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Local and nonlocal properties of Hawking radiation in the presence of short distance dispersion

are computed using connection formulae. The robustness of the spectrum and that of the two-point

function are explained by showing that the leading deviations from the relativistic expressions decrease

with the inverse of the spatial extension of the near horizon region. This region corresponds to a portion

of de Sitter space with a preferred frame. We show that the phases of the Bogoliubov coefficients are

relevant for the two-point function in black and white holes, and also for the black hole laser effect. We

also present an unexpected relation between the spectra obtained with sub and with superluminal

dispersion and we apply our formalism to massive fields. Our predictions are validated by numerical

analysis.
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I. INTRODUCTION

Hawking radiation (HR), the spontaneous and steady
emission of thermal radiation by black holes [1], plays
a crucial role in black hole thermodynamics [2–4] and in
the attempts to construct theories of quantum gravity
[5,6]. Given that these are still incomplete, it is of impor-
tance to determine under which conditions HR occurs, and
how its properties depend or not on hypothesis concerning
the ultraviolet behavior of the theory. In fact, because
modes with arbitrary short wavelengths are involved in
the standard derivation [7–9], it was questioned [10,11]
whether this process would still be present if Lorentz
invariance were broken on very short scales. This question
was motivated, on one hand, by the possibility that quan-
tum gravitational effects could be effectively described
by a nontrivial dispersive relation, see e.g. [12], and, on
the other hand, by the fact that phonons, or other collective
degrees of freedom, obey dispersive equations at short
distance, e.g. when approaching the inter-atomic scale.
Hence, dispersion must be taken into account when com-
puting the phonon spectrum that a black hole analogue [7]
would emit. To this end, Unruh [13] wrote a dispersive
wave equation in an acoustic black hole metric. He then
numerically found that the thermal properties of the flux
are robust, i.e. not significantly affected when � � �,
where � is the ultraviolet dispersive frequency, and � the
surface gravity of the black hole. In a subsequent num-
erical analysis [14], it was observed that ‘‘the radiation is
astonishingly close to a perfect thermal spectrum’’. This
was confirmed to a higher accuracy in [15], and partially
explained by analytical treatments [16–20].

In spite of these works, the origin of this astonishing
robustness is not completely understood. This is due to

our ignorance of the parameters governing the first
deviations with respect to the standard thermal spectrum.
In the present work, we show that when � � � the most
relevant parameter is the extension of the near-horizon
region in which second-order gradients can be neglected.1

We reach these results by studying the validity limits of the
connection formula [16–19] encoding the scattering across
the horizon. While the core of the calculation is based on
the mode properties near the horizon—which are universal
as they rely on a first-order expansion around the horizon–
the validity limits are essentially governed by the extension
of the region where this expansion is valid. As a result, on
the one hand, the leading-order expressions are universal
and agree with the standard relativistic ones, and on the
other hand, the first deviations depend on this extension.
Their evaluation is carried out using a superluminal dis-
persion relation. Interestingly, these results also apply to
subluminal dispersion, as we show in establishing a corre-
spondence between these two cases. We apply our ana-
lysis to both black and white holes, and show that HR in the
latter backgrounds gives rise to undulations [24,25] that
contribute as classical waves to the observables. We then
compare our predictions with the numerical works [26,27]
which were done in parallel with the present analysis. We
apply our treatment to the black hole laser effect in
Appendix B and to massive fields in Appendix C.

1When these higher derivatives vanish, the background corre-
sponds to a de Sitter space endowed with an homogeneous
preferred frame that respects some of the de Sitter isometries.
This was noticed in [21], and further developed with Jean
Macher during his Ph.D. [22]. This was exploited in [23], and
we hope to report on it soon.
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II. BLACK HOLE METRICS
AND DISPERSIVE THEORIES

A. The choices of settings

To study the propagation of a dispersive field on a black
hole geometry, basically two lines of thought can be fol-
lowed. First, one can study a particular fluid and derive the
equations for linearized perturbations from the known mi-
croscopic theory, e.g. of a Bose condensate [28]. Second,
more abstractly, one can identify the ingredients that must
be adopted in order to obtain a well-defined mode equation.
We adopt here this second attitude [13,16,29] as it is more
general, and as it reveals what are exactly the choices that
should be made.

First, one needs to choose a dispersion relation in a flat
(homogeneous) situation

�2 ¼ F2ðpÞ; (1)

where � is the frequency in the reference frame, p is the
norm of the wave vector, and F2 ¼ p2 � p4=�2 þ oðp4Þ.
We thus work in units so that the group velocity is unity for
� ! 0. The critical frequency � sets the scale at which
dispersive effects become significant. In what follows, to
simplify the equations we shall often work with

F2ðpÞ ¼
�
pþ p3

2�2

�
2 ¼ p2 þ p4

�2
þ p6

4�4
: (2)

At the end of the paper we shall consider more general
relations.

Second, one needs to choose the two background fields,
namely, the metric g��, and the ‘‘preferred’’ frame, i.e. the

local frame in which Eq. (1) is implemented. As explained
in [29], the latter can be described by a unit timelike vector
field, u�, in terms of which the preferred frequency is
� ¼ u�p�. In what follows, for reasons of simplicity,

we work in 1þ 1 dimensions. Then, the ‘‘preferred’’ spa-
tial wave vector p is p ¼ s�p�, where s�u� ¼ 0, and

s�s� ¼ �1. For further simplicity, we also work with

stationary background fields, and we impose that the flow
dx�=d� ¼ u� is geodesic. Then, the Painlevé-Gullstrand
coordinates [30], are the preferred coordinates as they obey
dt ¼ u�dx

� and @x ¼ s�@�. Using them, g�� and u� are

both encoded by a single function vðxÞ:
ds2 ¼ dt2 � ðdx� vðxÞdtÞ2; (3)

and

� ¼ !� vðxÞp; (4)

where ! is the conserved frequency associated with the
Killing field @t. Returning to the first attitude discussed
above, both Eqs. (3) and (4) are obtained in the lab coor-
dinates when considering the dispersive sound propagation
characterized by Eq. (1) in a fluid whose flow velocity
is vðxÞ.

When v2ðxÞ crosses 1, there is a Killing horizon. More
precisely, for v < 0, it is a black (white) hole horizon when
� ¼ @xv evaluated at the horizon is positive (negative).
This gradient determines the surface gravity of the horizon:
neglecting dispersion, i.e. when F2 ¼ p2, the near-horizon
behavior of null right-moving (upstream) geodesics is

x ¼ x0e
�t: (5)

Correspondingly, since xp ¼ cst near the horizon, the
redshift experienced by right-moving wave packets is
[16,20]

p ¼ p0e
��t: (6)

The third choice concerns the quantization procedure.
There exist indeed many inequivalent wave equations as-
sociated with the dispersion relation

ð!� vpÞ2 ¼ F2ðpÞ: (7)

This remains true even when using an action to guarantee
that the wave equation be governed by self-adjoint differ-
ential operators. In this paper we shall work with [13]

½ð!þ i@xvÞð!þ iv@xÞ � F2ði@xÞ�’! ¼ 0; (8)

which is nothing but

½ð@t þ @xvÞð@t þ v@xÞ þ F2ði@xÞ�� ¼ 0; (9)

applied on a stationary mode � ¼ e�i!t’!. The associ-
ated conserved scalar product is

ð�1j�2Þ ¼ i
Z
R
½��

1ð@t þ v@xÞ�2 ��2ð@t þ v@xÞ��
1�dx:
(10)

Furthermore, we work with profiles vðxÞ defined on the en-
tire real axis, and asymptotically constant: jvð�1Þj<1.
Hence, the domain of integration is the entire real axis. The
stationary (positive norm and real frequency) modes �!

are then normalized by

ð�!0 j�!Þ ¼ �ð!0 �!Þ: (11)

In conformity with the second quantization [31], negative
norm modes are named ð��!Þ�, so that ��! are positive
norm modes of negative frequency �!.
Equation (9) reduces to the scalar massless d’Alembert

equation when F2 ¼ p2 ¼ �@2x. It differs in several re-
spects from the (two-dimensional) Bogoliubov-de Gennes
equation [28]. It first differs in the hydrodynamical regime,
i.e. in the limit � ! 1, in that the latter equation is not
conformally invariant. As a result, left- and right-moving
modes remain coupled in that case. Moreover, it also
differs from Eq. (8) when taking into account the quartic
dispersive effects. The differences arise from different
orderings of @x’s and vðxÞ. To give another example,
Eq. (8) also differs from alternative models [16,32] in
which left- and right-moving modes remain exactly de-
coupled even when FðpÞ is nonlinear.
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Nevertheless, these wave equations share the same char-
acteristics since these are determined by Eq. (7). What is
less obvious is that these models also share, at leading
order, the same deviations of the spectrum which are due
to dispersion. This follows from the fact that these devia-
tions are based on asymptotic expansions that are governed
by Hamilton-Jacobi actions associated with Eq. (7).

B. in and out mode basis, connection formulas,
and Hawking radiation

In this paper, the properties of HR will be approximately
determined by making use of connection formulas that
relate asymptotic solutions of Eq. (8). Before describing
this procedure in precise terms, let us briefly explain it.
For the stationary profiles we consider, i.e. with v defined
on the entire real axis and asymptotically constant, because
of dispersion, the Bogoliubov transformation encoding the
Hawking effect has the standard form of a scattering
matrix. It should be stressed that this is not the case for
relativistic fields. In that case indeed, because of Eq. (5),
wave packets propagated backwards in time hug onto the
horizon for an arbitrary long time, and thus never transform
into waves incoming from an asymptotic region. Instead,
when there is dispersion, Eq. (5) is followed only for a
finite time, and wave packets (propagated backwards in
time) leave the near-horizon region and reach, for super-
luminal dispersion, x ¼ �1, see Fig. 1.

Moreover when wave packets reach the asymptotic re-
gions where v is constant, they can be decomposed in
terms of stationary plane waves e�i!teip!x. Hence, the
definition of the in and out modes is the standard one,
see e.g. the scattering in a constant electric field [9]. The in
modes �in

! are solutions of Eq. (8) such that the group
velocity vgr ¼ ð@!p!Þ�1 of their asymptotic branches is

oriented towards the horizon for one of them only. Hence,
when forming a wave packet of such modes, it initially
describes a single packet traveling towards the horizon,
whereas at later time it describes several packets moving

away from the horizon. Similarly, the out modes �out
!

contain only one asymptotic branch with a group velocity
oriented away from the horizon.
At this point, it should be noticed that the dimensionality

of these two sets depends on the asymptotic values of v.
When vðxÞ contains one horizon, i.e. crosses �1 once, the
dimensionality is 3 below a threshold frequency!max [15]:
for !max >!> 0, there is one positive norm left-moving
mode (with respect to the fluid, but not the lab) �left

! , and a
pair of right-moving ones of opposite norm that we shall
call �! and ð��!Þ� according to the sign of their norm.
Hence, the scattering matrix is 3� 3. However, when v is
smooth enough, �left

! essentially decouples. This has been
numerically shown in [15], and is mathematically justified
in Appendix A. Hence, to a very good approximation, one
recovers a 2� 2 matrix characterizing right-moving
modes only. From now on we shall work within this
approximation.
Introducing the in and out sets of modes, they are

related by

�in
!

ð�in�!Þ�
 !

¼ �! �!

~�! ~�!

 !
� �out

!

ð�out�!Þ�
 !

: (12)

Because starred modes have a negative norm, the matrix is
an element of Uð1; 1Þ. That is, the coefficients obey

j�!j2 � j�!j2 ¼ 1; ��
!
~�! � ��

! ~�! ¼ 0; (13)

and j�!j2 ¼ j ~�!j2. Hence, when working in the in vac-
uum, the mean number of emitted pairs of quanta of
opposite frequency is

�n! ¼ j�!j2: (14)

In the relativistic limit, i.e. � ! 1, one gets the standard
result

�n relativistic
! ¼ 1

e2	!=� � 1
; (15)

FIG. 1. Space-time representation of the near-horizon trajectories followed by wave packets made with right-moving (with respect to
the fluid) in modes in the presence of superluminal dispersion, e.g. that given in Eq. (2), and in the coordinate system ðt; xÞ of Eq. (3).
We have also indicated their asymptotic amplitudes as given in Eq. (12). On the left panel we have represented the trajectories
associated with �in

!, and on the right those of the partner mode ð�in�!Þ� with negative norm. The turning point of the latter is given in
Eq. (28).
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i.e., a Planck distribution at the Hawking temperature
TH ¼ �=2	, in units where ℏ ¼ 1 and kB ¼ 1.

Our aim is to compute the coefficients of Eq. (12) using a
connection formula. To this end,we first identify the various
asymptotic solutions, and then we evaluate the globally
defined solutions which we match to the asymptotic ones.
These techniques have been already used in [16–19]. The
novelty of our treatment concerns a careful control of
the various approximations involved in this procedure.
This will enable us to control the leading deviations from
Eq. (15) which are due to dispersion, given vðxÞ.

C. The relevant properties of the profile v

To be able to compute these leading deviations it is
necessary to further discuss the properties of the profile
vðxÞ. When using relativistic fields, the temperature of HR
is completely fixed by � ¼ @xv, the gradient of v evaluated
at the horizon, even though the asymptotic flux generally
depends on other properties of vðxÞ which fix the ‘‘grey
body factors’’ [1,33]. However, these describe an elastic
scattering between�left

! and�!, and therefore do not affect
the temperature, as can be verified by considering the
equilibrium state described by the Hartle-Hawking vacuum
[9,34]. When dealing with dispersive fields, � is no longer
the only relevant quantity. Indeed, as we shall show in the
sequel, several properties of vðxÞ now become relevant.
Moreover, they govern different types of deviations with
respect to the standard flux. For smooth profiles, there are
basically two important properties, near-horizon ones, and
asymptotic ones.

If there is a regular horizon at x ¼ 0, v can be expanded
as

vðxÞ ¼ �1þ �xþOðx2Þ: (16)

This near-horizon behavior is only valid in a certain inter-
val, not necessarily symmetric about 0. Hence, we define
DL

lin and DR
lin such that for

�DL
lin & �x & DR

lin; (17)

v is linear, to a good approximation (see region 1 in Fig. 2).
As we shall later establish,DL

lin andD
R
lin control the leading

deviations of
the spectrum. It is worth noticing that in the limit
DL

lin; D
R
lin ! 1, one effectively works in de Sitter space

with a preferred frame since Eqs. (4) and (7) still apply. In
that limiting case, as we shall explain, the relativistic result
of Eq. (15) is found with a higher accuracy.
The other relevant parameter is related to the asymptotic

values of v, that we assume to be finite. For superluminal
dispersion, what matters is

vðx ¼ �1Þ ¼ �1�Das <�1: (18)

For subluminal instead, it is vðx ¼ þ1Þ that matters. As
discussed in [15], Das determines the critical frequency
!max [computed below in Eq. (29)] above which the flux
vanishes.2

For finite values of x, v can have a complicated behavior.
As we said, we only suppose that the interpolation between
the asymptotic regions and around the horizon is smooth
enough, so we can neglect nonadiabatic effects. Indeed, a
sharpness in vðxÞ induces nonadiabatic effects [14,15,26]

FIG. 2. Shape of the typical velocity profile v, together with the extension of the relevant regions. For a given value of !, the near-
horizon region 1 where v��1þ �x splits into two: a region close to the turning point of Eq. (28) [1. (a)] where the WKB
approximation fails, and two intermediate regions [1. (b)] where this approximation becomes reliable, and whose sizes are fixed byDL

lin

and DR
lin. In the asymptotically flat regions 3, the solutions are superpositions of plane waves. The intermediate regions 2 play no

significant role when v is sufficiently smooth, because the propagation is accurately WKB, i.e. no mode mixing. As we shall see, mode
mixing essentially occurs at the scale of the turning point, i.e. in region 1. (a).

2In that work, the profile was v ¼ �1þD tanhð�x=DÞ.
Hence, when looking at the deviations of the spectrum upon
changing D, the deviations associated with Dlin and Das were
confused since both scaled in the same way. In fact, one of the
main novelties of the present analysis, and the companion
numerical works [26,27], is to remove this confusion by analyz-
ing the deviations due to DR

lin and DL
lin only.

COUTANT, PARENTANI, AND FINAZZI PHYSICAL REVIEW D 85, 024021 (2012)

024021-4



not related to the Hawking effect that both destroy the
thermality of the spectrum and induce higher couplings
between left- and right-moving modes, see Figs. 12 and 16
in [15]. These effects are due to the breakdown of theWKB
approximation studied in Appendix A.

D. Hamilton-Jacobi Actions And Turning Point

1. Hamilton-Jacobi actions and turning point

Equation (7) can be interpreted as the Hamilton-Jacobi
equation of a point particle. Indeed, it suffices to consider
the solution for p as a function of x at fixed !, which we
call p!ðxÞ, as p!ðxÞ ¼ @xS!, where the action is decom-
posed as S ¼ �!tþ S!ðxÞ. One thus works the standard
expression

S!ðxÞ ¼
Z x

p!ðx0Þdx0: (19)

In these classical terms, left- and right-moving solutions
with respect to the fluid, i.e. the roots of !� vp ¼ �F,
decouple and can be studied separately. Restricting atten-
tion to the right-moving ones which enter in Eq. (12), one
deals with

!� vðxÞp!ðxÞ ¼ F½p!ðxÞ�: (20)

In the sequel, it will be useful to work in the
p-representation with

W!ðpÞ ¼ �pxþ S!ðxÞ ¼ �
Z p

X!ðp0Þdp0: (21)

In this representation, at fixed!, the position x is viewed as
a function of p. It is given by X! ¼ @pW! and obeys

!� vðX!ðpÞÞp ¼ FðpÞ: (22)

The usefulness of the p-representation can be appreciated
when considering the trajectories in the near-horizon re-
gion, where v��1þ �x. In this region, irrespective of
FðpÞ, one finds

dp

dt
¼ �

�
@X!

@!

��1 ¼ ��p; (23)

which gives Eq. (6), as in relativistic settings. Then, the
trajectory is algebraically given by

xFðtÞ ¼ X!½pðtÞ� ¼ !

p�
� FðpÞ � p

�p
: (24)

Unlike what is found for pðtÞ using Eq. (2), xF completely
differs from Eq. (5) for jpj 	 �. To adopt a language
appropriate to the study of the modes, we shall work
with !> 0 only. Then, negative frequency roots p�!>0
of Eq. (20) are replaced by the negative roots p! < 0
associated with !> 0, as explained in [29]. Hence,
Eq. (24) defines two trajectories, one with p > 0, and
one with p < 0. At early times, i.e. for large jpj � !
and for superluminal dispersion jF=pj> 1, both are com-

ing from the supersonic region x < 0. Then, for p > 0 the
trajectory crosses the horizon and reaches x ¼ þ1,
whereas for p < 0, it is reflected back to x ¼ �1, see
Fig. 1. What is important is that both trajectories stay in the
near-horizon region a finite time �t. The integrated red-
shift effect pfinal=pinitial ¼ e���t is thus finite, unlike what
is found for relativistic propagation, where Eq. (6) applies
to arbitrary early times.
For p < 0, the location of the turning point xtp is ob-

tained by solving dx=dt ¼ ð@!p!Þ�1 ¼ 0. Using Eqs. (2)
and (20) gives

! ¼ ð1þ vÞp! þ p3
!

2�2
: (25)

Hence, the momentum and the velocity at the turning point
are (exactly)

� ptp ¼ ð!�2Þð1=3Þ; (26)

and

vðxtpÞ þ 1 ¼ � 3

2

�
!

�

�ð2=3Þ
: (27)

If ! is sufficiently small, i.e. !<�ðDL
linÞð3=2Þ, the turning

point is located in the near-horizon region, and it is
given by

�xtp ¼ � 3

2

�
!

�

�ð2=3Þ
: (28)

In classical terms, the main consequence of dispersion is
the introduction of this turning point. It introduces a non-
trivial multiplicity of the real roots p!ðxÞ, solutions of
Eq. (25). This multiplicity will play a crucial role when
solving the mode Eq. (8). From Eqs. (27) and (18), we see
that there is no turning point for ! above

!max ¼ �

�
2

3
Das

�ð3=2Þ
: (29)

This is threshold frequency !max mentioned in Sec. II B. It
corresponds to the limiting case where the turning point xtp
is sent to �1. For !>!max, only the positive root of
Eq. (25) and the positive norm mode �! remain. Thus, the
transformation of Eq. (12) no longer exists.
While these results have been obtained with a super-

luminal dispersion relation, however, they hold when the
dispersion is subluminal. Indeed, Eq. (25) is invariant
under the three replacements:

1þv!�ð1þvÞ; !!�!;
1

�2
!� 1

�2
: (30)

The first replacement exchanges the subsonic region and
the supersonic one (for v < 0). As a result, a black hole
horizon is replaced by a white one and vice versa. The
second one amounts to a time reverse symmetry, t ! �t.
At the classical level, it exchanges the roles of positive and
negative roots of Eq. (7). At the mode level, it changes the
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sign of their norm, as discussed in Sec. II B. The third
replaces a superluminal quartic dispersion by a subluminal
one. This exchange applies to all dispersion relations when
expressed as FðpÞ � p ! �ðFðpÞ � pÞ. It replaces any
dispersion that exhibits a superluminal character when p
approaches � by the corresponding subluminal one. This
correspondence thus applies to dispersion relations that
pass from super to sub, as in the case of gravity waves in
water when taking into account capillary waves [35].

Under Eq. (30), the trajectories are mapped into each
other, as the function X!ðpÞ of Eq. (22) is unchanged.
Hence, Eqs. (26)–(28) are also unaffected. Because we
changed the sign of ! for subluminal dispersion, it is the
trajectory of positive frequency that has a turning point.

2. The action S! in the near horizon region

In preparation for the mode analysis, we study the
behavior of S! in the near-horizon region where v is linear
in x. Because of this linear character, it was appropriate to
first solve the equations of motion in the p-representation
and then the x-representation. This is also true for the
action itself. Moreover, when solving Eq. (8), �!ðxÞ
will be obtained by inverse Fourier transforming the

mode in p-space ~�!ðpÞ. Thus, we express the action as
S! ¼ xp�W!ðpÞ. Imposing @pS ¼ 0, we get

S!ðx; p0Þ ¼ xp!ðxÞ �
Z p!ðxÞ

p0

X!ðpÞdp; (31)

where p! is a solution of Eq. (25) and p0 fixes the inte-
gration constant. Using Eqs. (2) and (24), one gets

S!ðx; p0Þ ¼ xp!ðxÞ �!

�
lnðp!ðxÞÞ þ ðp!ðxÞÞ3

6�2�
þ 
0;

(32)

where 
0 is


0 ¼ !

�
lnðp0Þ � p3

0

6�2�
: (33)

To consider all solutions of Eq. (8), we shall compute the
action for all roots of Eq. (25), including the complex ones.
To this end, we need to define the integral

R
p
p0
dp0=p0 ¼

lnðp=p0Þ, that arises from the first term of Eq. (24), for p
complex. We shall work with the argument of cut equal to
	� �, so that lnð�1Þ ¼ �i	.

III. MODE ANALYSIS

A. Asymptotic mode basis and x-WKB approximation

Since the WKB approximation fails near a turning
point, we cannot compute the coefficients of Eq. (12) using
this approximation. In fact, under this approximation one

would get a trivial result, namely �! ¼ ~�! ¼ 0, j�!j ¼
j~�!j ¼ 1. To get a nontrivial result, we shall compute these
coefficients by inverse Fourier transforming the modes in

p-space and identifying the various terms sufficiently far
away from the turning point, in a calculation that general-
izes that of the Airy function [36].
In Appendix A, we present the calculation of the WKB

modes of Eq. (9) which generalizes the usual treatment
since Eq. (9) is not second order. We also evaluate the
errors made with respect to the exact solutions. In particu-
lar, the relevant errors are bounded by the inverse of the
dimensionless parameter

�ðxÞ ¼ �

2�
j2ð1þ vðxÞÞjð3=2Þ: (34)

As expected, far away from the horizon � is large and the
WKB approximation is accurate. More precisely, � be-
comes of order 1 near x ¼ xtp of Eq. (28) evaluated for

!� �. Hence for these frequencies, which are the relevant
ones for HR, � � 1 is reached for x=xtp � 1. One also

sees that at fixed x, � grows like �=� ! 1, hence, � also
governs the dispersionless limit.

1. The six roots p! far away from the turning point

Since we work in a weak dispersive regime, i.e. � � �,
and since HR is related to frequencies !� �, we have
! 
 � for relevant frequencies. Moreover, since we im-
pose thatDas is not too small, we also have! 
 !max, see
Eq. (29). Hence, !max only concerns the high-frequency
properties of HR, which we no longer study. We focus
instead on frequencies !� �. Even for such frequencies,
the expressions of p!ðxÞ, solutions of Eq. (25), are com-
plicated. However, their exact expression is not needed. It
is sufficient to estimate them far away from the turning
point, in order to build the mode basis.
The denomination of the roots we use is based on that of

the corresponding mode, which is itself based on the sign
of the group velocity, as explained in Sec. II B. Moreover,
we exploit the fact that for right-moving modes the sign of
the norm is that of the corresponding root p! (see e.g.
[14]). Therefore, for !> 0, positive roots shall be called
p!, whereas negative roots shall be called p�! in accord
with the fact that negative norm modes are called ð��!Þ�,
see Fig. 3. Using this terminology, on the left of the turning
point, one finds

pin
! ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2ð1þ vÞp � !

2ð1þ vÞ ½1þOðyÞ�; (35)

pin�! ¼ ��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2ð1þ vÞp � !

2ð1þ vÞ ½1þOðyÞ�; (36)

pout�! ¼ � !

1þ v
½1þOðy2Þ�; (37)

where the small parameter y is related to � of Eq. (34) by

y ¼ !=�

�ðxÞ : (38)
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Far away from the turning point of Eq. (28), y 
 1 and our
expressions are reliable approximations. On the right-hand
(subsonic) region, one has only one real root

pout
! ¼ !

1þ v
½1þOðy2Þ�: (39)

On this side, there are also two complex solutions which do
not correspond to any classical trajectory. However, when
looking at the solutions of Eq. (8), they govern the growing

mode �"
! and the decaying mode �#

! exactly as real roots
govern WKB modes. These roots are

p"
! ¼ �i�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ vÞ

p
� !

2ð1þ vÞ ½1þOðyÞ�; (40)

p#
! ¼ i�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ vÞp � !

2ð1þ vÞ ½1þOðyÞ�: (41)

On this side of the horizon, the corrections are again
governed by y of Eq. (38). Hence, for !� �, the correc-
tions to the roots are on both sides controlled by � of
Eq. (34). It should be also noticed that the errors for the two
out roots are subdominant with respect to the other ones.

2. The six WKB modes far away from the turning point

In order to distinguish globally defined modes from their
WKB approximations, the former shall be noted �!, and
the latter ’!. Since we consider only !> 0, negative
frequency modes (of negative norm) shall be written as
ð��!Þ� or ð’�!Þ�.

Sufficiently far away from the turning point, i.e. for
� � 1, the WKB modes offer reliable solutions of
Eq. (8). They can thus be used as a basis to decompose

globally defined solutions. We also assume that DR;L
lin of

Eq. (17) are large enough so that one can be at the same

time be far away from the turning point and still in the
region where v is linear. Using the expressions for the six
roots in this region, Eq. (32), and neglecting the common
phase depending on 
0 of Eq. (33), on the left-hand side of
the horizon, one obtains

’in
! � ½2�ðxÞ��ð1=2Þ e�ið!=�Þ lnð� ffiffiffiffi

2�
p Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4	�ð1þ �jxjÞp jxj�ið!=2�Þe�ið2=3Þ�ðxÞ;

(42)

ð’in�!Þ� � ½2�ðxÞ��ð1=2Þ e�ið!=�Þ lnð� ffiffiffiffi
2�

p Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4	�ð1þ �jxjÞp

� jxj�ið!=2�Þeið2=3Þ�ðxÞ; (43)

ð’out�!Þ� � eið!=�Þ�ið!=�Þ lnð!=�Þ jxjið!=�Þffiffiffiffiffiffiffiffiffiffiffi
4	!

p : (44)

On the right one gets,

’out
! � eið!=�Þ�ið!=�Þ lnð!=�Þ jxjið!=�Þffiffiffiffiffiffiffiffiffiffiffi

4	!
p ; (45)

’#
! � eð!	=2�Þ

½2�ðxÞ�ð1=2Þ
e�ið!=�Þ lnð� ffiffiffiffi

2�
p Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4	�ð1� �jxjÞp jxj�ið!=2�Þe�ð2=3Þ�ðxÞ;

(46)

’"
! � e�ð!	=2�Þ

½2�ðxÞ�ð1=2Þ
e�ið!=�Þ lnð� ffiffiffiffi

2�
p Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4	�ð1� �jxjÞp jxj�ið!=2�Þeð2=3Þ�ðxÞ:

(47)

We now comment these expressions. First, the relative
errors of the two out modes are

pout
−ω

pin
−ω

pin
ωΩ

p

pout
ω

Ω

p

FIG. 3. Graphical resolution of Eq. (25) restricted to right-moving modes. The dispersion relation F ¼ pþ p3=2�2 and the straight
lines � ¼ !� vp are plotted for a common value of ! and two different values of v. On the left side, 1þ v < 0 and we have 3 real
roots given by Eqs. (35)–(37). On the right side, 1þ v > 0 and we have the single real root of Eq. (39). The two complex roots of
Eqs. (40) and (41), are not represented.
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O

�
!2=�2

�ðxÞ2
�
; (48)

whereas those of the four other modes are

O

�
1þ!=�

�ðxÞ
�
: (49)

To get these expressions, we have taken into account two
sources of errors: those coming from the approximate roots
of Sec. III A 1, and those from the WKB approximation,
see Appendix A. They all depend on � of Eq. (34). Again,
we see that the errors on the out modes, of low momentum
p, are subdominant with respect to those of inmodes which
have a high momentum. As a result,DL

lin of Eq. (17) will be

more relevant than DR
lin.

Second, whereas the normalization of the four oscillat-
ing modes is standard and based on the conserved scalar

product of Eq. (10), those of the decaying ’#
! and growing

’"
! modes follow from Eq. (A5) and the fact that S!

of Eq. (32) is complex since the roots of Eqs. (40) and
(41) are.

Third, since these two modes do not appear in the ‘‘on-
shell’’ Bogoliubov transformation of Eq. (12), we should
explain why we are still considering them. First, the forth-
coming connection formula will be a transfer matrix relat-
ing the general solution on each side of the horizon.
Second, when considering problems with several horizons,
these modes could contribute to the on-shell S-matrix if
they live in a finite (supersonic) size region between two
horizons [37].

B. Globally defined modes in the near horizon region

1. The p-representation

To accurately describe the behavior of the modes across
the horizon one cannot used the x-WKB modes of the
former section. Rather, one should work in p-space, and
look for solutions of the form:

�!ðxÞ ¼
Z
C

~�!ðpÞeipx dpffiffiffiffiffiffiffi
2	

p ; (50)

where C is a contour in the complex p-plane. If it is well
chosen, i.e. such that the integral converges and integra-
tions by part can be performed, then it is sufficient that the

dual mode ~�! satisfies

ð�!þ pv̂Þð�!þ v̂pÞ ~�! ¼ F2ðpÞ ~�!; (51)

where v̂ ¼ vðx̂Þ ¼ vði@pÞ. We should notice that Eq. (50)

is a standard Fourier transform only if C is on the real line,
something we shall not impose. The main interest of con-
sidering generalized contours is that it will enable us to
compute all solutions of Eq. (8), including the growing
ones.

Because we only need the behavior of the modes near
the horizon, the operator v̂ in Eq. (51) can be replaced by

v̂ ¼ �1þ i�@p. Hence, one gets a second-order ordinary

differential equation (ODE), irrespective of FðpÞ. The
advantages to work in p-space are then clear [16,20].
First, the solutions of Eq. (51) can be (exactly) written as
a product

~�!ðpÞ ¼ �ðpÞe�iðp=�Þ � p�ið!=�Þ�1ffiffiffiffiffiffiffiffiffiffi
4	�

p ; (52)

where � obeys the !-independent equation:

� �2p2@2p� ¼ F2ðpÞ�ðpÞ; (53)

and where p�ið!=�Þ�1 is independent of F. Hence, the
deviations due to the dispersion F are entirely encoded in
�. The origin of this factorization has to be found in the
underlying structure of de Sitter space, see footnote 1. In
addition, when considering the limit � ! 1 in Eq. (8),

p�ið!=�Þ�1 is exactly the relativistic (conformally invari-
ant) mode in p space.
Second, unlike the original equation in x, Eq. (53) is

perfectly regular. Moreover, when dispersion effects are
weak, i.e. �=� � 1, the p-WKB approximation, so called
not to confuse it with that used in the former section, is
very good. It generalizes what is done for the Airy function
[36,38] where the mode equation in p-space is WKB exact.
At this point, it is worth comparing the expression of the
p-WKB modes in general and near the horizon. Using
Eq. (21), one finds

~’!ðpÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@X!ðpÞ
@!

s
eiW!ðpÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4	FðpÞp ; (54)

¼ eið�ð!=�Þ lnðpÞþ
R
ðFðp0Þ�p0=�p0Þdp0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4	�pFðpÞp �
�
1þO

�
�

�

��
:

(55)

The first line generalizes the standard WKB expression,
and can be obtained by Fourier transforming Eq. (A5) at
the saddle-point approximation. It shows that ~’! is uni-
versally governed by W! and X!, irrespective of FðpÞ and
vðxÞ. The second line shows how exactly FðpÞ enters in ~’!

in the near-horizon region. In this region, since the mode
equation is second order in @p, the corrections are uni-

formly bounded by �=� [38]. We also notice that using ��
instead of � in Eq. (52) would describe a left-moving mode
of negative norm [20]. This shows that the corrections to
the p-WKB approximation describe creation of pairs of
left- and right-moving modes, as in cosmology [39]. It is
also of interest to notice that in models where left- and
right-movers stays completely decoupled [16,32], the
p-WKB modes of Eq. (55) are exact solutions in the
near-horizon region.
We finally notice that Eq. (55), as the relativistic mode

p�ið!=�Þ�1, is well defined only when having chosen the
branch cut of lnp [16–19]. As explained below, different
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possibilities, and different contours C, lead to different
modes.

IV. CONNECTION FORMULA

A. The various modes in the near-horizon region

Using FðpÞ of Eqs. (2) and (55) one gets

’!ðxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
4	�

p
Z
C

eiðpx�ð!=�Þ lnðpÞþðp3=6�2�ÞÞ

ð1þ p2

2�2Þð1=2Þ
dp

p
ffiffiffiffiffiffiffi
2	

p :

(56)

The forthcoming analysis generalizes former treatments
for several reasons:

(1) Unlike [17–19], we shall consider contours that are
not homotope to the real line. This will allow us to
obtain the general connection formula which in-
cludes the growing mode.

(2) We will make use of mathematical theorem of
asymptotic development [38] under their exact
form. This will lead to the proper identification of
the validity conditions in Sec. IVC.

(3) We will compute the phases of the Bogoliubov
coefficients. These are essential to compute the
correlation pattern [see Eq. (78)] and in the presence
of several horizons, see Appendix B.

To evaluate Eq. (56), the first thing to take care of is the
convergence of the integral. Indeed, for large p, the domi-

nant term is of the shape eip
3
, hence, we should impose that

our contour C goes to infinity in regions where Imðp3Þ> 0.
The second step is to perform the integral at a saddle-point
approximation. For this, we make a change of variable
such that the p and p3 terms are of the same order for all

values of �=�. We thus write p ¼ �
ffiffiffiffiffiffiffiffiffiffiffi
2�jxjp

t and get

’!ðxÞ ¼ e�ið!=�Þ lnð�
ffiffiffiffiffiffiffiffi
2�jxj

p
Þffiffiffiffiffiffiffiffiffiffi

4	�
p

�
Z
C

e�ið!=�Þ lnðtÞ

ð1þ t2�jxjÞð1=2Þ e
i�ðxÞðsignðxÞtþðt3=3ÞÞ dt

t
ffiffiffiffiffiffiffi
2	

p :

(57)

Hence, we see that the large parameter �ðxÞ defined in
Eq. (34) can be used to perform a saddle-point approxima-
tion [see z in Eq. (58)]. Therefore, � will govern the
deviations due to this approximation.

For completeness, we recall the saddle-point theorem. If
z is some large parameter:Z

C
AðpÞeizfðpÞ dpffiffiffiffiffiffiffi

2	
p

¼ X
j

AðpjÞ eizfðpjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�if00ðpjÞz

q
�
1þO

�
Ejðf; AÞ

z

��
; (58)

where the pj are saddle points of f, i.e. f0ðpjÞ ¼ 0 of

smallest imaginary part, and where the square root takes

its principal value. This formula is valid if and only if one
can deform C such that Im½fðpÞ � fðpjÞ� is always positive
[38]. The first correction Ejðf; AÞ involves higher deriva-
tives of f and A evaluated at pj

Ejðf; AÞ ¼
�
�i

A00

f00
þ i

f000A0

ðf00Þ2 � i
5ðf000Þ2A� 3f0000f00A

12ðf00Þ3
�
:

(59)

1. The decaying mode

We saw in Sec. II D 1 that for negative frequency, the
particle is reflected near the horizon, at the turning point of
Eq. (24). Hence, we expect that the corresponding mode
will decay on the other side, for x > 0. This behavior is
implemented by imposing that the branch cut is�iRþ and
that the contour is homotope to the real line, as we now
show.
To evaluate Eq. (56) for x > 0, we use Eq. (57) and

perform a saddle-point calculation. The saddle points obey
1þ t2 ¼ 0. Just like in the Airy case [36,38], only t ¼ i is
relevant and its contribution is

’!ðxÞ¼e�ið	=2Þ eð!	=2�Þ

½2�ðxÞ�ð1=2Þ
e�ið!=�Þ lnð� ffiffiffiffi

2�
p Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4	�ð1��jxjÞp
�jxj�ið!=2�Þe�ð2=3Þ�ðxÞ�

�
1þO

�1þ!2

�2

�ðxÞ
��

: (60)

As required, the mode decays on this side of the horizon.
The error term has been estimated using Eq. (58). [More
precisely, when computing Ej, we found a bounded func-

tion of !=� and x times ð1þ!2=�2Þ=�. This justifies our
expression.] We notice that this expression coincides to ’#

!

of Eq. (46) up to a factor. Therefore, this factor defines the
scattering coefficient and its x-dependent correction:

’! ¼ ’#
! � ðe�ið	=2ÞÞ �

�
1þO

�1þ !2

�2

�ðxÞ
��

: (61)

We underline that this identification introduces no new
errors because those due to the saddle point are of the
same order as those already present in Eq. (46). Since
the general method is now understood, we proceed with
the same mode on the other side of the horizon, and then
apply the same method for two other modes so as to get the
general connection formula.
For x < 0, the saddle points now verify 1� t2 ¼ 0.

However, because of the branch cut, one must cut the con-
tour into three separate branches, as shown in Fig. 4. C1 and
C2 go from �1þ � and dive toward �i1 on each side of
the branch cut. C3 encircles the branch cut, and is necessary
for the union of the 3 new contours to be homotope to the
original one. Separating the three contributions, ’! ¼
’C1 þ ’C2 þ ’C3 , ’C1 , and ’C2 are evaluated by the
saddle-point method and, after identification with the
WKB modes of Eqs. (42) and (43), respectively, give
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’C1 ¼ ð’in�!Þ� � ðeð!	=�Þeið3	=4ÞÞ �
�
1þO

�1þ !2

�2

�ðxÞ
��

;

(62)

’C2 ¼ ’in
! � eið	=4Þ �

�
1þO

�1þ !2

�2

�ðxÞ
��

: (63)

To properly evaluate ’C3 , one cannot use the saddle-point
method. However, because the factor eipx decays along C3,
one can use a ‘‘dominated convergence theorem,’’ i.e. take
the limit � ! 1 in the integrand of Eq. (56). Using the
Euler function and ’out�! of Eq. (44), we get

’C3 ¼ ð’out�!Þ� �
�
� sinh

�
!	

�

� ffiffiffiffiffiffiffi
2!

	�

s
�

�
�i

!

�

�
eð!	=2�Þe�ið!=�Þþið!=�Þ lnð!=�Þ

�
�
�
1þO

�
�jxjð1þ!3=�3Þ

�ðxÞ2
��
: (64)

The correction term has been calculated by expanding the
integrand in Eq. (56) to first order in �=� and computing
the integral again with the use of the � function.

2. The transmitted mode

To get another mode, we keep the same contour but the
branch cut is now taken to be iRþ. As we shall see it
corresponds to a transmitted mode. For x < 0 the saddle
points still obey 1� t2 ¼ 0, but we can now use the
saddle-point approximation because the branch cut is no
longer in the way. Taking into account that on the negative
real t-axis lnt ¼ lnjtj � i	, we get:

’! ¼ ½’in
! � eið	=4Þ þ ð’in�!Þ� � e�ð!	=�Þeið3	=4Þ�

�
�
1þO

�1þ !2

�2

�ðxÞ
��

: (65)

On the other side, for x > 0, the saddle points obey
1þ t2 ¼ 0, as previously. Because of the branch cut, one
cannot pick the contribution of the decaying saddle point.
We must instead deform the contour to a region where the
‘‘dominated convergence theorem’’ can be used and then
stick it to the branch cut. With a computation similar to
what was done for Eq. (64), we find

’! ¼ ’out
! �

�
sinh

�
!	

�

� ffiffiffiffiffiffiffi
2!

	�

s
�

�
�i

!

�

�
e�ð!	=2�Þe�ið!=�Þþið!=�Þ lnð!=�Þ

��
1þO

�
�jxjð1þ!3=�3Þ

�ðxÞ2
��
: (66)

3. The growing mode

To get a third linearly independent solution of Eq. (8),
we must construct the growing mode. To get it, we reuse
the above defined contours C1 and C2, and we choose the
branch cut to be iR�. For x < 0, the relevant saddle points

are �1 for C1 and þ1 for C2, and, respectively, give
Eqs. (62) and (C8). For x > 0 instead, for both contours,
the relevant saddle point is t ¼ �i, and this gives

’C2
! ¼ �e�ð2!	=�Þ’C1

! ¼ ’"
! �

�
1þO

�1þ !2

�2

�ðxÞ
��

: (67)

FIG. 4. Representation of the contours in the complex p-plane determining the decaying mode, on the left panel, when x is negative,
and on the right when it is positive. The hatched regions are the asymptotically forbidden ones, and the dots indicate the saddle points
that contribute to the integral.
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Since all combinations of ’C1
! and ’C2

! behave as ’"
! when

� ! 1, there is an ambiguity in choosing the third mode
we shall use. We appeal to the conserved Wronskian to fix
the choice. For a fourth-order differential equation, the
Wronskian is a 4� 4 determinant, but because we ne-
glected the v-modes, it becomes 3� 3. Once we have
chosen 2 propagating modes, there is a unique choice of
a growing mode such that the basis has a unit Wronskian.
The connection matrix is then an element of the group
SL3ðCÞ, i.e. of unit determinant (up to an overall gauge
phase).

Therefore, our third mode is ’g
! ¼ ’C2

! � e�ð2!	=�Þ’C1
! .

On the right and on the left , respectively, we get

’g
! ¼

x>0
2’"

! �
�
1þO

�1þ !2

�2

�ðxÞ
��

;

¼
x<0

½eið	=4Þ’in
! þ e�ð!	=�Þe�ið	=4Þð’in�!Þ��

�
�
1þO

�1þ !2

�2

�ðxÞ
��

: (68)

B. Connection matrix and on-shell
Bogoliubov transformation

1. The connection formula

The results of the former subsection can be synthesized
by the following 3� 3 ‘’’off-shell transfer matrix’’ that
connects the WKB modes defined on either side of the
horizon

’out
!

’#
!

’"
!

0
BB@

1
CCA ¼ ðUBHÞT �

’in
!

ð’in�!Þ�
ð’out�!Þ�

0
BB@

1
CCA: (69)

We define UBH through its transpose so that it relates the
three amplitudes of any mode decomposed on the left and
right side basis of Sec. III A 2. Ignoring for the moment the
correction terms, the matrix is

UBH ¼

~�

�
!
�

��1
eið3	=4Þ eið	=4Þ

2

e�ð!	=�Þeið	=2Þ~�
�
!
�

��1 �eið	=4Þeð!	=�Þ e�ð!	=�Þ e�ið	=4Þ
2

0 eð!	=�Þe�ið	=4Þ~�
�
!
�

�
0

0
BBBBBBB@

1
CCCCCCCA
: (70)

To simplify the above, we defined the ‘‘normalized’’ �
function:

~�ðzÞ ¼ �ð�izÞ
ffiffiffiffiffi
2z

	

s
sinhð	zÞe�ð	z=2Þeiz lnðzÞ�ize�ið	=4Þ;

(71)

which obeys for large z

j~�ðzÞj2 ¼ 1� e�2	z; (72)

Arg ð~�ðzÞÞ ¼ 0þ 1

12z
þO

�
1

z2

�
: (73)

As expected from our choice of modes, the determinant is a
pure phase:

detðUBHÞ ¼ eið	=2Þ: (74)

2. Robustness of black hole radiation

Using Eq. (70) we can now easily extract the
Bogoliubov coefficients of Eq. (12). Let us start with
�in

!. Being a physical mode, it is asymptotically bounded,
and therefore the amplitude multiplying the growing
mode should vanish. Moreover, on the left-hand side, it

asymptotes to ’in
! of Eq. (42). Hence, its six amplitudes

obey

1

0

�!

0
BB@

1
CCA

x<0

¼ UBH �
�!

d!

0

0
BB@

1
CCA

x>0

; (75)

where d! is the amplitude of the decaying mode. From
these equations, and the corresponding ones for the
negative-frequency mode ð�in�!Þ�, the coefficients of Eq.
(12) are

�! ¼
~�ð!�Þ

1� e�ð2!	=�Þ ¼ e�ið	=2Þ ~�!;

�!

�!

¼ e�ð!	=�Þ ¼
~�!

~�!

:

(76)

The amplitudes of the decaying modes in �in
! and ð�in�!Þ�

are also fixed and given by

d! ¼ eið	=4Þ
e�ð!	=�Þ

2 sinhð!	
� Þ ; d�! ¼ eið3	=4Þ

1

2 sinhð!	
� Þ :
(77)

For ! 
 !max of Eq. (29), and when ignoring the
x-dependent corrections of the former subsection (i.e. to
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leading order in �=�), the mean occupation number
Eq. (14) is exactly the relativistic result of Eq. (15). This
is in agreement with what was found in [16–19], although
the conditions are now stated more precisely. This result
implies that the spectral deviations due to dispersion are to
be found by examining the various approximations that
have been used.

In addition, it should be noticed that sufficiently far
away from the horizon, i.e. in a region where �ðxÞ of
Eq. (34) is larger than 1, the space-time correlation pattern
of the Hawking particles of positive frequency and their
inside partners of negative frequency is also unaffected
by dispersion. This second aspect of the robustness of
HR can be established by either forming wave packets of
in-modes [16], i.e. considering nonvacuum states des-
cribed by coherent states, see Appendix C. in [28], or by
computing the 2-point correlation function Gðt; x; t0x0Þ ¼
h�ðt; xÞ�ðt0; x0Þi [40–42]. For a comparison of the two
approaches, see [23]. In the in-vacuum, at equal time, the
! contribution of G for x > 0 and x0 < 0 is given by

G!ðx; x0Þ ¼ �!�
�
!’

out
! ðxÞ’out�!ðx0Þ

þ ~�! ~��
!½’out

! ðxÞ�½’out�!ðx0Þ�; (78)

see the B! term in Sec. V F in [28]. Using the expressions
of Sec. III A 2 together with Eq. (76), far away from the
turning point of Eq. (28) but still in the near-horizon
region, we get

G!ðx; x0Þ ¼ 1

sinhð!	
� Þ

Rejx=x0jið!=�Þ

4	!

�
�
1þO

�
1þ!2=�2

�ðxÞ
��

: (79)

At leading order in �=�, this is exactly the relativistic
result. Hence, the long-distance correlations are also robust
when introducing short-distance dispersion. This follows
from the fact that the phase of �!=�! (and not just its
norm) is not modified by dispersion. At this point we
should say that this phase actually depends on those of
the in and out modes that can be arbitrarily chosen. Thus,
as such it is not an observable quantity. However, the phase
of �!�

�
!’

out
! ’out�! is an observable, independent of these

choices. We have chosen to work with in and out bases
where all modes have a common phase at a given p, see
Sec. II D 2, as this ensures that argð�!=�!Þ is unaffected
by this arbitrary phase.

Using these bases, the phases of �! and ~�! of Eq. (76)
also have a clear meaning as can be seen by considering the
scattering of classical waves. They characterize the phase
shifts which are not taken into account by the WKB modes
of Sec. III A 2. In fact, using Eq. (71) one verifies that in the
limit !=� ! 1 one recovers the standard WKB results,

i.e. argð�!Þ ¼ arg½~�ð!=�Þ� ! 0 for the transmitted mode,
and argð~�!Þ ! 	=2 for the reflected one. For smaller

values of !=�, arg½~�ð!=�Þ� thus accounts for the non-

trivial phase shift. In Appendix B, we show that in the
presence of two horizons, this shift affects the spectrum of
trapped modes.

3. White holes

It is rather easy to apply our results to white holes as they
behave as the time reverse of black holes. In terms of
stationary modes, the correspondence is made by exchang-
ing the role of in and out and performing a complex
conjugation:

�in;WH
! ¼ ð�out;BH

! Þ�; (80)

as in Eq. (D3) of [28]. This follows from a symmetry of
Eq. (8). Indeed, the mode equation is invariant under

! ! �! and v ! �v: (81)

For more details, we refer to the Appendix D of [28]. Here,
it implies

UWH ¼ ðUBHÞ�; (82)

where UWH is defined through the same equation as
Eq. (69). This implies that Bogoliubov coefficients of a
white hole posses the same norm as those in the corre-
sponding black hole setup.
It is more interesting to look at correlations. Indeed,

since both out modes now live on the same side of the
horizon and contain high momenta, the correlation pattern
drastically differs from the black hole one [24]. To describe
this pattern, in order not to introduce confusing notations,
the modes shall be called according to their status in a
black hole geometry, that is, in the following expressions
the modes are those of Sec. III A 2. Then, in the white hole
in-vacuum, the !-contribution of the equal time correla-
tion function reads

GWH
! ðx; x0Þ ¼ �out

! ðxÞ½�out
! ðx0Þ� þ�out�!ðxÞ½�out�!ðx0Þ�:

(83)

Decomposing the BH outmodes in their in content, the first
term gives

�out
! ðxÞ½�out

! ðx0Þ��
¼ j�!j2�in

!ðxÞ½�in
!ðx0Þ�� � ��

!
~�!�

in
!ðxÞ�in�!ðx0Þ;

� �!
~��
!½�in�!ðxÞ��½�in

!ðx0Þ��
þ j ~�!j2½�in�!ðxÞ���in�!ðx0Þ: (84)

The most interesting phenomenon occurs when one looks
at the zero-frequency limit. In this regime, on the one hand,
the zero-frequency limit of �in

! and �in�! agree with each
other, as can be seen in Eqs. (42) and (43), and equal
�in

0 2 C which is a nontrivial function of x. On the other

hand, when ! ! 0, Eq. (76) gives
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j�!j2 � j ~�!j2 � �

2	!
and � ��

!
~�! � e�ið	=2Þ �

2	!
:

(85)

Then, since both terms of Eq. (83) agree in the limit, we
finally get

GWH
! ðx; x0Þ �

!!0

4�

	!
Refe�ið	=4Þ�in

0 ðxÞgRefe�ið	=4Þ�in
0 ðx0Þg;

(86)

Before commenting on this expression, it is interesting to
compare it with the corresponding one obtained in a black
hole geometry. In that case, when working in the black hole
in vacuum, the ! contribution of the two-point function is,
see Eq. (83),

GBH
! ¼ �in

!ðxÞ½�in
!ðx0Þ�� þ�in�!ðxÞ½�in�!ðx0Þ��: (87)

Hence, in the limit ! ! 0, it gives (see Eq. 32 in [42])

GBH
0 ¼ 2�in

0 ðxÞ½�in
0 ðx0Þ��; (88)

which behaves very differently than GWH of Eq. (86). It
does not diverge as 1=! and it is not the product of two real
waves. To get an expression that might correspond to that
of Eq. (86), one should express the inmodes in terms of the
out black hole modes given in Eqs. (44) and (45), as done
in Eq. (78). Doing so, the prefactor of Eq. (86) is recovered
but the spatial behavior of GBH is completely different
because the out modes of Eqs. (44) and (45) are defined
on opposite sides of the horizon, and become constant in
their domain. Hence, unlikeGWH,GBH cannot be written in
the limit ! ! 0 as a product of twice the same real wave.

In Eq. (86), we see that GWH factorizes in the zero
frequency limit as the 2-point function in inflationary
cosmology when neglecting the decaying mode, see e.g.

Eq. (20) in [43]. This fact shows that Refe�ið	=4Þ�in
0 ðxÞg

contributes to GWH as in a stochastic ensemble of classical
waves, i.e. each member of the ensemble contributes like a
coherent state with a given phase, see Appendix C in [28],
but the amplitude of �in

0 is still a Gaussian random vari-

able, again as for primordial fluctuations in cosmology.

Moreover, the real function Refe�ið	=4Þ�in
0 ðxÞg corresponds

to the undulation observed in [25], and the present analysis
shows that this phenomenon is directly related to the
Hawking effect. However, what fixes the constant ampli-
tude found in the experiment remains to be understood
because, when summing Eq. (86) over !, the factor 1=!
engenders a logarithmic growth in lnðtÞ as in Ref. [24].
Equation (86) differs from the expression of [24] (which
also factorizes) in that the surface gravity has not been sent
to1. Using Sec. III A 2, one can compute its profile (in the
WKB approximation) in the regions 1.(b) of Fig. 2. On the
right of 1.(b), it decays according to the zero-frequency
limit of Eq. (60), whereas on the left, one has

Re fe�ið	=4Þ’in
0 ðxÞg ¼

1ffiffiffiffiffiffiffiffiffiffi
8	�

p cosð23 �ðxÞ þ 	
4Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�ðxÞð1þ �jxjÞp : (89)

On the right, it thus behaves very much like the decaying
Airy function Ai [36,38], and on the left it oscillates in a
similar manner but, quite surprisingly, the phase shift 	=4
has the opposite sign. The origin of this flip is to be found
in the extra factor of 1=p in the integrand of Eq. (56) that is
associated with the relativistic (nonpositive) norm of
Eq. (10). It would be very interesting to observe the profile
of Eq. (89) and its unusual phase shift in future experi-
ments. Further away from the horizon, the undulation
profile can be obtained from the zero frequency limit of
Eq. (A5).

C. Validity of the connection formula

Our computation is based on two approximations. The
first one is the p-WKB approximation introduced when
solving Eq. (53) in the near-horizon region. Its validity
requires

�

�
� 1: (90)

This condition is the expected one. It involves neither !
nor the parameters Dlin of Eq. (17). Moreover, as we shall
see below, it will not be the most relevant one in the general
case. This is a nontrivial result. In addition, since the
corrections to this approximation mix left- and right-
moving modes [20], at leading order, the same spectral
deviations will be obtained when considering models
[16,32] where the decoupling between these modes is
exact. It would be interesting to validate this prediction
by numerical analysis.
The second approximations are controlled by � of

Eq. (34). This quantity governs both the validity of the
saddle-point approximation, as in Eq. (60), and that of the
WKB modes of Eqs. (42)–(44), (46), and (47). Since these
corrections decrease when � increases, the pasting of the
near-horizon modes on the WKB ones should be done at
the edges of the near-horizon region. One could imagine
pasting the modes further away, but this would require the

control of ~�!ðpÞ outside the region where v is linear in x,
i.e. to deal with ODE in @p of order higher than 2. This is

perhaps possible but it requires other techniques than those
we used, see [44] for recent developments. In any case,
what we do is sufficient to control the error terms in the
relativistic limit, and more precisely to find an upper
bound.
Being confined to stay within the near-horizon region,

the validity of the pasting procedure requires that

�p � �ðxpastingÞ ¼ �

�
ð�xpastingÞð3=2Þ ��

�
ðDlinÞð3=2Þ � 1;

(91)
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where Dlin characterizes the extension of this region on
either side of the horizon. As we see in Fig. 5, at fixed�=�,
the spectrum is very close to the relativistic one of Eq. (15)
if Dlin is large enough. Instead, below a certain threshold,
the deviations become non negligible. Our criterion in
Eq. (91) indicates that this will happen when �p is of order

1. Hence, the threshold value for Dlin should scale as

ð�=�Þ2=3. This prediction is confirmed by the numerical
analysis of [26].

We can be more precise. Indeed, as discussed after
Eq. (16), the near-horizon region is not necessarily sym-
metric. Hence, the values of xpasting on the right and on the

left will be different. This is important because error terms
coming from in modes are dominant compared to those
from outmodes, see Sec. II A. Since the former lives on the
left-hand side, the validity condition is

�L
p ��

�
ðDL

linÞð3=2Þ � 1; (92)

The higher sensitivity of the spectrum to perturbations of v
localized on the left-hand side was clearly observed in [26],
see Fig. 8 right panel. This sensitivity has been recently
exploited in [45] to produce resonant effects. We can
now estimate the deviations on the spectrum. Consi-
dering Eqs. (48), (49), (60), (64), and (92), we obtain�������� �n! � �nrelativistic!

�nrelativistic!

��������¼ O

�
Pð!=�Þ
�L

p

�
; (93)

where P is a polynomial function of degree 2. Therefore, at
fixed ! & �, i.e. in the relevant regime for Hawking
radiation, the leading deviations are bounded by a quantity

scaling as 1=�L
p . In particular, Eq. (93) demonstrates that

the spectrum is thermal for arbitrary small frequencies,
contrary to what has been claimed in [17,46]. More-
over, our analysis indicates that the deviations should
grow with !. This is compatible with the fact that �n
vanishes for !>!max defined in Eq. (29), irrespective
of the value of the ratio �=�. However, we have not yet
been able to confirm this precisely with the code of [26].
One of the reason is that the spectrum is radically modified
when ! approaches !max. So far, the p-WKB approxima-
tion has been a subdominant effect. However, if one takes
the de Sitter limit, i.e. Dlin ! 1, the correction term in
Eq. (91) vanishes and p-WKB becomes the only source of
deviations.
To conclude, we recall that the deviations have been

computed using Eq. (8). In other mode equations, like that
for phonons in a BEC [28], the corrections to the x-WKB
approximation will be in general larger. However, these
corrections are not due to dispersion but rather to the fact
that the conformal invariance of Eq. (8) in the dispersion-
less limit will be lost. These corrections can thus be studied
without introducing dispersion. This is also true when
introducing an infrared modification of Eq. (8) associated
with a mass or with a nonvanishing perpendicular momen-
tum. In Appendix C, we show that the spectral properties
are still robust in that Eq. (92) is sufficient to guarantee that
to leading order the Bogoliubov coefficients are unaffected
by short-distance dispersion.

D. General superluminal dispersion

Instead of Eq. (2), we now consider

F2ðpÞ ¼
�
pþ p2nþ1

�2n

�
2
; (94)

taken again, for simplicity, to be a perfect square. In
Sec. II B, we computed p-WKB modes for any dispersion
in Eq. (55), hence the globally defined modes for F sat-
isfying Eq. (94) are, see Sec. III,

�!ðxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
4	�

p
Z
C

e
iðpx�ð!=�Þ lnðpÞþ p2nþ1

ð2nþ1Þ�2n�
Þ

ð1þ p2n

�2nÞð1=2Þ
dp

p
ffiffiffiffiffiffiffi
2	

p : (95)

There now exist 2nþ 1 linearly independent modes.
Hence, in terms of contours, there are 2nþ 1 sectors
(Stokes lines) toward 1 in the complex p plane. By using
a contour homotope to the real line, and the same two
possible branch cuts of lnp on �iRþ, we can compute the
two ‘‘on-shell’’ modes that are asymptotically bounded.
Even though, there exist n pairs of growing and decaying
modes on the subsonic side, and n� 1 pairs on the other
side, only one pair in the subsonic sector will be relevant in
the ‘’’off-shell’’ connection formula of Eq. (70). Indeed, all
the others pairs do not mix with propagating modes. There-
fore, the different contours giving rise to the relevant
modes will be quite similar to those of Sec. III.
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FIG. 5. Deviation of the temperature found using the code of
[26] for various flows vðxÞ which all have the same surface
gravity �. TH ¼ �=2	 is the usual Hawking temperature. T0 is
the actual temperature given quartic superluminal dispersion
computed for ! 
 �. The parameter �p (see [26] for its precise

definition) characterizes the slope of vðxÞ outside the near-
horizon region, i.e. in regions 2 of Fig. 2. At fixed �=� ¼ 15,
the critical value of Dlin � 0:2 below which T0 deviates from TH

does not depend on �p. This is in agreement with Eq. (91).
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To perform a saddle-point approximation, we introduce t ¼ p=�j�xjð1=2nÞ and get:

’!ðxÞ ¼ e�ið!=�Þ lnð�j�xjð1=2nÞÞffiffiffiffiffiffiffiffiffiffi
4	�

p
Z
C

e�ið!=�Þ lnðtÞ

ð1þ t2n�jxjÞð1=2Þ e
i�nðxÞðsignðxÞtþðt2nþ1=2nþ1ÞÞ dt

t
ffiffiffiffiffiffiffi
2	

p : (96)

By a computation similar to that of Sec. III, at leading
order in �=�, we recover the Bogoliubov coefficients of
Eq. (76), thereby establishing their robustness for arbitrary
integer values of n. Moreover, the deviations from this
result are now governed by

�L
p;n ¼ �

�
ðDL

linÞð2nþ1=2nÞ: (97)

Hence, the error on the mean number of emitted quanta
satisfies

�������� �n! � �nrelativistic!

�nrelativistic!

��������¼ O

�
�

�ðDL
linÞð2nþ1=2nÞ

�
: (98)

E. Relating subluminal dispersion relations
to superluminal ones

So far, we analyzed only superluminal dispersion rela-
tions. We should thus inquire how would subluminal dis-
persions affect the spectrum. At the classical level, as
noticed at the end of Sec. II D 1, there is a exact correspon-
dence between these two cases. At the level of the modes,
Eq. (30) does not leave Eq. (8) invariant as it does not apply
to the left-moving solutions governed by !� vp ¼ �F.
However, it becomes a symmetry when neglecting the
mode mixing between left and right movers. Therefore,
in models where the decoupling between these is exact
[16,32], Eq. (30) is an exact symmetry. Moreover, since the
mode mixing between left and right movers is subdominant
for general mode equations, the discrepancy of the spectral
deviations between superluminal and subluminal disper-
sion will not show up at leading order. This is precisely
what has been observed in Sec. VI.2 of [15].

At the level of the connection formula of Eq. (70),
the three exchanges of Eq. (30) still are an exact sym-
metry since the UBH-matrix is based on the right-moving
mode of Eq. (55) which is determined by the actionW!ðpÞ.
Therefore, at leading order in �=�, without any further
calculation, this symmetry implies that the spectrum
of HR is equally robust for subluminal dispersion.
Moreover, the leading-order deviations from the thermal
spectrum will be governed by the same expression
as Eq. (98). It should be noticed that when applying
Eq. (30), DL

lin characterizes the extension on the subsonic

region.
The above symmetry should not be confused with that of

Eq. (81) which also relates black and white holes. Indeed,
the latter exchanges the role of left- and right-moving

modes, while the former applies only to the right-moving
sector. Instead, these two symmetries can be composed
with each other. This allows us to compare black hole
spectra without referring to white holes.
To conclude the discussion, we mention that this ap-

proximate symmetry allows us not only to predict several
effects, but also to predict how the observables will quan-
titatively behave:
(i) a laser effect will be found for subluminal dispersion

in a flow possessing two horizons that passes from
super to sub and then back to a supersonic flow,3 and
this is exactly for the same reasons that the laser
effect was found in the ‘‘reversed’’ flow in the case of
superluminal dispersion, see [47] and Appendix B.

(ii) the frequencies and the growth rates of this subsonic
laser effect will be governed by the same expres-
sions as those of Appendix B (when neglecting the
coupling to the left-moving modes).

(iii) subsonic phonon propagation in a nonhomo-
geneous flow that remains everywhere subsonic,
i.e. without a sonic horizon, will be governed by a
4� 4 S-matrix that encodes a new pair of creation
channels with respect to those found in the pres-
ence of a sonic horizon [44] exactly for the same
reasons that a supersonic phonon propagation in a
nonhomogeneous flow that remains everywhere
supersonic does so, as mentioned in [27].

(iv) the behavior of the Bogoliubov coefficients in the
two cases will behave quantitatively in the same
way.

(v) the undulation observed in white hole flow for sub-
luminal gravity waves in the experiment of [25] is
generated for the same reasons as that found in
white holes for Bose condensates using the
Bogoliubov-de Gennes equation [24]. As we dis-
cussed above, this is obtained by composing the
symmetries of Eqs. (81) and (30).

(vi) Moreover, when the dispersion relations and the
profiles vðxÞ þ cðxÞ [where cðxÞ is the speed of
sound that generalizes the 1 in 1þ v] obey
Eq. (30) up to a possible rescaling of �, the mo-
mentum p, and distances, these undulations should
have the same spatial profile.

3We are grateful to Daniele Faccio and William Unruh for
bringing our attention to this possibility in a discussion that took
place during the Nice Colloquium on ‘‘Analog gravity’’ in June
2010.

BLACK HOLE RADIATION WITH SHORT DISTANCE . . . PHYSICAL REVIEW D 85, 024021 (2012)

024021-15



V. CONCLUSION

In this paper, we described the scattering of a dispersive
field on a stationary black hole horizon. We computed the
connection formula which relates WKB modes on each
side of the horizon sufficiently far away from the turning
point. Our main results are as follows:

(i) Equation (70) applies ‘‘off-shell,’’ which means that
the contribution of the growing mode is taken into
account. When requiring that its amplitude vanishes,
Eq. (70) fixes both the ‘‘on-shell’’ 2� 2 matrix of
Eq. (12) encoding the Bogoliubov transformation
between physical modes, and the amplitude of the
decaying mode. In situations with several horizons,
the presence of a growing mode in a finite-size
region could alter the scattering. In that case,
Eq. (70) should be used to estimate this effect.

(ii) The phases of the scattering coefficients are com-
puted. This allows us to show that not only the out-
going flux is robust against dispersion, but also the
correlation pattern between Hawking quanta and
their partner [in Eqs. (76) and (78)]. Moreover, in
situations with several horizons, such as that of the
black hole laser, these shifts enter in interference
effects and directly affect the observables. Our pre-
diction for their values is numerically confirmed as
discussed in Appendix B.

(iii) We characterized the leading spectral deviations
due to dispersion. These critically depend on the
spatial extension of the near-horizon geometry, and
not only on the ratio �=�. Indeed, they are gov-
erned by the parameterDL

lin of Eq. (17), and this for

a large class of dispersion, see Sec. IVD. These
spectral deviations imply only an upper bound on
the frequency, in contradiction to what was claimed
in [17,46].

(iv) A symmetry between superluminal and subluminal
dispersion relations establishes that the spectral
deviations due to one type of dispersion will be
also found for the corresponding one when modify-
ing the flow vðxÞ in a certain manner, see Eq. (30).

(v) In Appendix C, we extend our results to massive
fields. In that case, the dispersion relation is modi-
fied both in the infrared and the ultraviolet. This
induces two types of deviations from Eq. (76). We
show that these deviations decouple when m 
 �
and can be bounded separately. The ultraviolet ef-
fects are still controlled by Eq. (91) while the infra-
red ones can be studied with the massive relativistic
equation.
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APPENDIX A: WKB DISPERSIVE MODES

1. The method

To apply a WKB approximation to the solutions of
Eq. (8), we write the mode as

�!ðxÞ ¼ ei
R

x
k!ðx0Þdx0 : (A1)

Injecting this into Eq. (8), we obtain

ð!�vðxÞk!Þ2�F2ðk!Þ¼�i@x

�
1

2
@kF

2ðk!Þ
�

�4k!@
2
xk!þ3ð@xk!Þ2� i@3xk!

�2
:

(A2)

For definiteness and simplicity, the last term is given for
FðkÞ ¼ k2 þ k4=�2 but can be generalized to any polyno-
mial dispersion relation. So far, this equation is exact. It is
known as a Riccati equation [38] and was already used in
the present context in [17]. It is adapted to a perturbative
resolution where the different terms are sorted in order of
derivatives [34,48], here spatial gradients. Hence, we write
k! as

k! ¼ kð0Þ! þ kð1Þ! þ kð2Þ! þ . . . (A3)

where the superscript gives the number of derivatives [one
way to sort the terms of Eq. (A2) is to make the scale
change x ! x. The superscript then stands for the power

of 1=]. It is easy to show that kð0Þ! ðxÞ ¼ p!ðxÞ, the clas-
sical momentum, solution of the Hamilton-Jacobi Eq. (7).
The second equation is not less remarkable: it is a total
derivative and it has the universal form

kð1Þ! ¼ i

2
@x ln

�
!vðxÞ � v2p! þ 1

2@pF
2ðp!Þ

�

¼ i

2
@x ln½Fðp!Þvgrðp!Þ�; (A4)

where vgr ¼ 1=@!p! is the group velocity. Since kð1Þ!

is purely imaginary, it governs the mode amplitude.

Equation (A1) constructed with k! ¼ p! þ kð1Þ! gives the
generalized x-WKB expression

’WKB
! ðxÞ ¼

ffiffiffiffiffiffiffiffiffi
@p!

@!

s
ei
R

x
p!ðx0Þdx0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4	Fðp!Þ
p : (A5)
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Its Fourier transform evaluated at the saddle point gives the
p-WKB mode of Eq. (54).

Equation (A4) guarantees that the scalar product of
Eq. (11) evaluated with Eq. (A5) is exactly conserved.
Equation (A2) also guarantees that the development of k
is alternated: even terms are real, while odd ones are
imaginary.

2. Leading deviations due to dispersion

In this paper, we are interested in solving Eq. (8) in the
limit of weak dispersion, that is, for � large enough.
The aim of this section is to precisely define the meaning
of ‘‘� large enough’’ by computing the scaling of the
errors made when building the WKB basis of Sec. III A 2.
Two different approximations have been used. First, we
built approximate solutions of Eq. (8) with the aboveWKB
modes. Second, we solved Eq. (7) in the limit of large� in
Sec. III A 1, and we used the approximate roots to compute
the WKB modes.

To proceed, we estimate the next order term of Eq. (A3)
in the limit of weak dispersion (WD), i.e. by dropping

terms of order 2 in 1=�. In this regime, kð2Þ is solution of

� 2½Fðp!Þvgrðp!Þ�kð2ÞWDðxÞ
¼ ½�i@x þ kð1Þ! � � ½kð1Þ! @kðFvgrÞ�: (A6)

Because we master the modes near the horizon in the
p-representation (see Secs. II B and III), we are only
interested in the error accumulated from infinity, where
the x-WKB approximation becomes exact, to xpasting of

Eq. (91), at the edge of the near horizon region. This error

is estimated by evaluating the integral of kð2ÞWD from xpasting
until1. Indeed the exact mode�! can be approximated by

�! ’ ’WKB
! ei

R
x
kð2ÞWDðx0Þdx0 ’ ’WKB

! ½1þ �ðxÞ�: (A7)

To evaluate ’WKB
! , we use Eq. (A5) and the approximate

roots of Sec. III A 1. This introduces extra errors governed
by y of Eq. (38). Hence, near xpasting, the total error is

�T ’
Z xpasting

1
kð2ÞWDðx0Þdx0 þO½yðxpastingÞ�: (A8)

This error term behaves quite differently for in and out
modes, hence we shall study it separately.

(i) For the in modes, solving the Eq. (A6), we get

kð2ÞWD ¼ 9v02

16�j1þ vjð5=2Þ �
3v00

4�j1þ vjð3=2Þ : (A9)

Since this is not a total derivative, the integral de-
pends on what happens all along the way from 1 to
xpasting. However, when the profile v is smooth

enough, the accumulated error is essentially

�inT �
�

v0

�j1þ vjð3=2Þ
�
þOðypÞ ¼ 1

�L
p

þ!=�

�L
p

:

(A10)

(ii) For the out modes, the leading-order correction

arises from kð1Þ. Indeed, in the limit � ! 1, the
out modes are WKB exact because of conformal

invariance and kð1Þ�!1 ¼ 0. Therefore, for finite �,

kð1Þ will be the dominant contribution to the error
term of Eq. (A7). One finds

kð1ÞWD ¼ � 6!2v0

�2ð1þ vÞ4 : (A11)

This means that

�outT �
�

!2

�2j1þ vj3
�
x¼xpasting

¼ !2=�2

�2
p

: (A12)

Here, the pasting happens on both sides, hence in
the latter expression, one should understand �L

p for

ð’out�!Þ� and �R
p for ’out

! . As expected, the correc-

tions to redshifted out modes are subdominant with
respect to those of in modes.

It is interesting to notice that the validity of the x-WKB
approximation in a given flow and for a given dispersion
relation depends on the exact form of the mode equation
associated with Eq. (7). Indeed, when the mode equation is
not conformally invariant in the limit � ! 1 there is an
extra validity condition:��������v

0

!

��������
 1: (A13)

It is due to the fact that for low frequencies, the left- and
right-moving modes mix even in the absence of dispersion.
This mixing was studied in [28], and it was numerically
shown that these effects stay (in general) subdominant.

APPENDIX B: APPLICATION: THE BLACK
HOLE LASER

1. The setup

When a flow contains both a black and a white
horizon, and is subsonic on both asymptotic sides, HR is
self-amplified in presence of superluminous dispersion
[47,49], and this leads to a dynamical instability [50].
When the horizons are well separated, a powerful
‘‘S-matrix’’ description can be applied to describe the
mode propagation. In this picture, as in Eq. (12), the matrix
acts on the two right-moving modes ½’!; ð’�!Þ��.
Because the horizons are well separated, it is legitimate
to factorize S as S ¼ SWS2SBS4, where SW and SB are the
‘‘on-shell’’ Bogoliubov matrices associated with the white
and black holes, respectively, and S2 and S4 contain phase
shifts characterizing Hamilton-Jacobi propagations from
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the white hole horizon to the black one. These have the
form

S2 ¼ eiS
in
! 0

0 eiS
in�!

 !
; (B1)

S4 ¼ 1 0
0 e�iSout�!

� �
; (B2)

where Sin! designates S! of Eq. (32) evaluated for the root
kin!, and similarly for the other two actions. The names of
the roots are those associated with the black hole horizon,
so that their expressions can be found in Sec. III A 1. We
notice that the precise values of the end points of integra-
tion in these three actions depend on the phase conventions
that have been adopted to compute SW and SB, so that S is
independent of these arbitrary choices. Notice also the
minus sign before S4 because the corresponding propaga-
tion is backwards in x. For a more detailed analysis, we
refer the reader to [50]. Here, we only recall the main
points.

For a real frequency!> 0, the eigenmode is asymptoti-
cally a plane wave of positive norm taken to be unity. To
compute b!, the amplitude of the negative norm mode
trapped between the two horizons, we require that the
mode be single valued. This condition gives

eif!

b!

� �
¼ S � 1

b!

� �
: (B3)

where eif! is the transmission coefficient, here a phase
shift. In addition to the real spectrum, there exists a discrete
set of pairs of complex frequency modes which encode the
instability. To construct these modes, we look for frequen-
cies a ¼ !a þ i�a (where a labels a discrete set) such
that the mode is asymptotically bounded (in fact square
integrable). As demonstrated in [50], the unstable modes
(�> 0) are purely out-going and thus satisfy

Aa

1

� �
¼ S � 0

1

� �
: (B4)

This equation has a solution if and only if

S22ð!þ i�Þ ¼ 1: (B5)

This is the algebraic equation that fixes the set of complex
frequencies a.

2. Predictions

To compute these complex frequencies, we perform an
expansion in the �! coefficients in SW and SB. To zeroth-
order in these coefficients, Eq. (B5) gives a Bohr-
Sommerfeld condition that fixes !a, the real part of the
frequency:

Z xBtp

xWtp

½pout�!ðxÞ�pin�!ðxÞ�dx�argð~�W
! ~�B

!Þ¼2	n;n2N�;

(B6)

where the end point xWtp (respectively, xBtp) refers to the

turning point near the white hole (respectively, black hole)
horizon.4 The l.h.s. of Eq. (B6) displays both standard and
unusual features. On the one hand, as expected, one finds
the classical action evaluated along a closed loop from one
turning point to the other one. One the other hand, one does
not find the usual phase shift (¼ 	) that accounts for the
two reflections when dealing with Schrödinger type prob-
lems where the modes near the turning points can be well
approximated by Airy functions. Indeed, using Eqs. (76)
and (71), one sees that � argð~�W

! ~�B
!Þ differs from 	. To

characterize the difference, we introduce

�ð!Þ ¼ argð~�W
! ~�B

!Þ þ 	;

¼ arg½~�ð!=�WÞ� þ arg½~�ð!=�BÞ�: (B7)

Using Eq. (73), one sees that it is only in the limit
!=� ! 1 that one recovers the standard result, i.e.
� ¼ 0. For smaller values of !=�, � accounts for the
nontrivial phase shift due to the reflections on the two
horizons. It arises from the fact that the reflected modes
cannot be well approximated by Airy functions, something
not discussed in [51].
In Figs. 6 and 7, we have compared the numerical results

with the theoretical predictions evaluated with and without
�. The improvement of the agreement when including � is
clear.
To second order in �!, Eq. (B5) fixes the growing rate �

for a given value of !:

2�T! ¼
���������

W
!

�W
!

��������
2þ

���������
B
!

�B
!

��������
2þ2

���������
W
!

�W
!

�B
!

�B
!

��������cosðc Þ; (B8)

where T! is the classical time for the trapped mode to
make a round-trip between the two horizons

T! ¼ @!½Sout�! � Sin�! þ 	� �ð!Þ�; (B9)

and the phase c reads

c ¼ Sin! � Sin�! þ arg

�
��W

!
~�B
!

�W
! ~�B

!

�
: (B10)

This nontrivial phase arises from the interference between
the two pair creation amplitudes, that occurring at the
white hole and that at the black hole. A careful calculation
gives a remarkably simple result

4The writing of Eq. (B6) is obtained only if the Bogoliubov
coefficients ~�W

! and ~�B
! of Eq. (12) are computed with a phase 
0

of Eq. (33) common to in and out modes. It is now clear why it is
convenient to work with this choice.
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c ¼ Re

�Z pmax

pmin

½XB
!ðpÞ � XW

! ðpÞ�dp
�
þ 	: (B11)

The constant phase shift follows from Eqs. (76) and (82)
which give

arg

�
��W

!
~�B
!

�W
! ~�B

!

�
¼ 	: (B12)

The contribution from the classical actions is best ex-
pressed in p-space using the function X!ðpÞ of Eq. (22).
However, because the flow profile v is not monotonic in the
black hole laser setup, X! is no longer unique. Assuming
that v < 0 has a single minimum at x ¼ 0 between the two
horizons, we define XW

! ðpÞ [respectively, XB
!ðpÞ] as the

solution of Eq. (22) of negative values describing the
propagation towards the white hole (respectively, posi-
tive values associated with the black hole). Both of these
semiclassical trajectories run from a positive maxi-
mum value pmax ¼ pin

!ð0Þ to a minimum negative value
pmin ¼ pin�!ð0Þ. In Eq. (B11), we took the real part of the

integral in order to remove the imaginary contributions
(¼ i	!=�W and i	!=�B) that arise when p flips sign,
see the discussion after Eq. (33). The contribution for
p > 0 accounts for the propagation of the positive norm
mode, whereas that with p < 0 for that of the trapped
mode. What is remarkable is that when they are combined,
the net result for Sin! � Sin�! takes the form of the first term
of Eq. (B11). Notice again that this simple form is found
only when using mode bases such that Eq. (B12) applies.
Interestingly, Eq. (B11) has the same structure as the

Bohr-Sommerfeld condition of Eq. (B6) with the role of
x and p interchanged, i.e. Eq. (B11) is a closed loop in
p-space of some X!ðpÞ. What is unusual is that the action
receives imaginary contributions when p changes sign. In
fact, when removing the restriction to the real part of the
action, one gets

e
i
R

pmax
pmin

ðXB
!ðpÞ�XW

! ðpÞÞdpþ	 ¼ �W
!
~�B
!

�W
! ~�B

!

eic : (B13)
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FIG. 6. Evolution of the real part (left plot) and the imaginary (right plot) of a complex frequency as a function of L, the distance
between the 2 horizons. These curves have been obtained by making use of the numerical techniques described in Ref. [56]. The
parameters used are �w=�b ¼ 0:5, D ¼ 0:5 and �=�b ¼ 8, and we consider the n ¼ 22 discrete mode.
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standard expression � ¼ 0. The improvement of the estimation is clear, and therefore the necessity of computing the phases in Eq. (76)
is established.
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In other words, the ratios �!=�! can be attributed to, and
therefore computed from, the imaginary contributions of
the action S! of Eq. (32) that arise when p flips sign. An
early version of this relation was used for relativistic
modes in [52], and it is at the core of the so called
‘‘Unruh’’ modes [53]. It was adapted to dispersive waves
in [16] and implicitly used above when computing the
connection coefficients in Sec. III. It was also recently
exploited in [44] in a similar context.

To conclude, we underline that unlike the robustness of
the Hawking spectrum, Eqs. (B6) and (B11) are not nec-
essarily valid for very small frequencies. Indeed, we have
made two additional approximations. First, that the
S-matrix can be factorized, i.e. that the propagation is
correctly described by separating the scattering on each
horizon and by WKB propagations between the horizons.
Second, that the growing rate of the unstable modes are
small (�Tb

! 
 1) when developing Eq. (B5). This condi-
tion is violated when ! ! 0 because �=� becomes of
order 1. However, when the density of unstable modes is
not too low, the numerical analysis confirms that the above
expressions correctly characterize the complex frequen-
cies, as can be seen from Figs. 6 and 7.

APPENDIX C: MASSIVE CASE

In this appendix, we add a mass m on top of the ultra-
violet dispersion of Eq. (2):

F2
m ¼ m2 þ

�
pþ p3

2�2

�
2
; (C1)

and focus on the novel features brought in by the mass. We
suppose that the two scales are well separated, i.e.m 
 �.
In this limit, one has

FmðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

q
þ p4

2�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p : (C2)

Moreover, since the last term becomes non-negligible only
when p�� � m, we get

FmðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

q
þ p3

2�2
: (C3)

Therefore, to first order in m=�, Fm is a sum of the
relativistic massive dispersion plus a dispersive term. In
the near-horizon region, the mode in p-space is still given
by Eq. (55), and, as in Sec. III, the various modes in
x-space are given by contour integrals

’C
!;mðxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi

4	�
p

Z
C

�
p

FmðpÞ
�ð1=2Þ

� eiðpx�ð!=Þ� lnðpÞþGmðpÞþðp3=6�2�ÞÞ dp

p
ffiffiffiffiffiffiffi
2	

p ; (C4)

where

GmðpÞ ¼ �
Z 1

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p02p � p0

�p0 dp0; (C5)

encodes the modification of the phase due to the mass. As
before, the choice of the contour C dictates which mode
one is considering.
In the following, we construct the generalization of the

decaying mode of Sec. III A 1 because this is enough to
extract the Bogoliubov coefficients. To this end, we must

choose a branch cut to define both the lnðpÞ and ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
appearing in Gm. These functions introduce three branch-
ing points, p ¼ 0, and p ¼ �im. Here, we take the line
�iRþ extended until im to be the branch cut, as shown in
Fig. 8. Hence, in the limit m ! 0 we recover what we did
in the body of the paper, see Fig. 4. To compute Eq. (C4),
we proceed as in Sec. III A 1.
When x > 0, the introduction of a mass does not alter the

discussion of Sec. III A 1 since the saddle at ps ¼ i�
ffiffiffiffiffiffiffiffiffi
2�x

p

FIG. 8. Representation of the contours in the p-plane to get ð�out�!Þ�, the out mode of negative norm. The hatched regions are the
asymptotically forbidden ones. The wavy line is the branch cut of lnðpÞ, and the bold line is what must be added because of the mass.
The left panel is valid for x > 0, and the right one for x < 0.
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is well above the singularity at im for x sufficiently far
away from the horizon. Hence,

’C
!;m ¼ eiGmðpsÞ � ’#

! � ½e�ið	=2Þ�; (C6)

where ’#
! is the massless dispersive decaying mode of

Eq. (46). Moreover, we have GðpsÞ � 0 because ps � m
in the region of interest. For x > 0, the mode is thus rapidly

decaying, on a scale �x� ð�=�Þð2=3Þ, and in the relat-
ivistic limit (i.e. � ! 1) it vanishes. Therefore, as in the
massless case, this mode is proportional to ð�out�!;mÞ�, the
negative norm out-goingmode. Indeed, if it were containing
a small amount of the positive norm out-going mode�out

!;m,

it would oscillate on the right-hand side of the horizon until

�x� ð!=mÞ2 � ð�=�Þð2=3Þ which gives the location of the
turning point where the mode is reflected due to its mass, or
due to a perpendicular momentum [54,55].

For x < 0, using the analytic properties of ~’!ðpÞ, we
deform the contour C into the union of C1, C2 and C3 shown
in Fig. 8. On C1 and C2, there are two saddle points at p ¼
��

ffiffiffiffiffiffiffiffiffi
�jxjp

that describe the high-momentum incoming
modes, as in Sec. III A 1. Their contribution is

’C1[C2
!;m ¼ ½eð!	=�Þeið3	=4Þ� � ð’in�!Þ� þ eið	=4Þ � ’in

!;

(C7)

where ’in�! are the massless dispersive in modes of
Eq. (42) and (43). Moreover, the saddle-point approxima-
tion is controlled by the parameter �ðxÞ of Eq. (34),
irrespective of the mass m 
 �. Hence, as expected, the
high-momentum contributions of the out mode are mass
independent. Along C3 instead, we perform a strong limit
� ! 1 as in Eq. (64), and we get

’C3
!;mðxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi

4	�
p

Z
C3
p�ið!=�Þ�1ei½xpþGmðpÞ�

�
 

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
!ð1=2Þ dpffiffiffiffiffiffiffi

2	
p ; (C8)

which is a massive relativistic mode of negative norm.
Up to a complex amplitude A!, it gives ð’out�!;mÞ�, the
low-momentum out branch of the globally defined mode
ð�out�!;mÞ�. In brief, the mode obtained with the contour C is

A!ð�out�!;mÞ�: For all!, it decays for x > 0, and on the left-
hand side, it contains three WKB branches

A! � ð�out�!;mÞ� ¼
�
��
!;m

~��
!;m

eið	=4Þ
�
� ð’in�!Þ�

þ ei
	
4 � ’in

! þ A! � ð’out�!;mÞ�: (C9)

Since ð’in�!Þ� and ’in
! are normalized and have opposite

norms, their relative coefficient furnishes the ratio of the

near horizon Bogoliubov coefficients j ~�!;m=�!;mj.5 From
Eqs. (C7) and (C9), we obtain j ~�!;m=�!;mj ¼ e�	!=�. It is

independent of m and has the standard relativistic value.
We decided to study ð�out�!;mÞ� in order to be able to

discuss the asymptotic Bogoliubov coefficients. So far,
indeed our calculation is restricted to the near-horizon
regions 1.b of Fig. 2. Had we studied the positive norm
mode �out

! , we would have faced the propagation in the
regions 2 and 3 on the right of the horizon. Below the
critical frequency !as

m discussed in footnote 5, the mode
�out

! is completely reflected. Above that threshold, �out
! is

partially reflected in a nonuniversal manner that depends
on the actual profile vðxÞ. However, since this scattering is
elastic, as it mixes left- and right-moving positive norm
modes (these being the only ones present in that region), it
does not affect the pair creation probabilities of asymptotic
quanta, i.e. it fixes ‘‘greybody factors.’’ In other words, the
propagation in the right-hand region has no influence on
pair creation probabilities, both for! below and above!as

m .
On the contrary, the mode mixing on the left-hand

regions 2 and 3 will affect them because this mixing
involves modes with norms of both signs. For instance,
in Minkowski space-time, no asymptotic particle is created
even though Eq. (C9) applies near the Rindler horizon
described by Eq. (8) with

vðxÞ ¼ �ð1� 2�xÞð1=2Þ: (C10)

This implies that the far away scattering undoes the one
occurring near the horizon, as can be verified by direct
calculation, using Bessel functions. For the smooth and
asymptotically constant profiles we consider in this paper,
WKB modes nevertheless provide a controlled approxima-
tion on the entire left region. Indeed, the errors due to the
high-momentum modes are m independent and small
whenever �L

p of Eq. (92) obeys �L
p � 1. The error due

to the low-momentum mode can be bounded using the
treatment of Appendix A. For the reflected modes, for 0 
!<!as

m , one gets

���������! � �exact
!

�exact
!

��������¼ O

�
�

!

�
: (C11)

Because the error grows like 1=! there is no guarantee that
the extra mode mixing will not significantly affect the

5We have used the same conventions as in the massless case,
see Eq. (12), because the relevant part of the scattering matrix is
still 2� 2, for all values of !. This is nontrivial because the
dimensionality of the asymptotic modes is different from that of
the massless case. Indeed, when there is a mass, the left-going
mode �left

! only exists above a critical frequency !as
m ¼ m½1�

ðvR
asÞ2�1=2 where vR

as is the asymptotic velocity on the right-hand
side. However, as later discussed in this Appendix, the mode
mixing with �left

! does not affect the asymptotic Bogoliubov
coefficients. Hence, �left

! remains a spectator mode.
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values of the coefficients given in Eq. (C9). Hence further
investigation is necessary to understand under which cir-
cumstances the standard divergence of j�!j2 in �=! is
recovered in the massive case. We are currently examining
this interesting question. Let us conclude by noticing that
since the asymptotic value of the wave vector kout! is
finite for ! ! 0, this opens the possibility of having a
phenomenon similar to what we found when studying

white holes in Sec. IVB3. The most surprising result of
this analysis is that the mass does not induce any suppres-
sion of the pair creation probabilities for! ! 0 which still
diverge as 1=!. This is reminiscent to what we found when
studying the white holes in Sec. IVB 3 because the asymp-
totic value of the wave vector kout! is finite for ! ! 0. We
are currently examining the consequences of this interest-
ing fact.

[1] S.W. Hawking, Commun. Math. Phys. 43, 199 (1975).
[2] J.M. Bardeen, B. Carter, and S.W. Hawking, Commun.

Math. Phys. 31, 161 (1973).
[3] J. D. Bekenstein, Phys. Rev. D 7, 2333 (1973).
[4] J. D. Bekenstein, Phys. Rev. D 9, 3292 (1974).
[5] C. G. Callan and J.M. Maldacena, Nucl. Phys. B472, 591

(1996).
[6] T. Jacobson, Phys. Rev. Lett. 75, 1260 (1995).
[7] W.G. Unruh, Phys. Rev. Lett. 46, 1351 (1981).
[8] G. ’t Hooft, Nucl. Phys. B B256, 727 (1985).
[9] R. Brout, et al., Phys. Rep. 260, 329 (1995).
[10] T. Jacobson, Phys. Rev. D 44, 1731 (1991).
[11] T. Jacobson, Phys. Rev. D 48, 728 (1993).
[12] R. Parentani, Int. J. Theor. Phys. 41, 2175 (2002).
[13] W.G. Unruh, Phys. Rev. D 51, 2827 (1995).
[14] S. Corley and T. Jacobson, Phys. Rev. D 54, 1568 (1996).
[15] J. Macher and R. Parentani, Phys. Rev. D 79, 124008

(2009).
[16] R. Brout, et al., Phys. Rev. D 52, 4559 (1995).
[17] S. Corley, Phys. Rev. D 57, 6280 (1998).
[18] Y. Himemoto and T. Tanaka, Phys. Rev. D 61, 064004

(2000).
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