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The phase transition of Reissner-Nordström black holes in (nþ 1)-dimensional anti–de Sitter space-

time is studied in detail using the thermodynamic analogy between a RN-AdS black hole and a

van der Waals liquid-gas system. We first investigate critical phenomena of the RN-AdS black hole.

The critical exponents of relevant thermodynamical quantities are evaluated. We find identical exponents

for a RN-AdS black hole and a van der Waals liquid-gas system. This suggests a possible universality in

the phase transitions of these systems. We finally study the thermodynamic behavior using the equilibrium

thermodynamic state space geometry and find that the scalar curvature diverges exactly at the

van der Waals–like critical point where the heat capacity at constant charge of the black hole diverges.
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I. INTRODUCTION

The black hole is one of the most interesting objects in
physics. The study of black hole thermodynamics [1,2] is
therefore quite important. Black holes are indeed thermo-
dynamical objects with a physical temperature and an
entropy. It has been known over the past few decades
that the thermodynamics of black holes provides an im-
portant tool for understanding several issues involving
quantum theories of gravity. These have been intensely
discussed in the recent past. However, there is no micro-
scopic or statistical description behind their thermodynam-
ical behavior, although thermodynamic studies of black
holes do indicate extremely rich phase structures and criti-
cal phenomena in these systems. We can consider black
holes as states in a thermodynamical ensemble and we can
study phase transition in black holes. A well-known ex-
ample comes from Hawking and Page [3]. Motivated by
these ideas, much work has been done on the phase struc-
ture of black holes, and quite rich phase structure and
critical phenomena have been found [4,5].

Recently, the study of phase transitions of black holes in
asymptotically anti–de Sitter (AdS) spacetime [6–13] has
focused much interest since these transitions have been
related to holographic superconductivity [14–16] in the
context of the AdS/CFT correspondence (see relevant
reviews in [17]). In this paper, we first review a thermody-
namic analogy between an (nþ 1)-dimensional Reissner-
Nördstrom (RN)-AdS black hole and a van der Waals
liquid-gas system first discovered in [7,8]. From this anal-
ogy we calculate the critical exponents of relevant thermo-
dynamical quantities and discuss the scaling symmetry of
the free energy. Our main result is that we find all critical
exponents of the (nþ 1)-dimensional RN-AdS black hole

are the same as van der Waals liquid-gas system and are
independent of the spacetime dimension. This means there
maybe exist some possible universality in the phase tran-
sitions of these systems. Based on our results, we find that
the critical exponents of the four-dimensional RN-AdS
black hole in [8] have some errors. In [8], the author has
not used the standard method [18] to calculate the value of
� and this may be the reason why the author got the wrong
value. Furthermore we study the phase transition using a
geometrical perspective of equilibrium thermodynamics.
This approach has been developed over the last few deca-
des [12,13,19–21]. We find the scalar curvature diverges
precisely at the van der Waals–like critical point where the
heat capacity at constant charge of the black hole diverges.
It is well-known that the Hawking-Page phase transition

is a very important phenomenon, which originally de-
scribed the transition between a stable phase and an un-
stable phase of an asymptotic AdS black hole [22]. Based
on the principle of AdS/CFT correspondence, such a phase
transition has been used to describe the confinement/de-
confinement phase transition of QCD. Another important
black hole phase transition is the Davies phase transition
[23], which describes the transition between stable and
unstable phases of a charged black hole. In our case, the
above two kinds of phase transitions exist when the tem-
perature is above the critical temperature Tc. As the black
hole approaches the critical point, these two kinds of phase
structure combine to form a van der Waals–like critical
point.
This paper is organized as follows. In Sec. II we briefly

discuss the thermodynamics of the (nþ 1)-dimensional
RN-AdS black hole, mainly using it to establish our nota-
tions and obtain formulas of thermodynamic functions for
later use. In Sec. III, we study the critical behavior of the
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(nþ 1)-dimensional RN-AdS black hole at the
van der Waals–like critical point. All critical exponents
have been obtained. Further, in Sec. IV, we study the state
space scalar curvature of the (nþ 1)-dimensional RN-AdS
black hole in detail. Finally, Sec. V contains a discussion of
our results.

II. PHASE STRUCTURE OFA (nþ 1)-
DIMENSIONAL RN-ADS BLACK HOLE

The theme of the present section is to give an overview
of the singular behavior of the heat capacity at constant
charge of a (nþ 1)-dimensional RN-AdS black hole which
forms the background of this work. For more details of the
spherical case, see [7]. Recently, motivated by the study of
holographic superconductivity [14,15], plane symmetric
and hyperbola symmetric cases in special dimensions
have also been discussed [24].

Now we consider general (nþ 1)-dimensional RN-AdS
black holes (n � 3). The form of the spacetime metric is

ds2 ¼ �fðrÞdt2 þ dr2

fðrÞ þ r2d�2
n�1; (1)

where

fðrÞ ¼ k� 8~�M

rn�2
þ Q2

r2n�4
þ r2

l2
;

we have defined ~� ¼ �ðn2Þ=ðn� 1Þ�ðn=2Þ�1 for conve-

nience, and � ¼ � nðn�1Þ
2l2

is the cosmological constant.

(Throughout we shall adopt Planck units in which G ¼
ℏ ¼ c ¼ kB ¼ 1, where all symbols have their usual
meanings. Here Q is the charge parameter which is equal
to the electric charge only in -the four-dimensional case; in
the general case there is a dimension-dependent factor
between them.) Here k ¼ 1, 0, �1 corresponds to the
sphere, plane, and hyperbola symmetric cases, respec-
tively, and d�n�1 is the metric of the associated (n� 1)-
dimensional base manifold.

The mass of the black hole is given by

M ¼ 1

8~�

�
krn�2þ þ Q2

rn�2þ
þ rnþ

l2

�
; (2)

where rþ is the value of r at the horizon.
Using the Bekenstein-Hawking formula, we have

S ¼ An�1

4
¼ �

2ðn� 1Þ~� rn�1þ : (3)

It is now possible to determine the other thermodynamic
entities using the basic thermodynamic relations

�M ¼ T�Sþ��Q: (4)

These are defined as

T ¼
�
@M

@S

�
Q

¼ 1

4�

� 2�
n�1 r

2n�2þ þ ðn� 2Þkr2n�4þ � ðn� 2ÞQ2

r2n�3þ
; (5)

� ¼
�
@M

@Q

�
S
¼ 1

4~�

Q

rn�2þ
; (6)

CQ¼T

�
@S

@T

�
Q

¼2�2

~�

r3n�4þ T

� 2�
n�1r

2n�2þ �ðn�2Þkr2n�4þ þðn�2Þð2n�3ÞQ2
;

(7)

where � is the potential difference between the horizon
and infinity, T is the Hawking temperature, S is the entropy,
and CQ is the heat capacity at constant charge of the black

hole.
For a nonextreme black hole, it can be seen from (7) that

CQ is always positive and regular for the k ¼ 0, �1 cases,

which tells us that there is no phase transition happening.
However, for the spherically symmetric case (k ¼ 1), CQ

will become singular for a certain set of black hole pa-
rameters ðM;QÞ at which

� 2�

n� 1
r2n�2þ � ðn� 2Þr2n�4þ þ ðn� 2Þð2n� 3ÞQ2 ¼ 0:

(8)

Considering Eq. (8), we then find that the critical points are
given in terms of the radius of the event horizon as r1,

r2ðr1 < r2Þ when Q2 < ð� ðn�2Þ2
2� Þn�2 1

ðn�1Þð2n�3Þ ¼: Q2
c. For

the special valueQ2 ¼ Q2
c, the two horizons degenerate, so

we denote rc :¼ r1 ¼ r2 ¼ ðn� 2Þ= ffiffiffiffiffiffiffiffiffiffiffi�2�
p

.
For fixed Q so thatQ2 <Q2

c,CQ < 0when r1 < rþ < r2
and CQ > 0 when rþ < r1 and rþ > r2, so across the

r1 r2
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FIG. 1 (color online). Heat capacity at constant charge with rþ
for Q<Qc.
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critical points at r1 and r2, there is a change of thermody-
namic stability of a black hole (see Fig. 1).

When the limitQ2 approaches the critical valueQ2
c, both

r1 and r2 degenerate into rc. In this case, CQ remains

positive and the unstable phase of a black hole disappears
(see Fig. 2). When Q2 is greater than Q2

c, the heat capacity
CQ of the RN-AdS black hole is always regular.

III. CRITICAL BEHAVIOR AT THE
VAN DER WAALS–LIKE CRITICAL POINT

As described in Sec. II, when the charge of a RN-AdS
black hole reaches the critical value Qc, the critical points
at r1 and r2 degenerate into a single critical point located
at rc. The thermally unstable phase of a RN-AdS black
hole disappears (see Fig. 2). The theme of this section is
to study the critical thermodynamic behavior of a RN-
AdS black hole near rc. To this end, we shall first review
a thermodynamic analogy between a RN-AdS black hole

and a van der Waals liquid-gas system. The analogy,
though incomplete, will still serve as a very useful guide
in the study of the critical behavior of a RN-AdS black
hole in the vicinity of rc.

A. Thermodynamic analogy with a van der Waals
liquid-gas system

Given the potential at the event horizon� ¼ 1
4~�

Q
rn�2
þ

, the

equation of state (5) can be rewritten as

T ¼ 1

4�

ðn� 2Þð4~��Þ2=ðn�2Þ � ðn� 2Þð4~��Þðð2n�2Þ=ðn�2ÞÞ � 2�
n�1Q

2=ðn�2Þ

ð4~�Q�Þ1=ðn�2Þ : (9)

In terms of the thermodynamical variables ðQ;�Þ, we have

CQ ¼ �

2~�

ðn� 2ÞQððn�1Þ=ðn�2ÞÞð4~��Þ2=ðn�2Þ � ðn� 2ÞQððn�1Þ=ðn�2ÞÞð4~��Þðð2n�2Þ=ðn�2ÞÞ � 2�
n�1Q

ððnþ1Þ=ðn�2ÞÞ

ðn� 2Þð2n� 3Þð4~��Þðð3n�3Þ=ðn�2ÞÞ � ðn� 2Þð4~��Þððnþ1Þ=ðn�2ÞÞ � 2�
n�1Q

2=ðn�2Þð4~��Þððn�1Þ=ðn�2ÞÞ (10)

and

�
@Q

@�

�
T
¼ Q

�

ðn� 2Þð2n� 3Þð4~��Þðð2n�2Þ=ðn�2ÞÞ � ðn� 2Þð4~��Þ2=ðn�2Þ � 2�
n�1Q

2=ðn�2Þ

ðn� 2Þð4~��Þðð2n�2Þ=ðn�2ÞÞ � ðn� 2Þð4~��Þ2=ðn�2Þ � 2�
n�1Q

2=ðn�2Þ : (11)

It may be inferred from (11) that, like a subcritical isotherm of a van der Waals liquid-gas system in the ðP; VÞ phase
plane, an isotherm of a RN-AdS black hole with T > Tc also has a local maxima and minima located, respectively, at �1

and �2. Along the segment of the isotherm between �1 and �2, a RN-AdS black hole is in a thermally unstable phase

with ð@Q@�ÞT > 0 (see Fig. 3).
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FIG. 2 (color online). Heat capacity at constant charge with rþ
for Q ¼ Qc.
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FIG. 3 (color online). The isotherm of a RN-AdS black hole
along which T > Tc. The local maxima and minima located,
respectively, at �1 and �2 are critical points of CQ. For � 2
ð�1;�2Þ, the black hole is unstable with ð@Q@�ÞT > 0.
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In the limit when Tc is reached, the shape of the
isotherm undergoes noticeable change (see Fig. 4) and
the critical points located at �1 and �2 on a subcritical
isotherm coalesce into a single critical point located at

�c :¼ 1
4~�

Qc

rn�2
c

¼ 1
4~�
½1= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðn� 1Þð2n� 3Þp � at the critical

isotherm. The critical point at �c coincides with that lo-
cated at rc on the critical isocharge curve with Q ¼ Qc.

Like the case of the van der Waals liquid-gas system, the
critical point at the critical isotherm (along which T ¼ Tc)
of a RN-AdS black hole is also a point of inflection of the
critical isotherm and may be characterized by�

@Q

@�

���������c
¼ 0;

�
@2Q

@�2

���������c
¼ 0;

where the subscript c denotes the corresponding quantity
evaluated at the critical point at rc from now on. In view of
the above similarities, if we formally identify the variables
ðQ;�Þ of a RN-AdS black hole with ðP; VÞ of a
van der Waals liquid-gas system, then we see that, at least
at a qualitative level, the phase structure of a RN-AdS

black hole does bear certain remarkable resemblances to
that of a van der Waals liquid-gas system.

B. The introduction of an order parameter

In analogy to a van derWaals liquid-gas system, an order
parameter in the RN-AdS context which measures the
phase change across the critical point at rc may also be
defined in terms of the Maxwell equal-area law. To do so,
in the ðQ;�Þ phase plane, fix a subcritical isotherm and
draw a horizontal line which intersects the subcritical
isotherm at points a, d, b (see Fig. 5) such that the area
bounded by the horizontal line segment ad and the iso-
therm is equal to that bounded by the line segment db and
the isotherm.
As in the case of a van der Waals liquid-gas system,

define

� ¼ �b ��a (12)

as the order parameter to describe the phase change of a
RN-AdS black hole near rc.

C. Critical exponents

Near the critical point at the critical isotherm, the critical
behavior of a van der Waals liquid-gas system may be
described in terms of

ð1ÞP� Pc � ðV � VcÞ�;
ð2Þ Vg � Vl

Vc

� ð��Þ�;

ð3ÞCP � ð��Þ��0 ðT < TcÞ
� ��� ðT > TcÞ;

ð4Þ�T � ð��Þ��0 ðT < TcÞ
� ��� ðT > TcÞ:

With the formal correspondence ðQ;�Þ $ ðP;VÞ as de-
scribed in the preceding subsection, analogous quantities
may also be defined for a RN-AdS black hole. The concrete
values of the corresponding critical exponents in the case
of a RN-AdS black hole can also be worked out as follows.

1. The degree of the critical isotherm �

Using the equation of state (9), we have

Q1=ðn�2Þ ¼ �n� 1

4�

0
B@4�ð4~��Þ1=ðn�2ÞT �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16�2ð4~��Þ2=ðn�2ÞT2 � 8�ðn� 2Þ

n� 1
ðð4~��Þðð2n�2Þ=ðn�2ÞÞ � ð4~��Þ2=ðn�2ÞÞ

s 1
CA:
(13)

In order to examine the neighborhood of the critical point, we introduce expansion parameter � ¼ ðT=TcÞ � 1 and
! ¼ ð�=�cÞ � 1. In the neighborhood of the critical point, (13) can be written

Q ¼ a00 þ a10�þ a01!þ a11�!þ a20�
2 þ a02!

2 þ a21�
2!þ a12�!

2 þ a30�
3 þ a03!

3 þ � � � ; (14)

where a	
 is the coefficient of �	!
 in the expansion.

c
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FIG. 4 (color online). The critical isotherm along which
T ¼ Tc. The point of inflection located at �c is a critical
point of CQ, CQ > 0 along the critical isotherm.
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Let � ¼ 0 in (14). This gives

Q ¼ a00 þ a01!þ a02!
2 þ a03!

3 þ � � � ; (15)

where

a00 ¼ Qc; a01 ¼ a02 ¼ 0; a03 � 0:

This means

� ¼ 3:

2. The degree of the coexistence curve �

In the neighborhood of the critical point, we have
(14). The values of ! on either side of the coexistence

curve can be found from the conditions that, along the
isotherm, Z �b

�a

�dQ ¼ 0 (16)

and

Qð�aÞ ¼ Qð�bÞ: (17)

Let �a ¼ �cð1�!aÞ and �b ¼ �cð1þ!bÞ.
Substituting (14) into (16) and (17), we have

a11�ð!b þ!aÞ þ a21�
2ð!b þ!aÞ

þ 1
2ða11 þ 2a12Þ�ð!2

b �!2
aÞ þ a03ð!3

b þ!3
aÞ ¼ 0

(18)

and

a11�ð!b þ!aÞ þ a21�
2ð!b þ!aÞ

þ a12�ð!2
b �!2

aÞ þ a03ð!3
b þ!3

aÞ ¼ 0: (19)

In order for (18) and (19) to be consistent, we must
have !a ¼ !b. If we plug this into (18) or (19), we get
!a ¼ !b ¼ !. This gives

!2 ¼ � 1

a03
ða11�þ a21�

2Þ:

Thus,

!b � !a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� a11

a03
�

s
¼ ðn� 2Þ ffiffiffiffiffiffi

6�
p

:

This means

� ¼ 1
2:

3. The heat capacity exponent �

From (3), (5), and (6), we have

C� ¼ �

2~�

ðn� 2ÞQððn�1Þ=ðn�2ÞÞð4~��Þ2=ðn�2Þ � ðn� 2ÞQððn�1Þ=ðn�2ÞÞð4~��Þðð2n�2Þ=ðn�2ÞÞ � 2�
n�1Q

ððnþ1Þ=ðn�2ÞÞ

ðn� 2Þð4~��Þðð3n�3Þ=ðn�2ÞÞ � ðn� 2Þð4~��Þððnþ1Þ=ðn�2ÞÞ � 2�
n�1Q

2=ðn�2Þð4~��Þððn�1Þ=ðn�2ÞÞ : (20)

From (20), we see that C� display no singular behavior at
the critical point. Therefore

� ¼ �0 ¼ 0:

4. The isothermal compressibility exponent �

Let us compute ð@Q=@!Þ�. We obtain

�
@Q

@!

�
�
¼ a11�þ a21�

2 þ 2a12�!þ 3a03!
2:

For T < Tc one approaches the critical point along the
critical isochore. Then setting ! ¼ 0, we obtain�
@Q

@!

�
�
¼a11�

¼22�ðn=2Þðn�2Þn�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðn�1Þð2n�3Þp ð��Þ1�ðn=2Þ�

for ! ¼ 0. Therefore

�0 ¼ 1:

a
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FIG. 5 (color online). A horizontal line is drawn which con-
nects points a and b of the subcritical isotherm. The area
bounded by the line segment ad and the isotherm is equal to
that bounded by the line segment db and the isotherm.
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For T > Tc one approaches the critical point along the

coexistence curve. Then setting ! ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�ða11=a03Þ�
p

, we
obtain

�
@Q

@!

�
�
¼�2a11�

¼�23�ðn=2Þðn�2Þn�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðn�1Þð2n�3Þp ð��Þ1�ðn=2Þ�

for ! ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�ða11=a03Þ�
p

. Therefore

� ¼ 1:

D. Scaling symmetry for the Gibbs free energy
near criticality

In the case of a van der Waals liquid-gas system, scaling
symmetry exists for the singular part of the Gibbs free
energy near the critical point located at the critical iso-
therm and the critical exponents may all be expressed in
terms of the two independent homogeneity degrees of the
Gibbs energy [25]. In this subsection, we shall show that
similar scaling symmetry also exists for a RN-AdS black
hole. The behavior of Gibbs free energy near the critical
point is similar to the van der Waals system, from which
scaling laws for the critical exponents can be derived.
Scaling symmetry in the black hole critical phenomena
was first discussed in [26] in the context of of Kerr-
Newman black holes.

Sufficiently close to rc, the Gibbs free energy for a
RN-AdS black hole may be written as G ¼ Gr þGs.
Here Gr is the regular part of the Gibbs free energy whose
second order partial derivatives are well behaved at the
critical point at rc, and Gs is the part of the Gibbs free
energy responsible for the singular thermodynamic behav-
ior of a RN-AdS black hole near rc. Gs can be further
worked out to be

Gs ¼ a�2 þ b!4=3 (21)

for some constant a, b dependent on�. From (21), we find

Gð�p�; �q!Þ ¼ �Gð�;!Þ (22)

with p ¼ 1
2 , q ¼ 3

4 , and � a real constant. As in the case of

a van der Waals liquid-gas system, the critical exponents
derived in the previous section can be expressed in terms of
p, q as

� ¼ 2� 1

p
; � ¼ 1� q

p
;

� ¼ 2q� 1

p
; � ¼ q

1� q
:

(23)

From (23), it may also be seen that the critical exponents in
the critical regime of rc are not independent. They are
related by following Eqs. [18,25]:

�þ 2�þ � ¼ 2; �þ �ð�� 1Þ ¼ 2;

�ð�� 1Þ ¼ ð2� �Þð�� 1Þ; � ¼ �ð�� 1Þ: (24)

Apart from obtaining the algebraic relations among the
critical exponents, (23) or (24) also enable us to give a
consistency check of the validity of the critical exponents
obtained in Sec. III C.

IV. STATE SPACE SCALAR CURVATURE
FOR RN-ADS BLACK HOLE

The thermal geometry method is a very important
method to study phase structures of a thermal system.
This method was first studied by Weinhold [19] and has
been developed over the last few decades [12,13,20,21].
This method can be seen as an independent check of the
phase structure which we have obtained in the previous
section. The thermodynamic geometry of (3þ 1)-
dimensional RN-AdS black holes and their thermody-
namic instability were discussed in [5,27]. In this
section, we will study the critical phenomena of (nþ 1)-
dimensional RN-AdS black holes using thermodynamic
geometry. The Hessian of the entropy function (or other
thermodynamical potentials) can be thought of as a metric
tensor on the state space [12,13,19–21]. In the context of
the thermodynamical fluctuation theory, Ruppeiner has
argued that the Riemannian geometry of this metric gives
insight into the underlying statistical mechanical system.
In this picture the occurrence of a van der Waals critical
point is connected with the divergence of the state space
scalar curvature. The metric as defined by Ruppeiner [20]
is given by

gij ¼ � @2SðxÞ
@xi@xj

; (25)

where the coordinates xi are chosen to be the extensive
variables of the system. In fact, it is convenient to use
the Weinhold metric which is defined in the following
way [19],

gWij ¼ � @2UðxÞ
@xi@xj

; (26)

where we use U to denote the internal energy. It is
well-known that the line elements in Ruppeiner geome-
try and the Weinhold geometry are conformally related
by [28,29]

ds2R ¼ 1

T
ds2W; (27)

where T is the temperature of the RN-AdS black hole.
In this picture we will consider U ¼ M�Q�, x1 ¼ S,
and x2 ¼ �.
From (2), (3), and (5)–(7), we have
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M ¼ ðn� 1ÞSððn�2Þ=ðn�1ÞÞ

4�

�
�

2ðn� 1Þ~�
�
1=ðn�1Þ�

1þ 16~�2�2 � 2�

nðn� 1Þ
�
2ðn� 1Þ~�S

�

�
2=ðn�1Þ�

; (28)

T ¼ 1

4�

�16ðn� 2Þ~�2ð �
2ðn�1Þ~�Þ2=ðn�1Þ�2 þ ðn� 2Þð �

2ðn�1Þ~�Þ2=ðn�1Þ � 2�
n�1 S

2=ðn�1Þ

ð �S
2ðn�1Þ~�Þ1=ðn�1Þ ; (29)

CQ ¼ ðn� 1ÞS
�16ðn� 2Þ~�2ð �

2ðn�1Þ~�Þ2=ðn�1Þ�2 þ ðn� 2Þð �
2ðn�1Þ~�Þ2=ðn�1Þ � 2�

n�1S
2=ðn�1Þ

16ðn� 2Þð2n� 3Þ~�2ð �
2ðn�1Þ~�Þ2=ðn�1Þ�2 � ðn� 2Þð �

2ðn�1Þ~�Þ2=ðn�1Þ � 2�
n�1S

2=ðn�1Þ : (30)

Now using (28) and (29) we can easily calculate the Ruppeiner metric

gSS ¼ � 1

ðn� 1ÞS
�16ðn� 2Þ~�2ð �

2ðn�1Þ~�Þ2=ðn�1Þ�2 þ ðn� 2Þð �
2ðn�1Þ~�Þ2=ðn�1Þ þ 2�

n�1S
2=ðn�1Þ

�16ðn� 2Þ~�2ð �
2ðn�1Þ~�Þ2=ðn�1Þ�2 þ ðn� 2Þð �

2ðn�1Þ~�Þ2=ðn�1Þ � 2�
n�1S

2=ðn�1Þ ;

gS� ¼
�32ðn� 1Þ~�2ð �

2ðn�1Þ~�Þ2=ðn�1ÞS

�16ðn� 2Þ~�2ð �
2ðn�1Þ~�Þ2=ðn�1Þ�2 þ ðn� 2Þð �

2ðn�1Þ~�Þ2=ðn�1Þ � 2�
n�1S

2=ðn�1Þ ¼ g�S;

g�� ¼
�32ðn� 2Þ~�2ð �

2ðn�1Þ~�Þ2=ðn�1Þ�

�16ðn� 2Þ~�2ð �
2ðn�1Þ~�Þ2=ðn�1Þ�2 þ ðn� 2Þð �

2ðn�1Þ~�Þ2=ðn�1Þ � 2�
n�1S

2=ðn�1Þ :

Observe that all the metric components have an identical
denominator which appears in the expression of the
temperature.

Our concern is the scalar curvature of the Ruppeiner
metric, which is

R ¼ CðS;�Þ
AðS;�ÞB2ðS;�Þ ;

where

AðS;�Þ ¼ �16ðn� 2Þ~�2
�

�

2ðn� 1Þ~�
�
2=ðn�1Þ

�2

þ ðn� 2Þ
�

�

2ðn� 1Þ~�
�
2=ðn�1Þ � 2�

n� 1
S2=ðn�1Þ;

(31)

BðS;�Þ ¼ 16ðn� 2Þð2n� 3Þ~�2
�

�

2ðn� 1Þ~�
�
2=ðn�1Þ

�2

� ðn� 2Þ
�

�

2ðn� 1Þ~�
�
2=ðn�1Þ � 2�

n� 1
S2=ðn�1Þ;

(32)

and CðS;�Þ is a regular function whose explicit form is
irrelevant to the singular behavior of R. The function
AðS;�Þ is always positive due to the nonextremal condi-
tion, as can be seen from (29). The function BðS;�Þ is
identical with the denominator of the heat capacity at
constant charge (30). Hence the scalar curvature will di-
verge exactly at those points at which the heat capacity
diverges. It is easy to see that there are two singular points

when the temperature is above Tc and these two points
coincide as T ¼ Tc, so the thermal geometry method gives
the same result which we have found in Sec. III.

V. DISCUSSIONS

In the present work, we have obtained different ther-
modynamic entities like temperature, potential, and heat
capacity at constant charge for a (nþ 1)-dimensional RN-
AdS black hole from the first law of black hole thermo-
dynamics. The heat capacity shows a divergence at the
van der Waals–like critical point. Moreover, we have
investigated the critical behavior of the (nþ 1)-
dimensional RN-AdS black hole at the van der Waals–
like critical point. One of the striking characteristics of
the phase transition is the fact that many measures of a
system’s behavior near a critical point are independent of
the details of the interactions between the particles mak-
ing up the system. The universal features are not only
independent of the numerical details of the interparticle
interactions, but are also independent of the most funda-
mental aspects of the structure of the system. The critical
exponents of a (nþ 1)-dimensional RN-AdS black hole
and a van der Waals liquid-gas system are exactly the
same. This result is quite interesting because of the
differences in the physical property of the two systems.
As we have said in the Introduction, such a
van der Waals–like critical point can be seen as forming
by the combination of a Hawking-Page critical point and
a Davies critical point; both of them are very important
and have been studied quite well, so considering the
relation between these phase structures must be very
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helpful to exploring the microcosmic mechanics of the
black hole phase transition.

We have also studied the phase transition using the
geometrical perspective of equilibrium thermodynamics.
We find that both the scalar curvature and the heat capacity
at constant charge have a common denominator and hence
diverge at identical points. This shows that a divergence in
the scalar curvature corresponds to a divergence in the heat
capacity at constant charge, thereby suggesting the occur-
rence of a phase transition. Moreover, there is another
factor in the denominator of the scalar curvature which is
the same expression arising in the expression for the tem-
perature (29). So we cannot put it equal to zero due to the
nonextremal condition. Therefore we can easily get infor-
mation about the occurrence of a phase transition from the
scalar curvature.

We have found that the van der Waals–like critical
behavior does not present in the planar or hyperbolic
RN-AdS black holes. But we know that there is another
type of phase transition associated with a scalar hair in the
planar case [30]. Based on the AdS/CFT correspondence,
this type of phase transition describes the superconductiv-
ity phase transition in the dual boundary system (see [17]

and references therein), which has been proved a powerful
tool to study superconductivity phenomena. In our case,
the boundary system dual to the spherical RN-AdS black
hole should also have critical behavior dual to the
van der Waals–like critical behavior in the bulk. So it is
quite natural to ask whether this dual boundary theory also
describes some important, realistic phenomena of phase
transition in physics.
We have also observed that RN-AdS black holes do not

posses the van der Waals–like phase transition, while the
Hawking-Page phase transition can occur in this kind of
background [31]. So we see that the asymptotic AdS
background is crucial for the van der Waals–like phase
transition. It is interesting to investigate the underlying
mechanism of this phenomenon.
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