vgab: (2)

The tensor Tab½�� assumes the form of an effective perfect
fluid stress-energy tensor Tab ¼ ðPþ �Þuaub þ Pgab if
rc� is a timelike vector field [1]. The fluid four-velocity is*vfaraoni@ubishops.ca
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ua ¼ ra�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijrc�rc�jp

(3)

assuming rc�rc� � 0, with uau
a ¼ signðrc�rc�Þ.

The energy density and pressure relative to a comoving
observer with four-velocity ua are given by � ¼
Tab½��uaub and P ¼ Tab½��hab=3, respectively, where
hab � gab þ uaub is the Riemannian 3-metric in the 3-
space orthogonal to uc (this 3þ 1 decomposition makes
sense when rc� is timelike). One easily obtains

� ¼
�

1

2
rc�rc�� V

�

signðrc�rc�Þ; (4)

P ¼ 1

3

��

�1þ 1

2
signðrc�rc�Þ

�

rc�rc�

� ½4þ signðrc�rc�Þ�Vð�Þ
�

: (5)

If we restrict ourselves to the case in which rc� is time-
like, rc�rc� < 0, we have

� ¼ � 1

2
rc�rc�þ Vð�Þ; (6)

P ¼ � 1

2
rc�rc�� Vð�Þ; (7)

and

ðPþ �Þuaub þ Pgab (8)

¼ ra�rb�� 1

2
gabrc�rc�

� Vgab (9)

� Tab½�� (10)

in addition to ucu
c ¼ �1. The last equation shows not only

that a minimally coupled scalar field can be given a perfect
fluid description, but also that any perfect fluid with baro-
tropic equation of state P ¼ Pð�Þ can be mimicked by a
scalar field with appropriate potential Vð�Þ. Roughly
speaking, prescribing the equation of state P ¼ Pð�Þ cor-
responds to assigning a suitable potential, but the corre-
spondence between equation of state and scalar field
potential is not one-to-one [10].

The Klein-Gordon Lagrangian density for the scalar
field is the well known [9]

L KG ¼ � 1

2
rc�rc�� Vð�Þ; (11)

which coincides with L1 ¼ P and the variation of the
action SKG ¼ R

d4x
ffiffiffiffiffiffiffi�g

p
P with respect to � reproduces

the Klein-Gordon Eq. (1), as is also well known [9]. Let us
try to adopt instead the other candidate Lagrangian density

L 2 ¼ �� ¼ 1

2
rc�rc�� Vð�Þ; (12)

then, the variational principle

�S2 � �
Z

d4x
ffiffiffiffiffiffiffi�g

p
L2 ¼ 0 (13)

yields

Z

d4x
ffiffiffiffiffiffiffi�g

p �

�ðrc��Þrc�þ dV

d�
��

�

¼ 0: (14)

Using the identity ðrc��Þrc� ¼ rcð��rc�Þ � ��h�
and discarding the boundary term, one obtains

h�þ dV

d�
¼ 0: (15)

Equation (15) is not the Klein-Gordon equation because of
the incorrect sign of the potential derivative term. The
difference between Eq. (15) and the Klein-Gordon
Eq. (1) disappears, of course, if V ¼ constant. In this
case the potential term �gabVð�Þ in the stress-energy
tensor Tab½�� can be attributed entirely to a cosmological
constant, i.e., to gravity instead of matter. If this constant
vanishes, V � 0, then Eqs. (6) and (7) yield � ¼ P and
Eq. (15) coincides with the Klein-Gordon equation.
However, there is still something wrong: the scalar field
sourcing gravity and appearing in the total action

Stotal ¼ Sgravity þ Smatter ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p R

2�
þ S½�� (16)

(where � � 8�G) will give the incorrect field equations

Rab � 1

2
gabR ¼ ��Tab½�� (17)

instead of the Einstein equations

Rab � 1

2
gabR ¼ �Tab½��: (18)

When V � 0, the correct Lagrangian density would be
L ¼ P ¼ � instead of L2 ¼ ��. (Then L3 � �L2 ¼ �
can only describe a perfect fluid with stiff equation of state
P ¼ �.)
The conclusion is that, for a perfect fluid,L1 ¼ P is the

Lagrangian density reproducing the correct equations of
motion, while L2 ¼ �� (or L3 ¼ �) provides incorrect
equations of motion.
For completeness, we conclude this section by going

back to Eqs. (4) and (5) and considering the case of a
spacelike rc�, although this choice obviously does not

correspond to any physical fluid. Ifrc�rc� > 0 it is ua ¼
ra�=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffirc�rc�
p

and, using Eqs. (3)–(7),

ucuc ¼ 1; (19)

� ¼ 1

2
rc�rc�� Vð�Þ; (20)
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P ¼ � 1

6
rc�rc�� 5

3
Vð�Þ: (21)

Taking again L1 ¼ P yields the incorrect field equation

h�� 5
dV

d�
¼ 0; (22)

while taking L ¼ �L2 ¼ �� yields again

h�þ dV

d�
¼ 0: (23)

Hence, the Lagrangians L1;�L2 all give incorrect field
equations for a scalar field with spacelike gradient.

Finally, we consider a nullrc�. In this case, the purpose
of considering a scalar field representation of a perfect fluid
would be the modelling of the only perfect fluid with null
four-velocity that makes sense physically, i.e., a null dust
with associated stress-energy tensor Tab ¼ uaub with
ucu

c ¼ 0, describing a distribution of coherent massless
�-waves [11,12]. In this case, it must be V ¼ 0 andL1 and
L2, which are both proportional to rc�rc�, vanish iden-
tically and the usual Lagrangian density (11) cannot de-
scribe the null dust. In fact, a minimally coupled scalar
field cannot work as a model of conformally invariant fluid
such as a null dust. To model such a fluid, the physics of the
scalar field would need to be conformally invariant, which
can only be achieved by coupling conformally the scalar to
the Ricci curvature of spacetime R via the introduction
of the term �R�2=12 in the action SKG [13–15].
Moreover, the scalar � must be either free (V � 0), or
have a quartic self-coupling V ¼ ��4 [14]. In general,
mimicking a null fluid or an imperfect fluid with a scalar
field requires that the latter be coupled nonminimally to the
curvature [1,16].

III. THE NOETHER APPROACH

In flat spacetime there is an independent line of approach
to the Lagrangian description of a perfect fluid. The
Noether theorem applied to the translational Killing fields
of the Poincaré group for a field � described by the
Lagrangian density L½�; @a�;�ab� (where �ab is the
Minkowski metric) yields the (independent) canonical
energy-momentum tensor [9]

Sab ¼ @L
@ð@a�Þ@

b�� �abL: (24)

This tensor is conserved and coincides with the canonical
Tab½�� of Eq. (2) up to a constant [9]. By adopting

L 1 � � 1

2
�ab@a�@b�� Vð�Þ (25)

one obtains

Sabð1Þ ¼ �@a�@b�þ 1

2
�ab@c�@c�þ V�ab ¼ �Tab½��:

(26)

As is well known, the conservation equation rbTab½�� ¼
0 reproduces the Klein-Gordon equation. By contrast,
using

L 2 � � 1

2
�ab@a�@b�þ Vð�Þ (27)

one obtains the incorrect energy-momentum tensor

Sabð2Þ ¼ �@a�@b�þ 1

2
�ab@c�@c�� V�ab; (28)

which does not reproduce Tab½�� and the Klein-Gordon
equation unless V � 0.
To reiterate the argument, one can consider another

situation in which the Noether symmetry approach is ap-
plicable: that of a spatially homogeneous and isotropic
Friedmann-Lemaı̂tre-Robertson-Walker universe with line
element

ds2 ¼ �dt2 þ a2ðtÞðdx2 þ dy2 þ dz2Þ (29)

in comoving coordinates (for simplicity, we consider here
only the spatially flat metric). The minimally coupled
Klein-Gordon field in this spacetime depends only on the
comoving time, � ¼ �ðtÞ, and its energy density and
pressure are

�ðtÞ ¼ 1

2
_�2 þ Vð�Þ; (30)

PðtÞ ¼ 1

2
_�2 � Vð�Þ: (31)

By adopting the Lagrangian density

L1ða;�; _�Þ ¼ P; (32)

a suitable pointlike Lagrangian is

L1 ¼ L1

ffiffiffiffiffiffiffi�g
p ¼ L1a

3 ¼ a3
� _�2

2
� V

�

¼ a3P: (33)

The Euler-Lagrange equation

d

dt

�

@L1

@ _�

�

� @L1

@�
¼ 0 (34)

then yields the correct Klein-Gordon equation

€�þ 3H _�þ dV

d�
¼ 0: (35)

By contrast, the second pointlike Lagrangian

L2 ¼ L2

ffiffiffiffiffiffiffi�g
p ¼ a3L2 ¼ �a3

� _�2

2
þ V

�

¼ �a3� (36)

yields the incorrect equation of motion
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€�þ 3H _�� dV

d�
¼ 0: (37)

IV. CONCLUSIONS

The duality between a minimally coupled scalar field
and a perfect fluid is widely acknowledged, but it is not a
complete one. Lagrangian densities which are equivalent
for a perfect fluid cease to be equivalent for an effective
fluid constructed out of a scalar field. Specifically, the
change L1 ¼ P to L2 ¼ ��, which does not have con-
sequences for the equations of motion of a real fluid, does
change the Klein-Gordon equation of motion of a scalar.
Could this change point to the possibility that a scalar field
exist in nature, which satisfies Eq. (15) instead of Eq. (1)?
In the cosmological literature, such a field [satisfying
Eq. (37) instead of (35)] is known as a phantom field
[17–19]. This hypothetical scalar field would cause super-
acceleration of the universe (i.e., Hubble parameter H �
_a=a increasing with time, _H > 0) and leads to a Big Rip
singularity at a finite time in the future [18,19].

Phantom fields have been the subject of much attention
in cosmology, due to repeated reports from astronomers
that the effective equation of state parameter w � P=� of
the cosmic fluid lies in a range which does not exclude, or
even favors, w<�1: this is a signature of a phantom
scalar field which causes superacceleration. There is con-
sensus that phantom scalar fields are unstable, classically
and, even more, quantum mechanically [18,20], therefore
a phantom field is extremely unlikely. However, a phan-

tom can appear in low-energy effective actions which
are eventually modified by higher order corrections. In
the cosmological literature, a duality between a canonical
scalar field and a phantom one is is obtained by changing
the sign of the kinetic energy density term in Eqs. (30) and
(31). Our discussion puts a new twist on this duality,
in that a phantom scalar can be obtained from a
canonical one by the exchange L1 $ L2. It is presently
unknown whether this exchange has a more fundamental
meaning.
We have mentioned that a null fluid could be constructed

using a scalar field with potential Vð�Þ ¼ ��4 confor-
mally coupled to the curvature and with lightlike gradient.
In general, a nonminimally coupled scalar field corre-
sponds to an imperfect fluid whose stress-energy tensor
contains terms which can be interpreted as heat currents
and anisotropic stresses [1]. Since a Lagrangian description
of imperfect fluids has not yet been developed, we cannot
comment on this aspect of the nonminimally coupled
scalar field/imperfect fluid duality. It is plausible, however,
that the obstruction to a perfect duality found for perfect
fluids will carry over to (effective) imperfect fluids con-
structed with nonminimally coupled scalar fields, if they
are found to admit a Lagrangian description.
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