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In this paper we track the nonlinear spherical evolution of a massless scalar field onto a Schwarzschild

black hole space-time as a first approximation to the accretion of cosmologically motivated classical

scalar fields. We perform an analysis related to wave packets described by wave number and width. We

study various values of the wave number k and find that for k ¼ 0 and width packets bigger than the

Schwarzschild radius, the absorption is not total. In the cases we study for k > 0, the black hole absorbs

the total amount of energy density of the scalar field moving toward the horizon. Our results indicate that

assuming spherical symmetry in the nonlinear regime, there are cases for which scalar fields are allowed

to survive outside black holes and may eventually have lifetimes consistent with cosmological time scales.
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I. INTRODUCTION

Cosmological scalar fields have been an important
ingredient of cosmological models since the model of
inflation proposed a mechanism providing exponential
cosmological growth [1]. Considering the supernovae red-
shift observations, a smooth classical scalar field was
proposed to play the role of dark energy [2]. Scalar fields
have also been proposed to play the role of dark matter,
first at the galactic scale [3] and then at the cosmic scale
[4]. On the other hand, current observations indicate that
there are supermassive black holes in the centers of gal-
axies with masses of the order of 106–109 [5]. One of the
quests consists in determining the components feeding the
black hole, mainly related to the accretion of either baryons
or dark matter. For instance, it can be considered that
supermassive black holes grow through the accretion of
baryonic and dark matter onto seed black holes of inter-
mediate mass of about 103 to 104M� [6]. Also some results
indicate that only about 10% of their mass is due to the
accretion of dark matter (e.g. [7]). More mature models
involving the study of the Newtonian phase space [8]
indicate that the time scale for the accretion of collisionless
dark matter to contribute significantly to a supermassive
black hole mass is too long (see e.g. [9]). Currently, the
study of ideal gas dark matter accretion onto supermassive
black holes is under research and important bounds on the
equation of state of dark matter may arise [10,11].

Thus, studying the accretion of cosmologically moti-
vated scalar fields is expected to have an astrophysical
impact within the subject of the viability of dark matter
candidates. In fact, the accretion of scalar field dark matter
and dark energy onto supermassive black holes has already
been explored under certain assumptions. In [12] the ac-
cretion rate of scalar fields is calculated in order to estimate
whether or not the accretion rate is consistent with the mass
and life time scale of supermassive black holes. Later on in
[13], the same problem was treated considering that the

scalar field has two ends, the black hole’s horizon and
future null infinity, which was achieved by using hyper-
boloidal slices of space-time and compact radial coordi-
nate [14] which allowed the scalar field not only to be
accreted by the black hole, but also to leak through scriþ .
It was found that an extremely high dilution rate of the
scalar field density may rule out scalar fields as dark matter
and dark energy. On the other hand, more recently in [15],
the accretion rate in terms of the wave number of a wave
packet of scalar field was studied and found interesting
results related to the dependence of accretion rates on the
width and wave number of wave packets, that is, for wave
packets with a small wave number and very spread the
absorption of the scalar field is lower than for thin packets
with big wave numbers. This problem was also studied
under a different context related to the absorption of light
in [16]. In [17] the same problem was treated and it was
found that there are particular initial scalar field profiles
that allow long-lived scalar field densities around a black
hole. All of these results have been obtained considering
spherical symmetry and that the scalar field is a test field,
that is, the geometry of the space-time remains fixed.
In this paper we explore a step forward and include the

evolution of the space-time geometry. That is, we study a
spherically symmetric scalar field evolving onto an exist-
ing black hole space-time, considering the evolution of the
geometry too, so that we can measure the black hole’s
horizon growth and determine more precise accretion rates
and absorption ratios. We focus on the study of the absorp-
tion of the scalar field in terms of the parameters of wave
number and width of the initial wave packet as described
in [15].
In order to clearly set the astrophysical scenario we deal

with, we consider it important to stress that the black hole
is already initially formed and that it is asymptotically flat.
These conditions have important implications:
(i) We assume the cosmological effects on the system

are neglected and the evolution of the system is ruled
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by the gravity due to the black hole and the scalar
field only; that is, we assume our system occurs
much after the early universe stage, unlike previous
studies related to primordial black holes growth
through the accretion of a scalar field [18].

(ii) In most of cosmological models involving scalar
fields, a first approximation of homogeneity and
isotropy is assumed [2,4], however at local scales—
for instance, close to the event horizon of a black
hole—we consider that such conditions do not hold.

(iii) Sometimes properties of pressure and density, and
thus an equation of state, are attached to cosmo-
logical scalar fields [2,18], however, in general, at
local scales scalar fields develop anisotropic pres-
sures and time and space dependent relations be-
tween density and pressure (see [19] for scalar field
self-gravitating configurations and [20] for the ac-
cretion of a phantom scalar field onto a black hole)
that we consider irrelevant in our analysis.

This paper is organized as follows. In Sec. II we describe
the system of equations ruling the evolution of the scalar
field and the geometry. In Sec. III we describe the numeri-
cal methods used to solve the equations. In Sec IV we
describe our results and in Sec. V we discuss our results
and draw some conclusions.

II. EVOLUTION EQUATIONS

A. Evolution of the geometry

In order to solve numerically the Einstein Field equa-
tions G�� ¼ 8�T��, where G�� is the Einstein tensor and

T�� is the energy momentum tensor, we use the 3þ 1

decomposition space-time and adopt the Arnowitt-Deser-
Misner (ADM) system of evolution equations. We start up
with the metric

ds2 ¼ �ð�2 � �i�
iÞdt2 þ 2�idx

idtþ �ijdx
idxj; (1)

where � is the lapse function, �i are the components of the
shift vector, �ij are the components of the three-metric of

the hypersurfaces that foliate the space-time, and x� ¼
ðt; xiÞ are the coordinates of the space-time. All our calcu-
lations assume geometric units G ¼ c ¼ 1.

According to the ADM formulation of general relativity,
Einstein’s equations split into evolution equations for the
three-metric �ij and the extrinsic curvature Kij of the

hypersurfaces

@t�ij ¼ �2�Kij þri�j þrj�i; (2)

@tKij ¼ �rirj�þ �ðRij þ KKij � 2KilK
l
jÞ

þ 4��½ðS� �ADMÞ�ij � 2Sij�
þ �lrlKij þ Kilrj�

l þ Kjlri�
l; (3)

where ri denotes the covariant derivative with respect to
the three-metric, Rij is the Ricci tensor related to the

spacelike hyper surfaces, and K ¼ �ijKij is the trace of

the extrinsic curvature. In addition to the evolution
equations, there are the Hamiltonian and Momentum
constraints

ð3ÞRþ K2 � KijK
ij � 16��ADM ¼ 0;

rjK
ij � �ijrjK � 8�ji ¼ 0; (4)

where ð3ÞR is the scalar of curvature associated to �ij. In

Eqs. (2)–(4), the quantities �ADM, j
i, Sij, and S ¼ �ijSij

correspond to the local energy density, the momentum
density, the spatial stress tensor, and the spatial stress
tensor’s trace, respectively, measured by a Eulerian ob-
server. These variables are obtained from the projection of
the energy momentum tensor T�� along the spacelike

hyper surfaces and the normal direction to such hyper
surfaces.
We will now restrict to spherically symmetric black

holes. In such case, we consider the following ansatz for
the three-metric �ij, the extrinsic curvature Kij, and the

shift vector �i:

�ij ¼
�rr 0 0

0 ��� 0

0 0 ���sin
2�

0
BB@

1
CCA; (5a)

Kij ¼
Krr 0 0

0 K�� 0

0 0 K��sin
2�

0
BB@

1
CCA; (5b)

�i ¼ ð�r; 0; 0Þ; (5c)

where the usual polar spherical topology with spatial co-
ordinates xi ¼ ðr; �; ’Þ is used. The evolution of the space-
time geometry, described in general by (2) and (3), reduces
in the present case to the following set of equations:

@t�rr¼�2�Krrþ�r@r�rrþ2�rr@r�
r;

@t���¼�2�K��þ�r@r���;

@tKrr¼�@rr�þð@r�rrÞð@r�Þ
2�rr

þ�

2

�
@r���

���

�
2��

@rr���

���

þ�
ð@r�rrÞð@r���Þ

2�rr���

þ2�
KrrK��

���

��
K2

rr

�rr

þ�r@rKrr

þ2Krr@r�
rþ4��½ðS��ADMÞ�rr�2Srr�;

@tK��¼�ð@r���Þð@r�Þ
2�rr

��
@rr���

2�rr

þ�
ð@r�rrÞð@r���Þ

4�2
rr

þ�

�
1þKrrk��

�rr

�
þ�r@rK��

þ4��½ðS��ADMÞ����2S���: (6)

These are the equations of the evolution of geometry that
have to be evolved together with the matter field equations.
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B. Evolution of the scalar field

The matter field in the equations above correspond to a
scalar field described by the stress-energy tensor

T�� ¼ �;��;� � 1
2g��½�;	�;	 þm2�2�; (7)

whose evolution equation is given by the Bianchi identities
T��

;� ¼ 0, which reduces to the Klein-Gordon equation

h��m2� ¼ 0; (8)

where the D’Alambertian operator for a general space-time
ish� ¼ 1ffiffiffiffiffi�g

p @�½ ffiffiffiffiffiffiffi�g
p

g��@���. Like in [15], we restrict to
themassless case as a first approximation of the full study of
the parameter space of the scalar field properties. In order to
couple the evolution of the geometry and matter with the
same evolution algorithm, we write Eq. (8) for m ¼ 0 as a
first order system of equations as suggested in [21]:

@t� ¼ @rð��rr�Þ þ �K�þ �r@r�;

@t� ¼ @rð��þ �r�Þ; @t� ¼ ��þ �r�; (9)

where� ¼ ð@t�� �r@r�Þ=� and� ¼ @r� are new first
order variables. In terms of these new variables, the source
terms in the ADM equations read:

4��ADM ¼ 1
2ð�rr�2 þ�2Þ; 4�jr ¼ ���;

4�Srr ¼ �2 þ 1
2�rrð��rr�2 þ�2Þ;

4�S ¼ �1
2�

rr�2 þ 3
2�

2: (10)

In summary, the evolution equations to be solved are (6)
and (9) subject to the constraints (4).

III. NUMERICAL METHODS

We solve the system of equations as an initial value
problem by using a finite differences approximation on a
single resolution uniform grid. A description of each stage
of the solution is as follows.

A. Initial data

In order to start up the evolution it is necessary to con-
struct initial data consistent with Einstein’s equations, un-
like the cases where the scalar filed is a test field [13,15–17],
where arbitrary initial scalar field profiles are used on top of
a given background. We simplify the constraints (4) by

assuming the ansatz ��� ¼ r2 and Krr ¼ �½2M=r2� �
½ð1þM=rÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2M=r
p �, which reduce the constraints

(4) to the following set of ordinary equations:

@r�rr ¼ �rr

r

�
1� �rr � �rrK

2
��

r2

�
� 2

�rr

r
KrrK��

þ 8�r�2
rr�ADM;

@rK�� ¼ r
Krr

K��

þ K��

r
� 4�r2�rrj

r: (11)

We solve these equations once we have the explicit
matter fields, for which we need to provide a scalar field
profile similar to that described in [15], which corresponds
to a spherical wave modulated by a Gaussian profile:

�ðt ¼ 0; rÞ ¼ A
cosðkrÞ

r
e�ðr�r0Þ2=
2

;

�ðt ¼ 0; rÞ ¼ @�ðt ¼ 0; rÞ
@r

;

�ðt ¼ 0; rÞ ¼ ��r

�
�ðt ¼ 0; rÞ: (12)

With this information we calculate �ADM and jr at initial
time using (10), then substitute into Eq. (11) and solve
using a fourth order Runge-Kutta integrator.
Unlike the problems where the space-time is assumed to

remain fixed (e.g. [13,15,17]), the space-time is initially
distorted with respect to an exact black hole geometry. This
fact makes it difficult to filter ingoing and outgoing pure
modes of the scalar field at initial time as described in [15].
Therefore, we do not attempt to have only ingoing or
outgoing pure modes and will keep the presence of both.
Since we want a mass of reference to compare with the
growth of the black hole’s horizon, we calculate the
Misner-Sharp mass (see below) which contains the infor-
mation—in terms of mass—of the ingoing and outgoing
pulses. We will thus focus on the Misner-Sharp mass
related to the ingoing pulse and define the ADM mass as
the Misner-Sharp mass of the space-time minus the mass
carried by the outgoing pulse.

B. Evolution

In order to solve the evolution in Eqs. (6) and (9), we use
the method of lines with a third order Runge-Kutta inte-
grator and second order accurate spatial stencils. On the
other hand, Bianchi identities guarantee that if the
Hamiltonian and momentum constraints are satisfied at
initial time, they would be satisfied further. We monitor
that the constraints are truly being satisfied in the contin-
uum limit using convergence tests.
We avoid the singularity of the space-time at r ¼ 0

excising a chunk of the domain inside the event horizon
[22]. Thus, we define the radial domain such that r 2
½rin; rext� with 0< rin < rhorizon and rext as large as pos-
sible. Provided we use Eddington-Finkesltein slices to
describe the black hole space-time, light cones at rin are
open and there is no need to impose any boundary con-
ditions there. On the other hand, at r ¼ rext we apply
outgoing radiative boundary conditions [21]. In all our
runs, we make sure the exterior boundary is causally dis-
connected from the region where we measure physical
quantities in order to avoid the pollution from numerical
errors reflected from the exterior boundary.
We update the gauge functions � and �r using the con-

ditions �=
ffiffiffiffiffiffiffi
�rr

p þ �r ¼ 1 and �2�K�� þ �r@r��� ¼ 0
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that guarantee that tþ r is the ingoing null coordinate and
that @t��� ¼ 0, respectively [21].

C. Diagnostics

Since we want to study the accreted scalar field, it is
useful to track the apparent horizon of the black hole,
which provides an approximate growth rate of the black
hole mass and further indicates the correct accreted scalar
field. We achieve this by locating the outermost marginally
trapped surface, which obeys the condition

� ¼ @r���

���
ffiffiffiffiffiffiffi
�rr

p � 2K��

���

¼ 0; (13)

which is a procedure we can practice during the evolution
[21]. Then, we define the radius at which this happens as
the apparent horizon radius rAH ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

���AH
p

in terms of the

areal radius. We estimate the apparent horizon mass using
MAH ¼ rAH=2. Since our results converge with the second
order due to the discretization along the spatial direction,
the final apparent horizon mass is a Richardson extrapola-
tion of our results using the two finest resolutions in all our
calculations.

We also locate the event horizon because it is a gauge
independent three-surface unlike the apparent horizon
which is a gauge dependent two-surface. The reason to
locate the event horizon is that we want to make sure the
event horizon lies outside the apparent horizon and close to
it after the accretion of the scalar field has finished. We
locate the event horizon as the attractor surface of inward
null rays triggered from the future and from outside the
black hole.

In order to make sure that the horizon growth is con-
sistent with the mass of the space-time including the con-
tribution of the scalar field, we measure the Misner-Sharp
mass [23] defined for our space-time as

MMS ¼ 1

2

ffiffiffiffiffiffiffiffi
���

p �
1� 1

4

ð@r���Þ2
�rr���

þ K2
��

���

�
; (14)

which allows us to estimate the ADM mass MADM ¼
limr!1MMS. In this way we can diagnose whether or not
the final mass of the black hole’s horizon corresponds to
MADM.

Finally, we also track the constraints (4) and practice the
required convergence tests they must satisfy. All of our
results assume the radial and time coordinate and are
written in units of M, where M is the initial mass of the
black hole’s event horizon.

D. Example

Now we present in detail one of our simulations. In
Fig. 1, we illustrate how we estimate the mass of the
space-time. Some snapshots are shown for the scalar field
and for the Misner-Sharp mass. We show on the left panels
how the initial pulse splits into two pulses, one moving
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FIG. 1. We show one of the cases of our sample in detail,
the one corresponding to k ¼ 2, A ¼ 0:8, and 
 ¼ 10. We
show snapshots of the pulse moving toward the black hole.
As mentioned in the text, the initial pulse splits into two,
one moving inward and the other outward. We show on the
right sides the Misner-Sharp mass for the same snapshots
and show that it approaches a constant value that includes
only the incoming pulse contribution. The Misner-Sharp mass
becomes a constant after the two pulses carry their respective
mass-energy contributions. This constant value is what we
call our MADM and is free of the contribution of the out-
going pulse. Finally, we present as a sample of all our
convergence tests the L2 norm of the Hamiltonian constraint.
The resolutions used in our runs are �r1 ¼ 0:0125M (solid
line), �r2 ¼ �r1=2 (dashed line), and �r3 ¼ �r2=2 (dotted
line).
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toward the black hole and the other moving outwards. On
the right panels, we show the Misner-Sharp mass and
illustrate how the outgoing pulse carries a given amount
of the space-time mass. The mass measured once the
system has stabilized is what we call the ADM mass
MADM, around t� 75. This would be the mass of space-
time if it was only containing the ingoing pulse. Finally, in
Fig. 1 we present the convergence test of the L2 norm of the
Hamiltonian constraint in order to illustrate how all our
runs behave.

In Fig. 2, we show other simulations showing both the
apparent and the event horizons. We want to illustrate that,
on the one hand, the apparent horizon lies always inside the
event horizon, which is consistent with the energy condi-
tions of the space-time. On the other hand, once the black
hole has accreted the incoming scalar field, both horizons
coincide, which authorizes us to use the apparent horizon
as the surface to monitor the mass of the black hole in time.

IV. RESULTS

We split the parameter space in terms of the wave
number k, which is one of the properties of the propagation
speed of the wave packet. In fact, it was found that for k <
1, the absorption rates diminish for a fixed background.
Thus, we choose four values of k ¼ 0, 0.5, 1, 2, for which
we choose a rather spread set of parameter values A ¼ 0:5,
0.8 and 
 ¼ 1, 5, 10. With these parameters, we sample
different scalar field contributions to the energy density of
the space-time, length scales, and number of nodes of the
wave function. In [15], the parameter 
 is related to the
variance on k provided the wave number lies around k0
such that hðk� k0Þ2i ¼ 1=
2, full absorption was found

for k > 1, and only partial absorption in other cases. We
choose two values of k smaller than the threshold k ¼ 1
and two larger in order to confirm or contradict the pre-
dictions in [15].
Our results are shown in Figs. 3–6, that correspond to the

wave numbers k ¼ 0, k ¼ 0:5, k ¼ 1, and k ¼ 2, respec-
tively, for the different values of A and 
. In these figures,
we show the apparent horizon and MADM. These parame-
ters are organized in such a way that we explore the
suggestions in [15] related to the absorption of the scalar
field in terms of the wave number, amplitude, and width of
the wave packet. In all of our runs, we use r0 ¼ 40, which
is far enough from the horizon.
Our first results confirm that for k * 1, full absorption is

observed independently of the value of 
 (Figs. 5 and 6).
In the fixed space-time background case, it was found

that for values of k smaller than 1 and large values of
, not
all the incoming scalar field was absorbed [15]. However,
as shown in Figs. 3 and 4, when k ¼ 0:5 full absorption
was found in all cases and the only case where we find
nonfull (partial) absorption is that of k ¼ 0. Specifically
for 
< 2, that is, smaller than the Schwarzschild radius,
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FIG. 2. We show one of the cases of our sample in detail, the
one corresponding to k ¼ 1, A ¼ 0:8, and 
 ¼ 5. This plot
shows how the apparent horizon and event horizon coincide
both at initial time and after the black hole has stabilized
following the accretion of the incoming scalar field pulse. We
also show a set of outgoing null rays, or equivalently ingoing
past directed null rays, that converge to a surface that happens to
be the event horizon. The event horizon is only tracked up to
t� 80, after which our null rays diverge.
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FIG. 3. We show the time evolution of the apparent horizon
mass and theMADM for the case k ¼ 0. The fact that the apparent
horizon mass (solid line) grows up to the value MADM (dashed
line) indicates that the whole incoming scalar field energy
density has been absorbed, which happens only for 
 ¼ 1,
smaller than the Schwarzschild radius rS ¼ 2, whereas for the
bigger values 
 ¼ 5, 10, a fraction of the scalar field is not being
absorbed. The proportion of the field depends only on the value
of 
 and we found that for 
 ¼ 5, 92% of the energy density of
the scalar field has been absorbed and for 
 ¼ 10, 67%.
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full absorption is found, whereas for 
 ¼ 5 for the two
values of A we use, only �91% of the ingoing scalar field
is absorbed. For 
 ¼ 10, we found that �65% of the
ingoing scalar field is absorbed. For comparison in the

fixed background case, it was found that the absorption
could be as small as 50% [15].

V. DISCUSSION AND CONCLUSIONS

We have tracked the spherically symmetric nonlinear
evolution of a massless scalar field being accreted into a
Schwarzschild black hole. The aim of the work is to
determine whether or not a scalar field is reflected or
absorbed in terms of its wave number or wave packet
width. As a first approximation we have considered the
field to be massless.
With our results we generalize the analysis of the reflec-

tion and absorption of a massless scalar field in order to
bound the possibility that black holes, such as supermassive
black holes could potentially absorb scalar fields that are
being used as ingredients of cosmological models like
scalar field dark matter and quintessence. Our generaliza-
tion consists of adding the evolution of the geometry of
space-time, unlike previous analyseswhere it remains fixed.
Our results confirm some of the previous predictions

related to fixed background analyzes, specifically, we con-
firm that for spherical wave profiles of the scalar field with
k ¼ 0, not all the incoming energy density is absorbed.
Instead, we found the tendency to have less absorption
when the initial wave packet width is larger.
For all the other values of k used, we found full absorp-

tion. Nevertheless, a detailed study would include other
values of k closer to 0.
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FIG. 6. We show the time evolution of the apparent horizon
mass (solid line) and the MADM (dashed line) for the case k ¼ 2.
Full absorption was found in all cases.
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FIG. 5. We show the time evolution of the apparent horizon
mass (solid line) and the MADM (dashed line) for the case k ¼ 1.
Full absorption was found in all cases.
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FIG. 4. We show the time evolution of the apparent horizon
mass (solid line) and the MADM (dashed line) for the case k ¼
0:5. Unlike the case k ¼ 0, full absorption was found in all cases.
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In the context of the scalar field dark matter and dark
energy models consisting of scalar fields, our results in-
dicate that the evolution of the geometry allows the ab-
sorption of the total amount of the scalar field that is
radially directed toward the black hole within a short
time scale for large wave numbers. Whereas for k ¼ 0, a
fraction of the scalar field remains outside the black
hole.

At this point we have only performed our analyses using
very general initial scalar field profiles. Nevertheless, it
would be interesting to study evolutions with quasistation-
ary initial data (on a fixed background) like those proposed

in [17] and study their evolution on an evolving space-time
geometry.
Also, if specific models of dark matter or dark energy are

to be studied, it is necessary to include the mass term of the
scalar field and less restrictive symmetries, like rotation of
the scalar field near the black hole and Kerr black holes.

ACKNOWLEDGMENTS

This research is partly supported by Grants No. CIC-
UMSNH-4.9 and CONACyT No. 106466. The runs were
carried out in the Instituto de Fı́sica y Matemáticas Cluster.
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Guzmán, and F. D. Lora-Clavijo, Rev. Mex. Fis. 56, 456
(2010).

[15] L. A. Ureña-López and L.M. Fernández, Phys. Rev. D 84,
044052 (2011).

[16] X. Hernandez, S. Mendoza, P. L. Rendon, C. S. Lopez-
Monsalvo, and R. Velasco-Segura, Entropy 11, 17
(2009).

[17] J. Barranco et al., Phys. Rev. D 84, 083008 (2011).
[18] T. Harada and B. J. Carr, Phys. Rev. D 71, 104010 (2005).
[19] M. Alcubierre, R. Becerril, F. S. Guzman, T. Matos, D.

Nunez, and L.A. Urena-Lopez, Classical Quantum
Gravity 20, 2883 (2003).

[20] F. D. Lora-Clavijo, J. A. Gonzlaez, and F. S. Guzman, AIP
Conf. Proc. 1256, 339 (2010).

[21] J. Thornburg,arXiv:gr-qc/9906022v2.J. Thornburg, Phys.
Rev. D, ‘‘A 3+1 Computational Scheme for Dynamic
Spherically Symmetric Black Hole Spacetimes – II:
Time Evolution’’ (to be published); R. L. Marsa and
M.W. Choptuik, Phys. Rev. D 54, 4929 (1996).

[22] E. Seidel and W-M Suen, Phys. Rev. Lett. 69, 1845 (1992).
[23] C.W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation

(W.H. Freeman, New York, 1973).

SPHERICAL NONLINEAR ABSORPTION OF . . . PHYSICAL REVIEW D 85, 024036 (2012)

024036-7

http://dx.doi.org/10.1103/PhysRevD.23.347
http://dx.doi.org/10.1103/PhysRevLett.80.1582
http://dx.doi.org/10.1103/PhysRevLett.80.1582
http://dx.doi.org/10.1103/PhysRevLett.82.896
http://dx.doi.org/10.1002/1521-3994(199907)320:3%3C97::AID-ASNA97%3E3.0.CO;2-M
http://dx.doi.org/10.1002/1521-3994(199907)320:3%3C97::AID-ASNA97%3E3.0.CO;2-M
http://dx.doi.org/10.1088/0264-9381/17/1/102
http://dx.doi.org/10.1088/0264-9381/17/1/102
http://dx.doi.org/10.1103/PhysRevD.62.061301
http://dx.doi.org/10.1103/PhysRevD.62.061301
http://dx.doi.org/10.1103/PhysRevD.64.123528
http://dx.doi.org/10.1103/PhysRevD.62.103517
http://dx.doi.org/10.1088/0264-9381/17/13/101
http://dx.doi.org/10.1088/0264-9381/17/13/101
http://dx.doi.org/10.1086/342308
http://dx.doi.org/10.1086/175498
http://dx.doi.org/10.1111/j.1365-2966.2004.08190.x
http://dx.doi.org/10.1111/j.1365-2966.2004.08190.x
http://dx.doi.org/10.1103/PhysRevD.77.064023
http://dx.doi.org/10.1103/PhysRevD.77.064023
http://dx.doi.org/10.1086/154925
http://dx.doi.org/10.1086/154925
http://dx.doi.org/10.1016/S1384-1076(02)00107-0
http://dx.doi.org/10.1016/S1384-1076(02)00107-0
http://dx.doi.org/10.1046/j.1365-8711.2003.06232.x
http://dx.doi.org/10.1046/j.1365-8711.2003.06232.x
http://dx.doi.org/10.1111/j.1365-2966.2011.18687.x
http://dx.doi.org/10.1111/j.1365-2966.2011.18687.x
http://dx.doi.org/10.1111/j.1365-2966.2011.19258.x
http://dx.doi.org/10.1111/j.1365-2966.2011.19258.x
http://dx.doi.org/10.1103/PhysRevD.66.083005
http://dx.doi.org/10.1103/PhysRevD.66.083005
http://dx.doi.org/10.1088/1475-7516/2011/06/029
http://dx.doi.org/10.1088/1475-7516/2011/06/029
http://dx.doi.org/10.1088/0264-9381/25/14/145002
http://dx.doi.org/10.1088/0264-9381/25/14/145002
http://dx.doi.org/10.1103/PhysRevD.84.044052
http://dx.doi.org/10.1103/PhysRevD.84.044052
http://dx.doi.org/10.3390/e11010017
http://dx.doi.org/10.3390/e11010017
http://dx.doi.org/10.1103/PhysRevD.84.083008
http://dx.doi.org/10.1103/PhysRevD.71.104010
http://dx.doi.org/10.1088/0264-9381/20/13/332
http://dx.doi.org/10.1088/0264-9381/20/13/332
http://dx.doi.org/10.1063/1.3473875
http://dx.doi.org/10.1063/1.3473875
http://arXiv.org/abs/gr-qc/9906022v2
http://dx.doi.org/10.1103/PhysRevD.54.4929
http://dx.doi.org/10.1103/PhysRevLett.69.1845

