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We investigate oscillating instanton solutions of a self-gravitating scalar field between degenerate

vacua. We show that there exist Oð4Þ-symmetric oscillating solutions in a de Sitter background. The

geometry of this solution is finite and preserves the Z2 symmetry. The nontrivial solution corresponding to

tunneling is possible only if the effect of gravity is taken into account. We present numerical solutions of

this instanton, including the phase diagram of solutions in terms of the parameters of the present work and

the variation of energy densities. Our solutions can be interpreted as solutions describing an instanton-

induced domain wall or braneworld-like object rather than a kink-induced domain wall or braneworld.

The oscillating instanton solutions have a thick wall and the solutions can be interpreted as a mechanism

providing nucleation of the thick wall for topological inflation. We remark that Z2 invariant solutions also

exist in a flat and anti-de Sitter background, though the physical significance is not clear.
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I. INTRODUCTION

The interpolating solution between degenerate vacua in
curved space can be the solution representing formation of
a domain wall or a braneworld-like object with Z2 sym-
metry if the thin-wall approximation scheme is used in the
theory. Moreover, the solution after the analytic continu-
ation expands, from an observer’s point of view on the
wall, without eating up bulk (inside and outside) space-
time. Can the braneworld or domain wall have a nontrivial
internal structure? The structure can be made with oscillat-
ing instanton solutions. What is the meaning of this inter-
nal structure? Can the number of oscillations indicate
certain criteria based on specific parameters? In order to
get the answers to the above questions, we need to obtain
oscillating solutions, interpret the meaning of the solutions,
and construct a phase space of all allowed oscillating
solutions.

In the absence of gravity, instantons are usually defined
as solutions with a finite action to the classical field equa-
tions in Euclidean space obeying appropriate boundary
conditions. The Yang-Mills instantons are also finite action
solutions and have been studied extensively in gauge theo-
ries [1,2] as well as in string theory [3,4], and references
therein. In gravitational theory, there are several kinds of
instantons [5]. Instantons should also be solutions to the
Euclidean Einstein equations. Some instantons usually
cannot be analytically continued to Lorentzian. Others
can be analytically continued to Lorentzian. Instantons
may be related to the semiclassical description of quantum

gravity. However, this issue is beyond the scope of the
present work and is therefore not being discussed here.
In this work, we consider tunneling phenomena in a

double-well potential. Classically, a particle trapped in
one well cannot penetrate through the potential barrier of
that well, thus unaffected by the presence of the other well.
However, if the central potential barrier is not infinitely
high, there is tunneling between the two minima. The
tunneling process is quantum mechanically described by
the Euclidean solution obeying appropriate boundary con-
ditions. The Euclidean solution interpolates between two
different classical vacua. There exist two kinds of Euclidean
solutions describing tunneling phenomena in the double-
well potential. One, which is for tunneling in an asymmetric
double-well potential, corresponds to a bounce solution.
The bounce solution describes the decay of a background
vacuum state. The other, which is for tunneling in a sym-
metric double-well potential, corresponds to an instanton
solution. The instanton solution, in this case, describes a
general shift in the ground state energy of the classical
vacuum due to the presence of an additional potential
well, lifting the classical degeneracy [6].
The instanton solution in one dimension is equivalent to

a static soliton in (1þ 1) dimensions. Thus, the method for
kink solution in two dimensions can be employed for
studying the instanton solution in one dimension. The
Euclidean equation of motion can be treated like a one-
particle equation of motion with an evolution parameter
playing the role of time in the inverted potential. A particle
starts at the top of one hill at minus infinity in Euclidean
time and arrives at the top of the other hill at plus infinity.
The Euclidean action for the tunneling solution can be
calculated easily using the fact that the Euclidean energy
of an instanton is equal to zero in the system. This action
is identical to the energy of a static solution of the
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(1þ 1)-dimensional soliton theory. In addition, the action
has the same value as the action obtained in connection
with the WKB approximation of the splitting in energies of
the two lowest levels for the symmetric double-well po-
tential. In semiclassical approximation, the action is domi-
nated by classical configuration in evaluating the path
integral.

For field theoretical solutions in (3þ 1) dimensions, the
Euclidean equation of motion for Oð4Þ symmetry has an
additional term, which can be interpreted as a damping
term. Thus, it is difficult to obtain the Oð4Þ-symmetric
instanton solution in this system when gravity is switched
off. The damping term can be changed into the antidamp-
ing term not only in de Sitter (dS) space but also in both flat
and anti-de Sitter (AdS) space when gravity is taken into
account [7]. The solutions have exact Z2 symmetry and
give rise to geometry of a finite size. Using a homogeneous
and static scalar field, which has a constant value of �
everywhere in Euclidean space, was shown to be impos-
sible for the solution to have an infinite size due to the
infinite cost of energy.

The bounce solution is related to the nucleation of a true
(false) vacuum bubble describing decay of a background
vacuum state. The process has been studied within various
contexts for several decades. It was first investigated in
Ref. [8] and developed in both flat [9] and curved space-
time [10,11]. A homogeneous Euclidean configuration in
which the scalar field jumps simultaneously onto the top of
the potential barrier was investigated in Ref. [12] and
further studied in Ref. [13]. As a special case of the true
vacuum bubble, a vacuum bubble with a finite-sized back-
ground after nucleation was studied in Ref. [14]. The decay
of false monopoles with a gauge group was also studied
using the thin-wall approximation [15]. The bubble or
brane resulting from flux tunneling was studied in a six-
dimensional Einstein-Maxwell theory [16].

The mechanism for nucleation of a false vacuum bubble
in a true vacuum background has also been studied within
various contexts. Nucleation of a large false vacuum bub-
ble in dS space was obtained in Ref. [17] and nucleation
with a global monopole in Ref. [18]. The mechanism for
nucleation of a small false vacuum bubble was obtained in
the Einstein gravity with a nonminimally coupled scalar
field [19], with Gauss-Bonnet term in Ref. [20], and using
Brans-Dicke type theory [21]. The classification of vacuum
bubbles including false vacuum bubbles in the dS back-
ground in the Einstein gravity was obtained in Ref. [22], in
which the transition rate and the size of the instanton
solution were evaluated in the space, as the limiting case
of large true vacuum bubble or large false vacuum bubble.

The oscillating solution withOð4Þ symmetry in dS space
was first studied in Ref. [23], where the authors found the
solution to oscillating scalar field � in fixed background.
They adopted the fact that the role of damping term in
the particle analogy picture can be changed into that of

antidamping term in dS space if the evolution parameter
exceeds half of a given range. The oscillation means that
the field in their solutions oscillates back and forth between
the two sides of the potential barrier. To obtain the general
solutions including the effect of the backreaction, we will
solve the coupled equations for the gravity and the scalar
field simultaneously.
In the absence of gravity, the spectrum of small pertur-

bations about the bounce solution has exactly one negative
mode [24]. When gravity is taken into account, the prob-
lem becomes more complex [25]. On the other hand, the
spectrum about the instanton solution between degenerate
vacua has no negative mode. Thus we expect that the
spectrum about our solutions will not have any negative
modes.
The paper is organized as follows: in the next section we

set up the basic framework for this work. We consider the
tunneling process for the symmetric double-well potential
and study the boundary conditions for our present work in
detail. The boundary conditions analyzed in this work can
be applicable to other cases including bounce solutions. In
Sec. III, we present numerical oscillating instanton solu-
tions by solving the coupled equations for the metric and
the scalar field simultaneously. We show that there exist
Oð4Þ-symmetric oscillating solutions in dS background.
We also examine the variation in the thickness of the
wall and the energy density as the number of oscillations
increased. Additionally, we examine numerically which
solutions among oscillating solutions are relatively prob-
able. The numerical solution is also possible in flat and
AdS space as long as the local maximum value of the
potential is positive. In Sec. IV, we analyze the properties
of oscillating instanton solutions and construct the phase
space of all our solutions in terms of the two parameters
for this work. The phase space of solutions exhibits the
behaviors that occur when the number of oscillations
increases and indicates the regions where there are no
solutions depending on the parameters. In Sec. V, we
summarize and discuss our results. We interpret the physi-
cal meaning of our oscillating solutions with thick walls
and discuss the probability of our solutions.

II. THE SETUP AND THE BOUNDARY
CONDITIONS

The vacuum-to-vacuum transition amplitude called the
generating functional for the Green’s function can serve as
a starting point for the nonperturbative treatment of the
theory. In the path integral formalism, it can be visualized
as the summation over all possible paths moving from the
initial to the final state. The transition amplitude in the
semiclassical approximation is dominated by those paths
for which the Euclidean action difference is stationary.
Thus, the tunneling amplitude can be evaluated in terms
of the classical configuration and represented as Ae��S

in this approximation, where the leading semiclassical
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exponent �S is the difference between the Euclidean ac-
tion corresponding to a classical solution and the back-
ground action itself. The prefactor A comes from the first
order quantum correction [6,24].

Let us consider the following action:

S ¼
Z
M

ffiffiffiffiffiffiffi�g
p

d4x

�
R

2�
� 1

2
r��r���Uð�Þ

�

þ
I
@M

ffiffiffiffiffiffiffi�h
p

d3x
K � Ko

�
; (1)

where g � detg��, � � 8�G, R denotes the scalar curva-

ture of the spacetime M, K and Ko are the traces of the
extrinsic curvatures of @M in the metric g�� and ���,

respectively, and the second term on the right-hand side is
the boundary term [26]. The gravitational field equations
can be obtained properly from a variational principle with
this boundary term. This term is also necessary to obtain
the correct action.

We reconsider the tunneling process for the symmetric
double-well potential in curved space similar to our pre-
vious work [7]. The potential Uð�Þ, which represents the
energy density of a homogeneous and static scalar field,
has two degenerate minima

Uð�Þ ¼ �

8

�
�2 ��2

�

�
2 þU0: (2)

The cosmological constant is given by � ¼ �Uo, hence
the space will be dS, flat, or AdS depending on whether
U0 > 0, U0 ¼ 0, or U0 < 0. We will make an attempt to
obtain oscillating instanton solutions describing tunneling
between degenerate vacua in these backgrounds.

To evaluate �S and show the existence of the solution,
one has to take the analytic continuation to Euclidean
space. We assume the Oð4Þ symmetry for both the geome-
try and the scalar field as in Ref. [10]

ds2 ¼ d�2 þ �2ð�Þ½d	2 þ sin2	ðd
2 þ sin2
d�2Þ�:
(3)

In this case � and � depend only on �, and the Euclidean
field equations for them can be written in the form:

�00 þ 3�0

�
�0 ¼ dU

d�
and �00 ¼ ��

3
�ð�02 þUÞ; (4)

respectively, and the Hamiltonian constraint is given by

�02 � 1� ��2

3

�
1

2
�02 �U

�
¼ 0: (5)

In order to yield the solution the constraint requires a
delicate balance among the terms. Otherwise the solution
can provide qualitatively incorrect behavior [27].

Now we have to consider the boundary conditions to
solve Eqs. (4) and (5). There are two different methods.
The first one is an initial value problem, in which we
impose the initial conditions for the equations. For this to

work, initial conditions are provided for the values of the
fields � and � or their derivatives �0 and �0 at � ¼ 0 as
follows:

�j�¼0 ¼ 0;
d�

d�

���������¼0
¼ 1;

�j�¼0 ¼ �o; and
d�

d�

���������¼0
¼ 0;

(6)

where the first condition means that the space including a
solution is a geodesically complete space. The second
condition stems from Eq. (5). The fourth condition
�0 ¼ 0 is due to the regularity condition as can be seen
from the first equation in Eq. (4). However, the third
condition for the initial value of � is not determined.
One should find the initial value of � using the
undershoot-overshoot procedure. This procedure particu-
larly useful for the nonoscillating bounce solution, i.e. a
one-crossing solution as we will explain about it in the next
section. Some initial �o will give the overshooting, in
which the value of � at late � value will go beyond

�=
ffiffiffiffi
�

p
. Some other initial value of �o will give the under-

shoot, in which the value of � at late � does not reach

�=
ffiffiffiffi
�

p
. Thus, the value �o must be within an intermediate

position between the undershoot and overshoot [9]. The
existence of oscillating solutions is hidden within the
undershoot as we will see in the next sections. The other
method is a boundary value problem or a two boundary
value problem. We impose conditions specified at � ¼ 0
and � ¼ �max. For this to work, we choose the values of
the field � and derivatives of the field � as follows:

�j�¼0 ¼ 0; �j�¼�max
¼ 0;

d�

d�

���������¼0
¼ 0; and

d�

d�

���������¼�max

¼ 0:
(7)

�max is the maximum value of � and will have a finite
value. These conditions are useful for obtaining solutions
with Z2 symmetry.
In order to solve the Euclidean field Eqs. (4) and (5)

numerically, we first rewrite the equations in terms of
dimensionless variables as in Ref [19]:

�Uð�Þ
�4

¼ ~Uð ~�Þ; ��2

�2
¼ ~�2; �� ¼ ~�;

�� ¼ ~�; and
�2

�
� ¼ ~�: (8)

These variables give

~Uð ~�Þ ¼ 1

8
ð ~�2 � 1Þ2 þ ~U0; (9)

and the Euclidean field equations for � and � are
rewritten as

OSCILLATING INSTANTON SOLUTIONS IN CURVED SPACE PHYSICAL REVIEW D 85, 024022 (2012)

024022-3



~� 00 þ 3~�0

~�
~�0 ¼ d ~U

d ~�
and ~�00 ¼ � ~�

3
~�ð ~�02 þ ~UÞ;

(10)

respectively. The Hamiltonian constraint is given by

~� 02 � 1� ~�~�2

3

�
1

2
~�02 � ~U

�
¼ 0: (11)

We now make comments on the boundary conditions
more precisely to solve Eqs. (10) and (11) numerically. As
we already mentioned in the boundary value problem,
there are two kinds of conditions. The relaxation method
is one of the methods employed to solve a two boundary
value problem. However we do not know the exact value of
~�max in our case, thus we can not impose the boundary
condition at ~� ¼ ~�max. In this work, we employ the shoot-
ing method using the adaptive step size Runge-Kutta as an
initial value problem as done in Ref. [28]. For this proce-

dure we choose the initial values of ~�ð~�initialÞ, ~�0ð~�initialÞ,
~�ð~�initialÞ, and ~�0ð~�initialÞ at ~� ¼ ~�initial as follows:

~�ð~�initialÞ � ~�0 þ �2

16
~�0ð ~�2

0 � 1Þ þ �3

48
ð3 ~�2

0 � 1Þ;

~�0ð~�initialÞ � �

8
~�0ð ~�2

0 � 1Þ þ �2

16
ð3 ~�2

0 � 1Þ;
~�ð~�initialÞ � �;

~�0ð~�initialÞ � 1;

(12)

where ~�initial ¼ 0þ � and � � 1. If we find the initial

value ~�0, the other conditions are given by Eqs. (12).
Furthermore we impose additional conditions implicitly.
To avoid a singular solution at ~� ¼ ~�max in Eq. (10) and to

demand the Z2 symmetry, the conditions d ~�=d~� ! 0 and
~� ! 0 as ~� ! ~�max are needed. In this work, we require

that the value of d ~�=d~� goes to a value smaller than 10�6

as ~� ! ~�max, as the exact value of ~�max is not known.
We will examine the energy density of the oscillating

region of the solution to observe a domain wall structure.
The action for the one-dimensional instanton has the fol-
lowing form:

so ¼
Z 1

�1

�
1

2
�02 þU

�
d ¼ 2�3

3�
;

where we take the potential similar to the one in Eq. (2). To
obtain a solution with finite action, it is required that
�0 ! 0 and U ! 0 as  ! �1. This action is equal to
the surface tension or the surface energy density of the wall
[9]. When gravity is taken into account, the situation is
more complicated. To simplify things, we only consider the
Euclidean action of the bulk part in Eq. (1) to get,

SE ¼
Z
M

ffiffiffiffiffiffi
gE

p
d4xE

�
�RE

2�
þ 1

2
�02 þU

�

¼ 2�2
Z

�3d�½�U�; (13)

where RE ¼ 6½1=�2 � �02=�2 � �00=�� and we used
Eqs. (4) and (5) to arrive at this. Thus the contributions
coming from the geometry and kinetic energy in the
Euclidean action are included to be the potential effec-
tively. On the other hand, the action in Ref. [10] can be
rewritten as

SE ¼ � 12�2

�

Z
�d�

�
1� ��2U

3

�
; (14)

where the authors used integration by parts. Since they
were only interested in the difference between the actions
of the two solutions that agree at infinity, the surface term
evolving from the integration by parts is regarded as un-
important. The minus sign appeared in the action is related
to the fact that the Euclidean action for Einstein gravity is
not bounded from below, which is known as the conformal
factor problem in Euclidean quantum gravity [29].
However, this issue is not central to our problem and
therefore we will not discuss this issue furthermore in the
present paper. In this work, we will examine the relative
probability among the solutions. We employ Eq. (13) for
the present work. The volume energy density has the
following form:

� � �H ¼ �
�
�RE

2�
þ 1

2
�02 þU

�
¼ U: (15)

We will examine the change in the density with respect to
the evolution parameter � in the next section.

III. OSCILLATING INSTANTON SOLUTIONS
BETWEEN DEGENERATE VACUA

In Ref. [23], the authors found an oscillating solution
between the dS-dS vacuum states. They have shown that
there exist two kinds of oscillating solutions, one is en-
dowed with an asymmetric double-well potential while the
other is with a symmetric potential. They showed how does
the maximum allowed number nmax depend on the parame-
ters of the theory, in which n denotes the crossing number
of the potential barrier by the oscillating solutions.
However, they solved the equation for the scalar field in
the fixed dS background. This is a good approximation
only for Uo � Uð�Þ �Uo [23]. In this paper, we will
solve the coupled equations for the metric and the scalar
field simultaneously for any arbitrary vacuum energy Uo.
In the first place, we present the details of oscillating
instanton solutions including numerical solutions and the
variation of the energy density to see the structure of the
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domain wall and the oscillating behavior depending on ~�
and ~� ~Uo in dS space with Uo > 0. Then, we present
oscillating solutions in flat space with Uo ¼ 0. Finally,
we present oscillating solutions in the AdS space with
Uo < 0.

Figure 1 shows oscillating instanton solutions represent-
ing tunneling starting from left vacuum state in dS-dS
degenerate vacua. Figure 1(a) illustrates the potential, in
which the number n denotes the number of the crossing or
the number of oscillations. We take ~Uo ¼ 0:5 and ~� ¼
0:04 for all the cases. Figure 1(b) illustrates the initial point
~�o for each number of oscillations. As expected, the
number of oscillations increases as the initial point,
~�ð~�initialÞ ¼ ~�o, moves away from the vacuum state.
Figure 1(c) illustrates the solutions of ~�. The solution of

~� is
ffiffiffiffiffiffiffi
3

~� ~Uo

q
sin

ffiffiffiffiffiffiffi
~� ~Uo

3

q
� in fixed dS space. Thus, the graph of a

sine type function near the vacuum states indicates dS
space. We can see that the size of the geometry with such
a solution decreases as the number of crossing increases
because the period of the evolution parameter ~�max de-
creases as the starting point moves away from the vacuum

state. Figure 1(d) illustrates the one-crossing solution,

n ¼ 1, of the field ~�. The one-crossing solution corre-
sponds to the instanton solutions with the Oð4Þ symmetry
between the degenerate vacua [7], for which it was shown
that the solutions exist not only in the dS space but also in
the flat and AdS space if the local maximum value of
the potential is positive. Figure 1(e) illustrates the
two-crossing solution, n ¼ 2. The two-crossing solution,
n ¼ 2, was considered as a type of the double-bounce
solution or anti-double-bounce solution [30], in which
the authors interpreted the double-bounce solution as the
spontaneous pair-creation of true vacuum bubbles sepa-
rated by a wall. However, the solution in this paper is
quite different from the double-bounce solution found in

Ref. [30]. Since our solution of ~� does not asymptotically
approach the other vacuum state, it is difficult to interpret
our solution as the double-instanton solution or the
spontaneous pair-creation of instanton solutions.
Figures 1(f)–1(i) illustrate the n-crossing solution, for
n ¼ 3, 4, 5, 6. The maximum number nmax ¼ 6 depends
on the parameters ~Uo and ~�. In other words, there is no
solution for n > nmax with ~Uo ¼ 0:5 and ~� ¼ 0:04.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 1. The numerical solutions represent oscillating instanton solutions between dS-dS degenerate vacua.
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Figures 1(d), 1(f), and 1(h) illustrate the tunneling starting
from the left vacuum state to the right vacuum state.
Figures 1(e), 1(g), and 1(i) illustrate solutions going
back to the starting point after oscillations. The maximum
number of oscillations is determined by the parameters ~�
and ~Uo as was observed in Ref. [23].

Figure 2 shows the variation of terms, ~�0, ~�0, ~�00, 3~�
0

~�
~�0,

and d ~U=d ~�, with respect to ~� appearing in Eqs. (10) and
(11). In Figs. 2(a)–2(f), we see that the change of sign of ~�0
from positive to negative occurs at the half period due to the
Z2 symmetry. Thevalue of ~�0 at the initial and the final value
of ~�means there is a dS space at that point. The value of �0
spans from�1 to 1 in all figures. The transition region of ~�0
means the rolling duration in the inverted potential. In this
region, all other terms have dynamical behavior. The value

of ~�00 representing an acceleration of the particle in the
inverted potential increases, decreases, and becomes zero at
the half period. The graph is odd function. The value of ~�00 is
always negative or zero as an even function according to
Eq. (10). The damping term also increases, decreases, and

becomes zero as an odd function. The term d ~U=d ~� has got
the same property. Figures 2(a), 2(c), and 2(e) representing

tunneling show that ~�0, ~�00, damping term, and d ~U=d ~�
change their sign simultaneously at the half period. While
Figs. 2(b), 2(d), and 2(f) representing solutions going back
to the starting point show that only ~�0 change its sign at the
half period. All of the behaviors represented in each figure
can be well understood bearing Z2 symmetry in mind. The
initial and final regions of ~�0 in each figure exhibit cosine
type function as the solution near the vacuum states indi-
cates dS space.

The behavior of the solutions in the ~�ð~�Þ � ~�0ð~�Þ plane
using the phase diagram method is shown in Fig. 3.
Figure 3(a) illustrates the phase diagram of a one-crossing
solution, in which the trajectory is restricted to the upper
half region of the diagram. It is the turning point from the

damping phase to the antidamping phase when ~�0 takes the
maximum value and ~� attains the first zero. The value of ~�

spans from �1 to þ1 and ~�0 from zero via maximum
value to �0:47, to zero with symmetry about the y axis.
Figure 3(b) illustrates the diagram of a two-crossing solu-
tion, in which the trajectory does not reach the opposite

point ~� ¼ 1 but return to the starting point of ~� ¼ �1.

When the trajectory goes back, ~�0 is negative with a
symmetry about the x axis. It is the turning point from

the damping phase to the antidamping phase when ~�0

reaches the second zero and ~� takes the positive value.
Figure 3(c) illustrates the diagram of a three-crossing

solution. It is the turning point where ~�0 takes the negative
maximum value and ~� attains the second zero. Figure 3(d)
illustrates the diagram of a four-crossing solution. It is the

turning point when ~�0 reaches the third zero and ~� takes the
negative value. Figure 3(e) illustrates the diagram of a five-

crossing solution. It is the turning point when ~�0 takes the
positive value and ~� attains the second zero. Figure 3(f)
illustrates the diagram of a six-crossing solution. It is the

turning point when ~�0 reaches the third zero and ~� takes the
positive value. Figures 3(a), 3(c), and 3(e) have a symmetry
about the y axis, whereas Figs. 3(b), 3(d), and 3(f) have a

symmetry about the x axis. The maximum value of ~�0

decreases as the number of crossing increases.

(a) (b) (c)

(d) (e) (f)

FIG. 2. Variation of terms in equations of motion between dS-dS degenerate vacua.
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Figure 4 shows the diagram of the energy density for
each solutions. In each figure part, the solid line denotes
the Euclidean energy E� and the dotted line denotes the

volume energy density � in Eq. (15). The Euclidean energy
signifies the value after the integration of variables except
for � in the present case. The peaks represent a rolling
phase in the valley of the inverted potential. The maximum
value �max is equivalent to Utop. The number of peaks is

thus equal to the number of crossing. The peaks broaden in
their range near Utop as the number of crossing increases.

The Euclidean energy also has peaks. However, the shape
of the peaks becomes smooth and broadens as the number
of crossing increases. As can be seen from Fig. 4(f), the
thickness of the wall increases as the number of oscilla-
tions increases. The mountain-shaped graph of the

Euclidean energy in each figure part is due to the integra-
tion of variables in the dS space.
We now consider oscillating instanton solutions between

flat-flat degenerate vacua with ~Uo ¼ 0. The numerical
solutions in this case are shown in Fig. 5, where we take
~� ¼ 0:2 for all the figures. Figure 5(a) illustrates the solu-

tion of ~� for a one-crossing solution and Fig. 5(b) for a
two-crossing solution. Figure 5(c) illustrates the solution
for each ~�. The solution of ~� is � in fixed flat space. Thus,
the graph of the linear function near the vacuum states
indicates flat space. The maximum number nmax is 6 for the
parameters ~Uo ¼ 0 and ~� ¼ 0:2.
Figure 6 depicts a collection of diagrams including the

variation of terms in the equations of motion, phase dia-
grams, and the diagram of energy density between flat-flat

(a)

(d) (e) (f)

(b) (c)

FIG. 4. The diagram for energy density of each solutions. In each figure, the dotted line denotes the volume energy density � and the
solid line denotes the Euclidean energy E� at constant �.

(a)

(d) (e) (f)

(b) (c)

FIG. 3. The behavior of the solutions in the�-�0 plane using the phase diagram method. This case belongs to the tunneling between
dS-dS degenerate vacua.
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degenerate vacuum states. Figure 6(a) corresponds to a
one-crossing solution and Fig. 6(b) corresponds to a two-

crossing solution. In Fig. 6(b), the maximum value of ~�0 is
about 0.49. The volume energy density and the Euclidean
energy are always positive. The initial and final region of
~�0 in Figs. 6(a) and 6(d) exhibits a horizontal nature as the
solution near vacuum states indicates flat space. In Figs. 5
and 6, two solutions with n ¼ 1 and n ¼ 2, are illustrated
and other solutions are omitted because the general behav-
iors for these cases are similar to those in dS space.

Next, we consider oscillating instanton solutions be-
tween AdS-AdS degenerate vacua with ~Uo < 0. The nu-
merical solutions in this case are shown in Fig. 7, where we
take ~Uo ¼ �0:02 and ~� ¼ 0:4 for all the figure parts.

Figure 7(a) illustrates the solution of ~� for a one-crossing
solution while Fig. 7(b) does the same for a two-crossing
solution. Figure 7(c) illustrates the solution for each ~�. The

solution of ~� is
ffiffiffiffiffiffiffiffiffi
3

~�j ~Uoj
q

sinh
ffiffiffiffiffiffiffiffiffi
~�j ~Uoj
3

q
� in fixed AdS space.

Thus, a graph of hyperbolic sine type function near the
vacuum states indicates AdS space. The maximum number
nmax is 4 for these parameters ~Uo and ~�.
Figure 8 shows the collective variation of terms in

equations of motion, phase diagrams, and the diagram of
energy density between AdS-AdS degenerate vacuum
states. Figure 8(a) corresponds to a one-crossing solution
while Fig. 8(b) corresponds to a two-crossing solution. In
Figs. 8(c) and 8(f), the dented region between the peaks of

(a) (b) (c)

(f)(e)(d)

FIG. 6. Variation of terms in equations of motion, phase diagrams, and the diagram for energy density between flat-flat degenerate
vacua.

(a) (b) (c)

FIG. 7. The numerical solutions between AdS-AdS degenerate vacua.

(a) (b) (c)

FIG. 5. The numerical solutions between flat-flat degenerate vacua.
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the Euclidean energy is due to the integration of variables
in AdS space. The volume energy density and the
Euclidean energy are both negative in AdS region and
become positive in the valley of the inverted potential,
i.e. the dS region. The initial and the final region of ~�0 in
Figs. 8(a) and 8(d) exhibit a hyperbolic cosine type func-
tion, because the solution near the vacuum states indicates
AdS space. In Figs. 7 and 8, two solutions with n ¼ 1 and
n ¼ 2, are illustrated and all other solutions are omitted
since the general behaviors for these cases are similar to
those in dS space.

The second term of the first equation in
Eq. (4) contributes significantly to obtain solutions. In
other words, the sign of the term needs to be properly
changed to keep harmony with the sign of the other terms.
This adequate change of sign is possible only if the gravity
is taken into account. As a result of tunneling, geometries
of solutions become finite with Z2 symmetry. Each space
surrounded by the wall can be either dS, flat, or AdS space.
Thus the geometries of solutions in flat and AdS space
become quite different from those before tunneling.

We now examine the tunneling probability for the solu-
tions. The tunneling rate can be evaluated in terms of the
classical configuration and represented as e��S in this
approximation, where the leading semiclassical exponent
�S ¼ Scs � Sbg is the difference between the Euclidean
action corresponding to a classical solution Scs and the
background action Sbg. When one considers the usual
bounce solution, the outside geometry of the bounce solu-
tion does not change ever after tunneling. Hence the con-
tribution from outside is canceled. The only contribution to
�S comes from the part inside and the wall leading to the
finiteness of �S.

On the other hand, if one considers a single instanton
solution with a finite size, there exists a subtle problem.
There is no such subtlety for the dS case. For this case, both
the actions for solutions with a finite size of the lens type

geometry and background with finite size S4 are negative,
i.e. Scs < 0 and Sbg < 0, while the net difference is positive
�S > 0 giving rise to the probability of less than 1.
However, there is a problem in defining the probability
for the flat and AdS space. For flat space the Euclidean
action for solution is a negative one, i.e. Scs < 0 while the
background Sbg ¼ 0. Therefore the net difference is nega-
tive �S < 0 making the naive probability greater than 1.
The negative value of the exponent is due to the contribu-
tion for the valley of the inverted potential, i.e. the dS
region, which is related to the fact that the Euclidean
action for Einstein gravity is not bounded from below
[29]. For AdS space the Euclidean action of solutions is
a negative one Scs < 0, whereas the background Sbg ¼
þ1. The net difference has got the negative divergence
�S ¼ �1. This divergence is due to the contribution
coming from the infinite space with nonzero vacuum
energy. It is not clear how to interpret this point in
physical terms in the present work. We can make �S
finite by introducing a cutoff. The effect of the cutoff, as
the size increases, was discussed in Ref. [7]. In this
work, we will concentrate only on the relative probabil-
ity. We then only need to compare the actions for
oscillating solutions with the action of a one-crossing
instanton, i.e. ðScsn � SbgÞ � ðScs1 � SbgÞ ¼ Scsn � Scs1 .
Table I shows the actions for all of the solutions. We

numerically obtained the actions for oscillating solutions
from the data. In the integration, we employ an additional
normalization process as we use dimensionless quantities
for our numerical calculation. Thus we have normalized

�~Sn to be the difference between the action of the
n-crossing solution and that of a one-crossing solution

divided by a j~S1j as follows:

�~Sn � �~Sn

j~S1j
¼

~Sn � ~S1

j~S1j
(16)

(a) (b) (c)

(f)(e)(d)

FIG. 8. Variation of terms in equations of motion, phase diagrams, and the diagram for energy density between AdS-AdS degenerate
vacua.
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where ~Sn denotes the action for the n-crossing solution.
Our results are depicted in Table I, in which ð~�; ~UoÞ are
taken to be (0.04,0.5), (0.2,0), and (0.4,-0.02), respectively.
Our results show that, as predicted, the transition amplitude
is suppressed with an increase in oscillation number.

IV. PROPERTIES OF OSCILLATING
INSTANTON SOLUTIONS BETWEEN

THE DEGENERATE VACUA

In the previous section, we obtained various properties
of the oscillating solutions between dS-dS, flat-flat, and
AdS-AdS degenerate vacua. We make an attempt to obtain
the phase space of these solutions in terms of the parame-
ters ~� and ~� ~Uo. The parameter ~� is the ratio between the
gravitational constant or Planck mass and the mass scale in

the theory, ~� ¼ �2

� � ¼ 8��2

M2
p�

, whereas the parameter ~� ~Uo is

related to the cosmological constant �=�2. Many ques-
tions naturally arise at this stage. The first one is how many
of the oscillating solutions are allowed for given ~� and ~Uo.
The second one is whether the number of oscillations
depends on these parameters or not. What is the whole
phase space of solutions according to the parameter re-
gions, if the number depends on the parameters? The third
one deals with the different behaviors of solutions among
dS-dS, flat-flat, and AdS-AdS cases. To answer these ques-
tions, we will try to figure out the phase space of solutions
in terms of ~� and ~� ~Uo. For ~� � 1, the effect of gravity is
negligible. However, when ~� approaches to order one
value, the effect of gravity becomes important. To obtain
the phase space of solutions, we collect data of ~Uo, which
makes a difference in the maximum number of oscillations,
nmax, for a given ~�. We then obtain a specific ~Uo which
determines the minimum number of oscillations, nmin.
Finally, we employ the method of least squares [28] to
obtain the relationship between the two parameters in the
given data sets of ~� and ~� ~Uo. Oscillating numbers appear
to be linearly related to the parameters.

Figure 9 shows the behavior of oscillating solutions in
terms of ~� and ~� ~Uo. The value of ~� is limited in the range
0 ~̂� 1̂. At the point ~� ¼ 0, or Mp ¼ 1, gravity is

switched off. The y axis represents no gravity. We expect
that there exists no solution with Oð4Þ symmetry when
gravity is turned off. In each of the figure parts, we use the

notation (nmin, nmax), where nmin represents the minimum
number of oscillations and nmax the maximum number of
oscillations in the given parameter range. For example,
ðnmin; nmaxÞ ¼ ð1; 1Þ means that the minimum number of
oscillations is 1 and the maximum number of oscillations is
1. Figures 9(a) and 9(b) illustrate the number of oscilla-
tions for the case of dS-dS degenerate vacua. In Fig. 9(a),
there is a zone representing no solution in the upper right
region. When the parameters ~� or ~Uo are increased, the
evolution period of ~�max is diminished in general. ~� ap-
proaches ~�max before the field arrives at the other vacuum
state in the inverted potential. Thus, there is no solution
because of the short evolution period. In other words, the
instanton solution can not fit inside the Euclideanized dS
background in the strong gravity limit. When the parame-
ters ~� or ~Uo are decreased, both the evolution period of
~�max and the maximum number of oscillations get in-
creased. Figure 9(b) illustrates the zone with small value
of parameters in Fig. 9(a). The upper zone allows nmin ¼ 1,
whereas the lower zone allows nmin ¼ 2 divided by the
solid line. Figure 9(c) illustrates the behavior of the oscil-
lating solutions in the case of AdS-AdS degenerate vacua.
In this case, ðnmin; nmaxÞ ¼ ð1; 1Þ is not allowed. If there is a

(a) (b)

(c) (d)

FIG. 9. Oscillating behavior depending on ~� and ~� ~Uo.
Figure 9(a) shows the oscillating properties of dS-dS degenerate
case and Fig. 9(b) shows small values of parameters once more.
Figure 9(c) is a AdS-AdS degenerate case, and Fig. 9(d) shows
the total parameter space, we have searched.

TABLE I. �Sn for Oscillating solutions between dS-dS, flat-flat, and AdS-AdS degenerate vacua.

Oscillation number dS-dS case ð�~SnÞðe��~Sn Þ Flat-flat ð�~SnÞðe��~Sn Þ AdS-AdS ð�~SnÞðe��~Sn Þ
1 �544 000 ð0Þð1Þ �403 752 ð0Þð1Þ �152 000 ð0Þð1Þ
2 �511 000 ð0:061Þð0:941Þ �161 000 ð0:601Þð0:548Þ �39 300 ð0:903Þð0:405Þ
3 �490 000 ð0:099Þð0:906Þ �114 726 ð0:716Þð0:489Þ �30 234 ð0:925Þð0:396Þ
4 �479 000 ð0:119Þð0:887Þ �101 000 ð0:750Þð0:472Þ �28 384 ð0:930Þð0:395Þ
5 �475 000 ð0:127Þð0:881Þ �96 000 ð0:762Þð0:467Þ � � �
6 �473 000 ð0:131Þð0:878Þ �94 700 ð0:765Þð0:465Þ � � �
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tunneling solution, then there are oscillating solutions
found together. This is a different property as compared
to the dS-dS case. In addition to this, there is a no-solution
parameter region corresponding to regions for which ~Uo 	
�0:125 in the case of AdS-AdS degenerate vacua as there
is no dS region of potential [7]. In this case, the change of
nmin is more prominent. Even at ~� ¼ 1, with strong gravity,
the change of nmin occurs. This is another difference be-
tween the dS-dS and the AdS-AdS cases. Whole parameter
space of ~� and ~� ~Uo is shown in the Fig. 9(d). In this figure,
we can see that the changes of nmin and nmax in the dS-dS
case are continuously connected to those in the AdS-AdS
case. The x axis, ~Uo ¼ 0, represents the flat-flat case. In the
flat-flat case, there exists a solution for all of ~� except for
~� ¼ 0.
Figure 10 shows the schematic diagram for the phase

space of all solutions including yet another type of solution
and the number of oscillating solutions with different ~�
values. The left figure has ~� ¼ 0 line indicating no gravity
effect. There is a zone representing no solution in the upper

right region in the case of dS. The dS region has positive
~Uo and the AdS region has negative ~Uo divided by the line,
~Uo ¼ 0, representing the flat case. In the middle area
including the flat case, nmin and nmax increase as ~� and
~� ~Uo decrease. The tendency is indicated as the painted
arrows. The inclined line in the AdS region represents
~Uo ¼ �0:125 or ~Utop ¼ 0. In the lower left region, there

exists another type of solution. The figure on the right
shows how nmin and nmax are changed in terms of ~� ~Uo

and ~�. As we can see from the figure, nmax and nmin

increase as ~� ~Uo decreases.
Figure 11 shows another type of solutions in Fig. 10. The

solutions represent tunneling from the top of the potential,
a point of an unstable equilibrium, to the local vacuum
state instead of rolling down the potential. The solutions
can be of the same kind of a bubble solution describing
tunnelingwithout a barrier [31,32]. InFigs. 11(a) and 11(c),
we take ~� ¼ 0:5 and ~Uo ¼ �1. The inside geometry is
AdS and that of the outside is flat. In Figs. 11(b) and 11(d),
we take ~� ¼ 0:5 and ~Uo ¼ �1. The inside geometry is
AdS and that of the outside is AdS.

V. SUMMARYAND DISCUSSIONS

We have studied oscillating instanton solutions of a self-
gravitating scalar field between degenerate vacua. We ob-
tained numerical solutions in dS background. Basically,
our method for obtaining the domain wall or braneworld-
like object [33,34] is based on the instanton-induced theory
rather than the kink-induced theory. Our approach is re-
lated to the question: How we can make spacetime includ-
ing the domain wall in dS and flat space? If the thin-wall
approximation scheme is allowed in our work and the
mechanism is applied to solutions in higher-dimensional
theories, our one-crossing solutions can be interpreted as
the mechanism providing nucleation of the domain wall or
braneworld in instanton-induced theory. Because our os-
cillating solutions have a thick wall with varying energy
density, our oscillating solutions can be interpreted as the
mechanism providing nucleation of the thick wall for
topological inflation [35,36]. We add that Z2 invariant

FIG. 10. Illustrations of the phase space of solutions and oscillating properties. Left figure shows a whole solution space, and right
figure shows number of oscillating solutions changing on given �.

(a) (b)

(d)(c)

FIG. 11. The solutions describing tunneling without a barrier.
The upper two figures show the solution of ~� and the lower two
figures show the solution of ~�.
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solutions also exist in flat or AdS background, though the
physical significance is not clear. Furthermore, we con-
structed the phase space of all our solutions including the
number of oscillations. As a by-product, we obtained the
solution describing tunneling without a barrier.

In Sec. II, we analyzed the boundary conditions of our
problem. There are two kinds of conditions. We imposed
the boundary conditions as the initial value problem and
imposed additional conditions implicitly. The initial value
~�o is obtained by employing the undershoot-overshoot
procedure. To avoid a singular solution at ~� ! ~�max in
Eq. (10) and demand the Z2 symmetry, the conditions

d ~�=d~� ! 0 and ~� ! 0 as ~� ! ~�max were needed.
In Sec. III, we obtained the numerical solution of oscil-

lating instantons. In particular, we performed the numeri-
cal work with more detail for the cases in dS background.
The number of oscillations increases as the initial point,
~�ð~�initialÞ ¼ ~�o, moves away from the vacuum state. We
can see that the size of the geometry of solutions decreases
as the number of crossing increases because the period of
the evolution parameter ~�max decreases as the starting
point moves away from the vacuum state. As expected,
this type of solutions is possible only if gravity is taken into
account. The maximum number of oscillations is deter-
mined by the parameters ~� and ~Uo observed in Ref. [23].
The solutions are of two types. One type is for situations in
which different parts of spacetime are in different vacua.
The solutions representing tunneling which go from the
left vacuum state to the right vacuum state have a nonzero
topological charge. The other type is for situations in
which different parts of spacetime are in the same vacuum
state. Others representing the solutions which go back to
the starting point after oscillations have zero topological
charge. We can see that the sign change of ~�0 from positive
to negative occurs at the half period of ~� due to the Z2

symmetry. We have studied the behavior of the solutions in

the ~�ð~�Þ � ~�0ð~�Þ plane using the phase diagram method.
Figures 3(a), 3(c), and 3(e) have symmetry about the y axis,
while Figs. 3(b), 3(d), and 3(f) have symmetry about the x

axis. The maximum value of ~�0 decreases as the number of
crossing increases. We have checked the energy density
diagrams for each solutions. The peaks of the volume
energy density broaden in range near Utop as the number

of crossing increases. The shape of peaks of the Euclidean
energy becomes smooth and broadens as the number of
crossing increases.

We have examined the tunneling probabilities for the
solutions. The tunneling rate can be evaluated in terms of
the classical configuration and can be represented as e��S

in this approximation, where the leading semiclassical
exponent �S is the difference between the Euclidean ac-
tion corresponding to a classical solution and the back-
ground action. When one considers the usual bounce
solution, the outside geometry of the bounce solution
does not change even after tunneling. Hence the contribu-

tion from the outside gets canceled. The only contribution
to�S stems from the inside part and the wall leading to the
finiteness of �S.
On the other hand, if one considers a single instanton

solution with finite size, there exist a subtle problem. There
is no such subtlety for the dS case. However, there is a
problem in defining the probability for the flat and the AdS
background. The Euclidean action for the flat space case is
a negative one, �S < 0 making the naive probability
greater than 1. The Euclidean action for the case of AdS
space �S ! �1. This negative divergence of the expo-
nent is due to the contribution coming from the infinite
space with nonzero vacuum energy. It is yet not clear how
to interpret this point correctly in the present work. Of
course, we can make�S finite by introducing a cutoff. The
effect of the cutoff, as the size increases, was discussed in
Ref. [7]. In the present work, we concentrate mainly on the
relative probability. We only need to compare the action of
oscillating solutions with that of a one-crossing instanton.
Our results show that, as predicted, the transition amplitude
is suppressed with an increase in the number of oscilla-
tions. One may concern the contribution from the boundary
term [26]. We expect that the point ~� ¼ ~�max in the
opposite side after the tunneling process is smooth due to
Z2 symmetry and therefore the boundary term does not
contribute to the action [7].
In Sec. IV, we obtained the phase space of solutions in

terms of the parameters ~� and ~� ~Uo. To make the phase
space of solutions, we collected data on ~Uo, which makes
the difference of the maximum number of oscillations,
nmax, for a given ~�. We then obtained a specific ~Uo which
determines the minimum number of oscillations, nmin.
Finally, we employed the method of least squares [28] to
obtain the relationship between two parameters in given
data sets of ~� and ~� ~Uo. Oscillating numbers appeared to be
linearly related to the parameters. Figure 9 shows the
behaviors of oscillating solutions in terms of ~� and ~� ~Uo.
The value of ~� is limited to 0 ~̂� 1̂. At the point ~� ¼ 0,
or Mp ¼ 1, gravity is switched off. The y axis represents

no gravity. We expect that there is no solution with Oð4Þ
symmetry when gravity is switched off. When the parame-
ter ~� or ~Uo increased, the evolution period of ~�max dimin-
ished in general. When the parameter ~� or ~Uo decreased,
the evolution period of ~�max and the maximum number of
oscillations increased. There is a no-solution parameter
region corresponding to regions in which ~Uo 	 �0:125
in the case of AdS-AdS degenerate vacua because there is
no dS region of potential [7]. We can see the changes of
nmin and nmax in the dS-dS are continuously connected to
those in the AdS-AdS. The x axis, ~Uo ¼ 0, represents the
flat-flat case. In the flat-flat case, there exists a solution for
all of ~� except when ~� ¼ 0. Figure 10 shows the schematic
diagram of the phase space of all solutions including
another type solution and the number of oscillating solu-
tions with different ~�s.
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As a result of this tunneling, a finite-sized geometry with
Z2 symmetry is obtained. Our mechanism for making the
domain wall or braneworld-like object is different from the
ordinary formation mechanism of the domain wall because
our solutions are instanton solutions rather than soliton
solutions. In other words, our solutions can be interpreted
as solutions describing an instanton-induced domain wall
rather than a kink-induced domain wall or braneworld-like
object. Domain walls can form in any model having a
spontaneously broken discrete symmetry. An inertial ob-
server sees the domain wall accelerating away with a
specific acceleration. The domain wall has repulsive gravi-
tational fields [37,38]. The thickness of the domain wall in
flat spacetime can be estimated by a balance between the
potential energy and the gradient energy. When the thick-
ness of the domain wall is greater than or equal to the
horizon size corresponding to the vacuum energy in the
interior of the domain wall, topological inflation can occur.
The scalar field stays near the top of the potential at the
core. This potential energy serves as a vacuum energy in a
similar way to the slow-rollover inflationary models. This
topological inflation does not require fine-tuning of the
initial conditions and is eternal even at the classical level
due to the topological reason. Our oscillating instanton
solutions can be interpreted as mechanism providing the
nucleation of the thick wall for the topological inflation.
The wrinkles representing the variation of the volume
energy density in the wall may be interpreted as density
perturbations in the inflating region. In this work, inflating
regions described by the oscillating solutions and density
perturbations described by the variation of energy density
can occur simultaneously. Furthermore, oscillating bounce
solutions also have the thick wall. Thus we expect that
(non-)topological inflation can be made by oscillating
bounce solutions.

To obtain the dynamics of the solutions, we should apply
the analytic continuation from Euclidean to Lorentzian

signature. If the wall is thin, we can employ the Israel
junction condition [7,39,40] or the method [10,41]. If the
wall is thick, the double-null simulation may be more
relevant to the dynamics of the solutions [42].
A direction for future research could be whether or not

our solutions obtained using the instanton-induced theory
can be extended to theories with gauge fields or various
other dimensions and whether or not the topological
charge of both instanton and bounce solutions, including
oscillating one, can be well defined and conserved for a
self-gravitating scalar field in various dimensions. It
would also be interesting to examine if this toy model
with the variation of energy density can provide a proper
inflationary scenario. In Ref. [43], the creation of a
charged black hole pair separated by a thin domain wall
and the dynamics of the domain wall were studied in the
cosmological context. It would be interesting to study the
properties and evolution of topological inflation with a
magnetic field.
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