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Inflation typically predicts a quasiscale-invariant spectrum of gravitational waves. In models of slow-

roll inflation, the amplitude of such a background is too small to allow direct detection without a dedicated

space-based experiment such as the proposed BBO or DECIGO. In this paper we note that particle

production during inflation can generate a feature in the spectrum of primordial gravitational waves. We

discuss the possibility that such a feature might be detected by ground-based laser interferometers such as

Advanced LIGO and Advanced Virgo, which will become operational in the next few years. We also

discuss the prospects of detection by a space interferometer like LISA. We first study gravitational waves

induced by nonperturbative, explosive particle production during inflation: while explosive production of

scalar quanta does not generate a significant bump in the primordial tensor spectrum, production of

vectors can. We also show that chiral gravitational waves produced by electromagnetic fields amplified by

an axionlike inflaton could be detectable by Advanced LIGO.
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I. INTRODUCTION

Once we consider perturbations on the top of a homoge-
neous and isotropic Friedmann-Robsertson-Walker uni-
verse, inflation generically predicts quasiscale-invariant
spectra of scalar and tensor perturbations.

The scalar perturbations have been detected, and all their
properties appear to wonderfully agree with the predictions
of the simplest models of inflation. The tensor modes,
however, have not yet been detected, and we put our best
hopes to find them in the study of their effect on the
polarization of the cosmic microwave background photons.
A direct detection of the tensor modes from inflation, on
the other hand, is not expected before dedicated space-
based interferometers such as the proposed BBO or
DECIGO [1], are launched in the next few decades.
Indeed, gravitational interactions are so weak that we
have not yet detected gravitational waves of any origin.

Experiments searching for gravitational waves of astro-
physical origin, such as LIGO [2], GEO600 [3], Virgo [4],
and TAMA300 [5], have been taking data for several years.
LIGO and Virgo will see their sensitivity improved by a
factor of �10 in the next few years and might detect the
first gravitational wave as early as 2015. They will be
sensitive to a stochastic background of gravitational waves
whose logarithmic contribution to the critical density
�GWh

2 is of the order of 10�9 at a frequency of
�100 Hz. LGCT [6] will have a comparable sensitivity
at similar frequencies. A space-based experiment like
LISA would be able to reach �GWh

2 ’ 10�11 at
10�3 Hz. The proposed Einstein Telescope [7] would

have similar sensitivity while working at LIGO frequen-
cies. Since the spectrum of primordial tensor modes is
generically flat or slightly red, nondetection of tensor
modes at cosmic microwave background (CMB) scales
strongly constrains a scale-invariant background of tensors
of inflationary origin to �GWh

2 & 10�14. For this reason,
none of these detectors is usually expected to be able to
detect tensor modes produced during inflation [8].
In this paper we note that production of particles during

inflation generates a feature in the tensor spectrum which
could be detectable by gravitational interferometers in the
(relatively) near future, without conflicting with CMB
constraints.
Nonperturbative production of particles during inflation,

first studied in [9], is possible because the rolling inflaton
provides a time-dependent background that carries the en-
ergy necessary for the production of light species. The
simplest andmost studied example of such a system is given
by a scalar field �whose mass depends on the inflaton�. If
� becomes effectivelymassless as the inflaton rolls down its
potential, then it becomes energetically cheap to produce its
quanta. In this case, particle production happens at a precise
moment during inflation determined by the time when the
total mass of � crosses zero. A second possibility is that the
inflaton � couples to a derivative of some field such as a
gauge field [10]. In this case, the field can stay massless as
the inflaton rolls down its potential, and particle production
can happen steadily during inflation.
Particles produced through these mechanisms carry

energy-momentum tensor T��, which perturbs the

Friedmann-Robertson-Walker metric into

g�� ¼ að�Þ2ð�d�2 þ ð�ij þ hijÞdxidxjÞ; (1)
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where we use conformal time1 � and a transverse, traceless
decomposition, ignoring perturbations which do not source
gravitational waves. The equation of motion of the pertur-
bations is

h00ij þ 2
a0

a
h0ij ��hij ¼ 2

M2
P

�ij
abTab; (2)

where�ij
lm ¼ �i

l�
j
m � 1

2�ij�
lm is the transverse, trace-

less projector, and �ij ¼ �ij � @i@j=�. For any given

expression of Tabðx; �Þ, one can then solve formally
Eq. (2) as

hijðk; �Þ ¼ 2

M2
P

Z
d�0Gkð�; �0Þ�ij

abðkÞTabðk; �0Þ; (3)

where Gkð�; �0Þ is the retarded propagator solving the
homogeneous transform of Eq. (2). In this paper we will
assume a de Sitter background að�Þ ¼ �ðH�Þ�1, so that
the retarded propagator reads

Gkð�; �0Þ ¼ 1

k3�02
½ð1þ k2��0Þ sinkð�� �0Þ þ þkð�0 � �Þ

� coskð�� �0Þ��ð�� �0Þ: (4)

In the present paper we will examine several ways of
generating a nonvanishing Tab in Eq. (3), some of which
induce a significant feature in the spectrum of tensor
modes. If particle production happens explosively at a
precise time during inflation (as in [9]), the spectrum of
gravitational waves will show a feature at the scale corre-
sponding to the time of particle production. If particle
production happens continuously, on the other hand, then
the spectrum of induced tensor modes will be smoother. In
both cases the amplitude of the tensor spectrum at the
scales probed by interferometers can be much larger than
the one probed by CMB measurements. It is worth noting
that, since the source of the gravitational waves is quadratic
in a Gaussian field, hij is expected to have a maximal three-

point function hhhhi ’ hhhi3=2 [11–14]. The direct detect-
ability of tensor modes produced during inflation was also
considered by [15], where it was shown that, if the post-
inflationary universe is dominated by a fluid stiffer than
radiation, the primordial tensors amplitude can be signifi-
cantly enhanced. More recently, [16] has studied the de-
tectability of gravitational waves produced by phase
transitions during inflation.

In Sec. II we show that the explosive production of
quanta of a scalar field � can only generate a tiny correc-
tion to the background, quasi-scale-invariant spectrum of
tensor modes. A scenario—‘‘trapped inflation’’—where
explosive production of particles occurs several times per
e-folding of inflation has been considered in [17]. In this
scenario, particle production slows down the rolling of the
inflaton so that inflation can occur even on a (relatively)
steep potential. Our analysis will allow, in Sec. II C, the
evaluation of the amplitude of the tensors induced by the
trapping fields.
In Sec. III we study a mechanism analogous to that of

Sec. II, where the scalar field � is replaced by a vector field
A�. In this case production of tensors can be much more

efficient, leading to a peak in the tensor spectrum that can
be an order of magnitude larger than the quasiscale-
invariant background.
Finally, in Sec. IV we discuss the case of tensor modes

produced through a gauge field coupled to an axionlike
inflaton (as discussed in [18,19] and, in greater detail, in
[20]). In this case the amplitude of gravitational waves can
increase dramatically at smaller scales so that the system
can obey the WMAP constraint on primordial tensors at
CMB scales and still lead to detectable tensors at scales
probed by ground-based laser interferometers.

II. GRAVITATIONALWAVES FROM
SUDDEN PRODUCTION OF

SCALARS DURING INFLATION

Several systems can lead to the production of particles
during inflation. The one that has received the most atten-
tion is described by the following Lagrangian:

L�� ¼ � 1

2
@��@��� Vð�Þ � 1

2
@��@

��

� g2

2
ð���0Þ2�2; (5)

where Vð�Þ is the potential supporting inflation and where
we neglect for simplicity the self-interactions of the field
�. If the inflaton �ð�Þ, while slowly rolling down Vð�Þ,
crosses the value �0, then the field � becomes momen-
tarily massless, and its quanta can be copiously produced.
The analysis of [21] shows that the occupation number of

�, shortly after � crossed �0, is given by n�ðkÞ ¼
expf�� k2

gj _�0jg, where _�0 ¼ d�=dt at the time � crosses

�0.
In this section we compute the number of gravitons

produced by these quanta of �. The spatial part of the
stress-energy tensor for the field � is given by Tab ¼
@a�@b�þ �abð. . .Þ, where the part proportional to �ab is
projected away by �ab

ij . We promote the field �ðx; �Þ to
an operator �̂ðx; �Þ, which we Fourier transform, factoring

1Throughout the paper we will denote by a prime a derivative
with respect to the conformal time �, and by a overdot a
derivative with respect to the cosmological time t: 0 � d=d�, � �
d=dt.
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one power of the scale factor að�Þ for canonical normal-
ization

�̂ðx; �Þ ¼ 1

að�Þ
Z d3k

ð2�Þ3=2 e
ikx�̂ðk; �Þ: (6)

Plugging this decomposition into Eq. (3) gives the tensor
spectrum

hhijðk; �Þhijðk0; �Þi

¼ 1

2�3M4
P

Z d�0

að�0Þ2 Gkð�; �0Þ

�
Z d�00

að�00Þ2 Gk0 ð�; �00Þ�ij
abðkÞ�ij

cdðk0Þ

�
Z

d3pd3p0paðkb � pbÞp0
cðk0

d � p0
dÞ

� h�̂ðp; �0Þ�̂ðk� p; �0Þ�̂ðp0; �00Þ�̂ðk0 � p0; �00Þi: (7)

The quantity h. . .i in the equation above can be reduced
using Wick’s theorem and ignoring the disconnected term

proportional to �ð3ÞðkÞ�ð3Þðk0Þ. Hence, we need only to
evaluate the two-point correlators, being careful to avoid
divergences.

The evolution of the system occurs in three stages:
(i) At early times, significantly before� reaches�0, the

Universe does not contain quanta of the � field. No
gravitational waves are produced by � during this
epoch.

(ii) As � gets close to �0, the effective mass of �,
m�ðtÞ � gð�ðtÞ ��0Þ, starts evolving nonadiabati-

cally, _m� * m2
�. The duration �tnad of the epoch of

nonadiabaticity is �tnad ’ ðg _�0Þ�1=2, which must
be much shorter than a Hubble time for production
of quanta of � to be efficient. During this short
epoch, the quanta of �, while being produced,
source gravitational waves.

(iii) After a time of the order of�tnad after� has passed
�0, the mass m�ðtÞ evolves adiabatically again.

Even if they are not being produced, quanta of �
are still filling the Universe and source the tensors
before diluting away in a few e-foldings.

In the following subsection we will study the gravita-
tional waves produced during the epoch (iii), while in
Sec. II B we will discuss those produced during the non-
adiabatic period (ii). As we will see, the tensors produced
during these two epochs have comparable amplitude.

A. Tensor production during the adiabatic epoch

The main quantity we have to evaluate is
h�̂ðp; �0Þ�̂ðq; �00Þi. We decompose �̂ðkÞ into creation/

annihilation operators as �̂ðk; �Þ ¼ �ðk; �Þâk þ ��ð�k;

�Þây�k, where the function � must obey the equation

�00ðk; �Þ þ!ðk; �Þ2�ðk; �Þ ¼ 0 (8)

with

!ðk; �Þ2 � k2 þ g2að�Þ2ð�ð�Þ ��0Þ2 � a00ð�Þ
að�Þ ; (9)

and âk annihilates the vacuum during period (i). We define
the Bogolyubov coefficients �ðk; �Þ and 	ðk; �Þ via

�ðk; �Þ ¼ 1ffiffiffiffiffiffiffi
2!

p ðe�i
R

�
!�ðk; �Þ þ ei

R
�
!	ðk; �ÞÞ;

�0ðk; �Þ ¼ i

ffiffiffiffi
!

2

r
ð�e�i

R
�
!�ðk; �Þ þ ei

R
�
!	ðk; �ÞÞ

(10)

so that, in the adiabatic limit !0 � !2, � and 	 are
constants. This way, we can rewrite

�̂ðk; �Þ ¼ e�i
R

�
!d~�ffiffiffiffiffiffiffi

2!
p b̂kð�Þ þ ei

R
�
!d~�ffiffiffiffiffiffiffi

2!
p b̂y�kð�Þ; (11)

where we have defined the new annihilation operator

b̂ kð�Þ ¼ �ðk; �Þâk þ 	�ð�k; �Þây�k; (12)

that annihilates the vacuum during period (iii).
In order to renormalize the theory, we impose that the

operator �̂ðp; �0Þ�̂ðq; �00Þ within h. . .i is normal ordered.

However, we require normal ordering in terms of the b̂k
operators while using the vacuum state defined by the âk
operators. This way we calculate the number of quanta of
our initial particle definition existing at the end. Using the
decomposition (12) and the commutation relation

½âq; âyp� ¼ �ð3Þðp� qÞ, we obtain

h�̂ðp; �0Þ�̂ðq; �00Þi

¼ �ð3Þðpþ qÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!pð�0Þ!pð�00Þ

q ½ðei
R

�00
�0 !p	�ð�p; �0Þ

� 	ð�p; �00Þ þ H:c:Þ þ ðe�i
R

�0
!p�i

R
�00

!p�ðp; �0Þ
� 	�ðp; �00Þ þ ð�0 $ �00;H:c:ÞÞ�: (13)

Using the expression above and Wick’s theorem, Eq. (7)
can be written as
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hhijðk; �Þhijðk0; �Þi ¼ �ð3Þðkþ k0Þ
8�3M4

P

Z
d3p

�
p2 � ðp � kÞ2

k2

�
2 Z d�0

að�0Þ2
Gkð�; �0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

!pð�0Þ!k�pð�0Þ
q Z d�00

að�00Þ2
Gkð�; �00Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

!pð�00Þ!k�pð�00Þ
q

��½ðei
R

�00
�0 !p	�ðjpj; �0Þ	ðjpj; �00Þ þ H:c:Þ þ ðe�i

R
�0
!pe�i

R
�00

!p�ðjpj; �0Þ	�ðjpj; �00Þ
þ ð�0 $ �00;H:c:ÞÞ� � ½ðei

R
�00
�0 !k�p	�ðjk� pj; �0Þ	ðjk� pj; �00Þ þ H:c:Þ

þ ðei
R

�0
!k�pe�i

R
�00

!k�p�ðjk� pj; �0Þ	�ðjk� pj; �00Þ þ ð�0 $ �00;H:c:ÞÞ�: (14)

When multiplied out, some terms in the above equation are
rapidly oscillating, and we neglect them as they give sub-
dominant contribution to the integrals. At this point, we
need to evaluate the Bogolyubov coefficients � and 	.

1. Evaluating 	

The function � obeys Eq. (8), and quanta of � are
produced during the short epoch of nonadiabatic evolution
of !ðk; �Þ, during which we neglect the expansion of the
Universe. In a de Sitter background and in the slow-roll
approximation, � evolves approximately linearly in physi-

cal time�ðtÞ ¼ �0 þ _�0t or as�ð�Þ ¼ �0 � _�0

H logð ��0Þ in
conformal time. t and � are defined such that �ðt ¼ 0Þ ¼
�ð� ¼ �0Þ ¼ �0. The duration �tnad of the nonadiabatic
epoch is determined by the condition _m� * m2

�, yielding

�tnad � 1=
ffiffiffiffiffiffiffiffiffiffiffiffi
gj _�0j

q
. It is consistent to neglect the expansion

of the Universe if �tnad � 1=H so that the validity of our

analysis requires g 	 H2=j _�0j.
Under these conditions the equation for � during the

nonadiabatic epoch reduces to

€�þ ðk2H2�20 þ g2 _�2
0t

2Þ� ¼ 0; (15)

to which we can apply the analysis of [21], obtaining, up to
an irrelevant phase, the Bogolyubov coefficients

�ð� > �0; kÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e��
2

p
ei�
 ;

	ð� > �0; kÞ ¼ e�ð�=2Þ
2
;

(16)

where we have defined 
 � kH�0=
ffiffiffiffiffiffiffiffiffi
g _�0

q
and �
 ¼

Arg½�ð1þi
2

2 Þ� � 
2

2 log

2

4 .

2. The two-point function

After the phase of nonadiabatic evolution of m�, the

Universe contains �R
d3kj	j2=að�Þ3 quanta of � per unit

volume. We are now in the position of computing the
spectrum of gravitational waves generated by such a popu-
lation, which is given by the integral (14), where ! is
defined in (9). The expression of ! can be drastically
simplified by observing that, at the end of the nonadiabatic

period, gð���0Þ � g _�0�tnad � ðg _�0Þ1=2 	 H. As a
consequence, the second term in (9) is much larger than
the third one. Moreover, the exponential suppression in 	

means only momenta k & ðg _�0Þ1=2=ðH�0Þ contribute sig-
nificantly to the integral. Noting also that, following the
nonadiabatic period, j�j< j�0j, the k2 in (9) is negligible as
well.
Therefore, during the entire phase (iii) of the adiabatic

evolution of the system, we can approximate ! ’
jgð�ð�Þ ��0Þ=ðH�Þj, where �ð�Þ ��0 ’ �ð _�0=HÞ�
logð�=�0Þ. Using these estimates, we can write the integral
(14) in the limit � ! 0 (i.e., at the end of inflation, long
after �0) as

hhijðkÞhijðk0Þi

¼ �ð3Þðkþ k0Þ
4�3k6

H8

g2 _�2
0M

4
P

Z 1

�1
d3p

�
p2 � ðp � kÞ2

k2

�
2

� fj	ðpÞj2j	ðk� pÞj2 þ Re½�ðpÞ��ðk� pÞ
� 	�ðpÞ	ðk� pÞ�g

�
�Z 0

�0þ��nad

d��
sinðk�Þ � k� cosðk�Þ

lnð�0=�Þ
�
2
; (17)

where ��nad=j�0j ¼ H�tnad ’ Hðg _�0Þ�1=2 � 1. As we
will see in Eq. (20) below, the result depends only loga-
rithmically on �tnad so that ignorance of its exact value
does not affect significantly the results. Next, we recognize
that at large values of k, the two-point function is sup-
pressed by the factor of ðsink�� k� cosk�Þ=k3 coming

from the Green’s functions. Since H2=g _� � 1, p is only

suppressed after p�0 > g _�=H2 	 1. Therefore the inte-
grand gets its main contribution from the region p 	 k.
Using these approximations, the above equation is simpli-
fied to

hhijðkÞhijðk0Þi¼�ð3Þðkþk0Þ
4�3k6

H8

g2 _�2
0M

4
P

�
Z
d3p

�
p2�ðp�kÞ2

k2

�
2

�ðe�ð�p2H2�2
0
=g _�Þþ2e�ð2�p2H2�2

0
=g _�ÞÞ

�
�Z 0

�0þ��nad

d��
sinðk�Þ�k�ðk�Þ

lnð�0=�Þ
�
2
: (18)

After computing the integral in d3p, we are left with the
simple expression
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hhijðkÞhijðk0Þi ¼ �ð3Þðkþ k0Þ
2�5k6j�0j3

H4

M4
P

�
1þ 1

4
ffiffiffi
2

p
�

�
�
g _�0

H2

�
3=2

Fj��nad=�0jðkj�0jÞ; (19)

where

F�ðyÞ �
��������
Z 1��

0
x
ðsinxy� xy cosxyÞ

logx
dx

��������
2’�!0

’ ½ðy cosy� sinyÞ log��2: (20)

The two-point function (19) should be added to the
standard, quasiscale-invariant contribution from inflation-
ary gravitational waves so that the resulting power spec-
trum reads

P tðkÞ ’ 2H2

�2M2
P

2
41þ 4:8� 10�4 ðk�0 cosk�0 � sink�0Þ2

jk�0j3

� H2

M2
P

�
g _�0

H2

�
3=2

log2

0
@

ffiffiffiffiffiffiffiffiffi
g _�0

q
H

1
A
3
5: (21)

We thus see that the effect of the creation of quanta of �
is to superimpose a scale dependent contribution to the
scale-invariant spectrum of tensors generated by inflation.

We next observe that _�0 ¼
ffiffiffiffiffiffi
2�

p
HMP, where � � 1 is

the slow-roll parameter. Supplying reasonable values for
H,MP, and � allows us to find that the jk�0j-dependent part
of the spectrum is maximized at jk�0j ’ 2, where the

component from particle production evaluates to �1:8�
10�4ðH2=M2

PÞðg _�0=H
2Þ3=2log2ð

ffiffiffiffiffiffiffiffiffi
g _�0

q
=HÞ. Using the

same approximation, the log2 term gives at most a factor
�102; therefore, the correction to the standard result is at

most of the order 10�2H1=2=M1=2
P , which is several orders

of magnitude smaller than unity.
We thus conclude that the presence of a gas of adiabati-

cally evolving scalar particles produced nonperturbatively
during inflation generates a tiny correction to the spectrum
of primordial tensors. This result agrees with [22], where it
was shown that in the Minkowsky limit, H ! 0, a gas of
adiabatically evolving scalars does not generate any gravi-
tational waves. In our case, since we are on an expanding
background, gravitational waves are produced, but the
effect is still small and unobservable.

Let us next estimate the amount of gravitational waves
produced during the period of nonadiabatic evolution of
m�ð�Þ.

B. Tensor production during the nonadiabatic epoch

The period of nonadiabatic evolution of m�ð�Þ lasts

much less than a Hubble time. We will use again our
physical time variable t ¼ H�1 logð�0=�Þ. Since we are
now looking at the period jHtj � 1, we can approximate
the change of variable as � ’ �0ð1�HtÞ. This implies that

we can replace �0 and �00 by �0 in the integrands of Eq. (7).
During this short time, the field � will obey Eq. (15).
During the periods of adiabatic evolution of m�, the

concept of a particle of � is well defined, and the use of
the Bogolyubov coefficients gives an appropriate way of
computing the spectrum of gravitons produced by the gas
of quanta of �. During the short epoch of nonadiabatic
evolution of m�, however, it is more convenient to switch

to a different prescription. Following, e.g., [23], we set

h�̂ðp; t0Þ�̂ðq; t00Þi ¼ �ð3Þðpþ qÞ½�ðp; t0Þ��ðp; t00Þ
� ~�ðp; t0Þ~��ðp; t00Þ�; (22)

where �ðp; tÞ is the solution, with appropriate boundary
conditions, to Eq. (15), and ~�ðp; tÞ is the solution to the
same equation in the adiabatic approximation:

�ðp; tÞ ¼
ffiffiffiffiffiffiffiffiffi
H�0

p
ðg _�0Þ1=4

e�i�=8e�� �p2=8Dð�1þi �p2=2Þ½ð�1þ iÞ��;

~�ðp; tÞ ¼
ffiffiffiffiffiffiffiffiffi
H�0

p
ðg _�0Þ1=4

ei½ð�=2Þ
ffiffiffiffiffiffiffiffiffiffiffi
�2þ �p2

p
þ �p2=2 logð�= �pþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ�2= �p2

p
Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �p2

pq ;

(23)

where we have defined a dimensionless time � ¼
ðg _�0Þ1=2t and a dimensionless momentum �p ¼
pH�0=ðg _�0Þ1=2 and DaðzÞ is the parabolic cylinder func-
tion. The term in ~�ðp; tÞ in Eq. (22) takes care of the UV-
divergent terms which would otherwise appear in the ten-
sor spectrum.
Working forward from (7), the expression for the con-

tribution of the nonadiabatic epoch to the two-point corre-
lator of the graviton simplifies to

hhijðk; �Þhijðk0; �Þi

¼ �ð3Þðkþ k0Þ
2�3M4

P

H4

k6
½sink�0k�0 cosk�0�2

�
Z

d3p

�
p2 � ðp � kÞ2

k2

�
2ðH�0Þ2

�
Z

dt0dt00½�ðp; t0Þ��ðp; t00Þ � ~�ðp; t0Þ~��ðp; t00Þ�
� ½�ðk� p; t0Þ��ðk� p; t00Þ � ~�ðk� p; t0Þ
� ~��ðk� p; t00Þ�: (24)

We next observe that for jk�0j 	 1, the two-point function
of the graviton is suppressed by the coefficient / k�4

in front of the integrals of Eq. (24). In the unsuppressed

regime jk�0j & 1, the quantity �k ¼ kHj�0j=ðg _�0Þ1=2 � 1,
so that we can set k ¼ 0 in the second line of Eq. (24). At
this point, the angular integral can be easily computed, and
by observing that both � and ~� in Eq. (23) are of the form

ðHj�0jÞ1=2ðg _�0Þ�1=4 � ½function of ð �p;�Þ�, we can write,
after appropriate changes of variables,
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hhijðk; �Þhijðk0; �Þi

¼ 16

15�2

�ð3Þðkþ k0Þ
k6j�0j3

H4

M4
P

�
�
g _�0

H2

�
3=2½sink�0 � k�0 cosk�0�2

�
Z

�p6d �p
Z

d�0d�00Fð �p;�0; �00Þ2; (25)

where Fð �p;�0; �00Þ in the second line is a dimensionless
function built out of the dimensionless functions appearing
in Eqs. (23), whose integral gives an Oð1Þ result.

The result of this subsection is that the contribution to
the two-point function of the graviton by the nonadiabatic
epoch (ii) has the same form, modulo a logarithmic term,
as the contribution from the adiabatic epoch discussed in
Sec. II A. We conclude that the overall effect of graviton
creation by the scalars� gives a negligible correction to the
standard spectrum of tensors generated by inflation. Let us
next discuss what happens if there are several events of
explosive production of scalars.

C. An application: Tensor modes in trapped inflation

The analysis of Secs. II A and II B has shown that the
spectrum of tensor modes induced by a single event of
production of scalars has the form

P t
� ’ H4

M4
P

ðkj�0j coskj�0j � sinkj�0jÞ2
ð2�Þ3k3j�0j3

�
g _�0

H2

�
3=2

(26)

up to a coefficient of order one. Let us now suppose that
there are several instances of particle production. In par-
ticular, we will assume that particle production happens so
often to lead to trapped inflation [17], i.e., to a slowing
down of the rolling of the inflaton more significant than
that due to Hubble friction.2Since the tensor modes excited
by each burst of particles sum incoherently, the resulting
power spectrum of the tensor will just be the sum of the
individual power spectra. If the bursts happen frequently
enough, summation the various contributions to P t

� is

equivalent to integration over d�0
�

d�
d�0

, where � ¼ �iþ1 �
�i is the distance in field space between two sites of
particle production. We therefore get

P t
trapped ’

Z
d�0

að�0Þ _�0

�

H4

M4
P

� ðkj�0j coskj�0j � sinkj�0jÞ2
ð2�Þ3k3j�0j3

�
�
g _�0

H2

�
3=2

;

(27)

i.e., in an order of magnitude estimate,

P t
trapped ’

_�0

ð2�Þ3H�

H4

M4
P

�
g _�0

H2

�
3=2

; (28)

which shows that the resulting spectrum is scale-invariant.
Let us now connect this result to the parameter space of

trapped inflation. Plugging the ‘‘slow-roll’’ equation of

trapped inflation [17], ðg _�0Þ5=2 ’ ð2�Þ3H�V 0, into the
equation for the tensors, we obtain

P t
trapped ’

HV0

gM4
P

: (29)

This should be compared to the standard amplitude of
gravitational waves P t

standard ’ H2=M2
P, so that

P t
trapped=P

t
standard ’ HV0=gV. In order to proceed further,

we choose a form of the potential. For Vð�Þ ¼ m2�2=2
(the case studied in [17]) P t

trapped=P
t
standard ’ m=gMP. This

is much smaller than unity in the phenomenologically
allowed region of parameter space of [17]. Therefore,
even in the case of several bursts of scalars, the induced
spectrum of tensors is subdominant with respect to the
standard one �H2=M2

P.

III. PRODUCTION VIAVECTORS

We have seen in the previous section that explosive
production of scalar particles does not lead to a significant
production of gravitational waves. This is due to the fact
that, in the Minkowsky limit, energy-momentum and he-
licity conservation forbid a �� ! hij process [22]. It is

therefore natural to ask whether vectors will provide a
more efficient source of gravitational waves. In this section
we will show that this is indeed the case.
We will only focus on the gravitational waves produced

during the period of adiabatic evolution subsequent to the
creation of the vectors. Based on the similarities between
the results of Secs. II A and II B, we expect that the con-
tribution of the nonadiabatic period will at most give an
order one correction to the results presented here.
We consider the gauge-invariant Lagrangian

L ¼ �1
4F��F

�� � ðD��ÞðD��Þ� � Vðj�j2Þ; (30)

whereD� ¼ r� � ieA� is the gauge-covariant derivative.

We will assume that the Higgs field� is a function of time
during inflation, but we will not identify it with the infla-
ton; its role will be discussed towards the end of this
section. Defining c � j�j, it is possible to show [26]
that, as long as c is spatially constant, it is consistent to
choose the Coulomb gauge A0 ¼ 0, r �A ¼ 0, with A
satisfying the equation

A 00ðk; �Þ þ ðk2 þ e2a2ð�Þc 2ð�ÞÞAðk; �Þ ¼ 0; (31)

so when c crosses zero, production of photons occurs
precisely in the same way as described above in the case

2The mechanism leading to trapped inflation is similar to that
responsible for warm inflation [24,25], although in the case of
warm inflation friction is provided by a thermal bath rather than
by nonperturbative particle production.
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of scalars. In particular, the expression of the Bogolyubov
coefficients is calculated the same way as that of
Sec. II A 1. The portion of spatial part of the stress-energy
tensor of A we are interested in is given by Tij ¼ A0

iA
0
j þ

�ikl@
kAl�jmn@

mAn. After promoting the photon to a quan-

tum field Âð�;xÞ, which we decompose on a basis of
helicity vectors e


Â ¼ X
¼


Z d3k

ð2�Þ3=2 ½eðkÞAð�;kÞâðkÞeik�x þ H:c:�;

(32)

we write Eq. (3) as

ĥ ijðkÞ ¼ � 2H2

M2
P

Z
d�0Gkð�; �0Þ�02

Z d3q

ð2�Þ3=2 ��ij
lmðkÞ

� ½Â0
lðq; �0ÞÂ0

mðk� q; �0Þ
� �labqaÂbðq; �0Þ"mcdðkc � qcÞÂdðk� q; �0Þ�:

(33)

Since during the epoch under consideration the vectors are

nonrelativistic, Â0ðk; �Þ ’ !Âðk; �Þ 	 kÂðk; �Þ, we can
neglect the second term in brackets in the above equation.
The two-point function of the graviton, using a derivation
analogous to that for the scalar fields, takes the form

hhijðk; �Þhijðk0; �Þi

¼ �ð3Þðkþ k0Þ
8�3M4

P

Z
d3p

�
1þ ðk � pÞ2

k2p2

��
1þ ½k � ðk� pÞ�2

k2jk� pj2
�

� fj	ðpÞj2j	ðjk� pjÞj2 þ Re½�ðpÞ	�ðpÞ

� 	ðjk� pjÞ��ðjk� pjÞ�g
�Z �

�1
d�0

að�0Þ2 Gkð�; �0Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!pð�0Þ!k�pð�0Þ

q �
2
: (34)

The main difference with respect to the case of the scalar
modes is that the term

ffiffiffiffiffiffiffiffi
!!

p
in the last factor appears in the

numerator rather than in the denominator. Since the quanta
of the gauge field are nonrelativistic, such a term enhances
the amplitude of gravitational waves.

Observing that the approximations of Sec. II A 2 hold
also in the present case, we obtain the following expression
of the power spectrum of the tensors:

P tðkÞ ’ 2

�2

H2

M2
P

�
1þ 4:4� 10�6 H

2

M2
P

�
e _c 0

H2

�
7=2

� jk�0j32F3

�
3

2
;
3

2
;
5

2
;
5

2
;
5

2
;� jk�0j2

4

�
2
�
; (35)

where the dependence on jk�0j is such that the term
associated to the vectors vanishes both at small and a large
jk�0j and is maximized at jk�0j ’ 5, where the second term
in brackets in Eq. (35) corrects the scale-invariant compo-
nent of the tensor spectrum by

�P t

P t
’ 9� 10�5 H

2

M2
P

�
e _c 0

H2

�
7=2

: (36)

The above equation shows that graviton production via

vectors is enhanced by a factor ðg _�0=H
2Þ2 with respect to

the production via scalars described in Sec. II above. If we
replace the vectors by spin-1=2 particles, a similar compu-
tation shows that the enhancement with respect to the

scalar case is by a single power of g _�0=H
2.

In order to estimate the magnitude of the effect of (36),
we must address the question of the origin of the quantity
_c 0. Because of the requirement of gauge invariance, the
potential for�must depend on j�j2 only. This implies that
� ¼ 0 is either a maximum or a minimum of Vð�Þ.
Since during slow-roll the inflaton � must satisfy _� /
V0ð�Þ � 0, � cannot be a slowly rolling inflaton when
the vectors become massless.
It is however possible that � is a scalar with mass m�

(possibly significantly larger than the Hubble parameter),
which is different from the inflaton and is excited by some
sharp phenomenon during inflation. Such a phenomenon
could be a due to a feature in the inflaton potential, a
bending trajectory, event of bubble nucleation, or some
other event of particle production [27,28].
Without committing to any specific model, we assume

that for some reason, at some point during inflation, the

field � starts oscillating with amplitude �� so that _c 0 �
m�

��. We require that the energy in � does not dominate
over the energy stored in the inflaton, so the Universe is
still well described by a de Sitter geometry. This implies

that m2
�
��2=ð6H2M2

PÞ � � � 1. Putting together all these

factors, we obtain

�P t

P t
’ 2� 10�3e7=2�7=4

�
MP

H

�
3=2

; (37)

which can be of order unity or larger.
Note that Eq. (37) gives a (possibly substantial) under-

estimate of the magnitude of the effect, since the field �
can perform several oscillations before dying out in a few
Hubble times, and resonance will increase exponentially
the occupation number for the vectors, leading in turn to an

enhancement by a factor �em�=H of the value of �P t=P t.
We leave to future work a detailed analysis of this effect.
Before concluding this section, we note that in general

the field� will not be coupled to a singleUð1Þ gauge field,
but to some non-Abelian gauge field, which will contain
several Uð1Þ subgroups. If there are N such subgroups, the
value of �P t=P t will be multiplied by N.
We plot in Fig. 1, for illustrative purposes, the spectrum

(35) of tensor modes as a function of the frequency in the
case N ¼ 10, � ¼ 0:2, e ¼ :3, H ¼ 6:7� 1013 GeV
(which corresponds to a tensor to scalar ratio r ¼ 0:2 at
the CMB scales).
The analysis of this section shows that reasonable values

of � andN can lead to a feature whose amplitude isOð102Þ
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times larger than the tensor background. While this is not
negligible, it is not sufficient to cover the gap of 4 orders of
magnitude between the standard tensor amplitude and the
sensitivity of a LISA-like experiment or the 6 orders of
magnitude needed to reach the projected sensitivity of
Advanced LIGO. As mentioned above, however, it is pos-
sible that resonant effects increase exponentially the occu-
pation number of the vectors and therefore the amplitude of
the feature in the tensor modes.

IV. GRAVITATIONALWAVES PRODUCED
DURING AXION INFLATION VIA

HELICAL PHOTONS

In this final section we study a scenario where a pseu-
doscalar inflaton � interacts with a gauge field F��

through the coupling

L �;F��
¼ � �

4f
F��

~F��; (38)

where f is a constant with the dimension of mass. The
rolling inflaton excites, through this coupling, quanta of the
electromagnetic field, which in their turn source the tensor
components of the metric.

In this section we will first derive the amplitude and the
properties of the spectrum of tensor modes generated by
this mechanism. We will then study the prospects of direct
detection of such modes, focusing on the specific case
where Vð�Þ / �2.

A. The amplitude of the tensor modes

The production of tensor modes by a pseudoscalar in-
flaton through gauge field production was discussed in [18]
and, in greater detail, in [20], where it was pointed out that
these modes are chiral. We sketch here the derivation of the
spectrum of gravitational waves generated by this mecha-
nism, referring the reader to [20] for a thorough discussion.

In terms of the vector potential Að�;xÞ, defined by
a2B ¼ r�A, a2E ¼ �A0 and neglecting the spatial gra-
dients of �, the equations for the gauge field subject to the
coupling (38) read

�
@2

@�2
�r2 ��0

f
r�

�
A ¼ 0; r �A ¼ 0; (39)

where the prime denotes differentiation with respect to the
conformal time �. We promote the classical fieldAð�;xÞ to
an operator Âð�;xÞ, which we decompose on a basis of
helicity vectors e
 as in Eq. (32).
The functions A
 must satisfy the equations A00
 þ ðk2 �

k�0=fÞA
 ¼ 0. Since we are working on an inflating
background, we assume the de Sitter metric að�Þ ’
�1=ðH�Þ and _� ¼ �0=a ¼ ffiffiffiffiffiffi

2�
p

HMP ’ constant. Hence,
the equation for A
 reads

d2A
ð�; kÞ
d�2

þ
�
k2 
 2k

�

�

�
A
ð�; kÞ ¼ 0; (40)

where we have defined

� �
_�

2fH
¼

ffiffiffi
�

2

r
MP

f
: (41)

Wewill be interested in the case � * Oð1Þ, and we assume,
without loss of generality, that � > 0. Then A� stays
essentially in vacuum, and we will ignore it from now
on. However, the mode function Aþ develops an instability,
and it peaks at momenta k for which ð8�Þ�1 � jk�j � 2�,
where it is well approximated by

Aþð�; kÞ ’ 1ffiffiffiffiffi
2k

p
�

k

2�aH

�
1=4

e���2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2�k=aH

p
: (42)

The ‘‘wrong’’ sign of the term proportional to � in Eq. (40)
induces an exponential amplification / e�� of the mode
function for the photon Aþ at subhorizon scales. Such a
large occupation number for the vector field is in its turn a
strong source of gravitational waves. Another inflaton-
gauge field interaction term that leads to amplification of
gauge field modes is the kinetic coupling fð�ÞF��F

��.

Such coupling, however, generates only a moderate occu-
pation number of superhorizon photons [29] and, as a
consequence, is not expected to induce an important pro-
duction of tensors.
We can now study the production of gravitational waves

induced by the helical photons. To do so, we plug the
expression (42) into Eq. (33), and we project onto its
left- and right-handed components. Of course, one should
also take into account the parity-symmetric component of
gravitons that is generated by the usual amplification of
vacuum fluctuations in de Sitter space. This is uncorrelated
from those discussed above so that the overall power
spectra of the helicity-
 components of the graviton can
be written for � * 2 (as we will see, this is the regime we
are interested in) as

10 5 10 4 0.001 0.01 0.1 1
f Hz

10 15

10 13

10 11

GW h2

FIG. 1 (color online). Amplitude of gravitational waves as a
function of frequency in the case N ¼ 10, � ¼ 0:2, e ¼ 0:3,
H ¼ 6:7� 1013 GeV. The value of �0 is chosen in such a way
to have a feature localized at �10�3 Hz. The star denotes the
sensitivity of a space-based laser interferometer similar to LISA.
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P t;þ ¼ H2

�2M2
P

�
1þ 8:6� 10�7 H

2

M2
P

e4��

�6

�
;

P t;� ¼ H2

�2M2
P

�
1þ 1:8� 10�9 H

2

M2
P

e4��

�6

�
: (43)

We thus see that, as a consequence of the violation of
parity, the amplitude of the spectra of the left- and the
right-handed tensor modes generated by the gauge field
differs by a factor �103. While the parity violating com-
ponent could in principle be exponentially large, it was
pointed out in [18] that the gauge field also contributes,
through its coupling with the inflaton, to the spectrum of
scalar perturbations. This contribution is highly non-
Gaussian, and its amplitude is therefore strongly con-
strained by the nonobservation of non-Gaussianities in
the cosmic microwave background and the large scale
structure bispectra. It turns out that the parameter �,
when computed at CMB and at large scale structure
(LSS) scales, is constrained to be smaller than about 2.6.
This implies that the �-dependent contribution to the tensor
spectra (43), when computed at cosmological scales, is
negligibly small.

Now, the main observation of this section is that the

quantity � ¼ _�=ð2fHÞ is time-dependent and increases as
the inflaton rolls down its potential. The condition � & 2:6
originates from constraints from CMB and LSS data.
Therefore, � had to be smaller than 2.6 when LSS scales
exited the horizon. However, � can be much larger at
later times when scales relevant to gravitational wave
interferometers left the horizon. Since there are some 40
e-foldings of inflation between the time LSS scales left the
horizon and the time LIGO scales left the horizon [8], it is
necessary to consider the entire shape of the inflationary
potential to know how � evolves. In the next subsection we
will study in detail, as an example, the parameter space for
this scenario in the case of a quadratic inflationary poten-
tial. As we will see, there exists a portion of parameter
space where Advanced LIGO will be able to observe
gravitational waves even if the current bound from non-
Gaussianities is satisfied.

B. Gravitational waves from natural chaotic
inflation observable by Advanced LIGO

In this subsection we study the power spectrum of the
gravitational waves (43) in the case where the inflaton
potential takes the chaotic form Vð�Þ ¼ �2�2=2. The
model of natural chaotic inflation of [30] (see also [31])
leads precisely to this situation: a pseudoscalar inflaton
with a quadratic potential. Other forms of the potential
for a pseudoscalar inflaton were considered in the models
of inflation from axion monodromy [32–34], and we expect
that the predictions from these models will not differ
significantly from those presented here.

In the case of the chaotic potential Vð�Þ ¼ �2�2=2, the
value of � during inflation is related to the number N of

e-foldings before the end of inflation through �ðN Þ ¼
2

ffiffiffiffiffiffiffi
N

p
MP. The parameter � can be determined by Cosmic

Background Explorer (COBE) normalization. Denoting by
N C the number of e-foldings corresponding to COBE
scales (47 & N C & 62 depending on the details of reheat-
ing [35,36]), we have

�2 ¼ 6�2P �

N 2
C

M2
P; (44)

where P � ’ 2:5� 10�9.

Using the slow-roll parameter � ¼ 1=ð2N Þ, we can

write � ¼ ffiffiffiffiffiffiffiffi
�=2

p
MP=f as �ðN Þ ¼ �C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N C=N

p
, where

�C is the value of � computed N C e-foldings before the
end of inflation. We require �C & 2:6 in order not to
generate non-Gaussianities in the CMB which are too
large. Note that a comparable constraint on non-
Gaussianities originates from the large scale structures at
wavenumbers k ’ 0:1 Mpc�1 (see [37] for a recent re-
view), which correspond to scales that left the horizon
about N C � 5 e-foldings before the end of inflation.
Inserting the above expressions into Eq. (43), we obtain

the following expression of the energy density in gravita-
tional waves as a function of N

�GWh
2 ¼ 6� 10�14 N

N 2
C

�
2
641þ 4:2� 10�14

� N 4

N 5
C

e4��C
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N C=N

p

�6
C

3
75: (45)

Since gravitational waves at a frequency f correspond to
scales that exited the horizon about 35þ logðf=0:1 HzÞ
e-foldings after the COBE scales, we can plot �GWh

2 as a
function of f for given N C and �C by setting
N ¼ N C � 35� logðf=0:1 HzÞ in Eq. (45). We plot in
Fig. 2 the spectrum of gravitational waves for a represen-
tative set of parameters.

10 16 10 12 10 8 10 4 1 104
f Hz

10 14

10 12

10 10

10 8

GW h2

FIG. 2 (color online). Amplitude of gravitational waves as a
function of frequency in the case N c ¼ 55, �C ¼ 2:1. The star
denotes the projected sensitivity of Advanced LIGO.
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Constraints and detectability

The parameter space of this system is constrained by the
following requirements: first, the backreaction of the elec-
tromagnetic modes on the inflating background must be
negligible; second, the non-Gaussianities induced by the
same electromagnetic modes through the mechanism dis-
cussed in [18] must be within the limits imposed both by
CMB and by LSS observations.

Backreaction on the inflating background is negligible
for [38] e2��=�3 � 700V 0ð�Þ2=H6, i.e.,

�
N
N C

�
7=2 e2��C

ffiffiffiffiffiffiffiffiffiffiffiffiffi
N C=N

p

�3
C

� 6� 1010: (46)

This implies that, if we want backreaction to be negligible
all the way to a frequency f, this condition must be
satisfied with N ¼ N C � 35� logðf=0:1 HzÞ.

As for non-Gaussianities, the bound of [18], when eval-
uated at COBE scales, gives the constraint �C < 2:6.
Comparable bounds also apply to non-Gaussianities eval-
uated at large scale structure scales that left the horizon
some 5 e-foldings after COBE scales. We therefore impose
�ðN C � 5Þ< 2:6.

We can now discuss the detectability of the tensor modes
(43) by gravitational interferometers. To fix ideas, we will
focus on Advanced LIGO, which will start taking data in
the next few years. Advanced LIGO is expected to be able
to detect �GWh

2 ¼ 10�9 at a frequency of about 100 Hz.
The white area in Fig. 3 corresponds to the region of
parameter space where primordial tensor modes might be
detected by Advanced LIGO without contradicting the
constraints described above. Detection would be possible
for values of �C of the order of 2, corresponding to
f ’ 1017 GeV. The shaded area in the upper-left corner
of the figure corresponds to a region of the parameter space
where backreaction of the electromagnetic modes on the
inflating background cannot be neglected, and an analysis
similar to that of [38] is needed. While such an analysis is
beyond the scope of the present work, it is worth stressing
that this region cannot be excluded by existing data and
might lead to detectable tensor modes.

An instrument such as the Einstein Telescope [7] would
be a factor �102 more sensitive in energy than Advanced
LIGO while working at the same frequencies. The thin
dotted line in Fig. 3 delimits the region of parameter space
that would lead to a detection of tensors by such an
instrument.

Space-based interferometers like LISA, which are sen-
sitive to much lower frequencies, will not be able to detect
the tensors (43). Indeed, LISA scales are too close to
cosmological scales and the evolution of � during inflation
is not sufficient to overcome the constraints from non-
Gaussianities.

We also note that the gravitational waves produced this
way will be chiral [20] and that [39] discussed the pros-
pects of a direct detection of a background of chiral sto-

chastic gravitational waves. These gravitational waves will
also have a large [11], parity violating [13,14] three-point
function. Finally, it is nice to speculate how a detection of
chiral gravitational waves such as those described by (43)
could correlate with the detection of non-Gaussianities
such as those discussed by [18] at cosmological scales:
observation of both the non-Gaussian signal in the CMB
and of gravitational waves at LIGO scales would provide a
test of inflation at very different times.
To summarize, we have shown that particle production

during inflation can lead to a feature in the spectrum of
tensor modes. If such a feature happens at the right wave-
lengths, the tensors might be directly detectable by gravi-
tational interferometers. While production of scalar quanta
during inflation generates only a modest amount gravita-
tional waves, vectors provide a much more efficient source
of tensors. A single event of explosive production of vec-
tors can lead to a significant feature, which is however not
large enough to be detectable without an experiment such
as BBO or DECIGO. It is however possible that resonant
production of vectors, associated to an oscillating Higgs
field during inflation, leads to a significant enhancement of
particle and tensor production during inflation. In this case,
the amplitude of the feature in the tensor spectrum might
be large enough to be detectable in the not-too-far future.
We leave the detailed study of this phenomenon to future
work. Finally, the analysis of Sec. IV shows that, if the
inflaton is an axion coupled to a Uð1Þ gauge field, it can

45 50 55 60 65
Nc

1.5

2.0

2.5

FIG. 3 (color online). Values of �C corresponding to detectable
tensor modes by Advanced LIGO, as a function of the total
number of e-foldings of inflation from the time COBE scales left
the horizon. The shaded area on the top left corner corresponds
to the region where backreaction cannot be neglected and our
analysis cannot be trusted. The shaded area on the top part of the
plot corresponds to the region where LSS non-Gaussianities are
too large to be consistent with observations. The shaded area at
the bottom corresponds to the region where the amplitude of
tensor modes is below the Advanced LIGO detection threshold.
Finally, the thinner dotted line corresponds to the lower limit of
portion of parameter space accessible to an instrument such as
the Einstein Telescope.
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lead to an amplification of gravitational waves that would
be directly detectable by Advanced LIGO and/or
Advanced Virgo in the next few years.
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