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The existence of a minimal measurable length is a common feature of various approaches to quantum

gravity such as string theory, loop quantum gravity, and black-hole physics. In this scenario, all

commutation relations are modified and the Heisenberg uncertainty principle is changed to the so-called

Generalized (Gravitational) Uncertainty Principle (GUP). Here, we present a one-dimensional

nonperturbative approach to quantum mechanics with minimal length uncertainty relation which implies

X ¼ x to all orders and P ¼ pþ 1
3�p

3 to first order of GUP parameter �, where X and P are the

generalized position and momentum operators and ½x; p� ¼ iℏ. We show that this formalism is an

equivalent representation of the seminal proposal by Kempf, Mangano, and Mann and predicts the

same physics. However, this proposal reveals many significant aspects of the generalized uncertainty

principle in a simple and comprehensive form and the existence of a maximal canonical momentum is

manifest through this representation. The problems of the free particle and the harmonic oscillator are

exactly solved in this GUP framework and the effects of GUP on the thermodynamics of these systems are

also presented. Although X, P, and the Hamiltonian of the harmonic oscillator all are formally self-

adjoint, the careful study of the domains of these operators shows that only the momentum operator

remains self-adjoint in the presence of the minimal length uncertainty. We finally discuss the difficulties

with the definition of potentials with infinitely sharp boundaries.

DOI: 10.1103/PhysRevD.85.024016 PACS numbers: 04.60.Bc

I. INTRODUCTION

The unification of general relativity with the laws of
quantum mechanics is one of the oldest wishes of theoreti-
cal physicists from the birth of quantum mechanics. We
can mention the canonical quantization [1] and the path
integral quantization of gravity [2] as two well-known but
old proposals which tried to present a quantization scheme
for gravity. However, from the field theoretical viewpoint,
the theory of relativity is not renormalizable and leads to
ultraviolet divergencies. Moreover, around the Planck en-
ergy scale, the effects of gravity are so important that they
would result in discreteness of the spacetime manifold.
This argument is based on the fact that, when we try to
probe small distances with high energies, it will signifi-
cantly disturb the spacetime structure by the gravitational
effects. However, the theory can be renormalizable by
introducing a minimal observable length as an effective
cutoff in the ultraviolet domain.

The existence of a minimummeasurable length is one of
the common aspects of various candidates of quantum
gravity such as string theory, loop quantum gravity, and
quantum geometry. Within a string-theoretical argument,
we can say that a string cannot probe distances smaller than
its length. Moreover, some Gedanken experiments in
black-hole physics and noncommutativity of the spacetime
manifold all agree on the existence of a minimal observ-

able distance of the order of the Planck length ‘Pl ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gℏ=c3

p � 10�35m, where G is Newton’s constant [3–7].

In fact, the finite resolution of spacetime points is a con-
sequence of finite time measurement. In principle, one can
probe very short distances in D0-branes but in an infinite
time.
Note that, this is in obvious contradiction with the

Heisenberg Uncertainty Principle (HUP) which puts no
lower or upper bound on the nonsimultaneous measure-
ment of the position or the momentum of a particle. In
fact, in ordinary quantum mechanics �X can be made
arbitrarily small by letting �P grow correspondingly.
However, for energies close to the Planck energy, the
particle’s Schwarzschild radius and its Compton wave-
length become approximately in the order of the Planck
length. So, in order to merge the idea of the minimal length
into quantum mechanics, we need to modify the ordinary
uncertainty principle to the so-called Generalized
Uncertainty Principle (GUP). Indeed, the notion of mini-
mal length should quantum mechanically be described as a
minimal uncertainty in position measurements. The intro-
duction of this idea has drawn much attention in recent
years and many papers have been appeared in the literature
to address the effects of GUP on various quantummechani-
cal systems and phenomena [8–22,35,36].
In this paper, we present a nonperturbative approach to

one-dimensional gravitational quantum mechanics which
implies a minimal length uncertainty so that the general-
ized position operator does not change to all orders, that is,
X ¼ x and the generalized momentum operator is given by
P ¼ pþ 1

3�p
3 to first order of the GUP parameter. In this

formalism the generalized position and momentum opera-
tors satisfy ½X;P� ¼ iℏð1þ �P2Þ, where x and p are the
ordinary position and momentum operators ½x; p� ¼ iℏ.*p.pedram@srbiau.ac.ir
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We show that this proposal is equivalent with Kempf,
Mangano, and Mann (KMM) representation, but it only
modifies the kinetic part of the Hamiltonian and has no
effect on the potential part. Moreover, this representation
agrees with perturbative approaches and predicts the pres-
ence of a maximal canonical momentum pmax. Here, we
consider the problems of the free particle and the harmonic
oscillator in the context of the generalized uncertainty
principle and obtain the exact eigenvalues and correspond-
ing eigenfunctions. Then, we discuss the consequences of
the minimal uncertainty in position measurement on the
partition function, mean energy, and heat capacity of these
systems. The difficulties with potentials with infinitely
sharp boundaries are also presented.

II. THE GENERALIZED
UNCERTAINTY PRINCIPLE

According to the Heisenberg uncertainty relation, in
principle, we can separately measure the position and
momentum of particles with arbitrary precision. Thus, if
there is a genuine lower bound on the results of the
measurements, the Heisenberg uncertainty relation should
be modified. Here we consider a generalized uncertainty
principle which results in a minimum observable length

�X�P � ℏ
2
ð1þ �ð�PÞ2 þ �Þ; (1)

where � is the GUP parameter and � is a positive constant
that depends on the expectation value of the momentum
operator. We also have � ¼ �0=ðMPlcÞ2, where MPl is the
Planck mass and �0 is of the order of one. Note that
the deviation from the Heisenberg picture takes place in
the high-energy limit where the quantum gravity effects are
dominant. So, for the energies much smaller than the
Planck energy MPlc

2 � 1019 GeV, we should recover the
famous Heisenberg uncertainty relation. It is straightfor-
ward to check that the above inequality relation (1) implies
the existence of an absolute minimal length uncertainty as
ð�XÞmin ¼ ℏ

ffiffiffiffi
�

p
. In the context of string theory, we can

interpret this length as the string length. Accordingly, the
string’s length is proportional to the square root of the GUP
parameter. In one-dimension, the above uncertainty rela-
tion can be obtained from a deformed commutation rela-
tion, namely,

½X; P� ¼ iℏð1þ �P2Þ; (2)

where, for � ¼ 0 we recover the well-known commutation
relation in ordinary quantum mechanics. Now using
Eqs. (1) and (2) we can find the relation between � and
the expectation value of the momentum operator i.e. � ¼
�hPi2. As Kempf, Mangano, and Mann have suggested in
their seminal paper, in momentum space representation,
we can write X and P as [35]

P�ðpÞ ¼ p�ðpÞ; (3)

X�ðpÞ ¼ iℏð1þ �p2Þ@p�ðpÞ; (4)

where X and P are symmetric operators on the dense
domain S1 with respect to the following scalar product:

hc j�i ¼
Z þ1

�1
dp

1þ �p2
c �ðpÞ�ðpÞ; (5)

where
Rþ1
�1

dp
1þ�p2 jpihpj ¼ 1 and hpjp0i¼ ð1þ�p2Þ�ðp�

p0Þ. In this representation the position operator is merely
symmetric, but P is self-adjoint [35]. With this definition,
the commutation relation (2) is exactly satisfied. Also, in
quasiposition representation this formulation results in [35]

Pc ðxÞ ¼ tanð�iℏ
ffiffiffiffi
�

p
@xÞffiffiffiffi

�
p c ðxÞ; (6)

Xc ðxÞ ¼
�
xþ �

tanð�iℏ
ffiffiffiffi
�

p
@xÞffiffiffiffi

�
p

�
c ðxÞ: (7)

Note that, for the general potential, expressing the position
operator as a combination of ordinary position and momen-
tum operators results in a complicated high-order general-
ized Schrödinger equation. So, finding the solutions even
for the simple potentials would not be an easy task.
To overcome this problem, we propose the following

generalized position and momentum operators:

X ¼ x; (8)

P ¼ tanð ffiffiffiffi
�

p
pÞffiffiffiffi

�
p ; (9)

where x and p obey the canonical commutation relation
½x; p� ¼ iℏ. X, and P are symmetric operators on the dense
domain S1 of functions decaying faster than any power

ðhc jXÞj�i¼hc jðXj�iÞ and ðhc jPÞj�i¼hc jðPj�iÞ; (10)

but now with respect to the scalar product:

hc j�i ¼
Z þ �

2
ffiffi
�

p

� �

2
ffiffi
�

p
dpc �ðpÞ�ðpÞ; (11)

The symmetry of P (9) is obvious. The symmetry of X (8)
can be seen by performing partial integrationsZ þ �

2
ffiffi
�

p

� �

2
ffiffi
�

p
dpc �ðpÞ

�
iℏ

@

@p

�
�ðpÞ

¼
Z þ �

2
ffiffi
�

p

� �

2
ffiffi
�

p
dp

�
iℏ

@c ðpÞ
@p

��
�ðpÞ; (12)

which is valid for the functions vanishing at � �

2
ffiffiffi
�

p .

Indeed, the symmetry property of the position and momen-
tum operators ensures that all expectation values are real.
This definition exactly satisfies the condition ½X; P� ¼
iℏð1þ �P2Þ and agrees with the well-known relations
[36], namely,
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X ¼ x; (13)

P ¼ p

�
1þ 1

3�p
2

�
; (14)

to the first order of the GUP parameter. Note that to Oð�Þ,
the definitions (6) and (7) result in X ¼ xþ �p and P ¼
pð1þ 1

3�p
2Þ which differ with (13) and (14).

Now, we show that our proposal and KMM representa-
tion are equivalent in essence. Indeed, they are related by
the following canonical transformation:

X ! ½1þ arctan2ð ffiffiffiffi
�

p
PÞ�X; (15)

P ! arctanð ffiffiffiffi
�

p
PÞ= ffiffiffiffi

�
p

; (16)

which transforms (8) and (9) into (3) and (4) subjected to
condition (2). We can interpret P and p as follows: p is the
momentum operator at low energies (p ¼ �iℏ@=@x) while
P is the momentum operator at high energies. Obviously,
this procedure affects all Hamiltonians in adopted quantum
mechanics.

Note that for an operator A which is ‘‘formally’’ self-
adjoint (A ¼ Ay) such as (8) and (9), this does not prove
that A is truly self-adjoint because in general the domains
DðAÞ and DðAyÞ may be different. The operator A with
dense domain DðAÞ is said to be self-adjoint if DðAÞ ¼
DðAyÞ and A ¼ Ay. For instance, similar to KMM repre-
sentation, X is merely symmetric but not self-adjoint. To
see this, note that in this representation and in the momen-
tum space the wave function�ðpÞ have to vanish at the end
of the p interval ð��=2

ffiffiffiffi
�

p
< p<�=2

ffiffiffiffi
�

p Þ, because the
tangent function diverges there. So, X is a derivative
operator iℏ@=@p on an interval with Dirichlet boundary
conditions. But this means that X cannot be self-adjoint
because all candidates for the eigenfunctions of X, (the
plane waves, which are even normalizable) are not in the
domain of X because they do not obey Dirichlet boundary
conditions. Calculating the domain of the adjoint of X
shows that it is larger than that of X, so X is indeed not
self-adjoint, i.e.,Z þ �

2
ffiffi
�

p

� �

2
ffiffi
�

p
dpc �ðpÞ

�
iℏ

@

@p

�
�ðpÞ

¼
Z þ �

2
ffiffi
�

p

� �

2
ffiffi
�

p
dp

�
iℏ

@c ðpÞ
@p

��
�ðpÞ þ iℏc �ðpÞ�ðpÞjp¼þ �

2
ffiffi
�

p

� iℏc �ðpÞ�ðpÞjp¼� �

2
ffiffi
�

p : (17)

Now since �ðpÞ vanishes at p ¼ � �

2
ffiffiffi
�

p , c �ðpÞ can take

any arbitrary value at the boundaries. The above equation
implies that X is symmetric, but it is not a self-adjoint
operator. Although its adjoint Xy ¼ iℏ@=@p has the same
formal expression, it acts on a different space of functions,
namely,

DðXÞ ¼
�
�;�0 2 L2

���

2
ffiffiffiffi
�

p ;
þ�

2
ffiffiffiffi
�

p
�
;�

�þ�

2
ffiffiffiffi
�

p
�

¼ �

���

2
ffiffiffiffi
�

p
�
¼ 0

�
; (18)

DðXyÞ¼
�
c ;c 02L2

���

2
ffiffiffiffi
�

p ;
þ�

2
ffiffiffiffi
�

p
�
;noother restrictiononc

�
:

(19)

As it is also shown in Ref. [25], any operatorX which obeys
the uncertainty relation (1) is merely symmetric. On
the other hand, since there are no Dirichlet boundary con-
ditions on the wave functions in the position space
(�1< x<1), P is still self-adjoint. In the next section
and after finding the momentum eigenfunctions, we prove
the self-adjointness property of P using von Neumann’s
theorem.
To proceed further, let us consider the following

Hamiltonian:

H ¼ P2

2m
þ VðXÞ; (20)

which using Eqs. (8) and (9) can bewritten exactly and also
perturbatively as

H ¼ tan2ð ffiffiffiffi
�

p
pÞ

2�m
þ VðxÞ; (21)

¼ H0 þ
X1
n¼3

ð�1Þn�122nð22n � 1Þð2n� 1ÞB2n

2mð2nÞ! �n�2p2ðn�1Þ;

(22)

where H0 ¼ p2=2mþ VðxÞ and Bn is the nth Bernoulli
number. So, the corrected terms in the modified
Hamiltonian are only momentum dependent and propor-

tional to p2ðn�1Þ for n � 3. As we shall explicitly show, the
presence of these terms leads to a positive shift in the
particle’s energy spectrum. Note that, in general, even for
the self-adjoint position and momentum operators, it is by
no means obvious that the resulting Hamiltonian will be
self-adjoint until and unless the potential term is specified
and the appropriate domain is chosen. It is worth to men-
tion that all our calculations are in one-dimensional space.
Indeed, in higher dimensions it is necessary to have non-
commutativity of coordinates in order to satisfy the Jacobi
identity as done by KMM [35]. In one-dimensional space,
the Jacobi identity is automatically satisfied. Also, one may
relax the point size property of the particle as in the string
theory. So, we can interpret Eq. (21) as the Schrödinger
equation for the particle with size �ℏ

ffiffiffiffi
�

p
, where the effect

of the nonzero size effectively appears in the kinetic part of
the Hamiltonian.
In the quantum domain, this Hamiltonian results in the

following generalized Schrödinger equation in the quasi-
position representation:
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� ℏ2

2m

@2c ðxÞ
@x2

þ X1
n¼3

�nℏ2ðn�1Þ�n�2 @
2ðn�1Þc ðxÞ
@x2ðn�1Þ

þ VðxÞc ðxÞ ¼ Ec ðxÞ; (23)

where �n ¼ 22nð22n � 1Þð2n� 1ÞB2n=2mð2nÞ! and the
second term is due to the GUP corrected terms in (22).

Among infinite possible canonical transformations
(CTs), our proposal (8) and (9) has some useful and novel
properties. First, it does not change the nature of the
position operator and, consequently, the potential term
and only modifies the momentum or the kinetic operator.
So, among several CTs, only this one preserves the
ordinary nature of the position operator. Second, this for-
malism lets us to write the Hamiltonian as H ¼
H0 þ �H1 þ �2H2 þ . . . , where H0 ¼ p2=2mþ VðxÞ is
the ordinary Hamiltonian and H1; H2; . . . contain only the
momentum operator. So, using the perturbation theory, the
unperturbed eigenfunctions satisfy H0jc 0i ¼ E0jc 0i and
we can find hH1i; hH2i; . . . in an straightforward manner as
done for various cases such as Ref. [36]. In other CTs like
the KMM proposal, we cannot decompose the Hamiltonian
in such configurations. So, in this sense, this proposal is
compatible with perturbative representations. Third, this
proposal predicts the existence of a maximal canonical
momentum. In fact, the particular form of the kinetic part
of the Hamiltonian (21) implies the existence of a maximal
momentum:

pmax ¼ �

2
ffiffiffiffi
�

p ¼ �MPlc

2
ffiffiffiffiffiffi
�0

p ; (24)

which mimics the recent GUP proposal predicting the
presence of both a minimal length uncertainty and a maxi-
mal momentum uncertainty through a doubly special rela-
tivity consideration [26–29]. There, the generalized
momentum has an upper bound proportional to MPlc=�0,
where �0 similar to �0 is of the order of unity. However,
for our case, the generalized momentum P has no upper
bound and it is not physically equivalent with aforemen-
tioned GUP. Therefore, the idea of a maximum ‘‘canoni-
cal’’ momentum naturally arises from our representation.

III. GUP AND THE FREE PARTICLE

In ordinary quantum mechanics, the free particle wave
function upðxÞ is defined as the eigenfunction of the mo-

mentum operator Pop

PopupðxÞ ¼ pupðxÞ; (25)

where p is the eigenvalue. The momentum operator has the
following representation in the quasiposition space:

Pop ¼ ℏ
i

@

@x
: (26)

So, from Eq. (25) we have

ℏ
i

@upðxÞ
@x

¼ pupðxÞ; (27)

which has the following solution:

upðxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2�ℏ

p exp

�
ipx

ℏ

�
; (28)

where the constant of integration is chosen to satisfyZ 1

�1
u�pðxÞupðx0Þdp ¼ �ðx� x0Þ: (29)

In GUP scenario, to find the momentum eigenfunction in
the position space, we write the momentum operator (9) as
Pop ¼ tanð�iℏ

ffiffiffiffi
�

p
@xÞ=

ffiffiffiffi
�

p
, which results in the following

eigenvalue equation:

tanð�iℏ
ffiffiffiffi
�

p
@xÞffiffiffiffi

�
p upðxÞ ¼ pupðxÞ: (30)

Now, let us consider a class of solutions which satisfies
Eqs. (27) and (30) at the same time, but with different
eigenvalues [p ! p0 in Eq. (27)], i.e.,

upðxÞ ¼ AðpÞ exp
�
ip0x
ℏ

�
; (31)

where p0 ¼ fðpÞ. Inserting this solution in Eq. (30) results
in tanð ffiffiffiffi

�
p

p0Þ= ffiffiffiffi
�

p ¼ p or

p0 ¼ 1ffiffiffiffi
�

p arctanð ffiffiffiffi
�

p
pÞ; (32)

so we have

upðxÞ ¼ AðpÞ exp
�

i

ℏ
ffiffiffiffi
�

p arctanð ffiffiffiffi
�

p
pÞx

�
: (33)

To obtain AðpÞ, we demand that the momentum eigenfunc-
tion satisfies Eq. (23) of Ref. [35] as the modified version
of (29) which results in

AðpÞ ¼ ½2�ℏð1þ �p2Þ��1=2: (34)

Thus, we finally obtain the momentum eigenfunctions as

upðxÞ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�ℏð1þ�p2Þp exp

�
i

ℏ
ffiffiffiffi
�

p arctanð ffiffiffiffi
�

p
pÞx

�
; (35)

which, to the first order agrees with the solution presented
in Ref. [22], i.e.,

upðxÞ ¼
�
1� �p2

2�ℏ

�
1=2

exp

�
i

ℏ

�
p� �

3
p3

�
x

�
: (36)

Note that this solution for� ! 0 reduces to (28) in order to
satisfy the correspondence principle. Moreover, this result
is similar to the position eigenvectors obtained by KMM,
where they used (3) and (4) subjected to the deformed
scalar product (5). In fact, the factor 1=ð1þ �p2Þ in the
definition of the scalar product (5) indeed appeared in
the momentum-dependent normalization coefficient of
the momentum eigenfunctions, namely,
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jAðpÞj2 � 1

1þ �p2
: (37)

At this point, we can use the following theorem to check
the self-adjointness property of the position and momen-
tum operators [30,31].

Theorem 1 (von Neumann’s theorem). For an operator A
with deficiency indices ðnþ; n�Þ, there are three possibil-
ities:

(1) If nþ ¼ n� ¼ 0, then A is self-adjoint (this is a
necessary and sufficient condition).

(2) If nþ ¼ n� ¼ n � 1, then A has infinitely many
self-adjoint extensions, parameterized by a unitary
n� n matrix.

(3) If nþ � n�, then A has no self-adjoint extension.
To use von Neumann’s theorem, we have to find the

wave functions �� given by

Py��ðxÞ ¼ tanð�iℏ
ffiffiffiffi
�

p
@xÞffiffiffiffi

�
p ��ðxÞ ¼ �i���ðxÞ: (38)

So, using Eq. (33) we have

��ðxÞ ¼ C� exp

� 	1

ℏ
ffiffiffiffi
�

p tanh�1ð ffiffiffiffi
�

p
�Þx

�
: (39)

Since the operatorP is defined on the whole real axis where
�� diverge at x ! 	1 and consequently are not normal-
izable, none of the functions �� belong to the Hilbert
space L2ðRÞ and therefore the deficiency indices are (0,
0). Hence, we conclude that the momentum operator is
indeed self-adjoint with the following domain:

D ðPÞ ¼ DðPyÞ ¼ f� 2 DmaxðRÞg; (40)

where Dmax denotes the maximal domain on which the
operator P has a well defined action, i.e.,DmaxðPÞ ¼ f� 2
L2ðRÞ:P� 2 L2ðRÞg. Using the same procedure for the
position operator X on the finite interval, it is straightfor-
ward to check that both ��ðpÞ ¼ C�e	�p belong to

L2ð� 1
2��

�1=2; 12��
�1=2Þ and the deficiency indices are

(1, 1). Therefore, one concludes that the position operator
is no longer essentially self-adjoint but has a one-
parameter family of self-adjoint extensions which is in
agreement with the previous result.

IV. GUP AND THE HARMONIC OSCILLATOR

In this section, we study the classical and quantum
mechanical solutions of the harmonic oscillator in the
GUP framework and present its semiclassical results.
Moreover, we study the effects of the minimal length
uncertainty on the thermodynamic aspects of the harmonic
oscillator in both classical and quantum domains.

A. Classical description

Let us consider the Hamiltonian of a particle of mass m
confined in a quadratic potential

HðHOÞ ¼ tan2ð ffiffiffiffi
�

p
pÞ

2�m
þ 1

2
m!2x2; (41)

which using the Hamiltonian equations results in

_x ¼ tanð ffiffiffiffi
�

p
pÞsec2ð ffiffiffiffi

�
p

pÞffiffiffiffi
�

p
m

; (42)

_p ¼ �m!2x: (43)

So, in the GUP formalism, the velocity _x is not equal to
p=m, but it tends to p=m as� goes to zero. Using Eqs. (42)
and (43) we obtain

€pþ!2 tanð
ffiffiffiffi
�

p
pÞsec2ð ffiffiffiffi

�
p

pÞffiffiffiffi
�

p ¼ 0: (44)

If we set the initial conditions as xð0Þ ¼ a and pð0Þ ¼ 0, it
is straightforward to check that the above equation admits
the following solutions:

pðtÞ¼� 1ffiffiffiffi
�

p arctan

�
�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þð1þ�2Þcot2ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ�2

p
!tÞ

q �
; (45)

xðtÞ ¼ 	 a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p
cotð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ �2
p

!tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð1þ �2Þcot2ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ �2
p

!tÞ
q ; (46)

where � ¼ ffiffiffiffi
�

p
m!a. So, the actual frequency of the har-

monic oscillator in GUP scenario increases with respect to

the absence of GUP as �! ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �m2!2a2

p
! � !. In

fact, this frequency depends on the GUP parameter, parti-
cle’s mass, and the initial position. Moreover, as � in-
creases, the particle is often located at the end points �a
and the accessible phase space decreases with respect to
the absence of GUP (see Fig. 1).

B. Semiclassical description

Before studying the corresponding generalized
Schrödinger equation, it is worthwhile to find the quantized
energy spectrum using the semiclassical scheme. The
Wentzel-Kramers-Brillouin (WKB) quantization rule, rep-
resented succinctly by the formula

I
pdq ¼

�
nþ 1

2

�
h; n ¼ 0; 1; . . . ; (47)

allows us to find the approximate energy spectrum and in
ordinary quantum mechanics gives the exact results. Using
Eq. (41) we find
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I
pdx ¼ 2ffiffiffiffi

�
p

Z a

�a
arctanð ffiffiffiffi

�
p

m!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x2

p
Þdx

¼ 2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �m2!2a2

p � 1

�m!
; (48)

which results in the following semiclassical energy spec-
trum:

EðSCÞ
n ¼ 1

2m!2a2n;

¼ �1
8	ℏ!þ ℏ!ðnþ 1

2Þð1þ 	=2Þ þ 1
2ℏ!	n2; (49)

where 	 ¼ �mℏ!. As we have expected, EðSCÞ
n tends to

ℏ!ðnþ 1=2Þ as � goes to zero. However, contrary to the

ordinary formulation where EðSCÞ
n is equal to the exact

energy spectrum, it does not give the exact spectrum in
the GUP formalism. This is due to the fact that from the
Hamiltonian (41) we expect that the energy spectrum

depends on numerous powers of �, but EðSCÞ
n only repre-

sents a linear dependence of the GUP parameter. In the
next section, we show this fact by a rigorous mathematical
proof. However, it can be considered as a good approxi-
mation which is related to the correct quadratic depen-
dence on the quantum number.

C. Quantum description

For the case of the harmonic oscillator, because of the
quadratic form of the potential VðxÞ ¼ 1=2m!2x2, we
obtain a second-order differential equation in the momen-
tum space, namely,

� @2�ðpÞ
@p2

þ tan2ð ffiffiffiffi
	

p
pÞ

	
�ðpÞ ¼ �
�ðpÞ; (50)

where p ! ffiffiffiffiffiffiffiffiffiffiffi
mℏ!

p
p, 	 ¼ mℏ!�, and �
 ¼ 2E

ℏ! . In terms

of the new variable z ¼ ffiffiffiffi
	

p
p, we obtain�

� @2

@z2
þ �ð�� 1Þtan2ðzÞ � 
ð�Þ

�
�ðz;�Þ ¼ 0; (51)

where by definition

� ¼ 1

2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

	2

s �
; 
ð�Þ ¼ �


	
; (52)

and the boundary condition is

�ðz;�Þjz¼��=2 ¼ 0: (53)

The above differential equation is exactly solvable and the
eigenfunctions can be obtained in terms of Gauss hyper-
geometric functions where we briefly present the solutions
[32].
To find the even-parity states, let us use the substitution

� ¼ sin2ðzÞ which leads to

�ð1� �Þ@
2�ð�;�Þ
@�2

þ
�
1

2
� �

�
@�ð�;�Þ

@�

þ
�
�ð�; 
Þ � 1

4

�ð�� 1Þ
1� �

�
�ð�;�Þ ¼ 0; (54)

where �ð�; 
Þ ¼ 1
4 ½�ð�� 1Þ þ 
ð�Þ�. Now, to get rid of

the regular singularity of the last term we search for the
solution of the form

�ð�;�Þ ¼ ð1� �ÞaYð�;�Þ; (55)

where a satisfy the algebraic equation

a2 � 1
2a� 1

4�ð�� 1Þ ¼ 0: (56)

So, we obtain the Gauss hypergeometric equation for the
variable Yð�;�Þ

�ð1� �ÞY00 þ
�
1

2
� ð�þ �þ 1Þ�

�
Y0 � ��Y ¼ 0; (57)

subjected to �þ � ¼ 2a and �� ¼ a2 � �ð�; 
Þ. This
equation admits two independent solutions. However, the
physically acceptable solution which vanishes at the
boundary lim�!1Yð�;�Þ ¼ 0 is

Yð�;�Þ ¼ Að�Þð1� �Þ�=2 2F1

�
�;�;�þ 1

2
; 1� �

�
;

(58)

FIG. 1 (color online). The temporal behavior of x and p, and the phase space of the harmonic oscillator for � ¼ 0 (blue line) and
� ¼ 1 (red line). We set m ¼ ! ¼ 1 and a ¼ 5 ( �! ¼ ffiffiffiffiffiffi

26
p

).
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whereAð�Þ is the normalization constant. The analyticity
and the convergence of the hypergeometric function for all
� 2 ½0; 1� results in

� or � ¼ �k; k ¼ 0; 1; 2; . . . : (59)

So, we obtain the even parity eigenfunctions

Y2kð�;�Þ¼Akð�Þð1��Þ�=2 2F1

�
�k;�þk;�þ 1

2;1��

�
;

(60)

and the eigenvalues


2kð�Þ ¼ 4kð�þ kÞ þ �; k ¼ 0; 1; 2; . . . : (61)

Finally, in terms of the original variable p we have

�2kðp;	Þ ¼ Akð�Þ½cosð ffiffiffiffi
	

p
pÞ� � 2F1½�k; �þ k;�

þ 1
2; cos

2ð ffiffiffiffi
	

p
pÞ�: (62)

To find the antisymmetric solutions let us define

�ðz;�Þ ¼ sinðzÞ’ðz;�Þ; (63)

where � is an even function of z. By substitution of this
solutions in the original equation we have

�
� @2

@z2
� 2 cotðxÞ @

@z
þ �ð�� 1Þtan2ðzÞ þ 1� 
ð�Þ

�
� ’ðz;�Þ ¼ 0; (64)

where by choosing � ¼ sin2ðzÞ can be written as

�
�ð1� �Þ @2

@�2
þ

�
3

2
� 2�

�
@

@�
þ �ð�; 
Þ

� 1

4
� 1

4

�ð�� 1Þ
1� �

�
’ð�;�Þ ¼ 0: (65)

Similar to the procedure for the even states let us define

�ð�;�Þ ¼ ð1� �Þ�=2Uð�;�Þ; (66)

which converts Eq. (65) to the Gauss hypergeometric
equation

�ð1��ÞU00 þ
�
3

2
�ð ��þ ��þ1Þ�

�
U0 � �� ��U¼0; (67)

where �� ¼ 1
2 ð�þ 1Þ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�ð�; 
Þp
and �� ¼ 1

2 ð�þ 1Þþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð�; 
Þp

. As before, we set �� ¼ �k and find the eigene-
nergies


2kþ1ð�Þ ¼ ð2kþ 1Þð2�þ 2kþ 1Þ þ �;

k ¼ 0; 1; 2; . . . ; (68)

for the antisymmetric eigenfunctions

U2kþ1ð�;�Þ ¼ Bkð�Þ
ffiffiffi
�

p ð1� �Þ�=2

� 2F1

�
�k; �þ kþ 1;�þ 1

2; 1� �

�
: (69)

In terms of the original variables we have

�2kþ1ðp;	Þ ¼ Bkð�Þ sinð ffiffiffiffi
	

p
pÞ½cosð ffiffiffiffi

	
p

pÞ�ð1þ
ffiffiffiffiffiffiffiffi
1þ 4

	2

q
Þ=2

� 2F1

�
�k; �þ kþ 1;�þ 1

2
; cos2ð ffiffiffiffi

	
p

pÞ
�
:

(70)

Note that we can combine Eqs. (61) and (68) in a single
formula to express the full spectrum, namely, 
nð�Þ ¼
nð2�þ nÞ þ � for n ¼ 0; 1; 2; . . . or

Enð	Þ ¼ ℏ!ðnþ 1
2Þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 	2=4
q

þ 	=2

�
þ 1

2ℏ!	n2; (71)

in terms of 	. So, as we have expected, this result exactly
coincides with the spectrum of the harmonic oscillator in
the formalism proposed by Kempf, Mangano, and Mann.
In Fig. 2, we have depicted the energy spectrum of the
harmonic oscillator in GUP framework (71), its semiclas-
sical approximation (49), and its spectrum in ordinary
quantum mechanics. The efficiency of the semiclassical
solution is manifest in the figure. In fact, to first order of

GUP parameter, En is equal to EðSCÞ
n up to a positive

constant, namely,

En ’ EðSCÞ
n þ 1

8
	ℏ!: (72)

To check the self-adjointness property of HðHOÞ, it is
natural to present the sesquilinear form for c and � as

FIG. 2 (color online). Comparing En=ℏ! (red line) and

EðSCÞ
n =ℏ! (blue line) for 	 ¼ 2 with the ordinary harmonic

oscillator spectrum (green line).
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2iBðc ; �Þ ¼ hHc j�i � hc jHj�i;
¼

Z þ �

2
ffiffi
�

p

� �

2
ffiffi
�

p
dpðHc ðpÞÞ��ðpÞ �

Z þ �

2
ffiffi
�

p

� �

2
ffiffi
�

p
dpc �ðpÞH�ðpÞ;

¼ � 1

2
m!2ℏ2

�Z þ �

2
ffiffi
�

p

� �

2
ffiffi
�

p
dpc 00ðpÞ��ðpÞ

�
Z þ �

2
ffiffi
�

p

� �

2
ffiffi
�

p
dpc �ðpÞ�00ðpÞ

�
;

¼ 1

2
m!2ℏ2½c �ðpÞ�0ðpÞjp¼ �

2
ffiffi
�

p � c 0�ðpÞ�ðpÞjp¼ �

2
ffiffi
�

p

� c �ðpÞ�0ðpÞjp¼ ��

2
ffiffi
�

p þ c 0�ðpÞ�ðpÞjp¼ ��

2
ffiffi
�

p �: (73)

On the other hand, using the explicit form of the solutions
(62) and (70), it is straightforward to check that the first
derivative of the solutions as well as�ðp;�Þ vanishes at the
boundaries, i.e.,

�0ðp;�Þjp¼ ��

2
ffiffi
�

p ¼ 0: (74)

Therefore, c �ðpÞ and c 0�ðpÞ can take arbitrary values at
the boundaries. This means that the domain of the adjoint
of H is larger than that of H, so the Hamiltonian is
symmetric but not self-adjoint. The domains are

DðHÞ ¼
�
� 2 Dmax

���

2
ffiffiffiffi
�

p ;
þ�

2
ffiffiffiffi
�

p
�
;�

�þ�

2
ffiffiffiffi
�

p
�

¼ �

���

2
ffiffiffiffi
�

p
�
¼ �0

�þ�

2
ffiffiffiffi
�

p
�
¼ �0

���

2
ffiffiffiffi
�

p
�
¼ 0

�
; (75)

DðHyÞ¼
�
c 2Dmax

���

2
ffiffiffiffi
�

p ;
þ�

2
ffiffiffiffi
�

p
�
; noother restrictiononc

�
:

(76)

Note that this result is not surprising because even the
Hamiltonian of the one-dimensional particle in a box is
not a truly self-adjoint operator as well [31].

D. Classical partition function

In statistical mechanics, the canonical partition function
of N identical, one-dimensional oscillators which encodes
the statistical properties of a thermodynamic system can be
written in the classical domain as

ZðbÞ ¼ 1

N!hN

Z
exp½�bHðp1 
 
 
pN; x1 
 
 
 xNÞ�

� dp1 
 
 
 dpNdx1 
 
 
dxN; (77)

where b � 1=kBT, kB denotes Boltzmann’s constant and T
is the temperature. For N noninteracting oscillators, the
total partition function can be obtained from the single-
particle partition function as

ZðbÞ ¼ 1

N!hN

�Z þ1

�1
exp

�
� 1

2
bm!2x2

�
dx

�
N

�
�Z þ �

2
ffiffi
�

p

� �

2
ffiffi
�

p
exp

�
� b

2�m
tan2ð ffiffiffiffi

�
p

pÞ
�
dp

�
N
; (78)

¼ 1

N!hN

�
2�kBT

m!2

�
N=2

��expð 1
2�mkBT

Þerfcð 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2�mkBT

p Þffiffiffiffi
�

p
�
N
; (79)

where erfcðxÞ is the complementary error function. Using
the asymptotic expansion of the complementary error func-
tion for large x, namely,

erfcðxÞ¼ e�x2

x
ffiffiffiffi
�

p
�
1þX1

n¼1

ð�1Þn1 
3 
5


ð2n�1Þ
ð2x2Þn

�
; (80)

we can write the partition function in terms of powers of
kBT as

ZðbÞ¼ 1

N!

�
kBT

ℏ!

�
N
�
1þX1

n¼1

ð2n�1Þ!!ð��mkBTÞn
�
N
; (81)

where for� ! 0 reduces to the ordinary partition function.
Also, the classical mean energy of the system is given by

�EC¼� @

@b
lnZ

¼N

�
kBT

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT

2��m

s
expð�1=2�mkBTÞ
erfcð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=2�mkBT
p Þ�

1

2�m

�
; (82)

¼ N

�
kBT þ

P1
n¼1 nð2n� 1Þ!!ð��mÞnðkBTÞnþ1

1þP1
n¼1ð2n� 1Þ!!ð��mkBTÞn

�
; (83)

which goes to NkBT for � ! 0. Therefore, as indicated in
Fig. 3, in the presence of GUP, the mean energy decreases
with respect to � ¼ 0. The reason for the reduction of
mean energy with respect to � ¼ 0 is a consequence of
the reduction of phase space volume (surface) due to
possible definition of a rescaled ℏ. In fact, the volume of
the fundamental cell increases in the presence of the mini-
mal length uncertainty relation and the number of degrees
of freedom reduces consequently. Moreover, it modifies the
Helmholtz free energy A ¼ �kBT lnZ and the entropy S ¼
kB lnZþ �E=T as well. The above equation shows that the
equipartition theorem fails in the GUP scenario. Although
the averaged potential satisfies the equipartition theorem,
i.e., h1=2m!2x2i ¼ kBT=2, the kinetic part yields the
smaller value hKi< kBT=2 [see Eq. (83)]. Similarly, the
heat capacity at constant volume, which is proportional to
@ �E
@T , decreases with respect to the absence of GUP, namely,

C��0
V < C�¼0

V : (84)

Note that for the case of the ideal gas we can write the
partition function as
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ZðbÞ ¼ VN

N!hN

�
� expð1=2�mkBTÞerfcð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=2�mkBT

p Þffiffiffiffi
�

p
�
N
;

(85)

so, using the definition of pressure P ¼ 1
b

@ lnZ
@V , we recover

the ordinary ideal gas equation of state PV ¼ NkBT.
However, the corresponding heat capacity will be modified
as mentioned above.

E. Quantum partition function

In the quantum statistical mechanics, the partition func-
tion for a single oscillator is given by

ZðbÞ ¼ X1
n¼0

expð�bEnÞ; (86)

where the energy eigenvalues are defined in Eq. (71). Now,

Zðb;	Þ¼e�ð1=2Þbℏ!ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ	2=4

p
þ	=2Þ

�X1
n¼0

exp

�
�bℏ!

�
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ	2=4

q
þ	=2Þnþ1

2
	n2

��
;

(87)

¼ e�ð1=2Þbℏ!ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ	2=4

p
þ	=2ÞPðb;	Þ; (88)

where we defined Pðb;	Þ�P1
n¼0exp½�bℏ!ðð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ	2=4
p þ

	=2Þnþ1
2	n

2Þ�. So, we have Pðb; 0Þ ¼ 1
1�expð�bℏ!Þ and

Zðb; 0Þ ¼ expð�ð1=2Þbℏ!Þ
1�expð�bℏ!Þ . Also, the mean energy of the os-

cillator is given by

�E¼� @

@b
lnZ¼1

2
ℏ!ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ	2=4

q
þ	=2Þ�P0ðb;	Þ

Pðb;	Þ ; (89)

¼ℏ!ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ	2=4

q
þ	=2Þ

�
0
B@1
2
þ
P1

n¼0ðnþ n2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4=	2

p Þe� ℏ!
kBT

ðð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ	2=4

p
þ	=2Þnþ1

2	n
2Þ

P1
n¼0e

� ℏ!
kBT

ðð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ	2=4

p
þ	=2Þnþ1

2	n
2Þ

1
CA;

(90)

where prime denotes the derivative with respect to b. The
mean energy of the harmonic oscillator in the quantum
domain and in the GUP formalism is depicted in Fig. 4
which shows a modified minimum value in the low-
temperature limit

�E ’ 1

2
ℏ!

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 	2=4

q
þ 	=2

�
: (91)

To compare the classical and quantum results in the high-
temperature limit, we can write Eq. (82) as

�EC

Nℏ!
¼ 1

2

0
B@kBT
ℏ!

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=ℏ!
2�	

s
expð �1=2	

kBT=ℏ!
Þ

erfcð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1=2	

kBT=ℏ!

q
Þ
� 1

	

1
CA: (92)

In Fig. 5, the classical (92) and the quantum mechanical
(90) mean energy of the harmonic oscillator for 	 ¼ 0:2 is

FIG. 3 (color online). The classical mean energy of N har-
monic oscillators in thermal equilibrium versus temperature for
� ¼ 1 (red line) and � ¼ 0 (blue line). We set m ¼ 1.

FIG. 4 (color online). The quantum mechanical mean energy
of the harmonic oscillator En=ℏ! versus kBT=ℏ! for 	 ¼ 1 (red
line) and 	 ¼ 0 (blue line).

FIG. 5 (color online). The classical (dashed line) and quantum
mechanical (solid line) mean energy of the harmonic oscillator
for 	 ¼ 0:2 (red line) and 	 ¼ 0 (blue line).
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depicted and compared with the ordinary thermodynamic
results.

V. GUP AND THE POTENTIALS
WITH SHARP BOUNDARIES

In the GUP scenario, we cannot measure the position of
a particle with an uncertainty less than ð�XÞmin. So, in
principle, it is not possible to properly define the potentials
with infinitely sharp boundaries (It is well known that such
sharp boundaries cannot be also defined in theories with
space-time uncertainty [33,34]). Indeed, the position of the
boundaries can be only determined within this uncertainty.
However, one may argue that in a first-step analysis, the
assumption of sharp boundaries would be an acceptable
approximation. But the validity of this approximation re-
quires that the uncertainty in the energy spectrum due to
the boundaries’ position uncertainty to be much smaller
than the GUP energy correction.

To investigate this point, we study the problem of a
particle in a box as an example of a potential with infinitely
sharp boundaries and compare both energy corrections. So,
let us consider a particle with mass m confined in an
infinite one-dimensional box with length L

VðxÞ ¼
�
0 m< x< L;

1 elsewhere:
(93)

The corresponding eigenfunctions should satisfy the fol-
lowing generalized Schrödinger equation:

� ℏ2

2m

@2c nðxÞ
@x2

þX1
j¼3

�jℏ2ðj�1Þ�j�2@
2ðj�1Þc ðxÞ
@x2ðj�1Þ ¼Enc nðxÞ;

(94)

for 0< x< L and they also meet the boundary conditions
c nð0Þ ¼ c nðLÞ ¼ 0. Because of the boundary conditions,
the eigenfunctions do not change with respect to the ab-
sence of the GUP (� ¼ 0) [22]. This fact leads us to
consider the following additional condition for the eigen-
functions:

� ℏ2

2m

@2c nðxÞ
@x2

¼ "nc nðxÞ; 0< x< L; (95)

where "n ¼ n2�2ℏ2

2mL2 . If this condition is also satisfied, we

can write the second term in Eq. (94) in terms of c nðxÞ,
i.e.,

@2ðj�1Þc nðxÞ
@x2ðj�1Þ ¼ �2m"n

ℏ2

@2ðj�2Þc nðxÞ
@x2ðj�2Þ ¼ . . .

¼
��2m"n

ℏ2

�
j�1

c nðxÞ: (96)

So, we have

� ℏ2

2m

@2c nðxÞ
@x2

þ X1
j¼3

�jℏ2ðj�1Þ�j�2 @
2ðj�1Þc nðxÞ
@x2ðj�1Þ

¼
�
"n þ

X1
j¼3

j�jj�j�2ð2mÞj�1"j�1
n

�
c nðxÞ: (97)

Now, comparing Eqs. (94) and (97) shows that

En ¼ tan2ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m�"n

p Þ
2m�

; (98)

¼ "n þ 4

3
�m"2n þ 68

45
�2m2"3n þ 496

315
�3m3"4n þ 
 
 
 ;

¼ ℏ2

mL2

�
n2�2

2
þ n4�4

3

�ð�XÞmin

L

�
2

þ 17n6�6

90

�ð�XÞmin

L

�
3 þ 
 
 


�
: (99)

This GUP corrected energy spectrum can be also obtained
using the Wilson-Sommerfeld quantization rule given byI

pdq ¼ nh; n ¼ 1; 2; . . . ; (100)

with two conjugate variables p and q and the integer n.
Since the potential is constant (zero) inside the box, we
have I

pdx ¼ 2Lffiffiffiffi
�

p arctanð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�mEn

p Þ: (101)

So, the semiclassical spectrum is

EðSCÞ
n ¼ tan2ð ffiffiffiffi

�
p

n�ℏ=LÞ
2m�

; (102)

which exactly coincides with the quantum mechanical
spectrum given by Eq. (98). These results show that the

GUP energy correction is of order of ðð�XÞmin

L Þ2.
Now let us find the energy correction due to the uncer-

tainty in the position of the well’s walls

�En ’
��������d"ndL

��������ð�XÞmin ¼ n2�2ℏ2

mL2

�ð�XÞmin

L

�
; (103)

which is first order in ð�XÞmin=L. Therefore, the GUP
energy correction is much smaller than �En and cannot
be detected in the presence of the minimal length. This
result confirms that the particle in a box potential cannot be
defined in the GUP framework as in ordinary quantum
mechanics. This conclusion can be also generalized to
other potentials with infinitely sharp boundaries.

VI. CONCLUSIONS

In this paper, we proposed a nonperturbative gravita-
tional quantum mechanics in agreement with the existence
of a minimal length uncertainty relation. In this formalism,
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the generalized Hamiltonian takes the form H ¼
tan2ð ffiffiffiffi

�
p

pÞ=ð2�mÞ þ VðxÞ, where x and p are the ordinary
position and momentum operators. We showed that this
approach is equivalent with KMM representation and we
found the corresponding canonical transformation. This
representation has some advantages: First, it modifies
only the kinetic part (momentum operator) and the poten-
tial term (position operator) remains unchanged. Second,
this formalism is compatible with perturbative schemes.
Third, this representation predicts the existence of a maxi-
mal canonical momentum proportional to MPlc=

ffiffiffiffiffiffi
�0

p
.

Because of the universality of the GUP effects, this formal-
ism can potentially be tested in various quantum mechani-
cal systems, of which we have studied just a few cases.

We thoroughly studied the case of the harmonic oscil-
lator in classical and quantum domains. In the classical
domain, we found the trajectory of the oscillating particle
and showed that the GUP modified frequency of the oscil-
lator depends on mass, initial position and the GUP pa-
rameter. Also, for large � the particle is often located
around the end points. In the quantum domain, we obtained
the exact energy eigenvalues and the eigenfunctions and
showed that they are in agreement with those obtained in
Ref. [35]. Moreover, the quadratic dependence of the
energy spectrum on the state number is confirmed using
the semiclassical approximation. To address the effects of
the generalized uncertainty principle on the thermody-

namic properties of the harmonic oscillator, we found the
partition functions and the mean energies in both classical
and quantum limits. We showed that, in the presence of the
GUP and at the fixed temperature, the mean energy and the
heat capacity of the oscillator reduce in comparison with
those of the ordinary classical and quantum mechanics.

Also, we have indicated that X and HðHOÞ are merely
symmetric, but P is a truly self-adjoint operator. Note that
these results for X and P agree with those of KMM
representation [35]. However, the difference is that in this
representation all these operators are formally self-adjoint,

i.e., A ¼ Ay (A 2 fX; P;HðHOÞg), but DðAÞ � DðAyÞ for
A 2 fX;HðHOÞg andDðPÞ ¼ DðPyÞ. On the other hand, in
KMM representation, only P is formally and truly self-
adjoint. The problems with the potentials with sharp
boundaries are finally discussed. We showed that for this
type of potentials, the GUP energy correction is much
smaller than the uncertainty in the energy spectrum due
to the boundaries’ position uncertainty.
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