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We study the collision of particles in the vicinity of a horizon of a weakly magnetized nonrotating black

hole. In the presence of the magnetic field innermost stable circular orbits of charged particles can be

located close to the horizon. We demonstrate that for a collision of two particles, one of which is charged

and revolving at innermost stable circular orbits and the other is neutral and falling from infinity, the

maximal collision energy can be high in the limit of a strong magnetic field. This effect has some

similarity with the recently discussed effect of high center-of-mass energy for the collision of particles in

extremely rotating black holes. We also demonstrate that for ‘‘realistic’’ astrophysical black holes their

ability to play the role of ‘‘accelerators’’ is in fact quite restricted.

DOI: 10.1103/PhysRevD.85.024020 PACS numbers: 04.70.Bw, 04.25.�g, 04.70.�s

I. INTRODUCTION

The collision of particles near a rotating black hole
horizon may produce high energy radiation. Such pro-
cesses connected with the Penrose effect were studied a
long time ago by Piran and his collaborators [1–3].
Recently, Bañados, Silk, and West [4] demonstrated
that for an extremely rotating black hole such collisions
can produce particles with a high center-of-mass energy.
In an idealized setup, this energy can be higher than
Planckian energy, so that one might think about black
holes as super high energy colliders. This work stimu-
lated a lot of interest in this problem [5–13]. A more
detailed analysis demonstrated that this model is over-
simplified. There exist several processes which suppress
the possible high value of the collision energy [14,15].
The center-of-mass energy can be infinitely high only if
the black hole is extremely rotating. A tiny violation of
the extremality condition, which is practically inevitable
in the astrophysical applications, strongly suppresses
this effect. Even in the idealized extremely rotating
case special fine-tuning is required for particle trajecto-
ries. The gravitational radiation also significantly affects
this process.

The aim of this paper is to show that a similar effect of
particle collision with a high center-of-mass energy is also
possible when a black hole is nonrotating (or slowly rotat-
ing) provided there exists a magnetic field in its exterior.
This observation might be interesting since there exist both
theoretical and experimental indications that such a mag-
netic field must be present in the vicinity of black holes. In
what follows, we assume that this field is weak and its
energy momentum does not modify the background
black hole geometry. For a black hole of mass M, this
condition holds if the strength of magnetic field satisfies
the condition,

B � Bmax ¼ c4

G3=2M�

�
M�
M

�
� 1019

M�
M

Gauss: (1)

We call such black holes weakly magnetized. One can
expect that the condition (1) is satisfied both for stellar
mass and supermassive black holes.
The condition (1) does not mean that the magnetic field

does not affect the charged particle motion. The following
dimensionless quantity:

b ¼ jqjBGM
mc4

(2)

can be used to characterize the relative strength of mag-
netic and gravitational forces acting on a charged particle
(with charge q and mass m) in the vicinity of the weakly
magnetized black hole of massM. For electrons this quan-
tity is

b� 8:6� 1010
�

B

108 Gauss

��
M

10M�

�
; (3)

while for protons it is less by the factor mp=me � 1836. If

one uses the following estimations for the magnetic field in
the vicinity of black hole, presented in [16],

B� 108 Gauss for M� 10M� black holes; (4)

B� 104 Gauss for M� 109M� black holes; (5)

one obtains b� 8:6� 1010 and b� 8:6� 1014 for these
two cases, respectively. This means that even for weakly
magnetized black holes the magnetic field can dramatically
modify the charged particle motion. For B ¼ bmax the
parameter b reaches the value bmax ¼ 8:6� 1020, which
is independent of the mass of a black hole.
It is interesting that in some aspects the action of the

magnetic field on charged particle motion is similar to the
action of the rotation of the black hole on the motion
of neutral particles in its vicinity. Such a similarity can
be expected in a general case in accordance with the*vfrolov@ualberta.ca
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well-known gravito- electromagnetism analogy (see, e.g.,
[17,18]). In particular, in the presence of the magnetic field
the innermost stable circular orbit (ISCO) for a charged
particle can be arbitrary close to the horizon [19], as it
occurs for an extremely rotating black hole. For this reason
one can expect that under special conditions magnetized
black holes can play the role of accelerators, similar to the
rotating ones. The purpose of this paper is to demonstrate
that this is really so.

Many important results concerning charged particle mo-
tion in magnetized black holes can be found in [19–21]. A
recent paper [22] contains a more detailed study of this
problem. The results of the latter paper will be used in the
present work.

The present paper is organized as follows. Section II
contains a discussion of charged particle motion in the
magnetized black holes, with the main focus on the prop-
erties of their ISCOs. In Sec. III we discuss particle colli-
sion in the vicinity of a weakly magnetized black hole. We
demonstrate that for a collision of two charged particles of
massm, moving along ISCO in the opposite directions, the
center-mass energy is only slightly more that 2m. However
the collision energy can be high in another case, when a
freely falling neutral particle collides with a charged par-
ticle at ISCO. Formally, the center-mass energy can be
arbitrary high for this case, as it happens in the extremely
rotating black holes. In Sec. IV we discuss the obtained
results. In particular, we show that the dependence of
maximal collision energy M on the magnetic field pa-

rameter b has the form M� b1=4. As a result, one cannot
reach extremely high energy M for realistic magnetic
fields. We also discuss other effects which might be im-
portant for such collision processes.

II. CHARGED PARTICLE MOTION IN WEAKLY
MAGNETIZED BLACK HOLES

Let us discuss first a charged particle motion in the
vicinity of a Schwarzschild black hole of mass M in the
presence of an external static axisymmetric and uniform at
the spatial infinity magnetic field. The Schwarzschild met-
ric reads

ds2 ¼ �fdt2 þ f�1dr2 þ r2d!2; f ¼ 1� rg
r
; (6)

where rg ¼ 2GM and d!2 ¼ d�2 þ sin2�d�2. The com-

muting Killing vectors �ðtÞ ¼ @=@t and �ð�Þ ¼ @=@� gen-

erate time translations and rotations around the symmetry
axis, respectively. The magnetic field potential in the
Lorentz gauge A�

;� ¼ 0 is of the form

A� ¼ B

2
�
�
ð�Þ: (7)

The corresponding magnetic field is homogeneous at the
spatial infinity where it has the strength B (see, e.g.,
[20,23]). In what follows, we assume that B � 0.

The dynamical equation for a charged particle motion is

m
du�

d�
¼ qF�

�u
�; (8)

where � is the proper time; u� is the particle four velocity;
and u�u� ¼ �1, q, and m are its charge and mass, re-

spectively. For the motion in the magnetized black hole
there exist two conserved quantities associated with the
Killing vectors: the energy E> 0 and the generalized
azimuthal angular momentum L 2 ð�1;þ1Þ,

E � ���
ðtÞP� ¼ m

dt

d�

�
1� rg

r

�
; (9)

L � �
�
ð�ÞP� ¼

�
m
d�

d�
þ 1

2
qB

�
r2sin2�: (10)

Here P� ¼ mu� þ qA� is the generalized four-

momentum of the particle. We focus on the motion of the
charged particle in the equatorial plane, so that these
integrals of motion are sufficient for the complete integra-
bility of the equations of motion.1

It is convenient to use the following dimensionless
versions of r, �, E, L, and B:

�¼ r

rg
; �¼ �

rg
; ‘¼ L

mrg
; E¼E

m
; b¼qBrg

2m
: (11)

Written in the dimensionless form the equations of motion
are

�
d�

d�

�
2 ¼ E2 �U;

dT
d�

¼ E�
�� 1

; (12)

�
d�

d�
¼ 	; 	 ¼ ‘

�
� b�; (13)

where the effective potential is

U ¼
�
1� 1

�

�
ð1þ 	2Þ: (14)

In what follows we assume that the charge q is positive, so
that b is positive as well. We discuss only such solutions.
Solutions for the negative charge can be obtained by a
simple substitution b ! �b, ‘ ! �‘, and � ! ��.

1Let us notice that the black hole parameters do not enter the
expression for the generalized azimuthal angular momentum, so
that expression (10) is the same as in a flat spacetime. If a
particle does not move and is located at � ¼ 0, (10) takes the
form L ¼ 1

2qBr
2. This means that L depends on the choice of the

center of the spherical coordinates. This ambiguity reflects the
fact that L is not a gauge invariant quantity, and by a proper
gauge transformation its value at an initial moment of time can
be changed. For this reason the absolute value of the constant L
is not important for our problem. However, in the case of a black
hole it is convenient to fix the origin of the spherical coordinates
in the ‘‘center’’ of the black hole, and to choose the gauge in
which (7) is valid.
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We consider the circular motion of the charged particle.
The effective potential has minimum at the radius of such
an orbit. The momentum of a particle at the circular orbit of
radius r is

p� ¼ m
ðe�ðtÞ þ ve
�
ð�ÞÞ; (15)

e
�
ðtÞ ¼ f�1=2�

�
ðtÞ ¼ f�1=2�

�
t ; (16)

e
�
ð�Þ ¼ r�1�

�
ð�Þ ¼ r�1�

�
�: (17)

Here v (which can be both positive and negative) is a
velocity of the particle with respect to a rest frame, and

 is the Lorentz gamma factor. From normalization con-

dition p2 ¼ �m2 one has 
 ¼ ð1� v2Þ�1=2. For q > 0 the
Lorentz force acting on a particle with v > 0 is repulsive
(i.e., directed outwards the black hole), while for v < 0 it is
attractive.

Using relation d�=d� ¼ v
=r and (10) one gets

v
 ¼ 	: (18)

This relation allows one to find


2 ¼ 1þ 	2; v ¼ 	ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 	2

p : (19)

The position of the ISCO is determined by the equations
@�U ¼ @2�U ¼ 0. These conditions give 2 relations for 3

quantities, �, ‘, and b. In the absence of the magnetic field
the ISCO radius is the same for both types of the directions
of the motion and the corresponding value of � is �	 ¼ 3.
For the nonvanishing magnetic field the ISCO radii for
positive and negative ‘ are different. Both �	 are smaller
than 3, and one always has �þ <��.

Using Eqs (57) and (58) from Ref. [22], one obtains

		� ‘	
�	

�b	�	¼	 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3�	�1

p 
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3��	

p

Q1=2
	

;

Q	¼4�2	�9�	þ3	A	; A	¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3�	�1Þð3��	Þ

q
:

(20)

Here �	 is the radius of ISCO. For both types of motion
A	 is real only in the interval 1=3 � � � 3. The function
Qþ ¼ 0 for �þ ¼ 1 and Q� ¼ 0 for �� ¼ ��;min �
ð5þ ffiffiffiffiffiffi

13
p Þ=4. Figure 1 shows that the regions allowed for

the ISCO radii are 1<�þ � 3 and ��;min < �� � 3.
Using (19) one finds the values of the velocity v	 and 


factor 
	. Figure 2 shows the velocity of a particle at the
ISCO as a function of its radius. The lower brunch, which
starts at �þ ¼ 1 at the value 1=2, is slightly less than 1=2 in
the interval (1, 3). At the end of this interval it reaches the
value 1=2 again. The upper brunch starts with the same
value 1=2 at �� ¼ 3 and monotonically increases until it
reaches the value 1 at � ¼ ��;min. Thus, the motion of the

particle at the ISCO becomes ultrarelativistic only in this
limit.

One can write expression for 
	 in the following form:


	 ¼ 2ð�	 � 1Þ
½4�2	 � 9�	 þ 3	 A	�1=2

: (21)

The value of the effective potential U at the position of the
ISCO is

U	 ¼ ð1� ��1	 Þð1þ 	2	Þ: (22)

Figure 3 shows that Uþ monotonically decreases from
its value 8=9 at �þ ¼ 3 until 0 at the horizon �þ ¼ 1,
while the 
 factor remains always slightly higher than 1. At
the end points of the ISCO radius domain one has


þð1Þ ¼ 
þð3Þ ¼ 2=
ffiffiffi
3

p
: (23)

For b  1 the ISCO radius �þ is close to the horizon and
one has (see [22])

�þ � 1 � 1ffiffiffi
3

p
b
: (24)

FIG. 1. Qþ and Q� as functions of �.

FIG. 2 (color online). Velocity of a particle at the ISCO as a
function of its radius.
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For the same mass of the black holeM and the value of the
magnetic field H, the parameter b for electrons is almost
2000 times larger than for protons, so that the ISCO for
electrons are located much closer to the horizon than the
corresponding orbits for protons. Because the signs of
charges for the electron and proton are different, they
move along their ISCOs in the opposite direction.

Figure 4 shows that for trajectories with ‘ < 0 both

U� and 
� infinitely grow at ��;min ¼ ð5þ ffiffiffiffiffiffi
13

p Þ=4.

III. PARTICLE COLLISION

A. Two particles at ISCO

As a first example let us consider a collision of two
particles with the same mass m and opposite charges þjqj
and �jqj moving along the same circular orbit in the
opposite directions. The four-momentum of the system

after the collision is P� ¼ 2m
e
�
ðtÞ. Denote by M the

energy after the collision calculated in the center-of-mass
frame, then one has

M ¼ 2m
: (25)

Let us assume that for a chosen value of the magnetic field,
the particles move at the ISCO. As one can see from Fig. 3,
the value 
þ for an arbitrary field b remains close to 1. This
means that the collision energy M cannot be much higher
than 2m.
For the ‘‘attraction’’ case the situation is quite different.

Formally both 
� and M infinitely grow when the radius

of the ISCO tends to its minimal value ��;min ¼
ð5þ ffiffiffiffiffiffi

13
p Þ=4. Thus in such a collision one can obtain an

arbitrary large value ofM (see Fig. 4). The energy of such
particles as measured at infinity, E ¼ mU�ð��Þ, also
grows in this limit. This means that in such a setup the
high collision energy is possible only if the initial energy of
the particles measured at infinity is also high. In other
words, the gravitational field of the black hole simply
‘‘helps’’ the magnetic field to keep the charged particles
at the circular orbit, but it does not provide the colliding
particles with the energy.

B. Collision of a freely falling neutral particle
with a charged particle at ISCO

1. Collision energy

Let us consider now another case, when a neutral parti-
cle collides with a charged particle revolving at the circular
orbit near a weakly magnetized black hole. As we did
earlier, we denote by p the four-momentum of this particle,
and by m and q its mass and charge. We denote by � the
mass of a freely falling particle, and by k its four-
momentum. At the moment of collision the four-
momentum is

P ¼ pþ k; (26)

and the corresponding center-of-mass energy is M,

M 2 ¼ m2 þ�2 � 2ðp;kÞ: (27)

2. Freely falling particle

To calculate ðp; kÞ � g��p
�k� at the point of the colli-

sion, we obtain first an expression for k in terms of the
integrals of motion for the neutral particle. We parametrize
the particle geodesic by an affine parameter �, such that

k ¼ ð _t; _r; _�; _�Þ; ð. . .Þ� ¼ dð. . .Þ=d�: (28)

For this parametrization one has

gtt _t
2 þ grr _r

2 þ g�� _�2 þ g��
_� ¼ ��2; (29)

and the case of a massless particle (‘‘photon’’) does not
require any modifications. We use the following integrals

FIG. 3. The value of the effective potential Uþ at the position
of the ISCO �þ and the corresponding value of the 
 factor 
þ.

FIG. 4. The value of the effective potential U� at the position
of the ISCO �� and the corresponding value of the 
 factor 
�.
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of motion: the energyE, the azimuthal angular momentum
Lz, and the total angular momentum L,

E¼f _t; Lz¼ r2sin2� _�; L2¼ r4ð _�2þsin2� _�2Þ: (30)

Thus, we have

k ¼ ðE=f; _r; _�;Lz=r
2Þ; (31)

_r ¼ 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 � ð�2 þ L2=r2Þf

q
; (32)

_� ¼ 	r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 � L2

z=sin
2�

q
: (33)

For the motion from infinity, the particle is either cap-
tured by the black hole, or, after a close encounter, returns
to infinity. To determine the critical value of the angular
momentum L which separates these two outcomes we use
the relation (32) written in the form

_r 2 ¼ E2W; W ¼ 1� ð�2 þ l2=�2Þð1� 1=�Þ: (34)

Here � ¼ �=E and l ¼ L=ðErgÞ. For the motion from the

infinity � � 1, and � ¼ 0 for the ultrarelativistic particles
and light. The function W vanishes at the horizon and has
the value 1� �2 at the infinity. Depending on the parame-
ters � and l, it is either monotonically increasing, or it has
one maximum, where dW=d� ¼ 0. The condition W ¼ 0
determines the radial turning points. The condition that the
radial point coincides with the maximum of W,

W ¼ dW=d� ¼ 0; (35)

determines the critical impact parameter lcrit ¼ �ð�Þ. The
capture takes place when jlj< lcrit. The function �ð�Þ
obtained by solving (35) is shown at Fig. 5. One can see
from this plot that the critical impact parameter � mono-
tonically changes from 2 for a particle with zero velocity at

the infinity, until its maximal value � ¼ 3
ffiffiffi
3

p
=2 for ultra-

relativistic particles.

3. Properties of the collision energy

Using this representation (28) for k and (15) one finds

ðp;kÞ ¼ �m
E

�
f�1=2 � vlz

�

�
: (36)

where lz ¼ Lz=ðErgÞ. Thus, the collision energyM obeys

the equation

M 2 ¼ m2 þ�2 þ 2m
E

�
f�1=2 � vlz

�

�
: (37)

As we already know for ISCO with ‘ < 0 the 
 factor
infinitely grows at the minimal radius ��;min. As a result,

M can be arbitrary large. But as stated earlier, this case is
not interesting for our purposes since the corresponding
high energy is required from the very beginning in order to
put a charged particle at such an orbit.
The ‘‘repulsion’’ case is more interesting. Since the

radius of the ISCO can be arbitrary close to the horizon,

the factor f�1=2 in (37) can be made arbitrary large, while

þ remains finite. The second term in the brackets in (37)
remains finite as well. Really, from (33) it follows that
jLzj � L, so that

jvlzj
�

< jlzj � �ð�Þ � 3
ffiffiffi
3

p
2

: (38)

For the fixed energyE, the maximal value of the parameter

jvlzj=� ¼ 3
ffiffi
3

p
2 is reached for massless particles (photons)

propagating in the equatorial plane. This contribution to
M2 is positive when the photon and the particle move in
the opposite direction. In any case, this term remains finite
in the limit �þ ! 1.
Thus, for the collision close to the horizon the leading

contribution to M is

M � ð2m
þEÞ1=2
ð�þ � 1Þ1=4 : (39)

Using relation (24) one obtains the following asymptotic
value of the center-off-mass energy for a collision with the
charged particle at ISCO in a magnetic field b  1,

M � ð3Þ1=8b1=4ð2m
þEÞ1=2: (40)

Using expression (23) for the value of 
þ at the horizon,
one can write (40) in the form

M � b1=4
ffiffiffiffiffiffiffiffi
mE

p
;  ¼ 2

31=8
� 1:74: (41)

In a special case, when a neutral particle falling
from infinity also has the mass m, and it starts its motion
with zero velocity, one hasE ¼ m and (41) takes a simpler
form

M
m

� 1:74b1=4: (42)FIG. 5. The critical angular momentum � ¼ L=ðErgÞ as a
function of � ¼ �=E.
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Let us recall that for near extremal rotating black holes the
maximal collision energy per unit mass for particles close
the horizon is [cf. [14], Eq. (8)]

M
m

� 4:06ð1� aÞ�1=4: (43)

By comparing relations (42) and (43) one can see that they
are quite similar if one identifies 1� a with b�1.

IV. DISCUSSION

We demonstrated that the collision of two charged par-
ticles moving in the magnetized black hole at the same
ISCO trajectory close to the horizon in the opposite direc-
tions does not result in the high collision energy. On the
other hand, this energy can be high for a collision of a
particle falling from infinity with a charged particle revolv-
ing at ISCO. In fact, this energy formally infinitely grows
for ISCO arbitrarily close to the horizon. The closeness of
ISCO to the horizon is controlled by the value of the
magnetic field (24). However, the collision energy M
grows rather slowly with the magnetic field b [see (42)].
This results in a suppression of the maximal collision
energy for a realistic magnetic field.

To estimate the maximal collision energy per a unit mass,
(42), one can use expression (3) for the parameter b. This

gives 1:74b1=4 � 942:3 for a stellar mass black hole with

parameters (4). For the supermassive black hole with pa-
rameters (5) this factor is of one order larger. One can
expect that there exist other effects, which restrict the
ability of a magnetized black hole to work as a particle
accelerator. One of them is the synchrotron radiation by
charged particles near black holes, studied in [19,20]. It
should be also emphasized that our consideration is some-
how oversimplified, since we used a free particle approxi-
mation and neglected plasma effects. Moreover, we
discussed only a simple case of ISCO particles, while the
motion of charged particles in the magnetized black holes
can be more complicated (see, e.g., [22]). We conclude by
the following remarks: The theoretical search for high
energy events in the black hole vicinity is very interesting
and important for possible astrophysical applications. In
this connection, it might be interesting to study collision
energy near the horizon of the black hole in the presence of
both, a rotation and magnetic field.
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