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The apparent accelerating expansion of the Universe, determined from observations of distant super-

novae, and often taken to imply the existence of dark energy, may alternatively be explained by the effects

of a giant underdense void if we relax the assumption of homogeneity on large scales. Recent studies have

made use of the spherically symmetric, radially inhomogeneous Lemaı̂tre-Tolman-Bondi (LTB) models to

derive strong constraints on this scenario, particularly from observations of the kinematic Sunyaev-

Zel’dovich effect which is sensitive to large-scale inhomogeneity. However, most of these previous studies

explicitly set the LTB ‘‘bang time’’ function to be constant, neglecting an important freedom of the

general solutions. Here we examine these models in full generality by relaxing this assumption. We find

that although the extra freedom allowed by varying the bang time is sufficient to account for some

observables individually, it is not enough to simultaneously explain the supernovae observations, the

small-angle CMB, the local Hubble rate, and the kinematic Sunyaev-Zel’dovich effect. This set of

observables is strongly constraining, and effectively rules out simple LTB models as an explanation of

dark energy.
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I. INTRODUCTION

Observations of distant type-Ia supernovae are often
taken to imply that the Universe has entered a phase of
accelerating expansion, and may therefore contain ‘‘dark
energy’’ [1,2]. Such a conclusion, however, cannot be
inferred from the supernova data alone—a model of the
Universe is also required. At present, the simplest and most
widely applied cosmological models are based on the
Friedmann-Lemaı̂tre-Robertson-Walker (FLRW) solutions
of general relativity. These solutions are highly symmetric,
and determining their validity as models of the real
Universe is of critical importance for determining the
veracity of the claims involving dark energy. It is toward
these ends that this study is aimed: Are spatially homoge-
neous and isotropic models with dark energy the only ones
capable of accounting for the recent cosmological obser-
vations that appear to imply acceleration?

The inference of acceleration is of profound conse-
quence, not just for cosmology and gravitational physics,
but also for particle and high energy physics. An acceler-
ating universe has an entirely different causal structure
from one that is decelerating, with the vacuum itself taking
on a nonzero energy density and becoming thermal.
Beyond this there is the ‘‘cosmological constant problem,’’
that contributions from the zero-point energy of quantum
fields, and any bare cosmological term in Einstein’s equa-
tions, must cancel up to 1 part in 10120 [3]. Such incredible
fine-tuning is widely believed to signify nothing less than a

crisis in modern physics, and so the task of verifying the
assumptions that go into our cosmological models be-
comes one of the utmost importance.
Here we focus on the problem of radial inhomogeneity,

as modeled by the Lemaı̂tre-Tolman-Bondi (LTB) solu-
tions of general relativity [4–6]. These are the general
spherically symmetric solutions of Einstein’s equations
with dust. They are widely known to have more than
enough freedom to account for the supernova observations
without recourse to dark energy [7], and are often referred
to as ‘‘void models’’ in the literature (but see also [8]). The
relevant question is then whether or not these models are
compatible with other observational probes of cosmology.
This question has been addressed by various authors in a

number of different contexts [9–21]. Most of these studies
have, however, limited themselves to the special case of
space-times that have a spatially homogeneous energy
density at early times. This is achieved by considering
only those models that have a constant ‘‘bang time.’’ In
this case it is known that while the small-angle CMB
generated by a power-law spectrum of initial fluctuations
can be easily reproduced within void models, an unaccept-
ably low value ofH0 is required to do so [20,21]. However,
it is also known that this problem can be alleviated by
allowing for general radial inhomogeneity, with nonconst-
ant bang time [20]. Here we address the problem of
whether or not other cosmological observables are also
consistent with models that allow for this additional free-
dom, as well as further investigating the parameter space of
solutions that fit the small-angle CMB.
We will be interested, in particular, in the kinematic

Sunyaev-Zel’dovich (kSZ) effect [22]. This effect is due
to the inverse Compton scattering of photons from the
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CMB off of electrons in distant clusters of galaxies. The
rescattered light can be collected by observers who are
looking at the cluster. If in the rest frame of the electrons
the CMB has a nonzero dipole moment (in the direction of
the observer) then the reflected light that the observer sees
has its spectrum shifted. Such shifts are expected to be
observable by upcoming experiments, and although they
have yet to be directly detected [23], constraints have
already been placed on the allowed magnitude of this
effect [29–33].

The kSZ effect is a particularly powerful probe of
inhomogeneity, as it allows us to make observations not
only along the null cone that is the boundary of our causal
past, but also along null curves that go inside this cone.
The distant galaxy clusters essentially act as mirrors,
reflecting light from the last scattering surface that would
otherwise be unobservable to us. This extra information is
above and beyond that which is available from the usual
observations of distance measures, expansion rates, and
number counts, and so it is of great potential significance
as a cosmological probe. The power of the kSZ effect in
this context appears to have first been pointed out by
Goodman in [34], although the first application of it to
models that attempt to account for dark energy was per-
formed by Garcı́a-Bellido and Haugbølle [35]. These
authors considered models with constant bang time only.
We build on their work by allowing for a radially depen-
dent bang time.

To make progress it will be necessary to make a number
of assumptions, which to avoid confusion we will state
here. We assume the following:

(i) That there is perfect spherical symmetry, with our-
selves at the center of symmetry.

(ii) That the formation of the last scattering surface
proceeds as in FLRW cosmology.

(iii) That there is a constant ratio of photons to baryons
in the early Universe.

(iv) That the spectrum of initial fluctuations is a power
law in wave number, k.

(v) That the energy density and all functions in the
metric have smooth profiles.

The first of these is inherent in the problem we have chosen
to address. General perturbations to this exact set of sym-
metries have been considered in [36,37], and the effects of
being off-center have been considered in [19]. The second
of these points is made for convenience. To date, we are
unaware of any rigorous calculation involving the forma-
tion of the last scattering surface in inhomogeneous space-
times. The effect of allowing for an inhomogeneous
photon-to-baryon ratio has been considered in [38], and
the related question of changing the position of the last
scattering surface, while keeping the bang time constant,
has been addressed in [18]. The effect of allowing a kink in
the spectrum of initial fluctuations has been considered

in [39]. We will not consider these freedoms further here,
but note that a constant bang time is an assumption that
would be added to similar lists in most other papers. For
details of the effects of relaxing these assumptions, we
refer the reader to the papers cited above.
In Sec. II we present the LTB solutions, and discuss how

distance measures and redshifts are calculated within them.
We then discuss the effects of the two radial degrees of
freedom in these solutions, one of which is the bang time.
In Sec. III we discuss some of the cosmological probes that
can be applied to these models, with particular reference to
the kSZ effect. We also discuss why these observations are
problematic for LTB models with constant bang time. In
Sec. IV we present our results, which include a detailed
investigation of the effect of a radially varying bang time
on CMB andH0 observations, as well as the kSZ effect. We
show that, despite the additional freedom in the bang time,
there is a combination of key observables that cannot be
fitted simultaneously. We conclude in Sec. V that this
effectively rules out void models as an explanation of
dark energy, unless one is prepared to discard one or
more of the assumptions that we have listed above.

II. THE MODEL

In order to model general radial inhomogeneity we will
use the LTB solutions of general relativity. These are given
by the line element [4–6]

ds2 ¼ dt2 � a22ðt; rÞ
1� kðrÞr2 dr

2 � a21ðt; rÞr2d�2; (1)

where a2 ¼ ða1rÞ0, and where a1 must satisfy

�
_a1
a1

�
2 ¼ 8�G

3

mðrÞ
a31

� kðrÞ
a21

: (2)

The functions kðrÞ and mðrÞ are arbitrary functions of the
radial coordinate, and primes and over-dots denote partial
derivatives with respect to r and t, respectively. These
solutions are exact, and are the general spherically sym-
metric dust-only solutions to Einstein’s equations. They
admit a three-dimensional group of Killing vectors that act
transitively on the surfaces of constant r and t, and are
spatially isotropic about the origin only.
Solutions to Eq. (2) are of the form a1 ¼ a1ðr; t�

tBðrÞÞ, which introduces a third arbitrary function of r.
This gives a total of three free functions: kðrÞ, mðrÞ, and
tBðrÞ. We refer to these quantities as the spatial curvature,
gravitational mass density (distinct from the local energy
density), and bang time, respectively. In the limit of homo-
geneity they are all constant. It can also be seen that one
can perform a coordinate transformation r ! fðrÞ that
preserves the form of the metric in Eq. (1). This freedom
can be used to set m ¼ constant, without loss of generality
[assuming ðmr3Þ0 is always positive]. This leaves us with
the general solution in terms of the spatial curvature kðrÞ

PHILIP BULL, TIMOTHY CLIFTON, AND PEDRO G. FERREIRA PHYSICAL REVIEW D 85, 024002 (2012)

024002-2



and bang time function tBðrÞ only. Analytic parametric
solutions to Eq. (2) are known, and can be found in [40].

We can now use these solutions as cosmological models
that exhibit an arbitrary amount of radial inhomogeneity by
supposing ourselves to be observers at the center of sym-
metry. Such models are known to be able to produce
excellent fits to the supernova data without requiring any
dark energy, and often result in the observer being at the
center of gigaparsec-scale underdensity, or ‘‘void.’’ This is
possible due to both temporal and spatial variations in the
geometry of the space-time that are experienced by pho-
tons as they travel through the void. Such calculations
require knowledge of redshifts and distance measures in
this space-time, which we will now consider.

Let us first define two different Hubble rates: a trans-
verse one, H1 � _a1=a1, and a radial one, H2 � _a2=a2. In
the limit of homogeneity these two quantities are identical,
but differ, in general, in inhomogeneous space-times. The
redshift of photons traveling along radial geodesics can
then be calculated by integrating the radial Hubble rate as
follows:

1þ z ¼ exp

�Z to

te

H2ðt; rðtÞÞdt
�
; (3)

where r ¼ rðtÞ is a solution of the radial geodesic equation,
and te and to are the time at which the photon was emitted
and observed, respectively. Note that the relation ð1þ zÞ /
1=a1 no longer holds, in general. We can also calculate the
angular diameter distance to objects at redshift z using

dAðzÞ ¼ rðzÞa1ðrðzÞ; tðzÞÞ; (4)

where tðzÞ is calculated by inverting z ¼ zðtÞ from Eq. (3),
and rðzÞ ¼ rðtðzÞÞ is found using the radial null geodesic
equation. Luminosity distances are then given by
Etherington’s reciprocity theorem [41]

dLðzÞ ¼ ð1þ zÞ2dAðzÞ; (5)

which is true in any space-time. The local energy density is
given by � ¼ ðmr3Þ0=3a2a21r2.

In this paper we will often choose to parametrize the two
functions kðrÞ and tBðrÞ as Gaussian curves, with

kðrÞ ¼ Ak expð�r2=�2
kÞ þ k1; (6)

tBðrÞ ¼ AtB expð�r2=�2
tBÞfðrÞ; (7)

where Ak, AtB , �k, �tB , and k1 are constants, and the factor

fðrÞ ¼ expð�r10=�10
tB Þ is included to attenuate the bang

time profile at large r. This is done so that wide profiles
can be used, while limiting the effect of early inhomoge-
neity on the central observer’s last scattering surface, and is
discussed further in Sec. II B. The profiles above are de-
fined by their amplitudes Ai and widths �i. A further
parameter k1 defines the asymptotic spatial curvature,
outside the void. The time scale of the model is set by
choosing a local Hubble parameterH0 ¼ H1jr¼0 ¼ H2jr¼0

at time to, where ðto � tBÞjr¼0 is the age of the universe
along the worldline of an observer at r ¼ 0. A rescaling
can be used to set a1ð0; toÞ ¼ a2ð0; toÞ ¼ 1.
The amplitudes in Eqs. (6) and (7) can be expressed in a

more familiar form as fractions of the total density at the
origin today. For this purpose let us define

�k1 � �Ak=H
2
0 ; (8)

�k2 � �k1=H2
0 ; (9)

�k � �k1 þ�k2 ; (10)

�m � 8�G

3H2
0

mðrÞ; (11)

such that �k þ�m ¼ 1. Furthermore, restricting our-
selves to �m � 0 means that we consider only �k � 1.
Let us now briefly consider the consequences of fluctua-

tions in kðrÞ and tBðrÞ. The former of these is the analog of
the spatial curvature in FLRW solutions, which dominates
the dynamical evolution of the universe at late times. The
latter changes the location of the initial singularity, and so
can be thought of modifying the early stages of the uni-
verse’s history. This interpretation is supported by treating
the LTB geometry as a fluctuation about a FLRW solution.
In this case the fluctuations in kðrÞ can be mapped into
growing modes, while fluctuations in tBðrÞ are mapped
onto decaying modes [42].

A. An inhomogeneous late universe

Let us first consider kðrÞ. It can be seen from Eq. (2) that
k < 0 gives a positive contribution to the expansion of a1,
while k > 0 gives a negative contribution. This is the
behavior we are familiar with from the Friedmann equation
of FLRW cosmology. Unlike the homogeneous FLRW
solutions, however, the expansion of a2 does not always
get a positive contribution from k < 0. On the contrary, in
regions of k < 0 the expansion of a2 can slow, and recol-
lapse can occur. This behavior is well known, and can lead
to the formation of a ‘‘shell crossing singularity’’ when the
collapsing region reaches a2 ¼ 0.
One can avoid shell crossing singularities in a region by

satisfying the Hellaby-Lake conditions [43]. These depend
on the sign of kðrÞ, and for k � 0 may be written using our
notation as [44]

ðmr3Þ0 � 0; t0B � 0; and ðkr2Þ0 � 0; (12)

while for k > 0 the last of these should be replaced by�
log

�
m

k3=2

��0 þ 3t0Bjkj
8�Gm

� 0: (13)

These conditions guarantee that a2 > 0, so that shell cross-
ing singularities cannot occur [45]. They are, however,
very restrictive, and most applications of the LTB solutions
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to cosmology simply avoid the issue by making sure that
shell crossings only happen in the distant future. They can
then be considered as a breakdown of the model at some
future time, after which a more sophisticated solution
including pressure would be required to avoid the forma-
tion of singularities. The existence of pressure is expected
to prevent the complete collapse of matter, and a large
overdensity of collapsed structures is thus expected to form
instead.

B. An inhomogeneous big bang

Let us now consider the consequences of fluctuations in
tBðrÞ. If tBðrÞ is not constant, then the ‘‘age of the
Universe’’ differs from place to place. This is a significant
departure from the standard picture of the big bang, and
may initially seem odd. Certainly, there have been a num-
ber of objections to allowing inhomogeneous bang times in
the literature, with the result that, to date, most studies of
void models have expressly set tBðrÞ ¼ constant a fortiori.
In this section we will discuss the physical significance of
an inhomogeneous big bang, and argue that it is reasonable
to consider models with such a feature.

As mentioned above, fluctuations in tBðrÞ correspond to
decaying modes when the space-time is approximated as a
perturbed FLRW solution. A nonconstant bang time there-
fore corresponds to an inhomogeneous early universe, and
as one goes further back in time the size of the consequent
inhomogeneity generally increases. As with the case of
fluctuations in kðrÞ, there exist points beyond which the
scale factor a2 is contracting rather than expanding, and in
cases where the Hellaby-Lake conditions are violated, shell
crossing singularities can occur. In the case of fluctuations
in tBðrÞ, however, this behavior occurs at very early times
rather than at very late times.

In Fig. 1 we illustrate the existence of surfaces of a2 ¼ 0
in cases with t0B > 0, and regions withH2 < 0 in cases with
t0B < 0. The former of these are the early universe analogue
of the shell crossing singularities we described in the
previous section, and in this case we consider the singular
surface with a2 ¼ 0 to be our initial hypersurface. The
latter case corresponds to regions that have started to
collapse, but reach the singular surface t ¼ tB before shell
crossings occur. Contraction of this type should be ex-
pected to cause blueshifts when looking along exactly
radial geodesics [46], and again this behavior has an analog
in the inhomogeneities that form at late times [9,17]. Such
blueshifts would have profound effects if they were al-
lowed to occur between the last scattering surface and an
observer [for example, a distance-redshift relation rðzÞ that
is not monotonic could occur].

Célérier et al. [8] found that small variations in the bang
time, of order hundreds of years, lead to temperature
anisotropies in the CMB of Oð10�6Þ, which are currently
only marginally too small to be observed. Larger bang time
variations would have a stronger observational signal, but

this need not be an issue if the region of varying bang time
occurs far inside the void, away from the surface of last
scattering that we see directly. Nevertheless, observers
elsewhere in the space-time would see considerable anisot-
ropies in their CMB sky, and this could be observable in the
kSZ effect we see from CMB photons that rescatter off
their cluster. The kSZ effect therefore has the potential to
provide powerful constraints on the inhomogeneities
caused by bang time fluctuations.
Of course, LTB models are dust-only solutions of

Einstein’s equations, and lose their validity when radiation
becomes important at early times [8,38]. The introduction
of a radiation fluid into inhomogeneous solutions compli-
cates matters considerably, and we do not attempt to in-
clude the gravitational effects of radiation in our models
here. However, in the same way that one would expect
pressure to prevent the formation of shell crossing singu-
larities at late times, one could reasonably speculate on a
similar mechanism occurring at early times. In the present
study we concentrate on the matter dominated phase of the
Universe’s history, which should be sufficient to model the
Universe from last scattering to the present time. This is
well modeled by the LTB solutions. We leave the consid-
eration of the gravitational effects of inhomogeneous ra-
diation fields to other studies. For further details of this, the
reader is referred to [38,47].
An obvious concern with models of this type is that they

are difficult to reconcile with early universe inflation. This
is true with models that have tB ¼ constant, as well as
models with an inhomogeneous big bang. One must then
either discard inflation for the time being, or attempt to
construct inflationary scenarios that result in occasional
large inhomogeneities (see, e.g., [48,49]). Here we address
the problem of what can be said about the geometry of the
Universe directly from observations, rather than imposing
requirements from theories of the very early Universe.

FIG. 1 (color online). Upper panel: If t0B > 0 then a surface
exists with a2 ¼ 0, corresponding to the occurrence of a shell
crossing singularity (dotted line). Beyond this, the formal solu-
tion for the energy density gives negative values (hatched area).
Lower panel: If t0B < 0, regions withH2 < 0 form (hatched area).
The solid lines correspond to the surfaces t ¼ tB.
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III. OBSERVATIONAL PROBES, AND RESULTS
WITH CONSTANT BANG TIME

Void models that reproduce the observed supernova
distance modulus curve have proved relatively easy to
construct, and little more than a moderately deep under-
density with a comoving width of order a gigaparsec is
required to obtain a satisfactory fit. Indeed, the ease with
which the supernova observations can be reproduced has
been one of the principle factors motivating interest in
these models.

The introduction of such a large inhomogeneity, how-
ever, can hardly be expected to leave predictions for other
cosmological observables unchanged, and so there have
been a number of attempts to make detailed tests of voids
using multiple data sets [9,13,21]. While thorough, these
previous studies have limited themselves to the case of
voids with constant bang times. In this section we summa-
rize the constraints that can be imposed on such void
models from observations of supernovae, the CMB, the
local Hubble parameter, and the kSZ effect. In particular,
we draw attention to the difficulty that voids with constant
bang time have in fitting the CMB and H0 simultaneously,
and discuss the power of the kSZ effect as a test of large-
scale inhomogeneity in these models [15,16,35].

In Sec. IV we will proceed to consider more general
voids with varying bang times. This additional freedom
allows some of the constraints on the specific observables
discussed in this section to be weakened significantly
(although a combined fit to all data sets remains elusive).

A. Supernovae

As noted above, fitting the supernova data is a relatively
simple matter, and void models can be constructed that fit
any given dLðzÞ curve exactly [50]. One should be aware,
however, that reproducing the precise effects of � at low z
requires an energy density profile that is ‘‘cusped’’ at the
center [12,51]. Generic smooth profiles produce qualita-
tively different behavior, due to the Milne-like geometry
near the origin, but can still be shown to be consistent with
current data sets [12,51].

B. The CMB and H0

If the last scattering surface we observe is located in a
region of the universe that is homogeneous and isotropic
enough to be modeled as being approximately FLRW, then
we can use standard techniques to calculate the power
spectrum of fluctuations on that surface. The CMB that
we measure on our sky then depends on the initial spec-
trum, which can be calculated using an effective FLRW
model, and the projection of fluctuations from the last
scattering surface onto our sky. This projection depends
on the space-time geometry between us and the last scat-
tering surface, and can be calculated from the angular
diameter distance in Eq. (4). It is in this way that the

CMB provides constraints on the geometry of the late
universe.
In general, voids and FLRW models with the same local

geometry have different angular diameter distances to the
last scattering surface, resulting in a relative shift in their
observed CMB power spectra. Now, the distance to last
scattering can be adjusted by changing the width and depth
of the void, but this typically produces relatively small
shifts that are not enough to bring the peak positions of
the CMB power spectrum in linewith current observational
constraints [20]. Changing the curvature of the FLRW
region near the last scattering surface, however, produces
much larger effects [20], and good fits to the small-scale
CMB power spectrum can be found for void models that
have positive asymptotic curvature. Such models, however,
require an anomalously low local Hubble rate (H0 &
50 km s�1 Mpc�1) in order to keep the expansion rate at
last scattering low enough to be consistent with the data
[20,21]. This is strongly inconsistent with the observed
value of H0 ¼ 73:8� 2:4 km s�1 Mpc�1 recently found
in [52]. The CMBþH0 by themselves are therefore suffi-
cient to effectively rule out simple void models with con-
stant bang time.
One can attempt to avoid this conclusion by violating the

assumptions that we set out in Sec. I. In particular, models
with inhomogeneous last scattering surfaces have been
considered in [14,38], and a non-power-law spectrum of
initial fluctuations has been considered in [39]. If one is
prepared to consider such additional freedoms, then the
CMBþH0 constraints can be considerably weakened.
In Sec. IV we will consider the consequences of CMB

observations in general void models, where the bang time
is allowed to vary. It has already been shown in [20] that
the available constraints from the CMBþH0 can be con-
siderably weakened in this case, without any need to
violate the assumptions introduced in Sec. I. In Sec. IV
we will quantify this result, finding best-fit models and
confidence regions in parameter space. We will show that
the best-fit models have bang time fluctuations of order a
billion years.

C. The kSZ effect

A promising observable for testing large-scale homoge-
neity is the kSZ effect. This effect occurs because galaxy
clusters contain hot gas that can Compton scatter CMB
photons, leading to a frequency-dependent temperature
increment/decrement of the CMB along the line of sight
to the cluster. Such scattering events cause two separate
effects that can be distinguished in the reflected light. The
first is due to transfer of thermal energy from the cluster
gas to the photons and is known as the thermal Sunyaev-
Zel’dovich effect. The second is due to the dipole, �T=T,
of the CMB radiation on the sky of an observer comoving
with the reflecting cluster and is known as the kinematic
Sunyaev-Zel’dovich effect [22]. It produces a temperature
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change of �T=T in the reflected light and is similar to the
relativistic Doppler shift that one would experience by
reflecting a beam of light off of a moving mirror.

As noted by Goodman [34], and explicitly calculated by
Garcı́a-Bellido and Haugbølle [35], observers who are off-
center in a radially inhomogeneous universe should expect
to see a large �T=T in their CMB if they are comoving
with the dust. This is because the distance-redshift relation
becomes a function of direction in an inhomogeneous
space-time, so that the surface of last scattering will appear
to be at different distances/redshifts in different directions
on the sky of an off-center observer. The result of a large
kSZ effect then follows because most observers in the
space-time see a highly anisotropic CMB. Of course, this
is not the case in a FLRW universe, where one should
anticipate a low kSZ signal due only to the peculiar motion
of clusters. It is for this reason that the kSZ effect
is expected to be a powerful probe of large-scale
inhomogeneity.

In a void model the dipole in the CMB is aligned in the
radial direction due to spherical symmetry and can be
calculated from the relative velocity to an observer at the
same point who would see an isotropic CMB. It is this
dipole that can then, in principle, be measured using the
kSZ effect. Now, the magnitude of the dipole, �T=T, can
be calculated for a given void model by finding the red-
shifts to last scattering when looking radially into and out
of the void. The observer then sees an average temperature
of T ¼ 1

2 ðTin þ ToutÞ, where Tin and Tout are the tempera-

tures of CMB photons seen when looking into and out of
the center of symmetry, respectively, and the relative ve-
locity with respect to the CMB rest frame that causes this
dipole is given by

� ¼ �T

T
¼ zin � zout

2þ zin þ zout
; (14)

where zin and zout are the redshifts to last scattering in the
directions toward and away from the center of the void,
respectively. They can be calculated from Eq. (3), which is
valid for off-center observers [53]. The kSZ effect can also
be measured as a power spectrum using [15,16]

�Tðn̂Þ
T

��������kSZ
¼

Z z�

0
�ðzÞ�eðn̂; zÞ d�dz dz; (15)

where �Tðn̂Þ=T is the CMB anisotropy seen by an off-
center observer in a direction n̂, � is the optical depth along
the line of sight, �e is the density contrast of electrons,
and z� is the redshift to the last scattering surface.

One should note that the calculation described above
overestimates �T=T in the reflected light because the
anisotropy seen by off-center observers will not be purely
dipolar, especially far from the center of the void [19]. The
dipole contribution, however, is the dominant one at low z,
and so we expect the prescription outlined above to be
accurate enough for our current purposes. Observations of

individual clusters have yielded upper limits of �T=T &
2000 km s�1 [35], and more recent observations from the
Atacama Cosmology Telescope and the South Pole
Telescope have produced upper limits on the kSZ power
spectrum at ‘ ¼ 3000 of 8 �K2 and 13 �K2, respectively
[32,33]. This is consistent with the typical peculiar veloc-
ities expected in �CDM of �400 km s�1, but is strongly
inconsistent with any large void with constant bang time
that obeys the assumptions made in Sec. I [35].
An example �ðzÞ profile that an observer at the center of

a large void with constant bang time could infer from
observations of the kSZ effect is shown in Fig. 2.
Although this is only one example, the enormous magni-
tude of the effect is a generic result for observers located at
the center of such voids. This directly demonstrates the
utility of the kSZ effect as a probe of inhomogeneity on
large scales and explains why current observational con-
straints on the kSZ effect by themselves are enough to rule
out simple voids with constant bang time. In Sec. IV we
consider the consequences of a varying bang time on
observations of the kSZ effect and show that there exist
general giant void models that are consistent with con-
straints from current observations.

D. Other observables

So far we have discussed the specific observables of
supernovae, the CMBþH0, and the kSZ effect, and de-
scribed how the latter two of these provide constraints on
simple void models with a constant bang time that are
sufficient to effectively rule them out. We have chosen to
discuss these particular observables, as we consider them
to be reasonably well defined in void models, easily cal-
culable, and very constraining. There are, of course, other
observables that one could also consider. These include
baryon acoustic oscillations, galaxy correlation functions,

FIG. 2. An example of the relative velocity with respect to the
CMB rest frame, �ðzÞ, that would be inferred by a central
observer in an example giant void with constant bang time.
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and the integrated Sachs-Wolfe (ISW) effect, to name just
a few.

To understand these observables in the FLRW cosmo-
logical models, one only needs linear perturbation theory
about a FLRW background, which is very well understood.
The observables in question can therefore be straightfor-
wardly calculated. Linear perturbation theory in LTB cos-
mology, however, is significantlymore complicated. In [36]
a gauge invariant formalism for general perturbations in
spherically symmetric space-times is applied to these mod-
els, and it is shown that scalar, vector, and tensor modes no
longer decouple. This means that complicated effects can
occur that are not present in FLRW cosmology. The full
consequences of this behavior have yet to be understood,
and so here we avoid the use of observables that rely on
linear perturbation theory. This includes baryon acoustic
oscillations, galaxy correlation functions, and the ISW
effect. For treatments of some of these observables when
tB ¼ constant, the reader is referred to [17].

IV. RESULTS WITH VARYING BANG TIME

In this section we examine the constraints that can be
imposed on general void models in which the bang time is
allowed to vary. This generalizes the previous results that
were summarized in Sec. III.

As before, the observables we will use to constrain these
models are the supernova distance moduli as functions of
redshift, the CMB power spectrum on small scales, the
local Hubble rate, and the kinematic Sunyaev-Zel’dovich
effect. The specific data used for each observable will be
explained in the subsections that follow. We use the pa-
rametrized LTB models of Sec. II, and a Metropolis-
Hastings Markov chain Monte Carlo (MCMC) method to
explore parameter space [54]. The likelihood function
for each set of parameters is modeled as a chi-squared
distribution, such that �2 logL � �2, and ‘‘goodness of
fit’’ is quantified by comparing to a �CDM model with
�� ¼ 0:734 and h ¼ 0:710 [55].

We first proceed by considering each observable indi-
vidually, and then go on to consider the constraints available
from combinations of different observables. It is found that
the additional freedom allowed by varying the bang time
significantly weakens the constraints that each observable
imposes by itself, but that the combined power of all ob-
servables is still enough to effectively rule out these models
as a possible explanation of dark energy. In particular, we
show that neither theCMBþH0 observations nor the upper
bounds on the kSZ effect for individual clusters have the
ability to rule out these models by themselves, as is the case
when the bang time is assumed to be constant.

A. Supernovae

In the fits that follow we use the Union2 compilation of
557 supernovae, which extends out to z� 1:4 [56]. Other
supernova data sets also exist, and void fitting procedures

are known to exhibit some sensitivity to the data set that is
chosen [12,39]. We choose the Union2 data set as it is the
most extensive catalog, and the most widely used in
the literature. The absolute magnitude of the supernovae
in the Union2 data set is an unknown parameter and is
therefore fitted to each model individually as a nuisance
parameter. We use the published errors in this data set,
which include an ‘‘intrinsic error’’ that is added to mini-
mize the reduced �2 of �CDM. The full Union2 ‘‘covari-
ance matrix with systematics’’ is used in performing all of
the likelihood estimates that follow.
As with tB ¼ constant, there is no problem fitting the

supernova data without dark energy.

B. The CMB and H0

In FLRW cosmology, and for our current purposes, the
CMB power spectrum can be efficiently specified on small
scales with only three pieces of information [57]: (i) the
acoustic horizon scale at decoupling, (ii) the acoustic scale
at matter-radiation equality, and (iii) the projected scale of
the CMB onto our sky. This information can be combined
into three parameters in a number of different ways
[38,58–60], but here we choose to specify it as the ‘‘shift
parameter’’ S, the Hubble rate at last scattering,H�, and the
redshift of the last scattering surface, z�. The shift parame-

ter is defined as S � dAðz�Þ=d̂Aðz�Þ, where d̂Aðz�Þ is the
angular diameter distance to the last scattering surface in a
fiducial spatially flat FLRW model with �m ’ 1. This
quantity corresponds to the change in scale of fluctuations
on the sky that two observers in different space-times
would see when looking at two identical last scattering
surfaces.
Here, for simplicity, we take z� ¼ 1090, which is the

redshift to the last scattering surface in�CDM and various
other models [58,61]. It now remains to impose constraints
on S and H�. To do this, we enforce the condition that the
region of space in which the last scattering surface forms is
well approximated as being homogeneous and isotropic, so
that standard results from FLRW cosmology can be ap-
plied in dealing with all of the physics up until the for-
mation of the last scattering surface. We can then use
COSMOMC [62] to calculate H� and dAðz�Þ for an observer

in a spatially flat and dust dominated FLRW universe
looking at this surface. Using the space-time geometry of
our void models we can then calculate S and H0 for an
observer at the center of the void looking at an identical last
scattering surface, with identical Hubble rate at last scat-
tering, and at an identical redshift. This is the procedure
followed in [20].
We use the WMAP 7-year data [63], with a modified

version of COSMOMC, to constrain our models. In this
analysis we choose to only use data at ‘ � 100, as the
low-‘ power spectrum is dominated by the ISWeffect (see
Sec. III D for a brief discussion of this). This choice
weakens the constraints that can be achieved on the scalar
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spectral index of the initial power spectrum, ns.
Conservatively, we fix ns ¼ 0:96 here [64]. The constraints
that can then be imposed on S and H� are shown in Fig. 3.
The best-fit values are found to be S ’ 0:875 and H� ’
1:27	 106 km s�1 Mpc�1. These values are consistent

with those found in [20,21]. Note that the COSMOMC

CMB fits were not performed jointly with the void model
MCMC; instead, they were run beforehand to get like-
lihoods for S and H�, which we then used as priors for
the void model MCMC.
As discussed in Sec. III B, it is possible to construct

simple void models with tB ¼ constant that satisfy the
constraints on S displayed in Fig. 3. This can be achieved
by simply changing the spatial curvature of the model at
large z [20]. The constraints on H�, however, are more
difficult to satisfy. For simple Gaussian voids with tB ¼
constant, under the assumptions described above, the
WMAP 7-year data [63] and the Union2 supernova data
set [56] are enough to show thatH0 & 40 km s�1 Mpc�1 is
required, which is in strong disagreement with the value of
H0 ¼ 73:8� 2:4 km s�1 Mpc�1 found by Riess et al. [52].
Allowing z� to vary can increase the upper bound onH0 by
around 5 km s�1 Mpc�1, and changing the precise func-
tional form of kðrÞ can also marginally change H0 (see
[9,17]). These are relatively small effects, however, and
unless one is prepared to reject one or more of the assump-
tions given in Sec. I, models with tB ¼ constant remain
strongly inconsistent with recent measurements of H0.

FIG. 3 (color online). Marginalized likelihood for the parame-
ters S and H�, found using WMAP 7-year data and a modified
version of COSMOMC [63]. Shaded regions show the 68%, 95%,
and 99.7% confidence regions.

FIG. 4 (color online). Marginalized likelihoods for a Gaussian void model with varying bang time. Shaded regions show the 68%,
95%, and 99.7% confidence regions. Here we use H0 ¼ 100h km s�1 Mpc�1. See the text for other definitions.
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Allowing the bang time function to vary significantly
improves the ability of void models to fit the CMBþH0

data [20]. In Fig. 4 we show the likelihood plots for the
parameters ð�k;�k1 ; �k; AtB ; �tB ; H0Þ, when constrained

with the WMAP 7-year data [63], the Union2 data
set [56], and the measurement of H0 ¼ 73:8�
2:4 km s�1 Mpc�1 [52]. Good fits to the data are obtained
for models with a bang time fluctuation of width 8000 Mpc
that makes the universe about 800	 106 years older in the
center than it is at large r. The curvature profile is narrower
than this, with a width of 2500 Mpc, and a depth of �k ¼
0:83 at the center. The preferred spatial curvature at large
radii is only�k;2 �þ0:002. It can be seen that in this case
the model is able to produce an acceptably large value of
H0, with a best-fit value of 73:6 km s�1 Mpc�1. When
compared to the best-fit �CDM model we find that
�CDM is slightly preferred, with ��2 ¼ þ4:5 for 560 de-
grees of freedom. Most of this difference is due to the void
model having a poorer fit to the supernova data, even
though it over-fits H0 and the CMB data. Voids with
slightly more complicated spatial curvature profiles pro-
duce fits to the data that are at least as good as �CDM.

In the best fitting models the curvature profile kðrÞ is
largely responsible for shaping the void at low redshift,
with z & 1. In this region the bang time gradient is small
and so has little effect. In the region 1 & z & 2 the curva-
ture profile then flattens out and the bang time gradient
begins to change rapidly. This produces large fluctuations
in H2ðzÞ along our past null cone, such that H2 can take
lower values at large z. The low value ofH� required at last
scattering can then be simultaneously accommodated with
a large value ofH0 locally. The difference in profile widths
therefore helps to explain how it is that a good fit to the data
can be achieved.

C. The kSZ effect

Let us now consider the kSZ effect in void models with
varying bang times. The void-induced dipole �T=T can be
calculated in a LTB model by following the procedure
below:

(1) On every point on our past null cone, solve the radial
null geodesic equation for light rays traveling both
into and out of the center of the void.

(2) Calculate the redshift to the last scattering surface
along these geodesics using Eq. (3).

(3) Calculate the dipole �T=T using Eq. (14). This
can be converted into an effective velocity using
� ¼ �T=T.

This procedure relies on knowing the location of the last
scattering surface at different values of r. For models with
a constant bang time, this surface occurs at a constant time,
t ¼ tLS. In models with varying bang time, however, it will
not occur as a hypersurface of constant t, as the presence of
a bang time gradient changes the time evolution of the

radial Hubble rate and density at a given r. We therefore
approximate the location of the last scattering surface as a
hypersurface of constant density � rather than time t. The
precise location of the last scattering surface will turn out
to be important, and we will discuss the consequences of
altering its position as we proceed.
We use the upper limits on � ¼ �T=T that have been

measured from nine individual clusters [29–31], as col-
lected in [35]. These clusters span a redshift range of
0:18 � z � 0:55. The data have asymmetric statistical
errors and are subject to large systematic errors of up to
�750 km s�1. For further explanation of the uncertainties
in this data set the reader is referred to [35].
Void models with constant tB have already been shown

to be inconsistent with even this limited data set, as we
discussed in Sec. III C [35]. Within this class of models,
and subject to the assumptions outlined in Sec. I, the
best fitting voids are those that are either very shallow
(�k1 
 1) or very narrow (�k 
 1 Gpc), with the latter

of these possibilities only working because it restricts the
inhomogeneity to redshifts at which there are currently no
data. We find that the extra freedom afforded by allowing
the bang time to vary relaxes these tight constraints and
admits the possibility of allowing �ðzÞ to be small even in
regions of the universe that are strongly inhomogeneous,
with �k1 as large as 0.85.

Figure 5 shows an example of a large void with varying
bang time that produces small enough �ðzÞ to be compat-
ible with the data discussed above. A model with the same
curvature profile kðrÞ but a constant bang time is also
displayed. It can be seen that the additional freedom al-
lowed by the varying bang time has a considerable impact

FIG. 5 (color online). Upper panel: Velocity with respect to the
CMB rest frame, �ðzÞ, for models with constant bang time
(dashed blue line) and nonconstant bang time (solid red line).
Both models have the same spatial curvature kðrÞ. The data
points are the upper limits for the nine clusters used in [35].
The solid red curve has a bang time fluctuation that is the sum of
two Gaussians. Lower panel: Normalized density as a function of
r on a hypersurface of constant t for the same two models.
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on �ðzÞ. The energy density profile for this model is also
displayed in the figure. One should note, however, that the
functional form of the bang time fluctuation required to
produce this result is more complicated than the simple
profile of Eq. (7). Instead, a sum of two (modified)
Gaussian curves was used, of the form

tBðrÞ ¼ A1 expð�½ðr� r1Þ2=�2
1 þ ðr� r1Þ6=�6

1�Þ
þ A2 expð�½ðr� r2Þ2=�2

2 þ ðr� r2Þ6=�6
2�Þ; (16)

where A1;2, r1;2, and �1;2 are the amplitude, offset from the

origin, and width of the Gaussians, respectively. Despite
the greatly increased freedom in this bang time profile, we
were unable to find a model consistent with the kSZ and
supernova data simultaneously; the best-fit model had
��2

SN ¼ 44:1 with�CDM. It is plausible that the situation

could be improved by considering yet more complicated
functional forms for kðrÞ and tBðrÞ, a possibility that we
investigate in Sec. IVE. For simplicity, we have assumed
in Fig. 5 that the offset caused by systematic errors in the
data is zero. In reality, the data points would likely move
slightly toward the curve to which they are being fitted, in
order to improve the likelihood.

Finding models that agree with the upper limits on the
statistical kSZ from the Atacama Cosmology Telescope
and the South Pole Telescope is a more difficult task. The
kSZ power spectrum given by�T2, in Eq. (15), depends on
an integral of �ðzÞ over redshift. Deviations from � ¼ 0 at
any redshift therefore accumulate, potentially producing a
large kSZ signal. It is possible that �ðzÞ could be made to
change sign so that negative contributions cancel the posi-
tive ones, but this would require a delicate balancing of the
competing effects to satisfy the statistical and single-
cluster kSZ data simultaneously. One should bear in
mind, however, that at large enough z, the effect of the
void on the observed kSZ effect will decrease, as the angle
subtended by the void on the distant observer’s sky de-
creases, and the power in the dipole term of the anisotropy
is shifted to higher multipoles [19].

In summary, we find that large void models with varying
bang times may have enough extra freedom available to
alleviate the constraints that can currently be imposed from
observations of the kSZ effect. As we discuss in the follow-
ing section, however, it is unlikely that after doing this
there will be enough remaining freedom to accommodate
any other observables.

D. Combined constraints (SNþCMBþH0 þ kSZ)

Let us now consider combining all of the observables we
have discussed so far. These are the Union2 supernova
data, the WMAP 7-year data, local measurements of H0,
and the kSZ effect.

In Fig. 6 we show the observed value of �T=T as a
function of z that a central observer would measure from
the kSZ effect in the models found in Sec. IVB. These

models have been shown to provide good fits to the super-
nova data, and the CMB and H0 data sets simultaneously.
In Fig. 7 we show this information as a function of H0 for
redshifts z ¼ 0:05, 0.10, 0.15, and 0.20. At all redshifts
considered the distribution was bimodal, with somemodels
having � � 1. Such incredibly high velocities are com-
pletely inconsistent with the data, and so here we show
only the models with lower �. It can be seen that the value
of the kSZ signal that one would observe from the center of
these models is extremely large, even at low redshift. Such
enormous kSZ signals are not compatible with the data
displayed in Fig. 5, even with very large additional system-
atic uncertainties included.
The principal reason for this large effect appears to be

the large width of bang time fluctuation that is favored by

FIG. 6. The value of �T=T as a function of redshift for the best
fitting models to the supernova, CMB, and H0 data sets, from
Sec. IVB. The corresponding value of � is shown on the right-
hand axis. The median and 68% and 95% confidence intervals
are shown as the black line, and the light gray and dark gray
bands, respectively. The actual distribution is bimodal, and here
we show only the models with low �T=T. Even for low red-
shifts, � is a large fraction of the speed of light.

FIG. 7 (color online). The 68% and 95% likelihood contours in
the space of�T=T andH0 ¼ 100h km s�1 Mpc�1, for off-center
observers at z ¼ 0:05, 0.10, 0.15, and z ¼ 0:20, for the MCMC
sample constrained by SNþ CMBþH0 data.
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the combination of supernova, CMB, and H0 data sets (see
Fig. 4). Because of this, observers at z * 0:1 look through
regions in which the bang time gradient is large when they
look through the void. As discussed in Sec. II B, these
regions host shell crossings when t0B > 0. This pushes the
surface of last scattering to much later times and causes
significant modifications to the redshift that this surface is
seen at when looking through the center of the void. The
redshift of the last scattering surface when looking away
from the void experiences no such effect, as it is effectively
fixed in position by the CMB data we see from the center.
As a result, the values of zin and zout in Eq. (14) differ
significantly, and the value of �T=T is therefore even
larger than in the constant bang time case. Even at low z,
this is unacceptably high.

E. More complicated profiles

One may now ask whether changing the specific forms
of tBðrÞ and kðrÞ that we have used so far affects our results.
We showed in Sec. IVD that very poor agreement with the
kSZ data is obtained for the models that best fit the super-
nova, CMB, and H0 data, but in Sec. IVC we found that a
good fit to the kSZ data could be obtained if a more
complicated bang time profile was used. To see if a good
fit to all of the observables is possible with a more com-
plicated model, we ran a MCMC simulation using the
spatial curvature profile of Eq. (6) and the extended bang
time profile given by Eq. (16). The MCMC was con-
strained by the supernova, CMB, H0, and kSZ data
simultaneously.

A plot of kSZ �T=T against H0 for these models is
shown in Fig. 8 and may be compared with Fig. 7. The
models that maximize the likelihood have a �ðzÞ profile
that is almost flat over the redshift range of interest
(slightly larger at small z) and much less discrepant with
the kSZ data. Relatively narrow spatial curvature and bang

time profiles are preferred, extending out to only z� 0:2,
and the bang time profiles are shifted towards the negative
r direction [i.e. r1;2 < 0 in Eq. (16)]. A preferredH0 of only

44:0 km s�1 Mpc�1 is obtained, and the fit to supernova
and CMB data is also poor; the best-fit model is incon-
sistent with the data, with ��2 � 270 compared to
�CDM. We conclude that this is because the fit is most
sensitive to the kSZ data; it is easy to find models that are
wildly inconsistent with the kSZ data, as evidenced by
Fig. 7, and so models that minimize the �2 with the kSZ
data above all else are preferred. These tend to have low
Hubble rates and narrow density profiles, features that are
difficult to reconcile with the supernova and H0 data. As
such, it seems that, even with the significantly more com-
plex bang time profile, a good fit to all of the data simul-
taneously is not possible.
To further investigate the sensitivity of our results to the

choice of profile parametrization, we now consider the
model found by Célérier et al. in [8] that was constructed
to reproduce the �CDM values of luminosity distance and
Hubble rate as a function of redshift, but without dark
energy. The density profile on a hypersurface of constant
t takes the form of a ‘‘hump’’ in this model, rather than a
void, and the bang time gradient at low z is negative, so
there are no shell crossings at early times. Instead, this
model has double-valued redshifts at high z (see Sec. II B),
which almost always result in large �T=T because zin and
zout in Eq. (14) differ significantly. As such, this model is
also strongly disfavored by current kSZ data (see Fig. 9).
In fact, for large fluctuations in the bang time function

we expect that there will always be a large dipole seen by
off-center observers at some range of redshifts, corre-
sponding to lines of sight that pass near regions with a
nonzero bang time gradient [65]. It therefore appears that

FIG. 8 (color online). The 68% and 95% likelihood contours in
the space of �T=T andH0 ¼ 100h km s�1 Mpc�1, for off-center
observers at z ¼ 0:15, 0.20, and 0.55, for the MCMC sample
constrained by SNþ CMBþH0 þ kSZ data. The �T=T are
much lower than for the MCMC sample in Fig. 7, but the Hubble
rate is too low to be considered consistent with observations.

FIG. 9 (color online). Upper panel: Bang time function tBðrÞ of
the LTB model found in [8] which reproduces the Hubble rate
HðzÞ and luminosity distance dLðzÞ of �CDM. Lower panel:
Velocity with respect to the frame where the CMB is isotropic,
�ðzÞ, for the same LTB model. j�ðzÞj rapidly becomes very
large (� � �c for z * 0:6) and produces a very poor fit to the
kSZ data.
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one cannot simultaneously fit the supernova, CMB, H0,
and kSZ observations with a single LTB model unless one
is prepared to violate one or more of the assumptions made
in Sec. I.

V. DISCUSSION

In order to rigorously establish that � � 0, and that the
concordance model of cosmology is correct, a model is
required within which observations can be interpreted. The
homogeneity and isotropy of the Universe on large scales is
often assumed, and most analyses are performed using the
highly symmetric FLRW solutions of general relativity.
These are not the only viable ways to model the
Universe, however, and recent advances in observational
cosmology allow us to empirically test alternatives rather
than relying on assumed symmetries of space-time on the
largest scales. In this paper we used the spherically sym-
metric, dust-only LTB class of general relativistic cosmo-
logical models, in their full generality, to test the radial
homogeneity of the Universe on large scales. In particular,
we consider the magnitude of the kSZ effect, which mea-
sures the dipole anisotropy of the CMB through a shift in
the spectrum of CMB photons reflected from hot gas in
clusters of galaxies. The kSZ effect is sensitive to large-
scale inhomogeneity, as observers inhabiting an inhomo-
geneous universe would generically expect to see large
anisotropies on their CMB skies.

In Sec. II, we introduced the theoretical framework for
specifying these models and calculating observables in
them. We defined a simple parametrization of the LTB
radial function kðrÞ that governs radial inhomogeneity at
late times, and the function tBðrÞ that governs it at early
times. This has been used to investigate underdense
‘‘voids’’ which have previously been shown to produce
good fits to the supernova data. We have discussed poten-
tial problems with models that are inhomogeneous at early
times (i.e. that have nonconstant tB), including the poten-
tial for disruptions around our observed surface of last
scattering. In models with a positive radial derivative of
the bang time, t0B > 0, it is found that shell crossing singu-
larities form at early times, which pushes the surface of last
scattering to later times. In models with a negative bang
time gradient, t0B < 0, regions with a negative radial
Hubble rate, H2 < 0, form and the distance-redshift rela-
tion rðzÞ ceases to be monotonic. These features have
observable effects that ultimately lead to predictions of a
large CMB dipole anisotropy at low redshifts.

In Sec. III we reviewed some of the observational con-
straints that can be imposed on void models with constant
bang time. Three key sets of observables were considered:
The distance moduli of supernovae, the small-angle CMB
power spectrum plus local Hubble rate, and upper limits on
the magnitude of the kSZ effect for individual clusters of
galaxies. Voids can fit the supernova data easily, but are
unable to fit recent measurements of the CMB and H0

simultaneously (they predict a value of H0 that is far too
low). Similarly, voids which fit the supernova data predict a
large CMB dipole at redshifts up to z� 1, which is incon-
sistent with current kSZ measurements.
In Sec. IV we considered the effect on these constraints

of allowing the bang time to vary. This resulted in a
significant increase in the freedom of the models and
allowed the supernovae and CMBþH0 data sets to be fit
simultaneously, even with our simple parametrization of
the LTB radial functions. Models with small kSZ signals,
consistent with the data, were also found, but these re-
quired more complex profiles and gave worse fits to the
supernova data. We then proceeded to combine all of
the observational constraints, and found that voids which
are able to fit the supernovae, CMB, and H0 predict an
extremely large kSZ effect which is orders of magnitude
greater than the measured upper limits. A joint fit to the
supernova, CMB, H0, and kSZ data with a significantly
more complicated bang time profile also failed to produce
good agreement with the data.
We also argued that any void model with a significant

bang time inhomogeneity will produce a large kSZ effect at
some redshift. Given that a varying bang time is necessary
to resolve the low-H0 problem, it seems that the combina-
tion of supernovae, CMBþH0, and kSZ data is enough to
effectively rule out LTB void models that attempt to ex-
plain cosmological data without dark energy, subject to the
assumptions made in Sec. I. This goes some way toward
demonstrating the homogeneity of the Universe on large
scales.
We used the dipole approximation to calculate the mag-

nitude of the kSZ effect in our models, but this only holds if
the dipole term dominates the anisotropy of an off-center
observer’s sky [19,35]. Otherwise, higher multipoles be-
come important, and the dipole approximation overesti-
mates the kSZ effect. The dipole will dominate as long as
most lines of sight on the observer’s sky pass through the
void, as will be the case if the observer is firmly inside it,
for example. For the models in Secs. IVC and IVD, and
the Célérier et al. model in Sec. IVE, the inhomogeneity
extends out to z � 2, and so the dipole approximation will
always be a good one for observers at z < 0:6, where the
kSZ data lie. The models with more complicated bang time
profiles considered in Sec. IVE have much narrower in-
homogeneities, however, and so we would expect the di-
pole approximation to be worse. These models predict low
kSZ magnitudes and are close to being consistent with the
kSZ data, so any overestimate due to the dipole approxi-
mation will have little effect on their total �2, which is
anyway dominated by the poor fits to the supernova, CMB,
and H0 data. We therefore conclude that the dipole ap-
proximation is sufficient for our purposes.
As we have tried to make clear throughout, our results

are subject to several caveats that are summarized in Sec. I.
The first, that we are exactly in the center of a perfectly
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spherically symmetric void, serves to simplify our calcu-
lations but is clearly unrealistic as it fails to take into
account angular variations in, for example, the galaxy
distribution. This could affect observables such as the
dipole anisotropy of the CMB seen by off-center observers,
potentially weakening the constraints we have derived
using the kSZ effect. Considering ourselves as off-center
observers [19,66] and introducing linear perturbations
[36,37] would produce more realistic models and allow
more observational data to be used (e.g. the matter power
spectrum) at the expense of a significant increase in com-
plexity. A better understanding of linear perturbations
would also go some way toward addressing our second
caveat, that the formation of the last scattering surface
must be in an approximately FLRW region. In general,
one could expect features such as the coupling of scalar
and tensor modes in LTB perturbations to produce second-
ary effects such as large B-mode polarizations [36]. This
type of effect is completely absent in linear perturbation
theory about FLRW backgrounds.

A particular limitation of LTB solutions as cosmological
models is that they contain only dust and cease to be
applicable when radiation becomes important. If we want
to approximate the Universe as a LTB model at late times,
we must therefore match it to an appropriate solution
containing radiation at early times. Solutions involving
separate inhomogeneous matter and radiation fluids [38],
spatially varying physical quantities such as the photon-
baryon ratio [14], and scale-dependent initial power spec-
tra [39] have been considered and serve to give some idea
of the extra freedom that might be obtained in more general
models. Specifically, altering the location and properties of
the surface of last scattering can have a profound effect on
the predicted kSZ signal [14] and the observed CMB
[38,39], and if one is prepared to consider this additional
freedom, then our present results should not be expected to
hold.

Finally, let us consider LTB models in the context of
general inhomogeneity. Rather than allowing space-time to
be described by a single LTB metric, it has been suggested
that the LTB geometry could be used as an effective
geometry to model the scale dependence of inhomogeneity
after some averaging procedure has been applied to the
fine-grained structure of the actual inhomogeneous geome-
try of the real Universe [67]. This is a considerable depar-
ture from the situation we have been considering here. In
particular, if other observers are able to construct similar
effective spherically symmetric geometries about their
own locations then we should no longer expect distant
clusters to see a large dipole in their CMB sky. This would
completely relax the constraints that can be imposed from
observations of the kSZ effect.
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Note added.—A preprint by J. P. Zibin [68] discussing

the effect of bang time fluctuations on another tracer of
anisotropy in voids, Compton y distortion, appeared
shortly after the original version of this paper was released.
Its conclusions are in broad agreement with those pre-
sented here: Fluctuations in the bang time that are large
enough to have a significant effect on the geometry of the
universe at late times (and thus have any bearing on the
low-H0 problem) would result in Compton y distortions
many times larger that can be reconciled with current
observational constraints.
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