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We evaluate the partition function of three-dimensional theories of gravity in the quantum regime,

where the anti–de Sitter (AdS) radius is Planck scale and the central charge is of order one. The

contribution from the AdS vacuum sector can—with certain assumptions—be computed and equals the

vacuum character of a minimal model conformal field theory. The torus partition function is given by a

sum over geometries which is finite and computable. For generic values of Newton’s constant G and the

AdS radius ‘, the result has no Hilbert space interpretation, but in certain cases it agrees with the partition

function of a known conformal field theory. For example, the partition function of pure Einstein gravity

with G ¼ 3‘ equals that of the Ising model, providing evidence that these theories are dual. We also

present somewhat weaker evidence that the three-state and tricritical Potts models are dual to pure higher

spin theories of gravity based on SLð3Þ and E6, respectively.
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I. INTRODUCTION

There are many exactly solvable conformal field theo-
ries (CFTs) in two dimensions, some of which describe
important statistical systems. According to the AdS/CFT
correspondence such theories are expected to be dual to
theories of quantum gravity in three dimensions. Given the
simplicity of the boundary theory, these dualities, if fully
understood, would likely shed light on the nature of hol-
ography and the emergence of geometry from quantum
field theory. Potential examples have been studied in the
semiclassical regime (see e.g. [1–3]) but so far there is no
completely satisfactory example of a fully quantum theory
of gravity which is dual to an exactly solvable 2d CFT.

In this paper we will argue that a class of exactly
solvable CFTs are dual to certain theories of quantum
gravity in AdS3. These are strongly coupled gravity theo-
ries where the AdS radius is Planck scale. Nevertheless, the
path integral of quantum gravity can—with certain as-
sumptions—be computed exactly and agrees with that of
a known minimal model CFT. The simplest example is the
Ising model, which we conjecture to be dual to Einstein
gravity with a particular (Planck scale) value of the cos-
mological constant.

Our basic strategy will be to compute the exact gravita-
tional path integral of AdS3 gravity in Euclidean signature
with torus boundary conditions. This is formally a sum
over three-dimensional geometries of the form

Zgravð�; ��Þ ¼
Z
@M¼T2

Dge�SE½g�: (1.1)

In this sum over geometries we fix the boundary behavior
of the metric at asymptotic infinity to be a torus with a
particular conformal structure, which is labeled by a con-
formal structure parameter �. The physical interpretation

of this path integral is as the finite temperature partition
function of quantum gravity in anti–de Sitter space. This
theory of quantum gravity is, according to the AdS/CFT
correspondence, expected to be dual to a boundary confor-
mal field theory. Thus the path integral (1.1) should equal a
CFT partition function at finite temperature. More pre-
cisely, it should equal the CFT partition function on a torus:

Zcftð�; ��Þ ¼ TrqL0 �q
�L0 ; q ¼ e2�i�: (1.2)

The trace here is over the CFT spectrum. This means that
the gravitational path integral (1.1) will—in principle—
compute the complete quantum mechanical spectrum of
the dual CFT.
The authors of [4] were the first to interpret a gravita-

tional path integral of the form (1.1) as a CFT partition
function; they dubbed the resulting sum over geometries
the ‘‘black hole Farey tail.’’ In this computation the bulk
theory was a complicated string compactification for
which the path integral (1.1) is not exactly computable.
In the search for exactly solvable theories of quantum

gravity it is natural to consider simpler theories for which
the path integral can be computed and matched with a
putative dual CFT. The simplest candidate gravitational
theories are ‘‘pure’’ theories of gravity which do not con-
tain matter fields: the only degrees of freedom come from
the metric, or perhaps some simple generalizations thereof
to accommodate supersymmetry or higher spin symmetry.
In these cases the equality Zcft ¼ Zgrav imposes a highly

nontrivial constraint on the bulk theory, one which appears
quite difficult to realize. This is because, in general, there is
no clear reason why the sum over geometries (1.1) should
necessarily take the form (1.2) of a Hilbert space trace with
positive integer coefficients in the q, �q expansion. For
example, it was argued in [5] that in the semiclassical
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regime the path integral of pure general relativity cannot be
interpreted as a Hilbert space trace of the form (1.2). In the
present paper we will argue that in the strongly coupled
regime this is no longer the case: the path integral can be
computed and in several cases takes the form of a CFT
partition function for certain simple, known CFTs.

We will start by arguing that the path integral for pure
quantum gravity, at any value of the coupling, has the form

Zgravð�; ��Þ ¼
X
�

Zvacð��; � ��Þ: (1.3)

Here the sum is over possible topologies, which are labeled
by elements � of the group SLð2;ZÞ. The function Zvac

represents the contribution from the vacuum topology. In
the semiclassical limit, this formula can be interpreted as a
sum over solutions to the Euclidean equations of motion,
where Zvac is the exponential of the classical action along
with a—in principle, infinite—series of perturbative cor-
rections. In attempting to calculate (1.3) we encounter two
obstacles. The first is that the perturbative corrections to
Zvac are difficult to compute. The second is that, at least in
the semiclassical limit, the sum over geometries is badly
divergent and needs to be regulated in some way. We will
argue that both of these obstacles can be overcome in some
cases for pure general relativity and its higher spin
generalizations.

In performing these computations it is crucial that we are
studying gravity in a strongly coupled regime where quan-
tum effects are of order one. To understand why this is
important, we recall the fundamental observation of Brown
and Henneaux [6] that the symmetry group relevant for
gravity in AdS3 is the two-dimensional conformal group
with central charge

c ¼ 3‘

2G
; (1.4)

where ‘ is the AdS radius andG is Newton’s constant. This
implies that the states of the theory are organized into
representations of the (centrally extended) local conformal
group. This statement follows from the symmetry structure
of theories of gravity with asymptotically AdS boundary
conditions and should be true even in the strongly coupled
regime where c is of order one. In this regime the repre-
sentations of the conformal group are highly constrained,
unlike the semiclassical case where c is large. This strongly
constrains the possible perturbative contributions to Zvac

in (1.3), as first noted in [7]. For example, unlike the
semiclassical case, the representations for c < 1 cannot
be unitary unless the central charge is one of the special
‘‘minimal model’’ values. The function Zvac is then con-
strained to be the vacuum character of a minimal model.
We will proceed by assuming that the expression so
obtained for Zvac, based on considerations of local confor-
mal invariance, is correct. This is the simplest—and
seemingly only self-consistent—definition of the

(a priori ill-behaved) path integral (1.1) which is consistent
with the symplectic structure of the classical phase space
we wish to quantize.
Remarkably, this will imply that the sum over

geometries—i.e. the sum over distinct topologies in
(1.3)—can be performed explicitly. The important point
is that in these cases the apparently infinite sum over top-
ologies reduces to a finite sum.1 The resulting partition
function is a modular function built out of minimal model
characters. For certain theories of gravity this will agree
with the partition function of a known unitary conformal
field theory.
The simplest case where this occurs is for pure Einstein

general relativity with c ¼ 1
2 . In this case the torus par-

tition function agrees with that of the c ¼ 1
2 critical Ising

model, which is equivalent to a single free fermion. Thus
we conjecture that the Ising model is dual to pure
Einstein gravity at the specified coupling. This conjecture
relies on certain assumptions (spelled out below) about
the quantization of pure gravity at strong coupling used to
derive (1.3).
The critical Ising model is but the first of an infinite

family of exactly solvable CFTs, the Virasoro minimal
models with c < 1. Virasoro minimal models are labeled
by two coprime integers p < p0, with central charge

cðp; p0Þ ¼ 1� 6ðp� p0Þ2
pp0 : (1.5)

The theories with p0 ¼ pþ 1, p > 2, are unitary; the
simplest case ðp; p0Þ ¼ ð3; 4Þ is the Ising model. The sum
over geometries described above also gives the correct
partition function of the (4, 5) theory, which is the tricrit-
ical Ising model. Thus we conjecture that this CFT is dual
to pure gravity with c ¼ 7

10 . However, when p > 4 pure

gravity is apparently inconsistent. In these cases the parti-
tion function Zgrav at c ¼ cðp; pþ 1Þ cannot be written as

an expansion in q, �qwith positive integer coefficients and a
unique vacuum state. So for these values of the coupling
constants pure gravity does not have a consistent, quantum
mechanical interpretation in terms of a Hilbert space.

1This is in marked contrast with previous discussions of the
black hole Farey tail which involved infinite sums which need to
be regulated. In those cases it was only possible to obtain a
reasonable answer for the regulated sum if the partition function
was assumed to be a holomorphic function of �. For super-
symmetric theories this can be achieved by considering not the
partition function but the elliptic genus, which is automatically
holomorphic, as in [4,8–10]. Alternatively one can consider a
theory such as chiral gravity for which the partition function is
holomorphic by design [2,11]. In these cases the sum can be
regulated in a simple way using the theory of holomorphic
modular forms. (See [12] for a recent related discussion). In
this paper we will not assume holomorphic factorization in the
sense of [1]; we are working directly with the partition sum over
real geometries in general relativity.
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It is therefore natural to ask why the quantum gravity
path integral Zgrav appears to have a consistent quantum

mechanical interpretation only in certain special cases. A
partial answer comes from modular invariance. CFT par-
tition functions must be modular invariant functions of �,
unchanged under � ! �þ 1 and � ! �1=�. In the bulk
gravitational theory this is related to general coordinate
invariance; the sum over modular images in (1.3) describes
a sum over geometries which are related by large diffeo-
morphisms. As we will see, this implies that Zgrav and Zcft

at c < 1 are both built from characters of degenerate
representations of the Virasoro algebra. For p ¼ 3, 4,
only one modular invariant combination of these characters
can be constructed, so it is perhaps not surprising that
Zgrav ¼ Zcft. For p > 4, however, multiple modular invari-

ant combinations exist [13]. In these cases the partition
function Zgrav will typically be a nontrivial linear combi-

nation of these modular invariants, and as a consequence
will not equal the partition function of a consistent, unitary
CFT.

This apparent failure, however, leads to another possible
construction of holographic duals for minimal conformal
field theories. Many exactly solvable CFTs with p > 4
have the property that their partition functions are the
unique modular invariants constructed out of the characters
of an extended symmetry algebra. These extended symme-
try algebras contain the Virasoro algebra as well as addi-
tional fields of higher conformal dimension. This suggests
that we should identify rational CFTs whose partition
function is the unique modular invariant of a given chiral
algebra and seek a dual theory of gravity based on this
algebra. Following this strategy, we give evidence that the
three-state Potts model, a CFT with central charge c ¼ 4

5

and chiral algebra W 3, could be dual to a higher spin
theory of AdS3 gravity which includes a massless spin-3
gauge field [14]. This higher spin generalization of three-
dimensional general relativity can be formulated classi-
cally as an SLð3;RÞ � SLð3;RÞ Chern-Simons theory,
which was studied recently in [15]. Similarly, the tricritical
Potts model with c ¼ 6

7 could be dual to a novel higher spin

theory of gravity based on E6.
We emphasize that the evidence for these dualities

comes from the matching of genus one partition functions,
which includes all of the spectral data of the CFT but no
nontrivial information about correlation functions. In order
to check these dualities one would need to match correla-
tion functions or—equivalently—higher genus partition
functions, from which OPE coefficients can be extracted
by pinching (see e.g. [16] for a recent discussion). We will
see in Sec. V some indications that this is less likely to
work for the theories with extended chiral symmetry,
namely, the three-state and tricritical Potts models. Thus
detailed checks of these conjectures are desirable.

Ideally, we would like to find the holographic dual of a
family of exactly solvable unitary CFTs with a large c

limit. This would allow us to consider a semiclassical limit
to obtain the dual of weakly coupled Einstein gravity.
Unfortunately we were not able to find such a family.2

Wewill consider several families of exactly solvable CFTs,
and describe many for which the partition function can
indeed be written as a sum over 3d geometries. In some
cases we will also identify candidate gravity duals. A
summary of successful cases is presented in Table I in
the discussion section of this paper. This is not an exhaus-
tive search, but rather an assortment of examples of
CFTs that may be dual to pure gravity or its higher spin
generalizations.
In the next section we derive the general formula (1.3)

for the partition function of three-dimensional gravity as a
sum over geometries. In Sec. III the gravity path integral is
evaluated at G ¼ 3‘ and identified with that of the Ising
model. Other dualities for pure gravity at c < 1 are con-
sidered in Sec. IV. Similar dualities relating higher spin
gravity to CFTs with extended chiral algebras, like the
three-state Potts model, are discussed in Sec. V. Finally,
in Sec. VI we conclude with a summary of results and a
discussion of open questions. In the appendixes we review
minimal model CFTs and provide further details on how
the sum over modular images in (1.3) is computed.

II. AdS3 QUANTUM GRAVITY
AT STRONG COUPLING

In this section we discuss the quantization of gravity in
the strong coupling regime, where the AdS radius is Planck
scale. We will start by reviewing known features of the
phase space of classical AdS gravity before discussing its
quantization. Although we will not provide a completely
rigorous quantization of this phase space, we will argue
that the possible answers one can obtain are strongly con-
strained by the symmetry structure of the theory. As we
will see, this is sufficient to match the gravitational parti-
tion function with that of known CFTs for some specific
values of the central charge.
We first review some general features of the path integral

in three-dimensional quantum gravity with negative cos-
mological constant, following [1,4,5,17,18]. We wish to
compute the Euclidean path integral

Zgrav ¼
Z
@M

Dge�cSE½g�: (2.1)

Here the integral is over asymptotically AdS manifoldsM
with fixed conformal structure at the boundary. The clas-
sical Euclidean action of a solution is proportional to the

central charge c ¼ 3‘
2G , where ‘ is the AdS radius and G is

Newton’s constant. We have therefore extracted an explicit
factor of c from the Euclidean action SE. We note that the

central charge c ¼ 3‘
2G is proportional to 1

ℏ , so it plays the

2However, it is possible to find families of nonunitary CFTs
with bulk duals which admit a semiclassical limit.
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role of the (inverse) coupling constant in the bulk gravity
theory.

In computing this path integral we should sum not just
over all metrics on a fixed topological manifold, but also
over all possible topologies. The boundary conditions in
(2.1) fix the topology of spacetime only at the boundary,
not in the interior. Thus the gravitational path integral
should take the form

Zgrav ¼
X
M

ZðMÞ; (2.2)

where M denotes a particular topological three-manifold
and ZðMÞ the contribution from the sum over all metrics
on M.

We are now faced with the question of which manifolds
M contribute to the sum (2.2). In the semiclassical ap-
proximation, this question can be answered as follows. The
partition function should be expanded in the saddle point
approximation as a sum over all solutions to the equations
of motion,

Zgrav ¼
X
gcl

exp

�
�cSE½gcl� þ Sð1Þ½gcl� þ 1

c
Sð2Þ½gcl� þ � � �

�
:

(2.3)

Here gcl is a classical saddle, i.e. a solution of the equations
of motion, and SE is the classical action. The other terms
describe loop contributions, which are suppressed by
powers of the coupling constant (the central charge) c.
The result is that in the semiclassical limit the only top-
ologies which contribute to the path integral are those
which admit a classical solution to the equations of motion.

We now wish to consider the quantization of the strongly
coupled theory, where c is of order one. Our central as-
sumption is that the conclusion described above—that the
only topologies which contribute are those which admit a
classical solution—continues to hold. Thus we are requir-
ing that the path integral should be organized as a sum over
classical solutions, along with a (in principle, infinite)
series of quantum corrections around each saddle. We
assume this even though the coupling constant is of order
one, so that there is no sense in which the loop corrections
are small compared to the classical Euclidean action.

This assumption can be viewed as part of our definition
of the formal sum over geometries. Indeed, quantum field
theory path integrals can typically only be defined in terms
of a sum over classical solutions along with a series of
perturbative corrections around each classical solution.
There are even cases where the path integral can be com-
puted exactly using other methods, and shown to agree
precisely with a sum over classical saddles, each dressed
by a series of quantum corrections. In these cases the
saddle point approximation is, once one includes all per-
turbative corrections, exact. A notable example where this
is the case is Chern-Simons gauge theory (see e.g. [19]).
Given the similarity between three-dimensional gravity

and Chern-Simons theory, it is not unreasonable to hope
that the same may be true here. Without a precise definition
for the path integral of quantum gravity, however, this
should be regarded as a conjecture, albeit a very natural
one.
We will now discuss the sum over topologies, before

turning to evaluate the contribution from a fixed topology.

A. Sum over topologies

Quantum gravity in anti–de Sitter space makes sense
only if one fixes the asymptotic boundary conditions on the
metric appropriately. In AdS3 the metric is required to
approach that of a two-manifold with fixed conformal
structure. We now wish to organize the path integral (2.3)
as a sum over topologies with fixed boundary conditions,
following [4,5,17].
The integral we will perform is over Euclidean three-

manifolds M whose conformal boundary is a two-torus.
The simplest geometryM which contributes to this sum is
thermal AdS3, which is a Euclidean geometry with metric

ds2

‘2
¼ d�2 þ cosh2�dt2E þ sinh2�d�2; (2.4)

where the angle � is periodic, ���þ 2�. This is the
geometry obtained by continuing the usual Lorentzian AdS
metric in global coordinates to Euclidean signature by
taking t ! tE ¼ it. Defining the complex coordinate
z ¼ ið�þ itEÞ, we see that at the boundary � ! 1 the
metric approaches the usual flat metric dzd�z. The coordi-
nate z is identified according to

z� zþ 2�in; n 2 Z (2.5)

so that this is the flat metric on the cylinder. In order to
define thermal AdS we must impose an additional identi-
fication of the z coordinate, which we will write as

z� zþ 2�im�; m 2 Z; (2.6)

where � is a complex parameter. This is the usual
Euclidean identification that defines a grand canonical
partition function at finite temperature and angular poten-
tial. The boundary is now a torus, whose conformal struc-
ture is determined by the parameter �.
Topologically, thermalAdS3 is a solid torus. In this solid

three-geometry one of the cycles of the boundary torus is
contractible and the other is not. In the case of thermal
AdS3, the contractible cycle is the spatial � circle. This
makes it clear how one should construct other geometries
that will contribute to the partition function. One just
needs to consider other solid tori where other cycles of
the boundary torus are contractible in the interior.
Geometrically, these new solid tori will have the same
metric as thermal AdS, but will be glued on to the boundary
torus in a different way. That is to say, they will be
related to thermal AdS by a large diffeomorphism which
acts nontrivially on the boundary torus. Such large
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diffeomorphisms, known as modular transformations, will
lead to distinct contributions to the gravitational path
integral.

Let us illustrate this with a simple example. Consider the
diffeomorphism

z ! z0 ¼ ið�0 þ it0EÞ ¼ � 1

�
z: (2.7)

The periodicities (2.6) transform as

z0 � z0 þ 2�in� 2�im
1

�
; n;m 2 Z: (2.8)

Thus � has been transformed to � 1
� . After making this

change of variables, the contractible cycle is now a combi-
nation of t0E and �0. The �0 cycle is not contractible, and
thus the Lorentzian continuation of this geometry will have
a horizon. Indeed, this geometry is the Euclidean continu-
ation of the BTZ black hole of [20].

More generally, the group of nontrivial large diffeomor-
phisms (i.e. the mapping class group) of the boundary torus
is the modular group SLð2;ZÞ. These modular transforma-
tions act on the conformal structure as

�! ��¼ a�þb

c�þd
; �¼ a b

c d

 !
2 SLð2;ZÞ: (2.9)

We emphasize that although these geometries are related
by diffeomorphisms, they are physically inequivalent.
Only diffeomorphisms that act trivially at infinity are true
gauge symmetries. Diffeomorphisms that act nontrivially
at infinity generate new states in the theory and lead to new
contributions to the path integral. For example, a modular
transformation changes the identification of space and
time, and will therefore change physical quantities such
as the mass and angular momentum of a particular solu-
tion. Each element of SLð2;ZÞ will (up to an equivalence
described below) lead to a topologically distinct solid
torus, giving rise to a family of Euclidean solutions [17].

It is possible to show that the geometries described
above are the only smooth solutions to the equations of
motion with torus boundary conditions (see e.g. [5] for a
simple proof).3 Thus the geometries are labeled by the
elements � of the group SLð2;ZÞ. We will refer to the
contribution to the partition function of thermal AdS3 as
Zvacð�; ��Þ. All of the other contributions to the path integral
are obtained by modular transformations, so that

Z�ð�; ��Þ ¼ Zvacð��; � ��Þ; � 2 SLð2;ZÞ: (2.10)

Here Z�ð�; ��Þ is the contribution to the path integral from

the geometry related to thermal AdS3 by the diffeomor-
phism which takes � ! ��. The full path integral will
therefore take the form of a sum over the modular group
SLð2;ZÞ, and the result is manifestly modular invariant.
There is one important subtlety, however, which is that

certain elements of SLð2;ZÞ will act trivially on the ge-
ometry and hence not give distinct contributions to the path
integral. In the semiclassical limit these trivial elements of
SLð2;ZÞ are easy to understand. The transformation

Tn ¼ 1 n

0 1

 !
; n 2 Z; (2.11)

shifts � ! �þ n. This does not change the topology of the
resulting three-manifold, because adding a contractible
cycle to a noncontractible cycle leaves the noncontractible
cycle unchanged. Thus, in the semiclassical regime, physi-
cally inequivalent saddles are labeled not by the group
SLð2;ZÞ but by the coset � ¼ �1nSLð2;ZÞ, where �1 is
the group of shifts in Eq. (2.11). Elements of this coset are
labeled by a pair of coprime integers ðc; dÞ with the re-
striction that c � 0; these integers can be regarded as the
bottom row of the SLð2;ZÞ matrix

� ¼ a b

c d

 !
:

The path integral (2.3) then takes the form

Zgravð�; ��Þ ¼
X
�2�

Z�ð�; ��Þ ¼
X

ðc;dÞ¼1
c�0

Zvac

�
a�þ b

c�þ d
;
a ��þ b

c ��þ d

�
:

(2.12)

In the strongly coupled regime, with central charge
c < 1, there is no good semiclassical approximation.
However, as described above we still wish to organize
the path integral as a sum over smooth geometries with
fixed conformal structure at the boundary. These geome-
tries fall into distinct topological classes specified by the
noncontractible cycle, so we can still formally write the
partition function as

Zgrav ¼
X

�2�cnSLð2;ZÞ
Zvacð��; � ��Þ: (2.13)

As we will discover below there is an important difference
between this formula and the semiclassical result (2.12).
The group �c, which describes trivial gauge transforma-
tions, will take a different form when c is less than 1.
Whereas in the semiclassical case �c is simply the group
of shifts (2.11), in the strongly coupled regime the iden-
tification of gauge inequivalent configurations will need to
be modified. We will see that there is an enhanced group
of gauge symmetries, so that �c is a finite index subgroup
of SLð2;ZÞ. This novel feature will render the sum easily
computable.
To summarize, we have made two fundamental asser-

tions about the structure of the path integral of AdS3

3We assume here that only smooth manifolds contribute to the
path integral. We will not consider geometries which admit
orbifold-type singularities, nor will we consider complexified
geometries where the metric is not real. In order to address these
questions precisely we would need a better understanding of the
integration contour for the path integral of general relativity.

GRAVITY DUAL OF THE ISING MODEL PHYSICAL REVIEW D 85, 024032 (2012)

024032-5



quantum gravity. First, given our boundary conditions we
expect the partition function defined on a two-torus to be
modular invariant, i.e.

Zgravð�; ��Þ ¼ Zgravð��; � ��Þ: (2.14)

Second, the path integral should be given by a sum over
topologies (2.13). We now turn to the computation of Zvac,
the contribution to the path integral from a fixed topology.

B. Fixed topology

We have written the path integral as a sum over top-
ologies, where each topology is labeled by an element of
SLð2;ZÞ. The contribution to the path integral from a fixed
topology should equal the classical action plus the set of
quantum corrections described in Eq. (2.3). As we are
considering a strongly coupled theory there is no sense in
which these quantum corrections are small. It is not, for
example, useful to organize them into a perturbative ex-
pansion in inverse powers of the coupling constant as
would be natural in the semiclassical regime. We will
need to obtain a full answer—including all quantum
effects—in one fell swoop. Fortunately, following the
work of [7] (see also [21]) it is possible to do precisely this.

We start by computing Zvacð�; ��Þ. This is defined as the
contribution to the path integral from metrics which are
continuously connected to the thermal AdS3 solution (2.4).
This saddle is the Euclidean geometry obtained by analyti-
cally continuing the Lorentzian anti–de Sitter metric to
Euclidean signature and imposing the thermal identifica-
tion (2.6). The partition function Zvac therefore has an
alternate interpretation, as the finite temperature partition
function of excitations around AdS3. In particular,

Zvacð�; ��Þ ¼ Trvacq
L0 �q

�L0 ; q ¼ e2�i�; (2.15)

where the trace is over all states of the bulk theory which
are smoothly connected to empty AdS3.

In principle, this trace could be computed by quantizing
an appropriate classical phase space. More precisely, we
could consider the configuration space of all classical ex-
citations of AdS3 which are continuously connected to the
AdS ground state. This configuration space is equal to the
classical phase space of the theory, which comes equipped
with a symplectic structure. One could then hope to quan-
tize this phase space explicitly in order to obtain the exact
quantum Hilbert space and thus the trace (2.15).

At first sight, one might think that this classical phase
space is trivial because three-dimensional general relativ-
ity has no local degrees of freedom. Thus all classical
solutions to Einstein’s equations which are continuously
connected to empty AdS are in fact diffeomorphic to AdS
spacetime. Thus they do not describe different geometries,
but rather new metrics which are related to the original one
by a change of coordinates. So one might think that these
new solutions are pure gauge and do not lead to new
contributions to the partition function. However, just as

in the previous section, this is not quite the case: those
diffeomorphisms which do not vanish sufficiently quickly
at infinity lead to physical states and hence nontrivial
contributions to the path integral.
To describe this space of states in more detail we must

review the boundary conditions that are used to define our
path integral. The definition of AdS gravity requires a
choice of falloff conditions for the metric and matter fields.
The standard Brown-Henneaux boundary conditions state
that the metric is

ds2

‘2
¼ d�2 þ 1

4
e2�ð�dt2 þ d�2Þ þOð�0Þ; (2.16)

at large �. We denote by � the vector which generates a
diffeomorphism that preserves these boundary conditions,
and by H½�� the corresponding phase space charge which
generates this symmetry. The set of vectors � that preserve
the boundary structure are

�n ¼ einu
�
@u � 1

2
n2e�2�@v � i

n

2
@�

�
þ � � � ;

��n ¼ einv
�
@v � 1

2
n2e�2�@u � i

n

2
@�

�
þ � � � ;

(2.17)

where u ¼ 1
2 ðtþ�Þ and v ¼ 1

2 ðt��Þ. Here we have

expanded in Fourier modes and use ‘‘. . .’’ to denote sub-
leading corrections in � that do not affect the charges
H½�n�. These subleading terms describe true gauge sym-
metries of the theory which do not lead to new physical
states. The nontrivial symmetries are those for which H½��
is nonzero. These give new physical states.
The remarkable observation of Brown and Henneaux is

that the H½�n� are computable and satisfy the Virasoro
algebra:

ifH½�n�; H½�m�g ¼ ðn�mÞH½�nþm� þ c

12
nðn2 � 1Þ�nþm;0;

(2.18)

and similarly for H½ ��n�. The brackets in (2.18) are Dirac
brackets and the central charge is

c ¼ 3‘

2G
: (2.19)

The states of the theory are obtained by acting on the
ground state with one of these charges. These states are
therefore labeled by a choice of diffeomorphism � , and are
usually referred to as boundary gravitons. If we wish to
compute the norm of a state � , the standard expression in
terms of the symplectic structure (generalizing the scalar
Klein-Gordon norm) reduces to the Dirac bracket of the
Hamiltonian (see [7] for further details). In particular, the
norm of the state � is

jj�jj2 ¼ fH½���; H½��g: (2.20)
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The physical spectrum of the theory includes all states for
which jj�jj2 is positive.4 A state with zero norm describes
an extra gauge symmetry, rather than a new physical
excitation.

So far we have identified the classical phase space of the
theory as the space of nontrivial diffeomorphisms applied
to the vacuum. At the level of finite, rather than infinitesi-
mal, diffeomorphisms this space is (a central extension of)
the infinite dimensional group DiffðS1Þ � DiffðS1Þ. Given
this group structure one might hope that this phase space
could be quantized and Zvac computed explicitly. When the
central charge is greater than 1 this can be accomplished
using the method of coadjoint orbits [22]. Unfortunately,
the quantization of the phase space in question appears to
be much more difficult when c < 1.5 We will therefore
proceed indirectly, and argue that there is only one natural
answer consistent with the symmetries of the phase space
in question.

To begin let us imagine canonically quantizing this
theory by promoting the Dirac brackets in (2.18) to com-
mutators. We will also relabel the generators as Ln ¼
H½�n� and �Ln ¼ H½ ��n�; these are now operators in the
quantum theory. The vacuum j0i is the state annihilated
by L0, �L0 as well as all of the corresponding Virasoro
lowering operators. This vacuum state is described semi-
classically by empty AdS.

The conformal symmetry of AdS3 gravity then strongly
constrains the quantum spectrum of the theory. The opera-
tors Ln, �Ln with n > 0 act as annihilation operators and
hence lower the energy and momentum of a state. This
implies that when acting on the vacuum

Lnj0i ¼ 0; n > 0: (2.21)

Further, the vacuum is invariant under the rigid SLð2;RÞ
generators which generate the SOð2; 2Þ ¼ SLð2;RÞ �
SLð2;RÞ isometries of empty AdS. Thus

L�1j0i ¼ �L�1j0i ¼ 0: (2.22)

Descendants of the vacuum are obtained by acting with
raising operators L�n, �L�n with n > 1. These states are the
boundary gravitons, and generically take the form

L�n1 � � �L�nk j0i; ni > 1: (2.23)

It is important to note that these graviton states do not
generate an ordinary Fock space and should not be re-

garded as free particles. Instead, they should be thought
of as Virasoro descendants of the vacuum, whose norm is
computed via commutators as in (2.20). This turns out to
have important implications when c < 1.
The partition function Zvac is then the generating func-

tion which counts these states, according to Eq. (2.15). In
computing Zvac it is important to count only physical states
with positive norm. The result depends on whether c is
greater than or less than 1. When c > 1, the norm of any
boundary graviton (2.23) is positive, with the exception of
the null state L�1j0i. This computation of the norm follows
directly from the Virasoro algebra, using (2.20). The re-
sulting trace is equal to the character of the full Verma
module modded out by the null state, which is

Zvac ¼
��������qð1�cÞ=24 ð1� qÞ

�ð�Þ
��������2

¼ jq�c=24ð1þ q2 þ q3 þ 2q4 þ 2q5 þ 4q6 þ � � �Þj2:
(2.24)

Here �ð�Þ is the Dedekind eta function. The factor of
ð1� qÞ accounts for the removal of L�1 from the
spectrum.
When c < 1 the result is more interesting. The compu-

tation is in fact identical to the construction of irreducible
representations of the Virasoro algebra using the Kac
determinant formula. This discussion is a standard part of
the construction of minimal model conformal field theories
with c < 1. We will therefore just state the results here and
refer to the literature (e.g. [24]) for details.
The first result is that when c < 1 the theory contains

negative norm states unless

c ¼ 1� 6

pðpþ 1Þ ; (2.25)

where p > 2 is an integer. When c takes one of these values
there will still be null states with zero norm. Therefore the
partition function which counts physical (nonzero norm)
states differs from that of (2.24). It is instead the character
of a degenerate representation of the Virasoro algebra,

Zvacð�; ��Þ ¼ Trvacq
L0 �q

�L0 ¼ j	1;1ð�Þj2; (2.26)

where6

	1;1 ¼ qð1�cÞ=24 ð1� qÞ
�ð�Þ

�
1þ X1

k¼1

ð�1Þk

�ðqh1þkðpþ1Þ;ð�1Þkþð1�ð�1ÞkÞp=2 þ qh1;kpþð�1Þkþð1�ð�1ÞkÞp=2Þ
�
;

(2.27)

with

4For simplicity, we assume unitarity in this subsection, but this
is not required. In a nonunitary theory, a state is physical unless it
has zero overlap with every other state, including itself.

5See, however, [23], which discusses the quantization of this
space using different methods and appears to obtain results
consistent with ours below.

6The notation 	1;1 is chosen to match minimal model con-
ventions in the literature.
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hr;s ¼ ðpr� ðpþ 1ÞsÞ2 � 1

4pðpþ 1Þ : (2.28)

The complicated power series multiplying �ð�Þ in (2.27)
has the effect of removing the null states from the spec-
trum. The result is that 	1;1 is the character of an irreduc-

ible representation of the Virasoro algebra. We note that
while we have focused on unitary theories, for which all
states have positive norm, similar expressions hold for the
nonunitary minimal models. In these cases the character
	1;1 includes states with both positive and negative norms.

The above analysis, although performed in pure gravity,
easily generalizes to other pure theories of quantum gravity
whose only perturbative states are the boundary excitations
of empty AdS associated with an extended symmetry
algebra. One generalization of our results is to pure super-
gravity [25,26]. Another is to the higher spin theories of
[27,28]. In both cases the spectrum of boundary states is
determined by an appropriate asymptotic symmetry alge-
bra. These algebras are generalizations of the Virasoro
algebra that include either fermionic generators and cur-
rent algebras [29,30] or (in the higher spin case) to a
nonlinear W N algebra [15,31–33].

Let us now summarize our results. When c < 1 the
partition function of AdS3 quantum gravity is

Zgravð�; ��Þ ¼
X

�2�cnSLð2;ZÞ
Zvacð��; � ��Þ: (2.29)

Here �c is the subgroup of pure gauge symmetries, which
will be described in more detail below. The function Zvac is
equal to the vacuum character of a minimal model CFT,

Zvacð�; ��Þ ¼ j	1;1ð�Þj2; (2.30)

where 	1;1 is given by (2.27) for c < 1. We emphasize that,

although our results are phrased in the language of minimal
model CFTs, these results were derived directly in the bulk
gravity theory.

III. PURE GRAVITYAND THE ISING MODEL

We now wish to compute explicitly the partition func-
tion of quantum gravity and show that it matches exactly
that of a known, unitary conformal field theory. In this
section we will focus on the simplest case, that of Einstein
gravity with G ¼ 3‘. The partition function will equal that
of the c ¼ 1

2 minimal model, which describes the critical

Ising model. In later sections we will explore more com-
plicated versions of the correspondence for other values of
the central charge.

A. Review of the Ising model as a minimal model

The simplest unitary minimal model has central charge

c ¼ cð3; 4Þ ¼ 1
2: (3.1)

Minimal models have a finite number of primary fields,
which can be found by determining the degenerate irre-
ducible representations of the Virasoro algebra. When
c ¼ 1

2 there are three such degenerate, irreducible repre-

sentations, with dimensions7

h1;1 ¼ 0; h2;1 ¼ 1

16
; h1;2 ¼ 1

2
: (3.2)

Further details about this minimal model, including ex-
plicit formulas for the characters of these representations,
are given in Appendix A.
The partition function of this theory can, by conformal

symmetry, be written as a sum over the characters of these
representations,

Zð�; ��Þ ¼ X
h; �h

Nh; �h	hð�Þ	 �hð ��Þ: (3.3)

Here 	h are the characters of the irreducible Virasoro
representations appearing in Eq. (3.2) and � is the confor-
mal structure of the torus. The non-negative integers
Nh; �h 2 N0 denote the multiplicities of the various

representations.
Modular invariance

Zð�Þ ¼ Zð�þ 1Þ ¼ Zð�1=�Þ (3.4)

imposes a strong constraint on the theory. A simple way to
impose invariance under � ! �þ 1 is to include only
primaries with h ¼ �h in the spectrum; this follows from
the transformation properties of 	h which are spelled out
in (A6) and (A7). Thus we are led to consider the partition
function

ZIsingð�; ��Þ ¼ j	1;1ð�Þj2 þ j	2;1ð�Þj2 þ j	1;2ð�Þj2: (3.5)

It is straightforward to check that (3.5) is invariant under
the action of S as well.
In fact, this minimal model has a simple interpretation in

terms of the two-dimensional Ising model. The Ising model
consists of a square lattice with spin variables at each site
taking values �1. With a nearest neighbor interaction the
theory has a conformally invariant critical point. At this
critical point the dynamics are described by the minimal
model CFT with c ¼ 1

2 . The theory contains three local

primary operators: the identity 1, the spin operator 
ðz; �zÞ,
and the energy density "ðz; �zÞ, with conformal dimensions

ðh; �hÞ1 ¼ ð0; 0Þ; ðh; �hÞ" ¼
�
1

2
;
1

2

�
;

ðh; �hÞ
 ¼
�
1

16
;
1

16

�
:

(3.6)

These fields 1,
, " are obtained bymultiplying together the

7Here h denotes the scaling dimension of an operator on the
plane. It is related to the eigenvalue of L0 on the cylinder by
L0 ¼ h� c

24 .
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left- and right-moving representations appearing in (3.2).
The partition function (3.5) can then be seen to come from
the states created by 1, 
, and ", respectively. Remarkably,
this conformal field theory can also be described in terms of
a single free fermion.

B. Duality

We now compute the path integral of quantum gravity
at c ¼ 1

2 using the method described in Sec. II and show

that it is equal to ZIsing. The contribution of thermal AdS

to the path integral is simply the minimal model vacuum
character

Zvacð�; ��Þ ¼ j	1;1ð�Þj2: (3.7)

The full path integral is the sum over all modular
images,

Zgravð�; ��Þ ¼
X
�2�

j	1;1ð��Þj2; (3.8)

where �� ¼ a�þb
c�þd . Here � ¼ �cnSLð2;ZÞ is the coset

which labels physically inequivalent geometries. We
must now determine this coset.

The subgroup �c 	 SLð2;ZÞ describes those diffeomor-
phisms which act trivially on the state of the system, and, in
particular, leave the Hamiltonian and other observables
unchanged. At first sight, the identification of these resid-
ual gauge symmetries seems difficult, as we are working in
the regime c < 1 where we have no perturbative control
over the bulk theory. However, from the form of (3.8) it is
clear that we should take �c to be the subgroup of SLð2;ZÞ
which leaves the vacuum character j	1;1j2 invariant. This

�c is a finite index subgroup of SLð2;ZÞ, so that the coset
� ¼ �cnSLð2;ZÞ is finite. Thus it is necessary to include
only a finite number of inequivalent topologies in the sum
over geometries. We will describe the general properties of
this sum below, but before doing so let us work out the
Ising model case in full detail.

When c ¼ 1
2 one can determine all of the inequivalent

contributions to the partition function (3.8) explicitly. In
the basis ð	1;1; 	2;1; 	1;2Þ the modular matrices are given by

Eqs. (A5) and (A15). Starting with the contribution from
thermal AdS, Zvac, one can then apply S and T repeatedly
to this ‘‘seed’’ contribution, obtaining new contributions to
the partition function. This process terminates after pro-
ducing 24 inequivalent contributions, so j�j ¼ 24 and the
modular sum in (3.8) is indeed finite. Summing up these
contributions gives

Zgrav ¼ 8ZIsing: (3.9)

The overall factor of 8 can be absorbed into the path
integral measure. We conclude that the partition function
of pure quantum gravity at c ¼ 1

2 is equal to that of the

Ising model. Both the gravity path integral and the Ising
model partition function are modular invariants con-

structed from the 	r;s, so one might suspect that this equal-

ity is guaranteed by modular invariance. This is indeed the
case as will be discussed below.
We emphasize the key fact that the gravitational path

integral with c < 1 includes only a finite sum over
topologies. This differs from the infinite sum—as in
Eq. (2.12)—that arises in the c > 1 regime. The truncation
to a finite number of terms was not imposed by hand. It is
required by the standard rules of path integration in a
theory with gauge invariance. In the quantum regime there
is an enhanced gauge symmetry, rendering certain large
gauge transformations trivial and collapsing the apparently
infinite family of SLð2;ZÞ black holes to a finite number of
inequivalent geometries. In a sense, this enhanced gauge
invariance implies that many of the apparently distinct
semiclassical black hole solutions of three-dimensional
gravity must disappear in this quantum regime. This is
clear if one attempts to interpret the primary states of the
Ising model as black holes; there are only a finite number
of such primaries, and they do not appear to have the large
degeneracies associated with the semiclassical Bekenstein-
Hawking formula.

C. Tricritical Ising model

The next conformal field theory on our list of unitary
minimal models has central charge

cð4; 5Þ ¼ 7

10
: (3.10)

The theory contains primary fields with weights

h1;1 ¼ 0; h1;2 ¼ 7

16
; h1;3 ¼ 3

2
;

h2;2 ¼ 3

80
; h2;3 ¼ 3

5
; h3;3 ¼ 1

10
:

(3.11)

As in the previous case, it is easy to construct a modular
invariant partition function

Ztri-Isingð�; ��Þ ¼
X
h; �h

Nh; �h	hð�Þ	 �hð ��Þ ¼
X
r;s

j	r;sð�Þj2;

(3.12)

where 	r;s are the Virasoro characters (A8) for the fields

listed in (3.11). Further details of this minimal model are
given in Appendix A.
This conformal field theory has a statistical interpreta-

tion as a simple generalization of the Ising model, where
we now allow the spin variable to take values f0;�1g. This
adds to the model a chemical potential associated with the
fractional occupation number. This new parameter modi-
fies the structure of the phase diagram, so that there is now
a tricritical point where three phases meet: paramagnetic,
ferromagnetic, and a two-phase region.8 This tricritical

8The tricritical Ising model is secretly supersymmetric, but we
will not exploit this feature here.
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Ising model now has six primary operators, corresponding
to the identity, three energy operators, and two spinlike
operators; these give the six terms appearing in the parti-
tion function (3.12).

We now proceed to construct the gravitational dual of
the tricritical Ising model. The discussion is very similar
to that for the Ising model above. The gravitational path
integral for c ¼ 7

10 is

Zgrav ¼
X
�2�

j	1;1ð��Þj2; (3.13)

where 	1;1 is the vacuum contribution of thermal AdS,

which equals the vacuum character of the tricritical Ising
model. To find the subgroup � ¼ �cnSLð2;ZÞ we must
again identify those diffeomorphisms which leave the
observables invariant. In practice, this means finding
those elements of SLð2;ZÞ which leave j	1;1j invariant.

The operator content of every ðp; pþ 1Þ minimal
model is different. Thus the representation of the modular
matrices in the basis 	r;s depends on p. This means that the

set of pure gauge transformations �c is different for each
value of the central charge. For example, one can construct
explicitly �c for the tricritical Ising model and show that it
is an index 288 subgroup of SLð2;ZÞ. Thus there are 288
inequivalent contributions to the sum (3.13). This is in
contrast to 24 for the critical Ising model. In performing
these explicit computations of the sum over geometries, the
determination of �c is the most difficult part.

For the tricritical Ising model we find, by explicit com-
putation,

Zgrav ¼
X

�2�cnSLð2;ZÞ
j	1;1ð��Þj2 ¼ 48Ztri-Ising: (3.14)

As before, the overall coefficient can be absorbed into the
path integral measure. This allows us to identify the parti-
tion function of the tricritical Ising with the path integral of
pure quantum general relativity at c ¼ 7

10 .

IV. PURE GRAVITYAT OTHER VALUES OF c < 1

We now consider the general case, where c takes any of
the allowed minimal model values. We will begin by
investigating more thoroughly the implications of modular
invariance, which lead to an improved understanding of the
(tri)critical Ising model examples discussed above.

A minimal model conformal field theory—and indeed
any rational CFT—has only finitely many primary fields.
The corresponding characters9 	� will therefore form a
finite-dimensional unitary representation of the modular
group SLð2;ZÞ. That is to say, for every � 2 SLð2;ZÞ we
have

	�ð��Þ ¼
X
�

Mð�Þ��	�ð�Þ; (4.1)

where Mð�Þ is a unitary matrix.
For any of the allowed minimal model values of c the

partition function of quantum gravity will take the form

Zgrav ¼
X
�2�

j	1;1ð��Þj2: (4.2)

Here, as above, the vacuum character 	1;1 is a ‘‘seed’’

contribution from thermal AdS which is summed over
modular images. The coset � is

� ¼ �cnSLð2;ZÞ;
�c ¼ f� 2 SLð2;ZÞ:j	1;1ð��Þj ¼ j	1;1ð�Þjg:

(4.3)

We note that �c always contains the parabolic subgroup of
SLð2;ZÞ generated by T: � � �þ 1. More generally, �c

contains the projective kernel of the modular representa-
tion Mð�Þ, i.e. the subgroup of SLð2;ZÞ which leaves all
of the characters 	� invariant up to a phase. It was
shown in [34] that, for every rational CFT, this is a finite
index subgroup of SLð2;ZÞ. Hence the sum (4.2) involves
only finitely many terms. This implies that there are no
subtle issues involving the convergence of the sum over
topologies. This is in contrast with previous discussions of
the sum over topologies in the black hole Farey tail.
The function Zgrav is, by construction, modular invariant.

Furthermore, given the structure of the modular transfor-
mations it must take the form

Zgrav ¼
X
�;�

N��	� �	� (4.4)

for some constants N��. In order for Zgrav to have an

interpretation as a quantum mechanical partition function,
the constants N�� must all, up to an overall scale factor, be

non-negative integers with N11 ¼ 1 so that the vacuum is
unique. We will call a modular invariant combination of
characters with these properties a physical invariant.
In order to understand whether Zgrav will be a physical

invariant or not, let us first consider the following more
general problem. Suppose we start with some combination
of characters of the form

ZðXÞ ¼ X
�;�

X��	� �	�; (4.5)

where X�� is a constant Hermitian matrix. Under the

modular transformation � � ��, ZðXÞ becomes Zð� � XÞ,
where

� � X ¼ Mð�ÞXMð�Þy: (4.6)

The product on the right-hand side is standard matrix
multiplication. We call X modular invariant if � � X ¼ X
for all � 2 SLð2;ZÞ; then the corresponding combination
of characters ZðXÞ is a modular invariant function. Note

9To simplify notation, we use the collective index � ¼ ðr; sÞ to
label primary fields.
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that we do not assume that ZðXÞ is a physical invariant in
the sense that it satisfies any integrality or positivity
properties.

The space of matrices X�� has a nondegenerate inner

product

ðX; YÞ ¼ TrðXYÞ (4.7)

that is clearly invariant under the action (4.6) of the modu-
lar group,

ðX; YÞ ¼ ð� � X;� � YÞ: (4.8)

Suppose now that I1; . . . ; Ik is a basis for the space of
modular invariant Hermitian matrices. Without loss of
generality we may assume that the Ij are orthonormal

with respect to the inner product (4.7). Then, given some
seed X the modular completion of X will take the form

X
�2�

Zð� � XÞ ¼ Xk
j¼1

cjZðIjÞ; (4.9)

where

cj¼
X
�2�

ðIj;� �XÞ¼
X
�2�

ð��1Ij;XÞ¼ j�jðIj;XÞ: (4.10)

Here we have used that Ik is modular invariant, and j�j
equals the number of elements in �. For a given rational
CFT it is now (at least in principle) straightforward to
determine the modular completion of any given seed X:
once we have classified all modular invariants Ij, we only

need to evaluate the inner products ðIj; XÞ in order to

compute the modular completion of X. The gravitational
path integral (4.2) can then be computed by choosing the
seed X�� ¼ ��;1��;1.

If the CFT under consideration has more than one
modular invariant combination of characters, then the
modular completion of any seed will lead to a linear
combination of the different modular invariants ZðIjÞ.
This linear combination will typically not be a physical
invariant. Thus we should expect that the construction will
not lead to a physical modular invariant unless the CFT has
only one modular invariant combination of characters.

On the other hand, if the CFT has a unique modular
invariant, then this modular invariant must be physical
since every rational CFT has at least one physical modular
invariant given by the diagonal10

ZðI1Þ ¼
X
�

	� �	�: (4.11)

In this case the modular completion of any seed will lead to
a physical invariant, since the modular completion is
modular invariant by construction. Thus it will agree, up
to an overall coefficient, with ZðI1Þ. As we shall see

momentarily, both the Ising and the tricritical Ising models
fall into this class.

A. Modular invariants of Virasoro minimal models

For the Virasoro minimal models, the modular invariants
have been classified by Cappelli, Itzykson, and Zuber
[13,35]. Recall that the minimal models are parametrized
by two coprime positive integers p < p0, where

cðp; p0Þ ¼ 1� 6ðp� p0Þ2
pp0 : (4.12)

In the ðp; p0Þ-minimal model, the primary fields are labeled
by ðr; sÞ, where r ¼ 1; . . . ; p0 � 1 and s ¼ 1; . . . ; p� 1,
and we have the identification ðr; sÞ � ðp0 � r; p� sÞ.
Thus the characters form a representation of PSLð2;ZÞ
of dimension ðp� 1Þðp0 � 1Þ=2. Explicit formulas and
further details of this representation are given in
Appendix A.
As reviewed in Appendix B, the different modular in-

variant combinations of characters are labeled by pairs of
integers ðd; d0Þ, where dðd0Þ is a divisor of pðp0Þ. The
modular invariants can be described by matrices Xðd;d0Þ

��

using the notation of Eq. (4.5), which satisfy

Xðd;d0Þ ¼ �Xððp=dÞ;d0Þ ¼ �Xðd;ðp0=d0ÞÞ ¼ Xððp=dÞ;ðp0=d0ÞÞ:
(4.13)

The modular invariant I1 exists for all Virasoro minimal
models and corresponds to d ¼ d0 ¼ 1. This is the diago-
nal invariant, also referred to as the ‘‘AA’’ invariant. For
unitary minimal models, we have ðp; p0Þ ¼ ðm;mþ 1Þ
with m � 3. For m � 5 there exists at least one more

modular invariant, namely, Xð2;1Þ when m is even, or

Xð1;2Þ when m is odd. The linear combination Xð1;1Þ �
Xð1;2Þ or Xð1;1Þ � Xð2;1Þ is physical and corresponds to the
‘‘AD’’ or the ‘‘DA’’ modular invariant, respectively.
In what follows we will illustrate the properties and

consequences of this classification of modular invariants.
We will start with a few simple examples, including the
Ising and tricritical Ising models, before proceeding to the
general case.

1. The Ising model ðp; p0Þ ¼ ð3; 4Þ
For the Ising model ðp; p0Þ ¼ ð3; 4Þ, the possible divisors

ðd; d0Þ are (1, 1), (1, 2), (1, 4), (3, 1), (3, 2), and (3, 4). The
modular invariants with d ¼ 1, 3 and d0 ¼ 1, 4 are all (up
to an overall sign) equal to the I1 modular invariant. The
invariants with ðd; d0Þ ¼ ð1; 2Þ and ðd; d0Þ ¼ ð3; 2Þ vanish
by Eq. (4.13). Thus the Ising model has only one modular
invariant. The argument around Eq. (4.11) then implies that
Zgrav is, up to a constant, equal to the I1 modular invariant.

10The combination (4.11) is modular invariant because the
representation of the modular group is unitary.
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2. The tricritical Ising model ðp; p0Þ ¼ ð4; 5Þ
The analysis for the tricritical Ising model is essentially

identical. The possible divisors are (1, 1), (1, 5), (2, 1),
(2, 5), (4, 1), and (4, 5). Again, the modular invariants with
d ¼ 1, 4 and d0 ¼ 1, 5 are all (up to an overall sign) equal
to the I1 modular invariant, while the invariants (2, 1) and
(2, 5) vanish by Eq. (4.13). Thus the tricritical Ising model
has also only one modular invariant, and again Zgrav is

necessarily proportional to this modular invariant.

3. The ðp; p0Þ ¼ ð5; 6Þ model

Let us now consider the next unitary minimal model,
with ðp; p0Þ ¼ ð5; 6Þ. In this case there are two different
invariants, both of which are physical. In addition to the
AA invariant with ðd; d0Þ ¼ ð1; 1Þ we also have a nontrivial
AD invariant Xð1;1Þ � Xð1;2Þ. We should therefore not ex-
pect the Zgrav modular invariant, obtained as the modular

completion of the seed j	1;1j2, to be a physical invariant.

Instead, it will be a linear combination of the two physical
modular invariants.

Let us denote by XAA and XAD the two canonically
normalized physical modular invariants. An orthonormal
basis for the modular invariants can be taken to be

I1 ¼ 1ffiffiffiffiffiffi
10

p XAA; I2 ¼
ffiffiffiffiffiffi
5

48

s �
XAD � 4

5
XAA

�
: (4.14)

The inner products with the seed j	1;1j2 (i.e. with

X�� ¼ ��1��1) are

c1 ¼ ðI1; XÞ ¼ 1ffiffiffiffiffiffi
10

p ; c2 ¼ ðI2; XÞ ¼ 1ffiffiffiffiffiffiffiffi
240

p : (4.15)

Thus, up to an overall numerical factor,

X
�2�

j	1;1ð��Þj2 ffi 1ffiffiffiffiffiffi
10

p I1 þ 1ffiffiffiffiffiffiffiffi
240

p I2 ¼ 1

12
XAA þ 1

48
XAD

ffi 4

5
XAA þ 1

5
XAD: (4.16)

In the last step we have rescaled the partition function
so that the vacuum representation appears with multi-
plicity one. Because of the fractional coefficients the
resulting invariant is not physical.11 The coefficients
appearing in the q expansion are not positive integers,
so we conclude that in this case the partition function
of pure quantum gravity does not have a quantum
mechanical interpretation.

4. The general case

In general, the analysis of the ðp; p0Þ ¼ ðm;mþ 1Þ ¼
ð5; 6Þ model above appears to be representative of all

unitary minimal models with m � 5. Indeed, all of these
models have at least a second (physical) modular invariant.
Thus, generically, we expect fractional coefficients in the
normalized modular completion of the vacuum seed j	1;1j2
as in (4.16). We have tested this for a number of cases, and
this conclusion seems to be fairly robust.
We note, however, that if p0 � pþ 1—so that the re-

sulting models are nonunitary—then one can find models
with a unique modular invariant. In this case, the modular
completion of the vacuum seed (or indeed any other seed)
will necessarily give the physical modular invariant. The
minimal models that have this property are characterized
by the condition that p and p0 are both primes or squares of
primes; one can see from the discussion around (4.13) that
there is a unique modular invariant in this case.
In general, however, it appears that the only cases where

the path integral of general relativity equals that of a
unitary CFT are the critical and tricritical Ising models.

V. HIGHER SPIN GRAVITY
AND THE POTTS MODEL

So far we have limited our attention to pure gravity. Now
we will consider a wider class of bulk theories, and find
candidate duals for several more exactly solvable CFTs.
The bulk theories that we consider are higher spin theories
in AdS3, which include higher spin gauge fields in addition
to the graviton. Like pure gravity, higher spin gravity in
three dimensions is locally trivial—the only degrees of
freedom are boundary excitations—so the path integral
can be computed exactly and compared with known CFTs.
The asymptotic symmetry algebra of higher spin grav-

ity in AdS3 is a W algebra [15,31], which is an extension
of the Virasoro algebra to include higher spin currents.
This suggests that we look for dualities between quantum
higher spin gravity and CFTs with extended conformal
symmetry. We will compute the path integral of higher
spin gravity and find several examples where the resulting
partition function matches that of a known CFT with
extended symmetry. The simplest duality in this class
relates the three-state Potts model to SLð3Þ gravity.
Both theories have W 3 symmetry, and we will show
that they have the same torus partition function. This
provides a higher spin analogue of the Ising model duality
described above. Several other examples are also dis-
cussed below.

A. The Potts model and extended chiral algebras

We begin with a discussion of extended conformal sym-
metry in CFT, postponing the bulk interpretation until
Sec. VB.
In Sec. IVA3 we concluded that pure gravity does not

give a quantum mechanically consistent partition function
when ðp; p0Þ ¼ ð5; 6Þ. At this value of the central charge,
there are two possible minimal model conformal field
theories, corresponding to the two modular invariants

11This final expression can also be checked by computing
directly the sum over modular images.
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XAA and XAD described in Sec. IVA3. The gravitational
partition function X

�2�

j	1;1ð��Þj2 (5.1)

does not give either of these partition functions. However,
this does not rule out a dual interpretation using a different
theory of gravity. The second of these minimal model
conformal field theories—the one with the nondiagonal
‘‘AD’’ type partition function—is known as the three-state
Potts model. An explicit formula for its partition function
Zpotts is given in Eq. (A25). It turns out that Zpotts can be

written as a sum over modular images starting from a
different vacuum seed. For the Potts model, we observe
that X

�2�

j	1;1ð��Þ þ 	1;4ð��Þj2 ¼ 12Zpotts; (5.2)

where the sum is over the 48 distinct images of the vacuum
seed under SLð2;ZÞ. Here 	1;4 is the character built on a

Virasoro primary with dimension 3.
The expression (5.2) has a natural CFT interpretation.

The conserved spin-3 current of the Potts model extends
the chiral algebra of the theory from the Virasoro algebra
to W 3. Thus states can be organized into representations
of W 3. The vacuum representation of this algebra now
contains not just Virasoro descendants but also spin-3
descendants, so

	ð3Þ
vacð�Þ ¼ 	1;1ð�Þ þ 	1;4ð�Þ; (5.3)

where 	ð3Þ denotes a W 3 character at c ¼ 4
5 . Therefore

(5.2) can be writtenX
�2�

j	ð3Þ
vacð��Þj2 ¼ 12Zpotts: (5.4)

This is very similar to the identity for the Ising model,
except that the vacuum contribution is a W 3 character
rather than a Virasoro character. The equality (5.4) is
guaranteed by modular invariance: there is only one
modular invariant combination of W 3 characters at
c ¼ 4

5 (see e.g. [36]). We note that for the purposes of

computing the torus partition function we only care
about the functional dependence of this partition function
on �. However, this masks some of the structure of the
theory, as there are conjugate representations of W 3

which happen to have the same character. Thus the
partition function can actually be written in terms of
W 3 characters in many different ways. As we will
discuss in more detail in Sec. VC this will have impli-
cations for the computation of higher genus partition
functions, although it is invisible in the torus partition
function.

Other ðp; pþ 1Þ Virasoro minimal models in the D
series similarly have extended chiral algebras when p �
1; 2 ðmod 4Þ. The next case, p ¼ 6 and c ¼ 6

7 , is the tricrit-

ical Potts model. This CFT has a conserved dimension-5
current in addition to the stress tensor at dimension 2, so
the chiral algebra is denoted W ð2; 5Þ. The W ð2; 5Þ vac-
uum character at c ¼ 6

7 is

	ð5Þ
vac ¼ 	1;1 þ 	1;5; (5.5)

where 	1;5 contains the dimension-5 Virasoro primary.

Summing over modular images, we find

X
�2�

j	ð5Þ
vacð��Þj2 ¼ 16Ztri-potts: (5.6)

For p ¼ 9, 10, 13, with chiral algebras W ð2; 14Þ,
W ð2; 18Þ, and W ð2; 33Þ, respectively, the modular sum
reproduces the CFT partition function. However, this pat-
tern does not continue indefinitely. For p ¼ 14, it fails: the
modular sum produces a partition function with some
negative integer coefficients, which is not the partition
function of a unitary CFT.
As discussed in Appendix B 2, this can be understood

from the Cappelli-Itzykson-Zuber classification of modu-
lar invariants. For p > 4, all minimal models have an AA
invariant and an AD or a DA invariant (and some have
an exceptional E invariant). These are the only physical
invariants—i.e. the only ones with positive integer
coefficients—but, in general, there are also unphysical
invariants. The unphysical invariants first appear at
p ¼ 14, and account for the negative integers in the gravity
answer at this level. Conditions for a unitary model to have
only physical invariants are given in Appendix B 2; in these
cases the sum over modular images of the extended vac-
uum character reproduces the AD or DA-type CFT parti-
tion function. Otherwise, we expect a contribution from
unphysical invariants, which is confirmed in detail for
p ¼ 14 in Appendix B 3. These facts are summarized in
the first three columns of Table I in Sec. VI.

B. Extended chiral algebras from higher spin gravity

We have identified an infinite class of unitary CFTs—
Virasoro models with p ¼ 5, 6, 9, 10, 13, plus those in
Appendix B 2—with extended chiral algebras, where the
modular sum of the extended vacuum character produces a
consistent CFT partition function. Now we attempt to
construct bulk theories whose contribution around thermal
AdS is given by the extended vacuum character of these
CFTs. We will succeed only for p ¼ 5, 6; the results are
summarized in the final column of Table I.
As discussed above, the natural candidate dual for a

theory with extended conformal symmetry is a higher
spin theory. There are many different theories of higher
spin gravity in AdS3, specified by a Lie algebra g and an
embedding � of slð2Þ � g. The action is the sum of two
Chern-Simons actions,

GRAVITY DUAL OF THE ISING MODEL PHYSICAL REVIEW D 85, 024032 (2012)

024032-13



S ¼ kcsICS½A� � kcsICS½ �A�;
ICS½A� ¼ 1

4�

Z �
AdAþ 2

3
A3

�
;

(5.7)

where the gauge fields A, �A take values in g.12 Pure gravity
is the case g ¼ slð2Þ, studied in the Chern-Simons lan-
guage by Achucarro and Townsend [25] and Witten [37].
Blencowe [14] (see also [28,38]) generalized this construc-
tion to the infinite-rank higher spin algebra g ¼ shsð1; 2Þ of
Fradkin and Vasiliev [39,40]. The choice g ¼ slðNÞ was
studied recently in [15].

The choice of embedding slð2Þ � g defines the metric
components of the gauge field. This determines the bound-
ary conditions and the spectrum; for example, choosing
g ¼ slðN;RÞ with the principal embedding of slð2;RÞ, the
adjoint of slðN;RÞ decomposes as

adj ¼ MN�1

r¼1

Dr; (5.8)

where Dr is the spin-r representation of slð2;RÞ. We see
that these representations under slð2;RÞ correspond to a
tower of higher spin fields with spins s ¼ 2; 3; . . . ; N.13

Let us consider SLð3Þ higher spin gravity with the
principal embedding, with the coupling constant chosen
so that c ¼ 4

5 . Since this theory has W 3 asymptotic sym-

metry [33], it is natural to ask whether its path integral
gives the partition function of the Potts model. This is
indeed the case. The contribution to the path integral
around thermal AdS can be computed much like in pure
gravity; the only degrees of freedom are boundary grav-
itons and their higher spin cousins. Generalizing the argu-
ment of Sec. IV to include higher spin boundary
excitations, we find for SLð3Þ gravity

Zvac ¼ j	ð3Þ
vacð�Þj2; (5.9)

where 	ð3Þ
vac is the W 3 character defined in Sec. VA.

The sum over saddle points is the sum over modular
images (5.4), so we find

Zc¼4=5
SLð3Þgravity ¼ 12Zpotts: (5.10)

Note that we have not included any new saddle points
in the path integral; the only known classical solutions
of higher spin gravity that obey the boundary conditions
specified in Sec. II are those of ordinary gravity—the
SLð2;ZÞ family of black holes. Higher spin black holes

which are inequivalent to BTZ have been constructed
in [42–44], but they do not obey asymptotically AdS
boundary conditions so they do not contribute to our
path integral.
For a general theory of higher spin gravity based on the

Lie algebra g with a choice of embedding �, the asymp-
totic symmetry algebra is given by Drinfeld-Sokolov (DS)
reduction. DS reduction [45,46], reviewed in [47], is an
algebraic construction that associates a W algebra to any
affine algebra ĝkcs and slð2Þ embedding �. This algebra,

W DSðg; kcs; �Þ, is defined by imposing a constraint on the
affine algebra ĝkcs . The relation between DS reduction and

the asymptotic symmetries of higher spin gravity was
pointed out in [15,31] and further explored in [32,33,48].
The essential point is as follows. The conserved charges of
Chern-Simons gauge theory generate an affine algebra ĝkcs .

Higher spin gravity has the same action (5.7) as Chern-
Simons gauge theory, but is not quite identical because
(among other reasons [1]) boundary conditions must be
imposed on the metric and higher spin fields. The AdS3
boundary conditions turn out to be exactly the constraints
on ĝkcs that implement the DS reduction. For pure gravity,

this reduces the ŝlð2Þkcs affine symmetry of Chern-Simons

theory to the Virasoro symmetry found by Brown and
Henneaux [49,50]. For higher spin gravity based on g, �
at level kcs, the boundary conditions reduce the asymptotic
symmetries to W DSðg; kcs; �Þ.
This suggests a candidate dual for the tricritical Potts

model with chiral algebra W ð2; 5Þ. The W ð2; 5Þ algebra
can be obtained by DS reduction of E6 at central charge
c ¼ 6

7 [51]. Therefore, the asymptotic symmetry algebra of

E6 higher spin gravity, though generically much larger,
truncates to W ð2; 5Þ at this special value of the coupling.
The excitations around thermal AdS produce the vacuum
character of W ð2; 5Þ, and thus according to (5.6) we have

Zc¼6=7
E6 gravity

¼ 16Ztri-potts: (5.11)

The next case to consider is p ¼ 9, with chiral algebra
W ð2; 14Þ. We know of no way to construct this algebra
by DS reduction, so we cannot conjecture any bulk dual
with the appropriate partition function around thermal
AdS, and similarly for p ¼ 10, 13 and the other cases
in Appendix B 2. Although the CFT partition function can
be written as a sum over modular images, we know of no
bulk theory whose path integral produces this partition
function.

C. Parafermions

One can also construct minimal models associated with
the extended chiral algebra W N. Here W N denotes
W ð2; 3; . . . ; NÞ, the algebra with higher spin conserved
currents of all spins up to N in addition to the stress tensor
at dimension 2. In this section we ask whether these CFTs
may be dual to pure higher spin gravity.

12The subscript on kcs is to distinguish the level of the Chern-
Simons theory from the level k in the coset construction of
minimal models. In Lorentzian signature, A and �A are indepen-
dent, each taking values in the split real form of g. In Euclidean
signature, A takes values in the complex Lie algebra g and �A is
its complex conjugate.
13In four dimensions the situation is different: all known
theories have an infinite tower of higher spin fields [41].
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TheW N minimal model CFTs, reviewed in [47], can be
obtained as cosets

ŝuðNÞk � ŝuðNÞ1
ŝuðNÞkþ1

; (5.12)

from which their characters, modular S and T matrices, and
partition functions can be computed exactly. W 2 is the
Virasoro algebra, so setting N ¼ 2 we recover the unitary
Virasoro minimal models where p ¼ kþ 2. In general, the
central charge of a W N minimal model is

c ¼ ðN � 1Þ
�
1� NðN þ 1Þ

ðN þ kÞðN þ kþ 1Þ
�
: (5.13)

SettingN ¼ 3, k ¼ 1 gives c ¼ 4
5 , the central charge of the

Potts model. Thus in addition to being the (5, 6) Virasoro
minimal model, it is the first W 3 minimal model.
Although this first example is the Potts model, generically
these are new CFTs which do not appear among the
Virasoro models. Since SLðNÞ gravity has asymptotic
symmetry algebra W N [15], it is natural to ask when the
path integral of SLðNÞ gravity produces a consistent parti-
tion function for one of the W N minimal models. We
expect that this will only be the case when the characters
of the chiral algebra have a unique modular invariant
combination.

Some examples are provided by theW N minimal mod-
els at level k ¼ 1, known as parafermion theories, with
central charge

c ¼ 2
N � 1

N þ 2
: (5.14)

N ¼ 2 is the Ising model and N ¼ 3 is the Potts model.
N ¼ 4 parafermions have chiral algebra W ð1; 2; 3; 4Þ,
which is bigger than W N due to the appearance of the
spin-1 current. The sum over modular images of the vac-
uum character of this algebra produces a consistent par-
tition function, but we do not know of any algebra whose
DS reduction gives W ð1; 2; 3; 4Þ, so there is no candidate
bulk dual.

Parafermions with N ¼ 5, 6, 7, 8 do not have any extra
conserved currents—the chiral algebra is simply W N in
each case—so the natural guess for a bulk dual is SLðNÞ
gravity. The thermal AdS contribution to the bulk path
integral of SLðNÞ gravity is the vacuum character of
W N . To compute the sum over modular images, we need
the S and T matrix of the coset model (see, for example,
[24,52]). T is the obvious generalization of (A6), and S is
the product of S matrices for the affine algebras appearing
in (5.12). Performing the sum over inequivalent saddle
points, we find that the bulk path integral gives a consistent
CFT partition function for all of these cases. It would be
interesting to see whether this continues at larger N.

Although the CFT partition functions obtained in this
way are consistent, they have a peculiar feature that is
illustrated by the three-state Potts model. Whether we

view this theory as the k ¼ 2 Virasoro model or the
k ¼ 1 W 3 model, it is the same CFT, but the W 3

partition function contains, in a sense, more informa-
tion. In W 3 language, the Potts model consists of W 3

primaries labeled by representations of SUð3Þ,
�1 ¼ ð0; 0Þ; �2 ¼ ðf; 0Þ; �c

2 ¼ ð�f; 0Þ;
�3 ¼ ð0; fÞ; �c

3 ¼ ð0; �fÞ; �4 ¼ ðf; �fÞ; (5.15)

where f is the fundamental and �f is the antifundamental.
The corresponding conformal weights are h1;2;3;4 ¼
0; 23 ;

1
15 ;

2
5 , and �c denotes a conjugate field, which has the

same conformal weight but opposite eigenvalue under the
spin-3 current. Thus the partition function is encoded in a
6� 6 matrix of positive integers,

Zpottsð�; ��Þ ¼
X6
i;j¼1

RijSið�ÞSjð�Þ; (5.16)

where Si denote the W 3 characters for (5.15).
Viewed as a function of �, the partition function does not

completely fix the matrix Rij because conjugate represen-

tations have the same character,

S2 ¼ Sc2; S3 ¼ Sc3: (5.17)

Therefore, if we only know Z as a function of �, we cannot
distinguish between the diagonal spectrum

Z ¼ jS1j2 þ jS2j2 þ jSc2j2 þ jS3j2 þ jSc3j2 þ jS4j2 (5.18)

and the mixed invariant

Z ¼ jS1j2 þ 1
2jS2 þ Sc2j2 þ 1

2jS3 þ Sc3j2 þ jS4j2: (5.19)

The first is the spectrum of the Potts model, while the
second is inconsistent since it has half-integer coefficients
when the vacuum is unit normalized. These are identical
functions of � which describe different operator content.
When the partition function of SLð3Þ higher spin gravity

is computed by the prescription in Sec. IV, it gives the
matrix Rij in (5.16) corresponding to the latter spectrum,

not the diagonal. This does not, by itself, imply any incon-
sistency, because the gravity path integral is only a function
of �; it cannot distinguish between the diagonal and mixed
invariants. Still, it leaves open the possibility that SLð3Þ
gravity is not the three-state Potts model, but rather an
inconsistent theory with the spectrum (5.19). The two
possibilities cannot be distinguished at genus one, but
would lead to different correlation functions, and different
partition functions at genus two or higher.

VI. DISCUSSION

We have provided evidence that several theories of
quantum gravity are dual to simple, exactly solvable, mini-
mal conformal field theories. Table I summarizes our re-
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sults. We emphasize that this is the first time that the
partition function of general relativity has been computed
in three dimensions and found to give a result which
describes a unitary quantum theory.

At this point these dualities should be regarded as con-
jectural. The torus partition function of a CFT includes all
data about its spectrum, but no nontrivial information
about correlation functions. So there is much more that
could be checked. The data in these correlation functions
are encoded in the higher genus CFT partition functions,
which can, in principle, be matched with an analogous
gravity path integral computation at higher genus. This
computation is more complicated than the one described
in the present paper, but may be possible.14 In the case of
the Ising model the higher genus partition functions are
well studied so there is a possibility of a precise check. One
might hope to prove that the all-genus partition function of
Einstein gravity at c ¼ 1=2 agrees with the Ising model,
which would practically amount to a proof of the duality.

There is a second natural question to ask at this point,
which is why only certain minimal model conformal field
theories appear in Table I. Of all possible minimal models,
what is special about these theories which allows them to
be interpreted as pure theories of quantum gravity?
Although we cannot answer this question definitively, we
can make one suggestive observation. Let us consider those
theories which are dual to pure gravity, the critical and
tricritical Ising models. These two theories have the prop-
erty that all of the nontrivial states in the theory obey the
bound

h >
c

24
: (6.1)

Moreover, among all the Virasoro minimal models with
diagonal modular invariants, these are the only two theo-
ries with this property. All other minimal models admit
primary states below the bound (6.1).
From the bulk gravity point of view, this bound is

completely natural. Three-dimensional AdS gravity pos-
sesses BTZ black holes which are separated from the AdS
ground state by a gap. These black holes correspond to
states in the dual CFT with weight larger than c=24; i.e.
they lie in the ‘‘Cardy regime’’ of the dual CFT. Indeed,
this is why it is possible to describe the BTZ entropy using
the Cardy formula of the dual CFT [55]. Thus the critical
and tricritical Ising models are the only two diagonal
minimal model CFTs with the property that all primary
states can be interpreted as black holes. What is remarkable
is that the bound h > c=24, which was justified using
semiclassical gravitational reasoning, appears to apply in
the strongly coupled regime. It would be interesting to
understand the extent to which the primary operators of
these CFTs can be interpreted as black holes. These are
highly quantum theories of gravity where the usual semi-
classical notions fail to apply, but there may still be some
useful sense in which these states share the properties of
black holes.
All other minimal models have primaries which may be

interpreted as matter fields, and hence may be dual not to
pure gravity but rather to something more complicated.
One might hope to generalize the analysis of the modular
sums in Secs. IV and V to construct other candidate vac-
uum partition functions whose sum over the modular group
gives a minimal model partition function. However, it is
not clear that this is possible. We have not been able to find
a natural seed that would lead to a physical modular
invariant even for a simple example (see Appendix B 3).
Finally, we note that the results described in Table I are

not exhaustive. For example, we have restricted our atten-
tion to models without supersymmetry, but we expect that
the generalization of this to supersymmetric models would
be straightforward. It would be interesting to explore this

TABLE I. Unitary CFTs for which the torus partition function has a natural interpretation as a
sum over geometries. Where the bulk dual is ‘‘unknown,’’ there is no known way to produce the
correct chiral algebra by Drinfeld-Sokolov reduction, as discussed in Sec. VB. The last entry is
an infinite class of models with central charge (5.13), and extended chiral algebras as discussed
in Sec. VA and Appendix B 2.

c Minimal model CFT Algebra Bulk dual

1
2 N ¼ 2, k ¼ 1 (Ising) Virasoro Pure gravity

7
10 N ¼ 2, k ¼ 2 (Tricritical Ising) Virasoro Pure gravity

4
5 N ¼ 2, k ¼ 3 or N ¼ 3, k ¼ 1 (Potts) W 3 SLð3Þ gravity
6
7 N ¼ 2, k ¼ 4 (Tricritical Potts) W ð2; 5Þ E6 gravity

2 N�1
Nþ2 N ¼ 5, 6, 7, 8, k ¼ 1 (Parafermions) W N SLðNÞ gravity

1 N ¼ 4, k ¼ 1 (Parafermions) W ð1; 2; 3; 4Þ unknown

N ¼ 2, k ¼ 7; 8; 11; . . . , see Appendix B 2 unknown

14A computation of this sort was described in [53,54], under the
assumption that the partition function of pure gravity factorizes
holomorphically. This makes the computation technically easier,
but cannot be justified from the bulk gravity point of view unless
one includes complex saddle points or considers a chiral theory
(such as chiral gravity).
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and other classes of examples in detail. It may even be
possible to find a class of unitary examples which have a
large central charge limit; this would then provide simple
examples of theories of quantum gravity with a semiclas-
sical limit.
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APPENDIX A: MINIMAL MODELS

1. Overview

The Virasoro minimal models are labeled by coprime
integers ðp; p0Þ with p0 >p> 2 and central charge given
by (1.5). The degenerate representations of the Virasoro
algebra at c ¼ cðp; p0Þ< 1 are labeled by integers ðr; sÞ
with

1 
 r 
 p0 � 1; 1 
 s 
 p� 1;

ðr; sÞ � ðp0 � r; p� sÞ: (A1)

The conformal dimensions of these representations are

hr;s ¼ ðpr� p0sÞ2 � ðp� p0Þ2
4pp0 ; (A2)

and their characters are denoted by

	r;sð�Þ ¼ trqL0 ; q � e2�i�; (A3)

with L0 ¼ h� c=24. These characters transform into one
another under modular transformations

T: � ! �þ 1; S: � ! �1=�: (A4)

Organizing the characters into a vector 	�, where � ¼
ðr; sÞ, the transformation rules are

	�ð�þ 1Þ ¼ X



T�
	
ð�Þ;

	�ð�1=�Þ ¼ X



S�
	
ð�Þ;
(A5)

where

Trs;�
 ¼ �r;��s;
 exp

�
2�i

�
hr;s � c

24

��
(A6)

and

Srs;�
 ¼ 2

ffiffiffiffiffiffiffiffi
2

pp0

s
ð�1Þ1þs�þr
 sin

�
�

p

p0 r�
�
sin

�
�
p0

p
s


�
:

(A7)

To write explicit expressions for the minimal model char-
acters we will use, given the equivalence relation (A1), the
values of ðr; sÞ such that the product rs is minimized. With
this choice

	r;sð�Þ ¼ Kðp;p0Þ
r;s ð�Þ � Kðp;p0Þ

r;�s ð�Þ; (A8)

where

Kðp;p0Þ
r;s ð�Þ ¼ 1

�ð�Þ
X
n2Z

qð2pp0nþpr�p0sÞ2=4pp0
: (A9)

2. ADE classification

We now review the construction of modular invariant
partition functions. For a given chiral algebra we wish to
construct all partition functions,

Zð�; ��Þ ¼ X
h; �h

Nh; �h	hð�Þ	 �hð ��Þ; (A10)

that are modular invariant and have a unique vacuum.
These conditions imply that the matrix Nh; �h satisfies

Nh; �h 2 N0; N0;�0 ¼ 1;

NT ¼ TN; NS ¼ SN: (A11)

This classification problem for rational CFTs is a well-
posed, but difficult, algebraic problem. For rational
theories based on the slð2Þ algebra there is a one-to-one
correspondence between modular invariants and pairs of
simply laced Lie algebras with Coxeter numbers p0 and p.
This is the ADE classification of minimal models devel-
oped in [13,35,56]. For a quick version of the construction
see [24,57].
We do not intend to review the entire ADE classification.

For the purpose of our discussion it will be sufficient to
highlight two classes of physical modular invariants: di-
agonal (AA) and block diagonal (AD, DA).

a. Diagonal invariants

Invariance under the action of T restricts the relative
values of the left and right weights in (A10) to

h� �h ¼ 0 mod 1: (A12)

One natural solution is to have nonzero entries in N only
for h ¼ �h. Together with the remaining conditions (A11)
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the only solution is the diagonal modular invariant

ZAA ¼ X
r;s

j	r;sj2: (A13)

Modular invariance is guaranteed because S is a unitary
matrix. The subscripts AA refer to the An algebra of the
ADE classification.

b. Block diagonal invariants

The next to simplest solution to (A12) involves linear
combinations of characters whose conformal dimensions
differ by integers (so that the whole linear combination is
invariant under the T transformation). Furthermore, one
needs to require that the S transformation relates the rele-
vant linear combinations to one another. Then one can
consider the usual diagonal modular invariant of this
‘‘extended theory.’’

For example, for ðp; p0Þ with p0 ¼ 4mþ 2 and m> 1,
the DA modular invariant is of this type,

ZDA ¼ 1

2

Xp�1

s¼1

� X2m�1

rodd¼1

j	r;s þ 	4mþ2�r;sj2 þ 2j	2mþ1;sj2
�
:

(A14)

A similar formula (with the roles of r and s interchanged)
applies for the AD invariant with p ¼ 4mþ 2.

3. Examples

a. Ising model

The Ising model is the (3, 4) Virasoro minimal model
with central charge c ¼ 1

2 . The characters 	1;1, 	1;2, 	2;1

correspond to fields of weight h ¼ 0, 1
2 ,

1
16 , respectively.

These characters transform in the three-dimensional rep-
resentation of SL2ðZÞ with

T ¼
e�2�i=48 0 0

0 e2�ið23=48Þ 0

0 0 e2�=24i

0
BB@

1
CCA;

S ¼ 1

2

1 1
ffiffiffi
2

p

1 1 � ffiffiffi
2

p
ffiffiffi
2

p � ffiffiffi
2

p
0

0
BB@

1
CCA:

(A15)

The unique modular invariant function is the diagonal
invariant

ZAA ¼ X
r;s

j	r;sj2 ¼ j	1;1j2 þ j	1;2j2 þ j	2;1j2: (A16)

b. Tricritical Ising model

The tricritical Ising model corresponds to the (4, 5)
minimal model with central charge c ¼ 7

10 . There are six

primary fields with weights

0;
1

10
;

3

5
;

3

2
;

3

80
;

7

16
; (A17)

and the basis of characters are

	1;1; 	3;3; 	2;3; 	1;3; 	2;2; 	1;2: (A18)

The representation of SL2ðZÞ is given by

T ¼ diagðe2�ið233=240Þ; e2�ið17=240Þ; e2�ið137=240Þ; e2�ið113=240Þ; e2�ið2=240Þ; e2�ið98=240ÞÞ; (A19)

S ¼ 1ffiffiffi
5

p

s2 s1 s1 s2
ffiffiffi
2

p
s1

ffiffiffi
2

p
s2

s1 �s2 �s2 s1
ffiffiffi
2

p
s2 � ffiffiffi

2
p

s1

s1 �s2 �s2 s1 � ffiffiffi
2

p
s2

ffiffiffi
2

p
s1

s2 s1 s1 s2 � ffiffiffi
2

p
s1 � ffiffiffi

2
p

s2ffiffiffi
2

p
s1

ffiffiffi
2

p
s2 � ffiffiffi

2
p

s2 � ffiffiffi
2

p
s1 0 0ffiffiffi

2
p

s2 � ffiffiffi
2

p
s1

ffiffiffi
2

p
s1 � ffiffiffi

2
p

s2 0 0

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
; (A20)

where s1 ¼ sin2�5 , s2 ¼ sin4�5 . The unique modular invari-
ant function is the diagonal invariant

ZAA ¼ X
r;s

j	r;sj2

¼ j	1;1j2 þ j	1;2j2 þ j	1;3j2 þ j	2;2j2
þ j	2;3j2 þ j	3;3j2: (A21)

c. Three-state Potts model

The central charge of the (5, 6) model is c ¼ 4
5 ; there are

10 characters,

	1;1; 	1;2; 	1;3; 	1;4; 	2;2; 	2;3;

	2;4; 	3;3; 	3;4; 	4;4; (A22)

corresponding to primaries of weight
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0;
2

5
;

7

5
; 3;

1

40
;

21

40
;

13

8
;

1

15
;

2

3
;

1

8
:

(A23)

There are two physical partition functions for c ¼ 4
5 . The

diagonal invariant is

ZAA ¼ X
r;s

j	r;sj2; (A24)

and the block diagonal invariant is

ZDA ¼j	1;1þ	1;4j2þj	1;2þ	1;3j2þ2j	3;3j2þ2j	3;4j2:
(A25)

This block diagonal invariant is the partition function of
the three-state Potts model.

d. Tricritical Potts model

Finally we turn to the (6, 7) minimal model. The central
charge is c ¼ 6

7 , and there are 15 irreducible characters

	r;s,

	1;1���5; 	2;2���5; 	3;3���5; 	4;4; 	4;5; 	5;5; (A26)

with weights hr;s,

0;
3

8
;

4

3
;

23

8
; 5;

1

56
;

10

21
;

85

56
;

22

7
;

1

21
;

33

56
;

12

7
;

5

56
;

5

7
;

1

7
: (A27)

There are two physical partition functions for c ¼ 6
7 . The

diagonal invariant is

ZAA ¼ X
r;s

j	r;sj2; (A28)

and the block diagonal invariant is

ZAD ¼ X
s¼1;2;3

j	s;1 þ 	s;5j2 þ 2j	s;3j2: (A29)

This block diagonal invariant is the partition function of
the tricritical Potts model.

APPENDIX B: MODULAR SUMS

1. Bases of modular invariants

In the ðp; p0Þ-minimal model, the primary fields are
labeled by ðr; sÞ, with r ¼ 1; . . . ; p0 � 1, s ¼ 1; . . . ;
p� 1 and the identification ðr; sÞ � ðp0 � r; p� sÞ. The
corresponding characters form a representation of
PSLð2;ZÞ of dimension ðp� 1Þðp0 � 1Þ=2, with genera-
tors S and T given by (A6) and (A7). Modular invariant
combinations of characters correspond to Hermitian ma-
trices which commute with S and T. A basis for the space
of such matrices has been found by Cappelli, Itzykson, and
Zuber [13,35]. In this appendix, we will review their
construction.

Let p, p0 be coprime positive integers. For each r,
s 2 Z, we define �r;s 2 Z2pp0 by

�r;s :¼ rp� sp0 mod2pp0: (B1)

The following relations hold modulo 2pp0,

�r;s ¼ ��p0�r;p�s ¼ !0�r;�s ¼ �!0��r;s mod 2pp0;

(B2)

where !0 is defined mod 2pp0 by the properties

!0p ¼ p mod 2pp0; !0p
0 ¼ �p0 mod 2pp0;

!2
0 ¼ 1 mod 4pp0: (B3)

More precisely, if r0, s0 are integers such that r0p�
s0p

0 ¼ 1, then !0 ¼ r0pþ s0p
0.

For 1 
 r 
 p0 � 1 and 1 
 s 
 p� 1, the element
�r;s 2 Z2pp0 is related to the conformal weight hr;s of the

ðr; sÞ-primary field by

hr;s � c

24
¼ �2

r;s

4pp0 �
1

24
mod 1; (B4)

where c � cðp; p0Þ is the central charge (4.12).
Furthermore, if we set

K� :¼ 1

�ð�Þ
X1

n¼�1
qð2pp0nþ�Þ2=4pp0

and

	� :¼ K� � K!0�; (B5)

then for 1 
 r 
 p0 � 1 and 1 
 s 
 p� 1,

K�r;s
¼ Kr;s; 	�r;s

¼ 	r;s; (B6)

with Kr;s and 	r;s defined in (A8). The advantage of these

definitions is that the modular transformations of 	� can be
easily described as

	�ð�þ 1Þ ¼ X
�2Z2pp0

T��	�ð�Þ;

	�ð���1Þ ¼ X
�2Z2pp0

S��	�ð�Þ;
(B7)

where the 2pp0 � 2pp0 matrices T�� and S�� are

T�� ¼ �ð2pp0Þð���Þe2�i½ð�2=4pp0Þ�ð1=24Þ�;

S�� ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2pp0p e2�ið��=2pp0Þ:

(B8)

Using the identities

K� ¼ K�� ¼ K�þ2pp0 ;

	� ¼ 	�� ¼ 	�þ2pp0 ¼ �	�!0�;
(B9)

it follows that each (not necessarily physical) modular
invariant combination of characters of the ðp; p0Þ-minimal
model corresponds to a 2pp0 � 2pp0-dimensional
Hermitian matrix X�� that commutes with T�� and S��
and satisfies
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X�;� ¼ X�;�� ¼ �X�;!0� ¼ �X�;�!0�: (B10)

The invariant ZðXÞ corresponding to such a X�� is

ZðXÞ ¼ 1

16

X
�;~�2Z2pp0

X�;~�	�ð�Þ �	~�ð�Þ

¼ 1

4

X
1
r;~r
p0�1
1
s;~s
p�1

X�r;s;�~r;~s
	r;sð�Þ �	~r;~sð�Þ: (B11)

A basis for the space of 2pp0 � 2pp0-dimensional real
symmetric matrices commuting with T�� and S�� has been

constructed by Cappelli, Itzykson, and Zuber [13]. The
basis elements

ð�pp0
dd0 Þ�;�; d; d0 2 Z;

d; d0 > 0; djp; d0jp0; (B12)

have integral entries, and are in one-to-one correspondence
with positive integers d and d0 such that djp and d0jp0 (see
[13], Eq. III.4). The matrices ð�pp0

dd0 Þ�;� satisfy the relations

ð�pp0
dd0 Þ�;� ¼ ð�pp0

ðp=dÞd0 Þ�;!0� ¼ ð�pp0
dðp0=d0ÞÞ�;�!0�

¼ ð�pp0
ðp=dÞðp0=d0ÞÞ�;��: (B13)

The subspace of matrices satisfying the additional condi-
tions (B10) is spanned by

Xðd;d0Þ
�;�

:¼ ð�pp0
dd0 Þ�;� þ ð�pp0

dd0 Þ�;��

� ð�pp0
dd0 Þ�;!0� � ð�pp0

dd0 Þ�;�!0� (B14)

¼ ð�pp0
dd0 Þ�;� þ ð�pp0

ðp=dÞðp0=d0ÞÞ�;�
� ð�pp0

ðp=dÞp0 Þ�;� � ð�pp0
dðp0=d0ÞÞ�;�; (B15)

and the only linear relations are

Xðd;d0Þ ¼ �Xðp=d;d0Þ ¼ �Xðd;p0=d0Þ ¼ Xðp=d;p0=d0Þ: (B16)

2. Models with one or two modular invariants

In this subsection we discuss the minimal models with
only one or two modular invariants. In the first case, the
sum over modular images of any seed, if not zero, must
correspond to a physical modular invariant up to
normalization.

The ðp; p0Þ-minimal model has only one invariant Xð1;1Þ
if and only if both p and p0 are either primes or squares of
primes. Thus, there is an infinite set of minimal models—
with the exception of the (3, 4) and (4, 5) models, they are
nonunitary—for which the sum over the modular images of
j	1;1j2 gives the AA physical invariant (up to the normal-

ization) X
�2�

j	1;1ð��Þj2 �
X
r;s

j	r;sð�Þj2: (B17)

The unitary minimal models (m, mþ 1) with m> 4
always have at least a second modular invariant. More
generally, for any ðp; p0Þ-minimal model with p > 4
even, there are exactly two modular invariants (namely,

Xð1;1Þ and Xð2;1Þ) if and only if p0 is prime or the square of a
prime, and p is twice a prime or p ¼ 8. In this case, with
the exception of the models with p ¼ 8, one can define an
extended chiral algebra with vacuum character 	1;1 þ
	p�1;1. The modular invariants Xð1;1Þ and Xð2;1Þ satisfy

Tr ððXð1;1ÞÞ2Þ ¼ TrððXð2;1ÞÞ2Þ ¼ ðp� 1Þðp0 � 1Þ=2;
(B18)

so that I1 ¼ Xð1;1Þ � Xð2;1Þ and I2 ¼ Xð1;1Þ þ Xð2;1Þ form an
orthogonal basis. Furthermore, if we define the Hermitian
matrix Y by X

�;�

Y��	� �	� ¼ j	1;1 þ 	1;p�1j2; (B19)

we obtain

TrðI1YÞ ¼ 4; TrðI2YÞ ¼ 0: (B20)

Thus, X
�2�

� � Y � I1; (B21)

so that the sum over modular images gives (up to normal-
ization) the AD physical invariant.
One way to generate unitary models of this kind is to

consider a Sophie Germain prime p, and to set m ¼ 2p
with mþ 1 ¼ 2pþ 1. (Sophie Germain primes are char-
acterized by the property that 2pþ 1 is also prime). It has
been conjectured that there are infinitely many Sophie
Germain primes (see e.g. [58]), although this does not
seem to have been proven yet.

3. More than two invariants: the (14, 15) minimal model

In general, when a model has many modular invariants,
we do not expect the sum over the modular images of the
vacuum character to correspond to a physical invariant. A
simple example is provided by the (14, 15) Virasoro mini-
mal model. This model has four modular invariants

Xð1;1Þ; Xð2;1Þ; Xð1;3Þ; Xð2;3Þ; (B22)

and the matrix of scalar products ðXðd;d0Þ; Xð~d;~d0ÞÞ :¼
TrðXðd;d0ÞXð~d;~d0ÞÞ is

91 35 13 5

35 91 5 13

13 5 91 35

5 13 35 91

0
BBBBB@

1
CCCCCA; (B23)
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where the invariants Xðd;d0Þ are ordered as in (B22). An
orthonormal basis is given by

I1 ¼ Xð1;1Þ � Xð2;1Þffiffiffiffiffiffiffiffi
112

p ; I2 ¼ Xð1;1Þ þ Xð2;1Þffiffiffiffiffiffiffiffi
252

p ; (B24)

I3 ¼ �Xð1;1Þ þ 7Xð1;3Þffiffiffiffiffiffiffiffiffiffiffi
4368

p ;

I4 ¼ �5Xð1;1Þ þ 13Xð2;1Þ þ 35Xð1;3Þ � 91Xð2;3Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
628 992

p :

(B25)

The physical modular invariants are ZAA and ZDA, corre-

sponding, up to normalization, to Xð1;1Þ ¼ ffiffiffiffiffiffi
28

p
I1 þ

ffiffiffiffiffiffi
63

p
I2

and I1, respectively. Any linear combination of invariants
involving I3 and I4 is nonphysical. The invariant ZDA is the
partition function for a model with an extended chiral
algebra, whose vacuum character is

	1;1 þ 	1;13: (B26)

If we sum over the modular images of

X
�;�

Y��	� �	� ¼ j	1;1 þ 	1;13j2; (B27)

we obtain

X
�2�

� � Y ¼ j�j
�

4ffiffiffiffiffiffiffiffi
112

p I1 � 2ffiffiffiffiffiffiffiffiffiffiffi
4368

p I3 � 36ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
628 992

p I4

�
:

(B28)

Thus, the modular invariant obtained this way is nonphys-
ical. More generally, one can consider a seed of the form

X
�;�

Y��	� �	� ¼ j	1;1 þ
X
r;s

cr;s	r;sj2; (B29)

where cr;s are non-negative integers. This seed corresponds
to the vacuum character with respect to an extension of
Virasoro algebra by cr;s copies of the ðr; sÞ fields. A neces-

sary consistency condition for this algebra to be well
defined is that cr;s ¼ 0 whenever the conformal weight

hr;s is not integral; for the (14, 15) model, the most general

seed satisfying this constraint is

X
�;�

Y��	� �	� ¼ j	1;1 þ c1;13	1;13 þ c4;13	4;13

þ c11;13	11;13j2: (B30)

The sum over modular images of this seed is proportional

to the AA invariant
ffiffiffiffiffiffi
28

p
I1 þ

ffiffiffiffiffiffi
63

p
I2 if

TrðI1YÞ ¼
ffiffiffiffiffiffi
28

p
K; TrðI2YÞ ¼

ffiffiffiffiffiffi
63

p
K;

TrðI3YÞ ¼ 0; TrðI4YÞ ¼ 0; (B31)

and proportional to the AD invariant I1 if

TrðI1YÞ ¼ K; TrðI2YÞ ¼ 0;

TrðI3YÞ ¼ 0; TrðI4YÞ ¼ 0; (B32)

for an arbitrary real constant K. These equations can be
solved for the unknowns c1;13, c4;13, c11;13, and K, and one

finds that there are no solutions where c1;13, c4;13, c11;13 are
all non-negative integers. Thus, no physical invariant can
be obtained by seeds of this form.
One could have also reached this conclusion by noting

that if a consistent extended algebra existed, then it would
lead to another physical modular invariant, namely, the
charge conjugation invariant with respect to this algebra.
Since the classification of Cappelli-Itzykson-Zuber [13,35]
excludes any further invariant, it follows that there are only
two consistent algebras, the Virasoro algebra or its exten-
sion by the ðr; sÞ ¼ ð1; 13Þ field. In both cases one checks
easily that the modular completion does not lead to a
physical invariant.
A natural way to relax the above ansatz is to consider

seeds containing primaries (with respect to the Virasoro or
an extended algebra) other than the vacuum, but to require
that the corresponding conformal dimensions satisfy hþ
�h 
 cþ �c

24 . By the argument above, we can restrict ourselves

to the cases where the algebra is either the Virasoro algebra
or its extension by the ðr; sÞ ¼ ð1; 13Þ field. In the Virasoro
case the most general seed isX

�;�

Y��	� �	� ¼ j	1;1j2 þ c2;2j	2;2j2 þ c3;3j	3;3j2

þ c4;4j	4;4j2 þ c5;5j	5;5j2; (B33)

while for the extended algebra we haveX
�;�

Y��	� �	� ¼ j	1;1 þ 	1;13j2 þ c3;3j	3;3 þ 	3;11j2

þ c5;5j	5;5 þ 	5;9j2: (B34)

One can check that there are no solutions to (B31) and
(B32) in the Virasoro case, while for the extended algebra
the AD physical invariant is obtained from the seed

j	1;1 þ 	1;13j2 þ 1
6j	3;3 þ 	3;11j2: (B35)

However, the relative factor of 1
6 means that this does not

have an interpretation as ‘‘the perturbative part’’ of a
consistent partition function.
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