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It has been known for a long time that Einstein’s field equations when projected onto a black hole

horizon look very similar to a Navier-Stokes equation in suitable variables. More recently, it was shown

that the projection of Einstein’s equation onto any null surface in any spacetime reduces exactly to the

Navier-Stokes form when viewed in the freely falling frame. We develop an action principle, the

extremization of which leads to the above result, in an arbitrary spacetime. The degrees of freedom

varied in the action principle are the null vectors in the spacetime and not the metric tensor. The same

action principle was introduced earlier in the context of the emergent gravity paradigm wherein it was

shown that the corresponding Lagrangian can be interpreted as the entropy density of spacetime. The

current analysis strengthens this interpretation and reinforces the idea that field equations in gravity can be

thought of as emergent. We also find that the degrees of freedom on the null surface are equivalent to a

fluid with equation of state PA ¼ TS. We demonstrate that the same relation arises in the context of a

spherical shell collapsing to form a horizon.
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I. INTRODUCTION

There is increasing recognition in recent years that the
field equations of gravity may have the same conceptual
status as the equations of fluid mechanics or elasticity and
hence gravity could be thought of as an emergent phe-
nomenon just like, say, fluid mechanics. (For a recent
review, see Ref. [1].) This approach has a long history
originating from the work of Sakharov [2] and interpreted
in many ways by different authors (for a incomplete sam-
ple of references, see Ref. [3]). We will use the term
‘‘emergent’’ in the specific and well-defined sense in terms
of the equations of motion, rather than in a more specula-
tive vein—like e.g., considering the space and time them-
selves to be emergent, etc. The evidence for such a specific
interpretation comes from different facts like the possibil-
ity of interpreting the field equation in a wide class of
theories as thermodynamic relations [4], the nature of
action functional in gravitational theories and their ther-
modynamic interpretation [5], the possibility of obtaining
the field equations from a thermodynamic extremum prin-
ciple [6], application of equipartition ideas to obtain the
density of microscopic degrees of freedom [7], etc.

If the field equations of gravity have the same status as
the equations of fluid mechanics, then it should be possible
to write down Einstein’s field equations (and possibly a
more general class of field equations; but in this paper we
shall confine ourselves to Einstein’s gravity in D ¼ 4) in a
form similar to the equations of fluid mechanics. It was
shown by Damour [8] decades ago that this is indeed the
case in the context of black hole spacetimes. He showed
that the black hole horizon can be interpreted as a dissipa-

tive membrane with Einstein’s equations projected onto it
taking a form very similar (but not identical) to the Navier-
Stokes equation in fluid mechanics. (We shall call these
equations Damour-Navier-Stokes equations, or DNS equa-
tions for short.) This work formed the basis for the devel-
opment of membrane paradigm by several authors to
describe black hole physics [9]. Last year, one of us
(T. P.), could generalize this result to any null surface in
any spacetime [10]. It was shown that, when Einstein’s
equations are projected onto any null surface and the
resulting equations are viewed in the freely falling frame,
they become identical to the Navier-Stokes equation
(rather than being very similar to the Navier-Stokes equa-
tion as in the case of DNS equations). Figuratively speak-
ing, this result shows that a spacetime filled with null
surfaces can be equivalently thought of as hosting a fluid
(with the fluid variables related to the structure of the null
surface at any given event), which satisfies the Navier-
Stokes equation in the local inertial frame (for other related
work, exploring the connection between gravity and fluid
mechanics, see e.g., [11]). There is no a priori reason for
such a mathematical equivalence to arise unless gravita-
tional field equations are emergent from some, as yet
unknown, microscopic structure.
Conventionally, however, one obtains the field equations

of the theory by extremizing an action functional for
variations of the dynamical variables of the theory. In the
case of Einstein gravity, one usually obtains the field
equation by extremizing the Einstein-Hilbert action with
respect to the variations of the metric. In the approach
taken in all the previous work in this subject, one first
obtains the field equations by this procedure and
then projects them onto a black hole horizon (in the origi-
nal work of Damour, Thorne, etc.) or onto a generic
null surface (in the context of [10]). This is, however,
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conceptually not very satisfactory in the emergent para-
digm for two reasons. First, it would be nice if equations of
macroscopic dynamics could be obtained from a thermo-
dynamic extremum principle rather than a field theoretic
action principle. Second, given the fact that final equations
are expressed in terms of variables defined using a null
surface, it would be appropriate if the same variables are
used in the extremum principle rather than the metric. In
other words, we would like to provide a thermodynamic
extremum principle from which one directly obtains the
Navier-Stokes equation rather than first obtaining or as-
suming Einstein’s field equations and then deriving the
DNS equation by a projection to a null surface.

In this paper, we shall show that this can indeed be
achieved. The key to this result lies in the earlier work
[6] in which it was shown that the field equations for a wide
class of gravitational theories can be obtained by a ther-
modynamic extremum principle based on null vectors in
the spacetime. By an adaptation of this method, we can
write down a suitable extremum principle and derive the
DNS equation as the resulting Euler-Lagrange equations.
What is more, we will show that the functional which is
extremized has an interesting interpretation in terms of
purely thermodynamic variables defined on the null
surfaces.

The plan of the paper is as follows. In the next section,
we shall briefly review the derivation of the DNS equation
in the conventional procedure and then introduce an en-
tropy functional in terms of the null fluid variables. In Sec. ,
we will obtain the DNS equation by extremizing this
entropy functional and compare the result with the more
conventional approach. In Sec. III, we will provide an
interpretation of the extremum principle and derive an
equation of state for the null fluid which can be stated
simply asG ¼ E whereG is the Gibbs free energy and E is
the energy, which, of course, is equivalent to the result
PV ¼ TS with V interpreted as the volume of a two-
dimensional surface, i.e., the area. Section IV discusses
the nature of this equation of state in full detail. Section V
provides a brief discussion of the results.

II. ACTION FOR NAVIER-STOKES EQUATION

We will briefly review the notation and define the geo-
metrical quantities that will be required to study the ex-
trinsic geometry of the null surfaces (for a review see [12]).
We will begin by introducing the standard ð1þ 3Þ foliation
of the spacetime with the normals n ¼ �Ndt to �t where
N is the lapse function. Let s be a unit normal to a set of
timelike surfaces such that n � s ¼ 0. We can now define
two null vector fields by

‘ ¼ Nðnþ sÞ; k ¼ ð1=2NÞðn� sÞ: (1)

Here, k is an auxiliary null vector field with ‘ � k ¼ �1.
We can now define a metric qab on the two-dimensional
surface St orthogonal to the n and s through the following

standard relations (St is the intersection of the null surface
S with the time constant surface �t):

qab ¼ gab þ nanb � sasb ¼ gab þ ‘akb þ ‘bka;

qab‘
b ¼ 0 ¼ qabk

b: (2)

The mixed tensor qab allows us to project quantities onto St.

We can also define another projector orthogonal to kb by
the definition �d

b ¼ �d
b þ kd‘b, which has the properties

�a
b‘

b¼‘a; �a
bk

b¼0; �a
b‘a¼0; �a

bka¼kb:

(3)

The Weingarten coefficients can now be introduced as
the projection of the covariant derivative rd‘

a by the
definition

�a
b � �d

brd‘
a ¼ rb‘

a þ ‘bðkdrd‘
aÞ; (4)

which has the following properties:

�a
b‘

b � �‘a; �abk
b ¼ 0; �ab‘

a ¼ 0;

�abk
a � �!b ¼ �‘jrjkb; (5)

where the surface gravity � is defined through the relation
‘jrj‘i ¼ �‘i and!a through the last equality.!a satisfies

the relations!a‘
a ¼ � and!ak

a ¼ 0. We next define�ab

by projecting �mb to St. We get, on using ‘m�mb ¼ 0 and
km�mb ¼ �!b, the result:

�ab ¼ qma �mb ¼ �ab þ ka‘
m�mb þ ‘ak

m�mb

¼ �ab � ‘a!b: (6)

Using Eq. (4), we see that

�ab ¼ �ba ¼ rb‘a þ ‘ak
iri‘b � ‘b!a ¼ qma q

n
brm‘n:

(7)

This result shows that �ab is a natural projection of the
covariant derivative rm‘n onto the surface St and, obvi-
ously, �ab‘

b ¼ 0 ¼ �abk
b. The trace of �ab, denoted by

�, is given by

�a
a ¼ � ¼ ral

a � �: (8)

It is also convenient to define a similar projection of !a by
�b � qab!a. We have

�b � qab!a ¼ �qabðkm�m
aÞ ¼ !b � �kbðkm‘mÞ

¼ !b þ �kb: (9)

These results allow us to express the projection of
Einstein’s equations onto St. To do this, one begins with
the standard relation rmra‘

m �rarm‘
m ¼ Rma‘

m and
substitutes for ra‘

m using Eq. (7) and for rm‘
m using

Eq. (8) repeatedly. This leads, after some straightforward
algebra, to the relation

SANVED KOLEKAR AND T. PADMANABHAN PHYSICAL REVIEW D 85, 024004 (2012)

024004-2



Rma‘
m ¼ rm�

m
a þ ‘mrm!a þ ð�þ �Þ!a �rað�þ �Þ

��amk
nrn‘

m � ð!mk
nrn‘

m

þrmk
nrn‘

m þ knrmrn‘
mÞ‘a: (10)

The DNS equation is obtained by contracting Eq. (10) with
qab. We will state here the final expression which is suffi-

cient for our discussion but the reader may refer to [10] for
a derivation and detailed discussion.

Rmn‘
mqna ¼ qmaL‘�m þ ��a �Dað�þ �Þ þDm�

m
a

¼ qmaL‘�m þ ��a �Da

�
�þ �

2

�
þDm�

m
a

¼ Tmn‘
mqna; (11)

where Da is the covariant derivative defined using the
metric on St, and L‘ denotes the Lie derivative along ‘.
We have also separated out the trace of �mn and define
�mn ¼ �mn � ð1=2Þqmn�. We see that Eq. (11) has the
form of a Navier-Stokes equation for a fluid with the
convective derivative replaced by the Lie derivative
(this can be taken care of by working in the local inertial
frames; see [10]). We also note that the corresponding fluid
quantities are (i) momentum density ��a=8� (for a dis-
cussion of this quantity, see the Appendix), (ii) pressure
ð�=8�Þ, (iii) shear tensor �m

a , (iv) shear viscosity coeffi-
cient � ¼ ð1=16�Þ, (v) bulk viscosity coefficient � ¼
�1=16�, and (vi) an external force Fa ¼ Tma‘

m. The
meaning of �m

a as the shear tensor has been discussed
extensively in the literature [10]. (For a discussion regard-
ing the bulk viscosity coefficient � and the fluid/gravity
correspondence in the modern perspective, see Sec. V.)
Having identified the relation between fluid variables and
quantities describing the extrinsic geometry of the null
surfaces, we now have a dictionary between the two
through Eqs. (4)–(9).

The DNS equation of Eq. (11) was obtained by first
writing the Einstein’s field equations and then projecting
them suitably on the horizon. As we said before, it would
be conceptually more satisfying to obtain the DNS equa-
tion directly from a variational principle starting from a
functional written in terms of variables describing the
viscous fluid. (Even in the case of usual fluid mechanics,
a corresponding variational principle for the Navier-Stokes
equation is not readily available in the literature.) In the
next section, we will describe such an extremum principle
based on normals to null surfaces and their derivatives.

Obtaining the DNS equation

In this section, we show that starting from a suitable
Lagrangian one can directly derive the DNS equation that
is, Eq. (11) from an action principle without first assuming
the Einstein field equations. We now proceed to investigate
the required action. Note that it is sufficient to obtain the
right-hand side of Eq. (10) equal to Tmn‘

m as the Euler-

Lagrange equation, then the DNS equation follows from it
by projecting along qna. To begin with, we take clue from
earlier works [6] where it was shown that an entropy
functional Sgrav can be associated with every null vector

in the spacetime and by demanding �½Sgrav þ Smatter� ¼ 0

for all null vectors in the spacetime, where Smatter is the
relevant matter entropy, one can obtain the field equations
of gravity in all Lanczos-Lovelock models of gravity. The
entropy functional (Sgrav þ Smatter) was defined to be

S½la� ¼ �
Z
V
d4x

ffiffiffiffiffiffiffi�g
p ð4Pcd

abrcl
ardl

b � Tabl
albÞ; (12)

where Pcd
ab ¼ ð1=2Þð�c

a�
d
b � �d

a�
c
bÞ for Einstein gravity.

The origin and properties of the tensor Pabcd in a general
Lanczos-Lovelock theory have been discussed extensively
before in the literature and we refer the reader to [6,11] for
full details. With the help of our dictionary consisting of
Eqs. (4)–(9), we can write the above entropy density func-
tional completely in terms of the fluid variables. This can
be achieved by first substituting for ralb in terms of �ab

using Eqs. (7) and (8) and then using the orthogonality
condition �abl

a ¼ 0 and the relation !al
a ¼ � to get

S½la� ¼ �
Z
V
d4x

ffiffiffiffiffiffiffi�g
p ð��ab�

ba � �2

þ ð�þ �Þ2 � Tabl
albÞ; (13)

where the Lagrangian for gravity now written in terms of
fluid variables is

L grav ¼ ��ab�
ba � �2 þ ð�þ �Þ2: (14)

We will first demonstrate that extremizing the above
action with respect to the variations of the null normals
leads to the DNS equation directly. To show this, we first
write the gravitational Lagrangian in a different but equiva-
lent form:

Lgrav ¼ ��ab�
ba � �2 þ ð�þ �Þ2

¼ �ð�ab þ walb � lak
irilbÞ

� ð�ba þ wbla � lakiril
bÞ þ ð�þ �Þ2; (15)

where we have used�abl
a ¼ 0, lala ¼ 0, larmla ¼ 0, and

!a‘
a ¼ � to factorize the first expression. Using �ð�ab þ

walb � lak
irilbÞ ¼ �i

a�
j
b�ðriljÞ, we find that the Euler-

Lagrange derivative Ej for the gravitational Lagrangian

Lgrav is of the form

�Ej � ri

�
@Lgrav

@ril
j

�
� @Lgrav

@lj

¼ �2rið�j
i þ wjl

i � ljk
mrml

iÞ þ 2rjð�þ �Þ
¼ �2ri�

i
j � 2liri!j � 2ð�þ �Þ!j þ 2rjð�þ �Þ

þ 2�jmk
nrnl

m þ 2ð!mk
nrnl

m

þrmk
nrnl

m þ knrmrnl
mÞlj: (16)
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By comparing the above expression with Eq. (10), we can
see thatEj ¼ 2Rm

j lm. Hence, projecting the Euler-Lagrange

derivative Ej along q
j
a is equivalent to 2Rmn‘

mqna. It is then

obvious that the Euler-Lagrange equation of the full
Lagrangian (gravity plus matter) will lead to the required
DNS equation of Eq. (11); 2Rmn‘

mqna ¼ Tmn‘
mqna. We then

use the following two algebraic relations:

qnarm�
m
n ��m

a k
nrn‘m ¼ Dm�

m
a þ�m

a�m; (17)

qnaL‘�n ¼ qna‘
mrm!n þ�m

a�m þ ��a; (18)

to bring Eq. (16) to the form of the DNS equation in Eq. (11).

qmaL‘�mþ��a�Da

�
�þ�

2

�
þDm�

m
a ¼Tmn‘

mqna: (19)

It has been shown [6] that the same action when expressed in
the form of Eq. (12) also leads to Einstein’s field equations
with an undetermined cosmological constant on extremizing
with respect to the variations of the null normals and demand-
ing that the extremum condition holds for all null vectors. We
refer the reader to [6] for a full derivation. Such an approach
leads to the condition that ðRab � ð1=2ÞTabÞlalb ¼ 0 for all
null vectors la. Using Bianchi identity and the condition
raT

ab ¼ 0, one can show that the above condition is equiva-
lent to the Einstein’s field equations:

Rij � 1
2gijR ¼ 1

2ðTij þ gij�Þ: (20)

In this approach, one demands the extremum to hold for all
null vectors, which leads to Einstein’s field equations which
are independent of la, whereas in the case of theDNSequation
we get an equation in terms of la for any null surface. Validity
of the DNS equation for all null surfaces is then equivalent to
the validity of Einstein’s field equations. Thus, we find that
starting from the Lagrangian in Eq. (14), whenever the DNS
equation holds, the Einstein field equations also hold starting
from the same emergent action. This establishes another way
of proving the equivalence between Einstein’s field equations
and the Navier-Stokes equation through a common action.

III. INTERPRETATION OF THE ACTION

We will now show that the action in Eq. (13) acquires a
thermodynamic interpretation in terms of a local entropy
density and hence extremizing the action could be viewed
as equivalent to extremizing the entropy density of the
spacetime in the emergent gravity paradigm.

We begin by considering the spacetime to be completely
foliated by null surfaces. Let us denote any such arbitrary
null surface in the family of null surfaces by S. Further, let
the (nonaffine) parameter along the null geodesics gener-
ating the null surface S be denoted by 	 such that the
tangent to the null curves ‘ is defined to be ‘ ¼ @=@	.
Consider an infinitesimal cross-sectional area �A of the
2-surface St, which is the intersection of the null surface S
with the constant time spacelike hypersurface�t. Then, the

quantityLgrav�Ad	dt is the contribution to the action from

a small 4-volume element around the spacetime event on
the null surface. Now, consider the quantity

Lgrav�A

8�
¼ ½��ab�

ba � �2 þ ð�þ �Þ2��A
8�

¼ �ð2��ab�
ba þ 
�2Þ�Aþ ��

4�
�A; (21)

where we have again set �m
n ¼ �m

n þ ð1=2Þ�m
n � and the

viscous coefficients to be � ¼ 1=16� and 
 ¼ �1=16�.
Since � gives the fractional rate of change in the null
congruence’s cross-sectional area �A, we have

ð�AÞ� ¼ �A

�
1

�A

d�A

d	

�
¼ d�A

d	
: (22)

Writing �=4� ¼ ð�=8�Þ þ ð1=4Þð�=2�Þ [the reason for
such a splitting is that pressure is �=8� while the tempera-
ture is �=2�; we will say more about this in Sec. IV)] and
using Eq. (22), we get

Lgrav�A

8�
¼ ��Að2��ab�

ba þ 
�2Þ

þ �

2�

dð�A=4Þ
d	

þ �

8�

dð�AÞ
d	

¼ ��Að2��ab�
ba þ 
�2Þ

þ �

2�

dð�A=4Þ
d	

þ P
dð�AÞ
d	

; (23)

where we have used the relation between the pressure and
the nonaffine parameter � given by P ¼ �=8�. When the
null surface corresponds to a black hole horizon in an
asymptotically flat spacetime, there is a natural choice
for la such that � can be identified with the surface gravity
of the black hole horizon. In a more general context, one
can always construct a local Rindler frame around the
event on the null surface such that S becomes the local
Rindler horizon. One can then relate � to the acceleration
of the congruence of Rindler observers that has been
introduced. Further, one can also associate with the horizon
a local Unruh temperature T through the relation T ¼
�=2� and a Bekenstein entropy SH equal to one-quarter
of the cross-sectional area �A of the horizon; SH ¼ �A=4.
Then, we obtain

Lgrav�A

8�
¼ ��Að2��ab�

ba þ 
�2Þ þ T
dSH
d	

þ P
d�A

d	
:

(24)

Therefore, the temporal rate of change of the action
becomes

1ffiffiffiffiffiffiffiffiffi�g0
p dS

dt
¼ Lgrav�Ad	

8�

¼ ��Ad	ð2��ab�
ba þ 
�2Þ þ TdSH þ Pd�A

¼ �dEþ TdSH þ Pd�A; (25)
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where we have defined dE � ��Ad	ð2��ab�
ba þ 
�2Þ.

The form of Eq. (25) suggests that we can interpret the rate
of change of local action or the entropy density functional
as an on-shell local entropy production rate of the given
spacetime. Then, the three terms in Eq. (25) can be inter-
preted as follows: (i) Entropy generation due to the loss in
energy dE because of viscous dissipation during evolution
of the small area element �A of the null surface from 	1 to
	2 along the null congruence. (ii) The second term corre-
sponds to rise in the gravitational entropy proportional to
the increase of the area of the horizon, which is due to the
familiar information loss processes. (iii) The third term is
the (virtual) work done by the horizon against the pressure
P during its area expansion d�A.

IV. EQUATION OF STATE FOR THE NULL FLUID

We could express the Lagrangian in the form in Eq. (25)
by noticing that both temperature and pressure are propor-
tional to the surface gravity � and hence obey the relation
P ¼ T=4, which is analogous to an equation of state of a
gas. If we further use the fact that the entropy per unit area
for the horizon is 1=4, we can write the equation of state as
PA ¼ TS. Note that in normal units, P ¼ c2�=ð8�GÞ and
has the dimensions of force per unit length as in the case of
a two-dimensional system of a fluid. In SI units, the equa-
tion of state can be written as

c2�

8�G|{z}
P

A|{z}
A

¼ ℏ�
2�ckB|fflffl{zfflffl}

kBT

Ac3

4ℏG|{z}
S

: (26)

The proportionality between area and horizon entropy used
here to write the equation of state P ¼ T=4 in the above
form holds in Einstein’s gravity and is no longer true in the
case of higher-order curvature theories such as the
Lanczos-Lovelock theory of gravity. However, it is shown
in [13] that the form of the equation of state holds even in
the case of Lanczos-Lovelock theories of gravity apart
from an extra constant proportionality factor, which purely
depends only on the spacetime dimensionsD and the order
m of the Lanczos-Lovelock theory considered, and which
becomes unity in the case of Einstein’s gravity. Further,
since all the quantities appearing in Eq. (26) are defined
purely in terms of geometric quantities we can interpret the
above equation as describing the equation of state of the
underlying microscopic degrees of freedom of emergent
gravity. It has been often argued in the literature that it is
only the horizons which play a crucial role in exciting or
activating these microscopic degrees of freedom. Since the
equation of state is valid over the surface of the horizon, we
find that it is an equation for a system of dimensionality
two which makes sense. Further, for a two-dimensional
thermodynamic system, we have the following relation for
the Gibbs free energy G:

G ¼ E� TSþ PA; (27)

where E is the energy of the system and the other quantities
denote their usual meaning. Here, one can see that an
equation of state of the form in Eq. (26) leads to the
conclusion that the Gibbs free energy and the average
energy of the system are essentially the same, that is,

G ¼ E: (28)

It is rather intriguing that our hypothetical fluid in the null
surface satisfies such an equation of state with PA ¼ TS
and it would be nice to see whether one can understand it
from any other perspective. Given the fact that black
horizons are the very first null surfaces to which the
membrane paradigm was applied, we would like to see
whether such an equation of state arises dynamically in this
context. Wewill show, with the help of a gravitating system
on the verge of forming a black hole, that the above
equation of state does hold for the horizon.

Example of a gravitating system

We consider a system of n densely packed gravitating
spherically symmetric shells assumed to be in equilibrium
with itself, that is, supporting itself against its own gravity
(we closely follow the analysis in [14]). We will show that
in the limit when the outermost shell of the system is at a
radius very near to its Schwarzschild radius R ¼ 2M,
where M is the total mass of the system, then the thermo-
dynamic parameters describing the thermodynamic state of
outermost shell near the horizon satisfy the same equation
of state P ¼ ð1=4ÞT. Let us denote the variables or pa-
rameters describing the ith shell as Xi. Now, since the
system considered is spherically symmetric, we can write
the metric outside the ith shell as

ds2 ¼ �cifiðriÞdt2 þ ðfiðriÞÞ�1dr2 þ r2i d�
2; (29)

where fiðriÞ is dependent on the mass of the system within
a radius ri and whose functional form is not required for
our discussion. Further, the metric has to satisfy the first
Israel junction condition, which states that the induced
metric on a hypersurface should be continuous. This leads
to the following constraint on the constants ci:

cifiðriþ1Þ ¼ ciþ1fiþ1ðriþ1Þ: (30)

Now, Birkhoff’s theorem tells us that the metric in the
vacuum region outside the nth shell should be the
Schwarzschild metric, thus we have for the outermost shell
cn ¼ 1. Then, using Eq. (30), we can determine the re-
maining unknown constants to be

ck ¼ fkþ1ðrkþ1Þ
fkðrkþ1Þ � � � fn�1ðrn�1Þ

fn�2ðrn�1Þ
fnðrnÞ
fn�1ðrnÞ : (31)

Note that when fnðrnÞ ¼ 0, which is true when the outer-
most shell is exactly on the horizon, we have cn ¼ 0 for all
(i � n), which implies that

g00 ¼ 0 8 i: (32)
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Here, the condition that the g00’s vanish even for the inner
shells indicates that our assumption regarding the staticity
of the inner shells is not valid when fnðrnÞ is exactly zero
since we know that a particle cannot be kept at a fixed
position inside a black hole without letting it fall into the
singularity. However, for the purpose of our discussion, we
need to consider only the limit in which the outer shell is
very near to the horizon, that is, fnðrnÞ ! 0, then the state-
ment of ci’s (other than cn) and g00 being equal to zero is
just the leading-order term in this approximation.
Henceforth, we shall assume that we are working in this
limit andwill not state it explicitly unless otherwise needed.

The second junction condition gives us the surface
stress-energy tensor T�� on the shell, which can be deter-

mined by the following equation:

8�ðT�
�Þi ¼ ½��

�K � K�
��i: (33)

Here, K�
� is the extrinsic curvature of the shell and ½ �i

denotes the jump in the quantities, that is, ½hðrÞ�i ¼
hðriÞ � hðri�1Þ. We can determine the energy E and pres-
sure P of the ith shell by using the static nature of the shells
and define the energy as Ei ¼ �4�r2i T

0
0 while the pressure

(tangential to the surface) is defined as Pi ¼ T�
� . The

physical meaning associated with E and P is the same as
the energy and pressure measured by a local observer at
rest on the shell. Using the form of the metric in Eq. (29),
we find

Ei ¼ �ri½
ffiffiffi
f

p �i; (34)

8�Pi ¼ 1

2

�
f0ffiffiffi
f

p
�
i
þ 1

ri
½ ffiffiffi
f

p �i: (35)

The other thermodynamic parameters such as T and  can
be found from the condition of thermodynamic equilibrium
as follows. Thermal equilibrium implies that the tempera-
ture Ti obeys the Tolman relation

Ti ¼ Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gi00ðriÞ

q ; (36)

where T is the temperature of the system as measured by a
static observer at infinity, whereas the condition for chemi-
cal equilibrium implies the chemical potentiali to satisfy

i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gi00ðriÞ

q
¼ n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gn00ðrnÞ

q
: (37)

Further, in thermodynamic equilibrium, each shell satisfies
the Gibb’s Duhem relation

Ei ¼ TiSi � AiPi þiNi; (38)

where Ni is the number of particles composing the ith
shell. Using Eqs. (36) and (37) in the above expression,
we can solve for the total entropy S of the system to write it
in the form

S ¼ X
i

Ei þ PiAi

T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gi00ðriÞ

q
�nN

T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gn00ðrnÞ

q
: (39)

Now, assuming thatnN is a finite quantity, the last term in
the above expression vanishes in the near horizon limit,
since g00 vanishes [see Eq. (32)]. (In the case of the system
consisting of only photons, the last term is zero since  ¼
0 for photons). Hence, the only nonzero contribution to the
entropy can come from the first term provided the prefactor
of

ffiffiffiffiffiffiffi
g00

p
contains a divergent term of the order ð1= ffiffiffiffiffiffiffi

g00
p Þ or

higher. Now, from the expressions of Ei and Pi in Eqs. (34)
and (35), one can check that it is only the first term�f0=

ffiffiffi
f

p
in the expression of Pn of the required order that makes a
nonzero contribution to the total entropy. Hence, we can
write Pn to the same leading divergent order as

Pn � 1

16�

f0nffiffiffiffiffi
fn

p ¼ 1

8�

�ffiffiffiffiffi
fn

p ¼ 1

4

THffiffiffiffiffi
fn

p ; (40)

where � is the surface gravity of the horizon and TH ¼
�=ð2�Þ is the Hawking temperature of the horizon. Now, if
we assume that the outermost shell, which is at rest very
near to the horizon, has come to be in thermal equilibrium
with the horizon temperature, then we have Tn ¼ TH=

ffiffiffiffiffi
fn

p
and hence

Pn � 1
4Tn: (41)

Thus, we find that the outermost shell near to the horizon
satisfies the same equation of state as in the case of the
DNS equation. Further, the total entropy S gets a nonzero
contribution only from the tangential pressure of the out-
ermost shell and we have

S � Sn � PnAn

Tn

(42)

� 1
4An; (43)

which is same as the Bekenstein-Hawking entropy for a
black hole (the area scaling of entropy for a gravitating
system has been discussed before in [14]). One can note, in
this case, that the origin of the (1=4) factor in the expres-
sion of entropy is due to the equation of state of Eq. (41).

V. CONCLUSIONS

The emergent paradigm of gravity is based on the idea
that the usual field equations of gravity arise in the long
wavelength limit when we average over suitable micro-
scopic degrees of the—as yet unknown—underlying the-
ory of quantum gravity. In the absence of such a
microscopic theory, one can at present only demonstrate
the possible emergent behavior by comparing gravity with
other emergent physical processes known in nature such as
thermodynamics, fluid mechanics, etc. In this context,
obtaining a set of equations very similar to those of fluid
mechanics directly from a thermodynamic extremum prin-
ciple is an important step, which has been achieved in this
paper.
The nature of extremum principle and the structure of

the corresponding Lagrangian should contain possible in-
formation about the manner in which gravity becomes
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emergent. In this context, we note that the Lagrangian
density of the gravitational part can be written in several
algebraically equivalent forms, each of which deserves
further exploration:

�L ¼ 2Pabcdrclardlb (44)

¼ ��ab�
ba � �2 þ ð�þ �Þ2 (45)

¼ �8�ð2��ab�
ba þ 
�2Þ þ 2�� (46)

¼ ��ab�
ba þ �2: (47)

The form in Eq. (44) was used earlier and explored exten-
sively in [6]. If we think of spacetime as analogous to an
elastic solid, then the diffeomorphism xa ! xa þ �a can
be thought as analogous to the elastic deformation of the
solid. Such a distortion, in general, is not of much rele-
vance to our consideration except when it deforms the null
surfaces of the spacetime. If we consider a small patch of
null surface as a part of a local Rindler horizon of suitable
class of observers in the spacetime, the deformation of the
null surface changes the accessibility of information by
these observers. Given the intimate connection between
information and entropy, this leads to the variation of
entropy as measured by these observers due to the defor-
mation. In other words, it seems reasonable to assume that
deforming a null surface should cost entropy. Taking a cue
from the usual description of macroscopic solids, elasticity,
etc., we would expect the leading term in the entropy
change to be a quadratic functional of the displacement
field �a, which is precisely what we have in Eq. (44).

The analogy between gravity and a viscous fluid is
further strengthened by the form of the Lagrangian in
Eqs. (45)–(47). We have shown that starting from this
Lagrangian one can directly derive the DNS equation
[i.e., Eq. (11)] without the need of first deriving the
Einstein field equations and then projecting it suitably on
the horizon. On the other hand, we know that the Einstein
field equations also follow from the same action expressed
in the form of Eq. (44), thereby showing the equivalence
between the two interpretations. In extremizing the func-
tional in Eq. (44), we demand that the extremum condition
holds for all null vectors in the spacetime, which is equiva-
lent to demanding the validity of the extremum principle
for all local Rindler observers in the spacetime. While
using the form of the functional in Eq. (45), say, we do
something similar in the sense that we demand the result-
ing DNS equations hold for all null surfaces. But, now we
express the result in terms of fluid variables which, in turn,
are defined in terms of the null vector itself. It is rather
curious that such an interpretation leads to an equation of
state of the form PA ¼ TS, the physical meaning of which
is at present unclear. It is, however, interesting to note that
any microscopic description should eventually lead to a
long wavelength limit in which this equation of state
emerges in a natural form.

It may also be noted that the Lagrangian density in
Eq. (44) obeys the relation:

@L
@ðrc‘

aÞ / ðra‘
c � �c

ari‘
iÞ: (48)

This term is analogous to the more familiar Brown-York
tensor tca ¼ Kc

a � �c
aK, where Kab is the extrinsic curva-

ture that arises in the ð1þ 3Þ separation of Einstein’s
equations. (More precisely, the appropriate projection to
3-space leads to tca.) This combination can be interpreted as
a surface energy momentum tensor in the context of mem-
brane paradigm because tab couples to �h

ab on the bound-
ary surface when we vary the gravitational action. In fact,
one obtains the results for null surfaces as a limiting
process from the timelike surfaces (usually called stretched
horizon) in the case of membrane paradigm [9]. Equation
(48) shows that the entropy functional is related to tca and
its counterpart in the case of null surface. One may also
note that starting from the Brown-York tensor, the gravity
fluid/duality for Rindler spacetimes was demonstrated
in [15].
The bulk viscosity of the black hole obtained through the

membrane paradigm comes out to be negative and has been
the subject of debate in the recent gravity/fluid duality
studies since the bulk viscosity of a real fluid must be
positive. In proper hydrodynamics, this identification leads
to a local entropy decrease. It has been argued that for
hydrodynamic concepts such as transport coefficients to
have physical sense, there must be a separation of scales
between the temperature (say) and the hydrodynamic gra-
dients. In the original membrane paradigm, as opposed to
the modified version of fluid/gravity duality inspired by
AdS/CFT, there is no such separation of scales. This is
because the stress-energy tensor of the membrane is con-
served through a covariant derivative in a metric whose
curvature (e.g., surface gravity) is of the same order of
magnitude as the temperature. In contrast, in AdS/CFT-like
fluid/gravity duality, the two required scales are well sepa-
rated and one can then define a small parameter which can
be used in the derivative expansion of the hydrodynamic
gradients to determine them up to different orders. The
bulk viscosity for pure Einstein gravity in this case is
determined to be zero (while the bulk viscosity of a real
nonconformal fluid must be positive, see [16]). In view of
this, the connection between gravity and a viscous fluid
through the membrane paradigm should be thought of as
somewhat formal arising mainly through the analogy be-
tween the stress-energy tensor of the membrane and the
hydrodynamic stress-energy tensor and hence, in our opin-
ion, deserves attention provided one is consistent in the
concepts within its framework. Moreover, one of the
main aims of this paper was to show the emergent nature
of the action which leads to the gravity/fluid duality. This
we have achieved by demonstrating that the action can
be interpreted as a local entropy production rate by
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consistently using the concepts of the membrane paradigm
and working strictly within its own domain. Further, we
believe that the techniques used in the AdS/CFT-like fluid/
gravity duality can be extended to any null surface and will
be dealt with in a separate future publication (in progress).
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APPENDIX: THE MOMENTUM DENSITY �a

In Sec. II, we recalled that the momentum density
��a=8� could be determined by comparing the projected
Einstein’s equation Eq. (11) with the form of the Navier-
Stokes equation for a viscous fluid. It was shown to depend
on the geometric quantities defining the null surface
through the relation in Eq. (9), that is,

�b � qab!a ¼ �qabðkm�m
a Þ ¼ !b � �kbðkm‘mÞ

¼ !b þ �kb: (A1)

Apart from the analogy of the projected Einstein’s equation
with Navier-Stokes equation for a viscous fluid, any further
motivation for calling the above geometric quantity as
momentum density seems to be missing in literature. It is
known only in the case of a Kerr black hole spacetime that
the momentum density��a=8� when integrated over the
two-dimensional horizon surface is equal to the total an-
gular momentum J of the rotating black hole, which of
course was a crucial part in the study of the membrane
paradigm for black holes. In contrast, the shear tensor �m

a

when expressed in a coordinate system suitably adapted for
describing the null surface [see Eq. (A3)] has a form

�AB ¼ 1

2

�
DAvB þDBvA þ @qAB

@t

�
; (A2)

which reduces (when qAB is independent of t) to that of the
shear tensor of a viscous fluid with velocity field vA. This is
the key reason why the projected equations can be inter-
preted as the Navier-Stokes equation. It would be interest-
ing if one could also express the geometrical definition of
the momentum density ��A=8� in a suitable form which
could make its physical meaning apparent, in particular, if
it could be shown to be proportional to vA.

In this Appendix, we explore the form of the momentum
density��a=8� by expressing it in the following adapted
coordinate system:

ds2¼�N2dt2þ
�
M

N
dx3þ�Ndt

�
2

þqABðdxA�vAdtþmAdx3ÞðdxB�vBdtþmBdx3Þ:
(A3)

Here, x3 ¼ constant defines the horizon S while the metric
on St corresponding to t ¼ constant, x3 ¼ constant is qAB.
xA are the coordinates covering the surface St. In the
adapted coordinate system, the momentum density �A is
just !A, which we can express as

wA ¼ �km�n
Arnlm ¼ �

lmrmkA ¼ �0
Aml

m

¼ � vB

2M
@1qAB � mB

2M
@0qAB �

�
mB

2M
ðDBvA �DAvBÞ

þ vB

2M
ðDBmA þDAmBÞ

�
: (A4)

The first term can be thought of as describing the rate of
flow of qAB along the null direction. The second term
vanishes when we demand that @qAB=@t ¼ 0 in accordance
with Eq. (A2) for �m

a to be interpreted as the shear tensor.
The third term measures the momentum in the curl of the
velocity field vA while the fourth term shows that we can
associate an inertia MAB ¼ ðDBmA þDAmBÞ=2M such
that vBMAB is the momentum density associated with
the flow. Since the metric coefficient (time-2 space) g0A ¼
�vA behaves as a velocity field, we can in the same way
associate a flow with the coefficient (null-2 space) g1A ¼
mA, then the stresses in this flow MAB ¼ ðDBmA þ
DAmBÞ=2M provide an inertia for the velocity field vA.
Consider now the case when mA ¼ 0, when the expres-

sion for the momentum density reduces to just one term,

wA ¼ � vB

2M
@1qAB: (A5)

Since qAB is the metric of the two-dimensional surface St,
it is always possible to diagonalize it, that is, we can write
qAB ¼ q22�A2�B2 þ q33�A3�B3 for the two-dimensional
surface. Hence, we have

wA ¼ � vA

2M

@1qAA
qAA

ðno summationÞ: (A6)

wA is proportional to vA. We can now read off the inertia by
comparing the above expression with p ¼ mv for a non-
relativistic fluid momentum density. We see that
@1qAA=ð2MqAAÞ then plays the role of mass density for
the flow. Note that to obtain the momentum density in the
form of Eq. (A6), the only extra condition we have to
assume is mA ¼ 0, which can always be imposed by a
suitable choice of coordinates [10]. However, this may
not be the most natural coordinate system for the study
of the problem in question and one often has to work with
coordinate systems in which mA � 0. It would be interest-
ing to determine the physical meaning of the extra terms
which arise when mA � 0, which we hope to address in a
future publication.
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