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We provide analytic solutions for the power spectrum and bispectrum of curvature fluctuations

produced by a step feature in the inflaton potential, valid in the limit that the step is short and sharp.

In this limit, the bispectrum is strongly scale dependent and its effective nonlinearity attains a large

oscillatory amplitude. The perturbations to the curvature power spectrum, on the other hand, remain a

small component on top of the usual spectrum of fluctuations generated by slow roll. We utilize our

analytic solutions to assess the observability of the predicted non-Gaussian signatures and show that, if

present, only very sharp steps on scales larger than �2 Gpc are likely to be able to be detected by

Planck. Such features are not only consistent with WMAP7 data, but can also improve its likelihood by

2� lnL � 12 for two extra parameters, the step location and height. If this improvement were due to a

slow roll violating step as considered here, a bispectrum or corresponding polarization power spectrum

detection would provide definitive checks as to its primordial origin.
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I. INTRODUCTION

In this paper we employ the generalized slow roll (GSR)
approach [1–4] to consider the bispectrum of primordial
fluctuations generated by a transient violation of slow roll
due to a step feature in the inflaton potential. While earlier
works in the field have considered the non-Gaussianity
from these models, here we explore a hitherto unexplored
region of the parameter space where the step in the poten-
tial becomes sharp. This region of parameter space is near
the so-called ‘‘decoupling’’ limit where the perturbations
in the power spectrum due to the step remain small while
higher order N-point functions are parametrically en-
hanced [5,6].

Features in the inflationary potential have a long history
[7]. They came into vogue as a possible explanation for the
apparent low multipole glitch at ‘� 20–40 in the angular
spectrum of the cosmic microwave background (CMB)
radiation [8–11]. If such a feature arises as a result of a
glitch in the primordial potential then corresponding fea-
tures should arise in the electric-type polarization pattern
of the CMB [11]. More generally, failure to detect consis-
tent patterns in the polarization may even be considered
evidence against a single adiabatic degree of freedom as
the source of the primordial perturbations [4].

Beyond two-point statistics such as the angular tempera-
ture and polarization power spectra, it is well known that
such a glitch in the potential leads to higher N-point
functions which are enhanced relative to those generated
by the otherwise smooth background [12–16]. However, as
was shown in our earlier work [17], the bispectrum, or
three-point function produced by a step feature that best fits

the glitch in the WMAP data, [4,11] falls short of detect-
ability by a very wide margin.
In this work we investigate the space of parameters that

corresponds to the step becoming short and sharp. As we
will see, in this limit, the perturbations in the power
spectrum remain small while the reduced bispectrum or
effective nonlinearity fNLðkÞ becomes large. Despite this
seeming largeness, the bispectrum remains difficult to
detect due to its oscillatory form. Nonetheless, for a suffi-
ciently sharp step at sufficiently large scales, an observably
large non-Gaussianity is compatible with current power
spectrum constraints.
This paper is organized as follows: In Sec. II we derive

approximate solutions to the evolution of the inflaton on an
inflationary potential that undergoes a sharp downward
step. These solutions yield analytic expressions for the
perturbation to the curvature power spectrum in Sec. III.
In Sec. IV we review the formalism used to calculate the
bispectrum from which we obtain approximate analytic
solutions. The constraints that the WMAP 7 year power
spectrum data place on the sharp-step region of parameter
space in Sec. V inform the prospects for the detection of the
bispectrum in a cosmic variance limited CMB experiment
in Sec. VI. We summarize our findings in Sec. VII.
Some related but separate studies are presented in the

Appendixes. In Appendix A, we investigate the real
space analogs of the power spectrum and bispectrum
of curvature fluctuations generated by a sharp-step feature.
In Appendix B, we calculate the leading order slow
roll corrections to our analytic solutions. Finally in
Appendix C, we demonstrate that our analytic solutions
are approximately separable.
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Throughout the paper we work in units where the re-

duced Planck mass MPl ¼ ð8�GÞ�1=2 ¼ 1 as well as ℏ ¼
c ¼ 1.

II. BACKGROUND SOLUTION

We consider a homogeneous scalar field minimally
coupled to gravity with a potential of the form

Vð�Þ ¼ V0ð�Þ
�
1þ cF

�
�f ��

d

��
; (1)

where the potential V0 supports slow roll inflation in the
limit where c ! 0, and FðxÞ is a function which transitions
from �1 to þ1 as its argument passes through x ¼ 0 from
above with a characteristic width �x ¼ 1. Thus the poten-
tial characterizes a step of height 2c and half-width d.
When an explicit choice is required, we will take

FðxÞ ¼ � tanhðxÞ (2)

as an example in the following sections.
The scalar field obeys the usual equation of motion on

the background

€�þ 3H _�þ dV

d�
¼ 0; (3)

where H ¼ _a=a is the Hubble parameter, and an overdot
represents a derivative with respect to cosmic time.

In the limit in which the step is short, c � 1, its presence
in the potential will have only a small effect on the evolu-
tion of the inflaton. Specifically, as long as the change in
the potential as the field rolls across the step is small
compared with the kinetic energy of the background field,
then we can think of the effect of the step as a perturbation
on the evolution of � on the potential V0. As the field
crosses the step a potential energy �V � cV is converted
into kinetic energy. Comparing this with the kinetic energy
of the inflaton rolling on the background we find

2�V
_�2

� 4cV
_�2

� 6
c

�H
; (4)

where we have introduced the slow roll parameter

�H � � _H

H2
¼

_�2

2H2
: (5)

Whenever

c � �H=6; (6)

we can treat the effect of the step as a small perturbation on
the background described by V0.

With this limit in mind, we look to solve Eq. (3) iter-
atively as follows: taking 6c � �H, we split the field into a
piece zeroth order in c and pieces which we take to be
higher order in c

� ¼ �0 þ�1 þ � � � ; �H ¼ �0 þ �1 þ � � � : (7)

In this expression, �0 characterizes the behavior of the
field in the absence of the step, i.e. on the potential V0,
while�1 is the perturbation which is taken to be linear in c,
and � � � denotes terms higher order in an expansion in

C � 6c

�0
: (8)

While the condition in Eq. (6) requires that _�1 remains
small, it places no restriction on higher derivatives. In
particular, we will see that by making the step sharp we
can make the acceleration and jerk of the field �1 arbi-
trarily large.
It proves useful to write the equation of motion for the

perturbation, �1, using the value of the background field
�0 as the independent variable. The condition 6c � �0
requires that _�0 � 0 and�0ðtÞ evolve monotonically in the
vicinity of the step which ensures that�0 is a suitable time
variable. Given that on the background potential V0, the
slow roll approximation yields �0 � ðV0=VÞ2=2 and as-
suming that �0 � const (and so not � jV 00=Vj), we obtain
the equation of motion for �1 as

d

d�0

�
e�ð3�0=

ffiffiffiffiffiffi
2�0

p
Þ d�1

d�0

�

¼ � C
4

� ffiffiffiffiffiffiffiffi
2�0

p
2

Fþ dF

d�0

�
e�ð3�0=

ffiffiffiffiffiffi
2�0

p
Þ; (9)

where the subscript 0 denotes quantities to be evaluated on
the unperturbed (c ¼ 0) background and we have dropped
some terms that are suppressed by slow roll parameters
evaluated on the unperturbed background.
For small sharp steps, the dF=d�0 term in Eq. (9)

dominates and

e�ð3�0=
ffiffiffiffiffiffi
2�0

p
Þ d�1

d�0

� � C
4

Z
d�0

dF

d�0

e�ð3�0=
ffiffiffiffiffiffi
2�0

p
Þ þ const:

(10)

The exponential in the integrand is slowly varying across
the width of the step and may be evaluated at �f and taken

out of the integral. Furthermore the integration constant is
set by the boundary condition that d�1=d�0 ¼ 0 before
crossing the step and so

d�1

d�0

� C
4
e�ð3=

ffiffiffiffiffiffi
2�0

p
Þð�f��0Þ

�
1� F

�
�f ��0

d

��
: (11)

In principle, we could further integrate to find�1; however,
this is not necessary for this work.
The final step is to reference this solution to conformal

time rather than the background field. Since the perturba-
tion �1 is only important for a short period of time, the
variation of the unperturbed (c ¼ 0) slow roll parameters is
negligible. In this approximation, the evolution of the
background in conformal time is very simple
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d�0

d ln�
¼ � ffiffiffiffiffiffiffiffi

2�0
p � const;

�0 ��f ¼ � ffiffiffiffiffiffiffiffi
2�0

p
lnð�=�fÞ;

(12)

where the sign should be chosen depending on the direc-
tion the field is rolling—i.e. whether one is in a large or
small field inflationary model and one is rolling toward or
away from the origin. In this work, we have large field
inflationary models in mind, e.g. V0 ¼ 1

2m
2�2 and will

take the positive sign.
With these relations, we can explicitly solve for the first

order changes to the slow roll parameters as a function of
conformal time. The slow roll parameters are defined by
Eq. (5) and

�H ¼ �
€�
_�H

; �2 ¼ �
:::

_�H2
: (13)

Using the results above, we divide the slow roll parameters
into a background part and a part that is linear in the
perturbation, �H ¼ �0 þ �1 and �2 ¼ �2;0 þ �2;1,

�1 ¼ C
2
�0

�
�

�f

�
3
�
1� F

�
�

ffiffiffiffiffiffiffiffi
2�0

p
d

ln

�
�

�f

���
;

�1 ¼ �01
2�0

; �2;1 ¼ �0
1:

(14)

Here and below primes denote derivatives with respect to
ln�. Notice that �1 remains a tiny correction to the already
small �0, of order OðCÞ, as expected. On the other hand, in
principle �1 and �2;1 can be arbitrarily large due to the

presence of the 1=d factors from the derivatives. In what
follows we will see that these give rise to a large and
strongly scale dependent bispectrum.

In deriving these results, we have assumed that the
perturbation series converges. At first, it may seem that
this requirement would impose a restriction on the width of
the step, d, due to successively expanding the dV=d� term
in Eq. (3) at each order in perturbation theory. However,
note that by iteration, these terms are always multiplied by
the previous order in the perturbation series

d

d�0

�
e�ð3�0=

ffiffiffiffiffiffi
2�0

p
Þ d�n

d�0

�
¼ � C

4

dnF

d�n
0

�n�1e
�ð3�0=

ffiffiffiffiffiffi
2�0

p
Þ:

(15)

Around the step, the derivatives of F carry factors of d�n

for a ��0 interval of order d. Thus in this neighborhood,
the integrals over�0 give contributions of order d,�1 is of
order ðCdÞ, and �n is of order ðCdÞn. With these relations
d�n=d�0 is order Cn there and is independent of d as
d ! 0. The corrections to the slow roll parameter are
then also strongly convergent as long as C � 1.

Another way of seeing why the series is convergent as
we take d ! 0 is to realize that these perturbative correc-
tions amount to small shifts in when the inflaton crosses the

sharp feature and hence unobservable changes in the tem-
poral location of features in the slow roll parameters.
In fact for the purpose of computing the shapes of these

features, we can always define the position of the step in
some arbitrary choice of the zero point in ln� or e-folds to
be the same as that of the background to all orders. The
background has an approximate time translation symmetry
(broken only weakly by _H � 0) and so there is no dynami-
cal consequence to this choice. As d ! 0 the step becomes
sharp and changes to the potential are no longer well
approximated by a Taylor series for finite perturbations
in field value. But making use of the approximate time
translation invariance of the background, we have defined
these away. It then follows that the linear expansion in C
remains valid in the limit d ! 0. We shall see in the next
sections that nonlinear scalings of this type can be used to
extend the analytic solutions to the power spectrum and
bispectrum out to C� 1.

III. CURVATURE POWER SPECTRUM

In Sec. III A, we use the background solution of the last
section to derive an analytic form for the curvature power
spectrum of the step potential. We test this analytic form
against numerical calculations in Sec. III B and show that it
can be extended to order unity features with a nonlinear
rescaling of parameters.

A. Analytic power spectrum solution

In the generalized slow roll approximation, the power
spectrum of curvature fluctuations �2

R ¼ k3PR=2�2 is

given to leading order in the source function by [2]

ln�2
RðkÞ ¼ Gðln��Þ þ

Z 1

��

d�

�
Wðk�ÞG0ðln�Þ; (16)

where the source function

Gðln�Þ ¼ �2 lnfþ 2
3ðlnfÞ0; (17)

with

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8�2�H

p
H

ðaH�Þ: (18)

Recall that primes denote derivatives with respect to ln�.
To leading order in the slow roll approximation, note that
f�2 is simply the power spectrum. The window function,
WðxÞ, is given by

WðxÞ ¼ 3 sinð2xÞ
2x3

� 3 cosð2xÞ
x2

� 3 sinð2xÞ
2x

: (19)

To linear order in the step height c or kinetic energy
perturbation C, the power spectrum source is given byG0 ¼
G0

0 þG0
1 with

G0
1ðln�Þ ¼ 2

3ð6�1 � 3�1 þ �2;1Þ; (20)
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where G0
0ðln�Þ is the source function in the absence of the

step. Compared to �1 and �2;1, �1 is negligible and

G0
1 � � C

6

��
�

�f

�
3
F0
�0
: (21)

We can now evaluate the power spectrum. Inserting
Eq. (21) into Eq. (16), integrating by parts and dropping
the negligible boundary terms, we obtain

ln�2
RðkÞ ¼ ln�2

R;0ðkÞ þ
C
6

Z 1

��

d�

�
W 0ðk�Þ

�
�

�f

�
3
F0:

(22)

In the d ! 0 limit, F0 becomes 2 times a delta function
at ln�f, given our convention that the step height is 2c and

so in this limit

lim
d!0

ln�2
RðkÞ ¼ ln�2

R;0ðkÞ þ
C
3
W 0ðk�fÞ: (23)

Notice that since W 0ðxÞ ¼ dW=d lnx,

W 0ðxÞ ¼
�
�3þ 9

x2

�
cos2xþ

�
15� 9

x2

�
sin2x

2x
; (24)

and in this limit there are oscillations of amplitude C in the
power spectrum out to k ! 1. This behavior is reminis-
cent of the Fourier transform of a function with a sharp
feature in real space. In Appendix A, we shall see that this
intuition is borne out by an analysis of the real space
correlation function and that the high k oscillations corre-
spond to a feature at r ¼ 2�f.

As we move away from the d ! 0 limit, the function F0
has finite width of order ��=�f � d=

ffiffiffiffiffi
�0

p
, whereas the

oscillatory features in W 0 are of order ��� 1=k.
Therefore the delta function approximation holds for
k�f � ffiffiffiffiffi

�0
p

=d. For larger values, we expect the integral

to be smaller due to integration over the oscillations inW 0.
In other words, the d ! 0 results should be multiplied by
some damping factor that depends on k�fd=

ffiffiffiffiffi
�0

p
.

In order to explicitly evaluate this damping function, we
now assume the form for F given in Eq. (2). The required
integrals then take the form

I ¼
Z 1

��
d ln�fðk�Þ sec h2

� ffiffiffiffiffiffiffiffi
2�0

p
d

ln

�
�f

�

��
; (25)

where fðk�Þ is a polynomial times a sine or cosine and we
take �� to be a time well after the inflaton has crossed the
feature. In the limit that d ! 0, the polynomial varies
slowly while sech2 is nonzero, and consequently we can
replace it by its value when sech2 is peaked, namely,
ðk�Þn ! ðk�fÞn. We are then left to evaluate integrals

such as

I ¼
Z 1

��
d ln� sinð2k�Þsech2

� ffiffiffiffiffiffiffiffi
2�0

p
d

ln

�
�f

�

��
; (26)

as well as the same thing with sine replaced by cosine.
Working in the limit �� ! 0 and changing variable to y ¼
�ð ffiffiffiffiffiffiffiffi

2�0
p

=dÞ lnð�=�fÞ, the integral can be written

I ¼ dffiffiffiffiffiffiffiffi
2�0

p
Z 1

�1
dy sin

�
2k�f exp

�
� dffiffiffiffiffiffiffiffi

2�0
p y

��
sech2y:

(27)

The integrand above only has support for y 2 ð�1; 1Þ and,
in the limit d ! 0, the phase of the sine varies slowly, and
thus we can expand,

I � dffiffiffiffiffiffiffiffi
2�0

p
Z 1

�1
dy sin

�
2k�f

�
1� dffiffiffiffiffiffiffiffi

2�0
p y

��
sech2y: (28)

The phase error of the expression in brackets is
Oðk�fðyd=

ffiffiffiffiffiffiffiffi
2�0

p Þ2Þ and, given the support, the approxima-

tion is valid for k�f � 2��0=d
2. But, since d=

ffiffiffiffiffiffiffiffi
2�0

p � 1,

this only breaks down for values of k�f that have many

oscillations in the region (� 1, 1) and are hence far into the
region where the integral is already negligible. The integral
in Eq. (28) can then be performed by integrating around the
square contour in the complex plane, with vertices at ðR; 0Þ,
ðR; i�Þ, ð�R; i�Þ, and ð�R; 0Þ and taking the limit R ! 1,
obtaining

I � 2
dffiffiffiffiffiffiffiffi
2�0

p D
�
k�f

xd

�
sinð2k�fÞ; (29)

and similarly for the terms with cosð2k�fÞ. Here

xd ¼
ffiffiffiffiffiffiffiffi
2�0

p
�d

(30)

determines the value of k�f at which damping starts to

become important and

D ðyÞ ¼ y

sinhy
(31)

is the damping envelope for the tanh step profile.
Generically then, the power spectrum takes the form

ln�2
RðkÞ ¼ ln�2

R;0ðkÞ þ
C
3
D
�
k�f

xd

�
W 0ðk�fÞ: (32)

Here, the oscillating window function W 0 is modulated by
the decaying envelope D which is set by the details of the
step. As x ! 0, W 0ðxÞ ! 0, and no spurious superhorizon
contributions during inflation are generated. Interestingly,
the amplitude of the perturbation is independent of the
width of the step, while the range (in k space) in which
the perturbation persists is independent of the height of the
step. This analytic solution was derived in a different way
by Stewart [18] who also noted that different functions F
simply change the damping envelope. Similar conclusions
were also reached in connection with steps arising from
features due to duality cascades in brane inflation [19]. In

ADSHEAD et al. PHYSICAL REVIEW D 85, 023531 (2012)

023531-4



Appendix A, we address the paradox that even if the
feature scale �f is greater than the current horizon, the

power spectrum can retain oscillations to arbitrarily high k.

B. Numerical comparison and nonlinear scaling

In Figs. 1–3, we compare this approximation to the exact
solution. We choose a model with V0 ¼ m2�2=2, and show
curves for d ¼ 0:01 in Fig. 1 and d ¼ 0:001 in Fig. 2, to
illustrate the damping behavior. We summarize the other
parameters used in Table I.

For c ¼ 10�5 � �0=6 (see Figs. 1 and 2), the agreement
is excellent both in the amplitude and phase of the results.
With c ¼ 10�5 the inflaton crosses�f at� ¼ 1454:6 Mpc,

which agrees to 0.1% with �f ¼ 1456:1 Mpc, defined as

the epoch when the inflaton crosses the feature for no step
c ¼ 0. In the lower panels of Figs. 1 and 2 we plot the
difference between our analytic approximation in Eq. (32)
and a numerical evaluation of the spectrum.The error on our
approximation here is at the level of 5%, and is contained in
a component that is out of phase by �=2 with our approxi-
mation. As we point out in Appendix B, this error can be
attributed to slow roll corrections to the mode functions
which are not captured by our leading order approximation
at Eq. (16). Furthermore, the spectra also disagree on the
percent level on scales far from the k� 1=�f. This

disagreement is due to our analytic approximation of
Eq. (16) by Eq. (32) and can be corrected in a straightfor-
ward manner by including subleading terms in the power
spectrum source, G0, at Eq. (21).

FIG. 1 (color online). Initial curvature power spectrum eval-
uated numerically (black solid curves) compared with using the
approximation in Eq. (32) (dashed red curves) for a small
amplitude step c ¼ 10�5 � �0=6 (or C � 1), where the ap-
proximation is expected to work, and a step width, d ¼ 10�2,
or xd � 4:3. The lower panel shows the difference between the
two curves, numerical minus analytic. The remaining parameters
used in both models are shown in Table I.

FIG. 2 (color online). Same as Fig. 1 but using a smaller value
of the step width. Here we take d ¼ 10�3, or xd � 43.

FIG. 3 (color online). Initial curvature power spectrum eval-
uated numerically (solid black curves) compared with the ap-
proximation in Eq. (32) (dashed red curves) for a large amplitude
c ¼ �0=6 (or C0 ¼ 1, C ¼ 2=3), where the linear expansion is
violated by order unity terms. Using the leading order expres-
sions for the step location, oscillation amplitude, and damping
�f, C ¼ C0, and xd (upper panel) leads to phase and amplitude

errors that are largely corrected by nonlinearly rescaling these
parameters using Eqs. (33) and (35) (lower panel).
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For c ¼ �0=6 (see Fig. 3, upper panel), we see both an
error in the amplitude, especially at the first few oscilla-
tions, as well as a difference in phase. As discussed in the
previous section, the phase error simply represents a dif-
ference between when the inflaton crosses the feature at�f

relative to the c ¼ 0 model. Here the inflaton crosses the
feature at � ¼ 1271:7 Mpc. If we instead define �f in the

analytic expression Eq. (32) to be

�f � �ð�fÞ; (33)

we eliminate the phase error. We can also substantially
improve the fit by rescaling of the value of �0 to include the
first order perturbation as the field crosses the step,

�Hð�fÞ � �0 þ 3c: (34)

Note that the first order expression suffices since its accu-
racy is guaranteed by energy conservation so long as
c � 1. In particular, we can define the nonlinear amplitude
and damping as

C � 6c

�0 þ 3c
; xd �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�0 þ 6c

p
�d

: (35)

We demonstrate these nonlinear corrections with the
general form of Eq. (32) in the lower panel of Fig. 3. The

parameter C in the lower panel is related to the original
linearized version C0 ¼ 6c=�0 in the upper panel by

C ¼ C0
1þ C0=2

: (36)

We employ these definitions of �f, C, and xd from this

point forward. In Table II, we compile a guide to the step
parameter notation used in the rest of this paper.

IV. CURVATURE BISPECTRUM

In Sec. IVA we briefly describe the method we use to
calculate the bispectrum. For more detail, we refer the
reader to [17,20,21]. We use this method to derive an
analytic approximation in Sec. IVB. In Sec. IVC, we
discuss limiting cases and consistency checks for the ap-
proximation and in Sec. IVD we compare it with direct
numerical computation of the exact solution.

A. The action and the in-in formalism

In this paper to move beyond the linear equations of
motion, we work in comoving gauge in which the time
slicing is chosen so that the inflaton is unperturbed. In this
gauge the scalar degree of freedom is the comoving curva-
ture perturbation, while the remaining physical metric
degrees of freedom are the two polarizations of the trans-
verse traceless tensor perturbation. Tensor perturbations
are not enhanced due to the presence of the step [22] and
thus we neglect them here. We make use of the interaction
picture, where we choose our basis so that the fields
diagonalize the Hamiltonian arising from the quadratic
action,

S2 ¼ 1

2

Z
dtd3xa32�H

�
_R2 � ð@RÞ2

a2

�
: (37)

In this picture the Hamiltonian arising from cubic and
higher order terms in the Lagrangian, which we shall refer
to as the interaction Hamiltonian,HI, evolves the states. At
leading order, the tree-level bispectrum at time t� is then
given by [20]

hR̂k1
ðt�ÞR̂k2

ðt�ÞR̂k3
ðt�Þi

¼2Re

�
�i

Z t�

�1
dthR̂k1

ðt�ÞR̂k2
ðt�ÞR̂k3

ðt�ÞHIðtÞi
�
: (38)

At leading order in fluctuations, the interaction
Hamiltonian in Eq. (38) arises from the cubic action. In
this work we are interested in potentials in which the
inflaton undergoes a sharp transient acceleration but infla-
tion is not interrupted. Consequently, �H � 1 everywhere
and, to a very good approximation, the cubic action is
given by

TABLE I. Fiducial model parameters for a step at �f on a
potential V0 ¼ m2�2=2 with physical baryon and cold dark
matter densities �bh

2, �ch
2, 100 times the angular size of the

sound horizon �, and the optical depth to reionization �.

Parameter Value

m 7:126	 10�6

�f 14.668

�0 0.009 25

100�bh
2 2.231

�ch
2 0.114

� 1.040 1

� 0.084

TABLE II. Step parameters and their defining equations.

Parameter Definition Eq.

F Step shape function (1)

�f Potential step position (1)

�f Step crossing time (33)

c Potential step height (1)

C Kinetic energy perturbation (35)

C0 Linearized C (36)

AC Angular power spectrum amplitude (69)

AB Angular bispectrum amplitude (94)

d Potential step width (1)

xd Dimensionless damping scale (35)

‘d Angular damping multipole (95)

D Damping function (31)
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S3 �
Z

dtd3x

�
a3�Hð _�H � _�HÞR2 _R

� d

dt
ða3�Hð�H � �HÞR2 _RÞ

�
: (39)

Note that, after switching to conformal time, � ¼Rtend
t dt0=aðtÞ (defined to be positive during inflation), and

performing some integration by parts, the action in Eq. (39)
can be written as

S3 ¼
Z

d3xd�2a2�Hð�H � �HÞR½R02 � ð@RÞ2
 (40)

and thus (for this interaction),

L 3 ¼ 2ð�H � �HÞRL2: (41)

Naively, in order that we trust our perturbative evaluation
of correlation functions using the interaction picture, we
might demand that L3 <L2 so that the evolution of the
operators is well described by the equations of motion
arising from the quadratic action. Thus we require at least

2ð�H � �HÞR< 1: (42)

We shall see that in the context of the step model, this
constraint places a lower limit on the step width d that we
can consider using perturbative techniques.

In conformal time, the relevant interaction Hamiltonian
that follows from the action in Eq. (39) is given by

HIð�Þ ¼ �
Z d3qa

ð2�Þ3
d3qb
ð2�Þ3

d3qc
ð2�Þ3 ð2�Þ

3�3ðqa þ qb þ qcÞ

	
�
a2�H
3�2

ð�H � �HÞ0ðR̂qa
R̂qb

R̂qc
Þ0

� d

d�

�
a2�H
3�

ð�H � �HÞðR̂qa
R̂qb

R̂qc
Þ0
��

; (43)

where recall 0 � d=d ln�. In this expression, the fields R
are interaction picture fields chosen to diagonalize
the Hamiltonian derived from the quadratic action in
Eq. (37).

We define the bispectrum through

hR̂k1
R̂k2

R̂k3
i ¼ ð2�Þ3�ðk1 þ k2 þ k3ÞBRðk1; k2; k3Þ;

(44)

where

BRðk1;k2;k3Þ¼4Re

�
iRk1ð��ÞRk2ð��ÞRk3ð��Þ

	
�Z 1

��

d�

�2
a2�Hð�H��HÞ0ðR�

k1
R�

k2
R�

k3
Þ0

þa2�H
��

ð�H��HÞðR�
k1
R�

k2
R�

k3
Þ0j�¼��

��
;

(45)

and Re denotes the real part. We choose �� to be a time
well after the inflaton has crossed the feature, and �1 ¼
�1 ¼ �2;1 ¼ 0. Consequently, the second term in Eq. (45)

is tiny, and we neglect it in what follows. The derivation of
Eq. (45) is described in detail in [17], and we refer the
reader to this work for details.

B. Analytic bispectrum solutions

As described in [17], the GSR approach proceeds by
iteratively correcting the evolution of the mode function
for the effect of deviations from de Sitter space. As we will
see in this section, in the limit in which d ! 0 the mode
functions, Rk, are well treated as unperturbed, and the
non-Gaussian features are well described by integrals in-
volving only the unperturbed mode functions. We have
already seen that, even in the limit d ! 0, the power
spectrum, which may be thought of as the square modulus
of the mode functions, gains a correction that is Oðc=�HÞ.
Thus at linear order, the corrections involving the per-
turbed mode functions will be small compared to those
arising from the perturbed slow roll parameters.
There is an additional weak constraint on d from

Eq. (42) due to the perturbative expansion. The perturba-
tions in the curvature themselves do not become large as
the field crosses the feature, and thus we may approximate
R� 10�5. Since �H remains small, we can neglect it and
focus on �H. Near the step, from above, we know that

�H ¼
€�

H2 _�
� cffiffiffiffiffi

�0
p 1

d
: (46)

Thus, with �0 � 0:01, this implies the limit on the ratio

c

d
< 104: (47)

In the limit of infinitesimal width d ! 0 with finite height,
while the field fluctuations remain small, they are no longer
well characterized by their tree levelN-point functions. On
the other hand, this is not a particularly restrictive con-
straint and when considering the impact on the primary
CMB anisotropy is equivalent to taking d ! 0.
Nevertheless, it does cure the weak logarithmic divergence
in the real space correlation function discussed in
Appendix A.
In the GSR approach, as described in detail in [17], we

can approximate Eq. (45) for the bispectrum as

BRðk1; k2; k3Þ � ð2�Þ4
k31k

3
2k

3
3

�Rðk1Þ�Rðk2Þ�Rðk3Þ
4

	
�
�I0ðKÞk1k2k3 � I1ðKÞ

X
i�j

k2i kj

þ I2ðKÞKðk21 þ k22 þ k23Þ
�
; (48)
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where K ¼ k1 þ k2 þ k3 is the perimeter of the triangle in
momentum space. The principle advantage of Eq. (48) is
that it involves integrals universal in K,

InðKÞ ¼ GBðln��ÞWnð0Þ þ
Z 1

��

d�

�
G0

Bðln�ÞWnðK�Þ;
(49)

where

W0ðxÞ ¼ x sinx; W1ðxÞ ¼ cosx; W2ðxÞ ¼ sinx

x
;

(50)

and the bispectrum source is given by

GB ¼
�
�H � �H

f

�
: (51)

The function �RðkÞ is given by the root of the power

spectrum, �RðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

RðkÞ
q

.

We have already obtained analytic solutions for the
power spectrum �RðkÞ above, and it remains to evaluate
the integrals I0, I1, and I2. Following the analysis for the
power spectrum, we split the bispectrum source into a
background piece and feature piece, but here the back-
ground piece generates a negligible bispectrum. Likewise
the boundary term in Eq. (49) is negligible and the �H term
in the source is suppressed by a factor of �0 in its contri-
bution. Integrating twice by parts, we then obtain from
Eq. (14)

InðKÞ ¼ C
4f0

Z 1

��

d�

�
ðF� 1Þ

�
�

�f

�
3
W 00

n : (52)

We can bring this into the form of Eq. (22) with one more
integration by parts that defines a new window function

XnðK�Þ ¼ �
Z �

0

d~�

~�

�
~�

�f

�
3
W 00

n ðK ~�Þ: (53)

Using the approximation for the tanh step in Eq. (29) we
obtain

InðKÞ ¼ C
2f0

D
�
K�f

2xd

�
XnðK�fÞ; (54)

where recall xd was defined in Eq. (30) such that xd ! 1
as d ! 0. Explicitly

X0ðxÞ ¼ � ðx4 � 9x2 þ 54Þ cosx
x2

þ ð2x4 � 27x2 þ 54Þ sinx
x3

;

X1ðxÞ ¼ 3ðx2 � 6Þ cosx
x2

þ ðx2 � 6Þðx2 � 3Þ sinx
x3

;

X2ðxÞ ¼ � ðx2 � 9Þ cosx
x2

þ ð4x2 � 9Þ sinx
x3

:

(55)

All of these window functions vanish as x2 as x ! 0,
which means that we do not generate any spurious super-
horizon effects. Notice also that X0 diverges as x

2 for large
x while X1 diverges linearly and X3 approaches a constant
in this limit. This implies that in the limit d ! 0 the
quantity in brackets in Eq. (48) increases without bound
as k ! 1. For small but finite d, we can estimate the
location and height of the peak non-Gaussianity. In this
limit the bispectrum is dominated by the quadratic term I0,

I0 � ðK�fÞ2 C
2f0

D
�
K�f

2xd

�
cosðK�fÞ; (56)

whose envelope behaves as x3 expð�xÞ near its peak
x ¼ 3 or

Kpeak ¼ 6
xd
�f

: (57)

For a fixed step position, i.e. a fixed value of �f, as d ! 0,

the peak of the reduced bispectrum moves to larger and
larger values of K. Simultaneously reducing the width of
the feature and moving it to larger scales, i.e. increasing
�f, fixes the position of the peak of the reduced bispec-

trum, while increasing its amplitude proportional to the
square of the ratio of step positions and increasing the
frequency of its oscillations. Thus the sharper the feature,
the larger the non-Gaussianity as anticipated in [19,23,24].
Indeed naively, it might seem that the non-Gaussianity

strongly diverges with decreasing d due to the high
k modes. Here one must be careful in defining what is
meant by a large non-Gaussianity. Note that the bispectrum
itself, i.e. the amplitude of individual triangles in k space,
does not diverge. It is only when written in terms of the
reduced bispectrum or effective fNL that the apparent
quadratic divergence appears

6

5
fNLðk1; k2; k3Þ � BRðk1; k2; k3Þ

PRðk1ÞPRðk2Þ þ perm
; (58)

where ‘‘perm’’ refers to cyclic permutation of the indices.
To see where this arises, we can rewrite the reduced
bispectrum in terms of the quantity defined by [12,13]

Gðk1; k2; k3Þ
k1k2k3

¼ k21k
2
2k

2
3

ð2�Þ4 ~A2
s

BRðk1; k2; k3Þ

� 1

4

�
k31 þ k32 þ k33

k1k2k3

�
6

5
fNLðk1; k2; k3Þ; (59)

where ~As is a constant taken to be ~As ¼ �2
R for nearly

scale invariant spectra. The extra factors of k account for
the volume factors in k space or equivalently the number of
k-space triangles available. Divergence in the reduced
bispectrum is usually associated with an equivalent diver-
gence in the non-Gaussianity by assuming that the indi-
vidual triangles add coherently. For oscillatory bispectra,
counting triangles through k factors leads to a misleading
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sense of both the UV divergence and the observability of
the non-Gaussianity.

A direct means of seeing this fallacy is to evaluate the
non-Gaussianity in the real space three-point correlation
function. We show in Appendix A that, similar to the power
spectrum oscillations, the oscillating and diverging re-
duced bispectrum is associated with sharp features in the
three-point correlation on scales r� �f whose amplitude

diverges no more than logarithmically. The oscillations in
the bispectrum prevent triangles from coherently adding up
to a large non-Gaussianity in real space. Furthermore we
have seen that there is a mild limitation on our derivation of
c=d < 104 from the validity of the perturbative expansion
of the action which prevents even the logarithmic diver-
gence from being manifest.

C. Squeezed limit

It is well known that the bispectrum of curvature fluc-
tuations produced by a single scalar field during inflation
satisfies a consistency relation which relates the bispec-
trum in the squeezed limit to the slope of the power
spectrum [20,25]. Since we have analytic solutions for
both the bispectrum and power spectrum, this provides us
with a nontrivial test of our results.

In the limit where one of the momenta is much smaller
than the other two, kS � kL, the consistency relation im-
plies for the reduced bispectrum

6

5
fNLðkS; kL; kLÞ ¼ � 1

2

d ln�2
R

d lnk

��������kL

� 2
GðkS; kL; kLÞ

k3L
;

(60)

where the approximation holds for nearly scale invariant
power spectra. Equation (48) then implies that, in this
limit,

d ln�2
R

d lnk

��������kL

¼ f0½2I1 � 4I2
K¼2kL : (61)

Now, from Eq. (32), and dropping terms of order
Oðd= ffiffiffiffiffiffiffiffi

2�0
p Þ—which amounts to ignoring the variation of

the envelope function—we find

d ln�2
R

d lnk

��������kL

¼ nsðkLÞ � 1þ C
3
D
�
k�f

xd

�
W 00ðk�fÞ: (62)

Comparing Eq. (62) to Eq. (61) using Eq. (55), and ignor-
ing the slow roll suppressed terms, we find that in this
approximation, the consistency relation is satisfied.

A second nontrivial check of our results is that correc-
tions to the squeezed limit of the bispectrum in Eq. (48) are
proportional to ðkS=kLÞ2, where kS is the side that is being

taken to zero. This is in accordance with the behavior of the
so-called ‘‘not so squeezed limit’’ [26].

D. Numerical comparison

We begin with a comparison for a small step amplitude.
In Fig. 4 we plot the bispectrum resulting from a step with
height c ¼ 10�5 and width d ¼ 0:001. We show the result
of evaluating Eq. (45) numerically as well as the result of
using the analytic approximation in Eq. (48). Overall, in
both amplitude and frequency the approximation is excel-
lent. We show a more detailed comparison in the lower
panel, where we divide the difference by the envelope of
the analytic expectation

9

8

�3
R;0ðkÞ
~A3=2
S

ðk�fÞ2D
�
3k�f

2xd

�
; (63)

where the amplitude of the power spectrum is taken

throughout this section to be ~AS ¼ 2:45	 10�9. The
good overall agreement hides an oscillatory 10% residual
error.
Given that we are perturbing in C� 0:6% here, this

cannot be an OðC2Þ correction. In Appendix B, we dem-
onstrate that these corrections are largely due to slow roll
corrections to the mode functions. On superhorizon scales,
these corrections lead to a phase shift in the growing mode
of the curvature perturbation, resulting in a correction on

FIG. 4 (color online). Equilateral bispectrum computed using
the analytic approximation in Eq. (48) (red dashed curves) com-
pared with a full numerical evaluation of the integral in
Eq. (45) for a small amplitude c ¼ 10�5 (or C � 1). The lower
panel shows the difference between the curves, expressed as a
fraction of the envelope of the analytic approximation in Eq. (63).
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the 10% level to the bispectrum. In fact, as pointed out by
[27], leading order slow roll corrections generically lead to
10% rather than Oð�0Þ � 1% corrections as one might
naively guess. Additionally, note that the error begins to
increase for modes that are far into the damping window.
These momenta have many oscillations during the period
where the bispectrum source in Eq. (49) is nonzero and are
thus in the region where our approximation in Eq. (29) is
beginning to break down. Given that this is occurring in the
region where the bispectrum is strongly damped, it will
have little effect on our results.

As we increase the step height, the leading order ap-
proximation for �f, C, and xd in Eq. (53) breaks down. Just
as in the power spectrum, these errors in phase and ampli-
tude are largely corrected by the nonlinear rescalings of
Eqs. (33) and (35) as shown in Fig. 5. While residual errors
of 20%–40% remain, they are largely contained in a �=2
out of phase component rather than in an overall amplitude
error, and are related to the nonlinear analog of the correc-
tions discussed in Appendix B. Furthermore, the modula-
tion of the oscillations comes from the power spectrum
prefactors of the analytic expression causing the inner and
outer envelope effects seen in Fig. 5. In the signal-to-noise
calculation that follows, such a modulation mainly cancels
out and in fact the use of the simple unmodulated C ! 0
form of G=C in Fig. 4 suffices out to C� 1 for our
purposes.

V. CMB POWER SPECTRUM

In Sec. VA we discuss the phenomenology of a sharp
step in the inflaton potential on the CMB temperature
power spectrum and derive scaling relations based on

projection effects. We then consider WMAP constraints
on the location and height of the step in Sec. VB.

A. Scaling relations

The oscillatory features in the curvature power spectrum
transfer onto the temperature anisotropy spectrum in a
manner that reflects projection onto the recombination
surface, evolution through the acoustically oscillating
plasma, and gravitational lensing after recombination.
These same effects impact the angular bispectrum as well
and so it is useful to obtain some physical intuition in the
simpler case of the power spectrum.
Projection effects damp the amplitude of the k-space

oscillations for modes where k�f � 1. It is simple to

derive scaling relations for this effect in the flat-sky ap-
proximation. Ignoring for the moment the acoustic evolu-
tion by taking the Sachs-Wolfe limit, the temperature field
aðn̂Þ ¼ �T=T, in the angular direction n̂, is given by

aðn̂Þ ¼ � 1

5
Rðx ¼ Dn̂Þ ¼ � 1

5

Z d3k

ð2�Þ3 Rke
ik�Dn̂;

(64)

where D is the distance to recombination. The power
spectrum then becomes

C‘ ¼ 1

52D2

Z dkk
2�

PRðk ¼ ðl=D; kjjÞÞ; (65)

where k is the direction along the line of sight, orthogonal
to the plane of the sky.
Taking the k�f � 1 and d ! 0 limits of the change to

the power spectrum in Eq. (32) and assuming �2
R;0 �

const so that

C‘;0 ¼ 2�

‘2
�2

R;0

52
; (66)

the fractional change in the power spectrum is given by

�C‘

C‘

� �CP
�
2‘�f

D

�
(67)

with the projection factor

PðxÞ ¼
Z 1

1

dz

z2
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 � 1
p cosðxzÞ �

ffiffiffiffiffi
�

2x

r
cosðxþ �=4Þ;

(68)

where the approximation is in the x � 1 or ‘ � D=2�f

limit and can be proven by considering that d2P=dx2 ¼
ð�=2ÞY0ðxÞ. Rapid oscillations in k space are therefore

suppressed in ‘ space by a factor of ð‘=‘fÞ�1=2 where ‘f ¼
D=�f. It is useful then to scale the numerical results to this

expectation by defining the scaling factor

FIG. 5 (color online). Equilateral bispectrum computed using
the analytic approximation in Eq. (48) (red dashed curves)
compared with a full numerical evaluation of the integral in
Eq. (45) for a large amplitude c � �0=6 (or C0 ¼ 1, C ¼ 2=3).
Here the location, amplitude, and damping scale of the feature
have been nonlinearly scaled according to Eqs. (33) and (35).
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AC ¼ C
�

�f

1 Gpc

��1=2
: (69)

Note that dividing out by the factor of AC appropriately
rescales the oscillations to be order unity at low ‘ and damp

as ‘�1=2 according to the envelope

ffiffiffiffi
�

2

r �
‘

D=ð1 GpcÞ
��1=2

: (70)

In Fig. 6 we show a comparison between the full numerical
result and these expectations for a model with V0 ¼
m2�2=2, and parameters defined in Table I. With this
model, �f ¼ 1:44 Gpc and D ¼ 14:18 Gpc. We take for

illustrative purposes c ¼ 10�5 and d ¼ 10�5.
There are two notable differences between the full result

vs the flat-sky Sachs-Wolfe scaling. The first is that the
oscillations are modulated by the acoustic transfer. This
reflects the fact that at nodes in the acoustic oscillations
between the acoustic peaks there is no transfer of power to
local temperature fluctuations. The second notable effect is
a stronger damping starting at ‘� 103. This is due to
gravitational lensing as demonstrated in Fig. 6. Without

lensing the envelope follows the ‘�1=2 scaling of Eq. (70)
as expected. For this reason, when considering the bispec-
trum where lensing effects are more difficult to calculate,
we will always take an ‘max ¼ 2000 where lensing effects
become order unity for the power spectrum oscillations.

It is also interesting to explore the scaling with the
feature scale �f. For a model with features at the WMAP

power spectrum glitches �f � 1:44 Gpc. For changes by a

factor of a few around this value, the results scale as
expected as shown in Fig. 7. However, as the feature scale
approaches the distance to recombination, projection ef-
fects take on a very different character. As discussed in
Appendix A, sky curvature prevents a superhorizon feature
scale from leaving any imprint on the CMB.
For this reason, when considering the bispectrum where

we calculate in the flat-sky approximation, we restrict
ourselves to �f & 10 Gpc.

B. Constraints

The WMAP7 temperature and polarization power spec-
tra place constraints on the height, width, and location of a
step in the inflaton potential. These constraints then limit
the observability of corresponding features in the bispec-
trum. In order to limit models to reasonable cosmologies
we also add the following data sets: BICEP and QUAD,
which include polarization constraints [28,29], UNION
[30] supernovae data, the SHOES measurement of H0 ¼
ð74:2� 3:6Þ km=s=Mpc [31], and a big bang nucleosyn-
thesis constraint of �bh

2 ¼ 0:022� 0:002 [32]. We in-
clude the effect of gravitational lensing on the CMB.
With these data sets and their likelihood functions, we

perform a Markov chain Monte Carlo (MCMC) likelihood
analysis on the joint step and cosmological parameters. We
parametrize the initial curvature power spectrum as

FIG. 6 (color online). Fractional difference of the temperature
power spectrum of a model with �f ¼ 1:44 Gpc, c ¼ 10�5, and

d ¼ 10�5, relative to a model with c ¼ 0 per unit power spec-
trum feature amplitude AC [see Eq. (69)]. The case without
gravitational lensing is shown by red dashed lines, and when
gravitational lensing is taken into account is shown by black
solid lines. In black dot-dashed lines we show the expected ‘�1=2

envelope from Eq. (70).

FIG. 7 (color online). Fractional difference of the temperature
power spectrum (relative to a model with c ¼ 0) of a model with
c ¼ 10�5 and d ¼ 10�5 and different step positions.
Gravitational lensing is taken into account in these examples.
Note that as D=�f ! 1 (in the upper panel), the nodes shift, and

the shape changes significantly. In black dot-dashed lines we
show the expected ‘�1=2 envelope from Eq. (70).
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ln�2
RðkÞ ¼ lnAs þ ðns � 1Þ ln

�
k

0:05 Mpc�1

�

þ AC

3

�
�f

1 Gpc

�
1=2

D
�
k�f

xd

�
W 0ðk�fÞ: (71)

Since we are interested in the xd ! 1 limit, we take a
sufficiently small width d in which the damping behavior
falls outside of theWMAP range of observation. The initial
conditions are then described by 4 parameters
fAs; ns; AC; ln�fg, to which we add 4 cosmological pa-

rameters f�bh
2;�ch

2; �; �g in a flat �CDM context. We
use AC as the normalization parameter since we expect its
errors to be roughly independent of �f.

We take flat priors on each of these 8 parameters. For all
but ln�f the prior range is an uninformative >45� of the

posterior in each. We start with a coarse analysis in a wide
range in 0:4<�f=Gpc< 12. Errors on AC throughout the

whole range are approximately �ðACÞ � 0:03–0:06, con-
sistent with the scaling arguments above, but for certain
discrete ranges of �f there is a preference for nonzero

mean values. These multiple maxima make a global
MCMC analysis highly inefficient.

In Fig. 8, we instead show the result of separate MCMC
chains at fixed values of �f away from these special

regions at widely separated �f ¼ 1:44, and 11 Gpc. The

results here are consistent with AC ¼ 0 and yield 1-sided
95% confidence level bounds of AC < 0:05, 0.10,
respectively.

Around specific values of �f a model with AC � 0:1 is

actually a better fit to the data than AC ¼ 0. In Fig. 8, we
show an example with �f ¼ 8:1 Gpc. Preference for high

frequency oscillations in the power spectrum around the
first acoustic peak in the WMAP data have previously been
noted by Ref. [33] and more recently by Refs. [34,35] in
different contexts. In Fig. 9, we plot an example from the
2D chain. Here �f ¼ 8:163 Gpc and AC ¼ 0:11. Note that

this model improves the total likelihood by 2� lnL ¼ 11:5
for the two extra parameters. Moreover, this improvement
comes from the WMAP likelihood with 2� lnLWMAP ¼
11:6. Importantly, it does not come from the low multipole
moments nor the glitches at ‘ ¼ 20–40 but mainly oscil-
lations with a period of �‘ � 5:4 around the first acoustic
peak 100 � ‘ � 300 with contributions continuing out to
the beam scale. Small variations in �f around this value

also produce similar improvements as long as the angular
scale �f=D remains fixed via allowed adjustments of other

cosmological parameters, mainly �mh
2.

Other specific values of �f show comparable likelihood

improvements, for example, at �f ¼ 5:135 Gpc and AC ¼
0:09, 2� lnL ¼ 9:9. While this level of improvement for 2
parameters is notable, it is possible that it represents fitting
of excess noise at the few percent level in C‘ that is not
well modeled in the likelihood function.
If these improvements are in fact signal and not noise,

then there are sharp predictions that can be verified with
future data. We shall see in the next section that the
bispectrum is observably large so long as the oscillations

FIG. 8 (color online). Posterior probability distribution of the
oscillation amplitude AC in the angular power spectrum for
representative value of �f ¼ 1:44, 8.1, and 11 Gpc. The con-

straint weakens as �f approaches the horizon for typical cases.

For �f � 8:1 Gpc and other specific values, the peak of the

posterior is shifted to AC � 0:1 with comparable distribution
width.

FIG. 9. Fractional angular power spectrum differences be-
tween the maximum likelihood sharp-step model (AC ¼ 0:11,
�f ¼ 8:163 Gpc) and pure power law model (AC ¼ 0). The

WMAP data prefer a few percent oscillation in the temperature
power spectrum (top panel) around the first acoustic peak by
2� lnL ¼ 11:6. This model predicts matching E-polarization
power spectrum oscillations (bottom panel) modulated by an
orthogonal acoustic phase.
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persist undamped to ‘ * 500. Furthermore there must be
matching features in the polarization power spectra (see
Fig. 9). The oscillations in the polarization power spectra
are comparable but larger at the peak as they are less
affected by projection and modulated by an orthogonal
acoustic transfer. Detection of this matching signal in
polarization would make a convincing case for a primor-
dial origin of the improvement.

VI. CMB BISPECTRUM

We can now use our analytic results to estimate the
signal-to-noise ratio (SNR) in the bispectrum. We review
the SNR calculation for a cosmic variance limited data set
in Sec. VIA and approximate methods for its estimation in
Sec. VIB. From this approximate method, we derive scal-
ing relations for its dependence on the amplitude, width,
and location of the step feature in Sec. VI C and calibrate
them against numerical calculations in Sec. VID.

A. Cosmic variance

The temperature or angular bispectrum is defined as the
three-point function of the spherical harmonic coefficients
a‘m of the temperature anisotropy

B‘1‘2‘3 ¼
X

m1m2m3

‘1 ‘2 ‘3
m1 m2 m3

� �
ha‘1m1

a‘2m2
a‘3m3

i: (72)

The cosmic variance of the Gaussian part of the field puts
an irreducible limit on the SNR of

�
S

N

�
2 ¼ X

‘3‘2‘1

B2
‘1‘2‘3

C‘1C‘2C‘3d‘1‘2‘3
; (73)

where

d‘1‘2‘3 ¼ ½1þ �‘1‘2 þ �‘2‘3 þ �‘3‘1 þ 2�‘1‘2�‘2‘3
; (74)

accounts for permuted contractions of repeated ‘’s and the
angular power spectrum is defined by

ha�‘ma‘0m0 i ¼ �‘‘0�mm0C‘: (75)

We thus require an efficient means of predicting the angu-
lar bispectrum given the curvature bispectrum.

The bispectrum arising from the approximations in
Eqs. (29) and (48) looks especially formidable to project
onto the angular sky due to the inseparable damping func-
tion DðxÞ. In Appendix C, we demonstrate that, to a good
approximation, this bispectrum can be cast into an approxi-
mately separable form, which will make the full projection
onto the angular sky a much more tractable problem. Still,
this separable form requires computational intensive op-
erations making an exploration of the whole parameter
space difficult. We leave evaluation of this to future work.

B. Approximations

Here we are interested only in an order of magnitude
estimate for the SNR through a crude computation of the
angular bispectrum from the curvature bispectrum. We
therefore take the flat-sky approach and the Sachs-Wolfe
limit for the temperature anisotropy.
In the flat-sky approximation, the angular bispectrum is

defined by the three-point function of the Fourier moments
of the temperature field given by aðlÞ
haðl1Þaðl2Þaðl3Þi ¼ ð2�Þ2�ðl1 þ l2 þ l3ÞBð‘1;‘2;‘3Þ: (76)

For ‘1, ‘2, ‘3 � 1, it is related to the all-sky bispectra as
[36]

B‘1‘2‘3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2‘1 þ 1Þð2‘2 þ 1Þð2‘3 þ 1Þ

4�

s

	 ‘1 ‘2 ‘3

0 0 0

 !
Bð‘1;‘2;‘3Þ: (77)

Under the flat Sachs-Wolfe approximation of Eq. (64),
the bispectrum becomes

Bð‘1;‘2;‘3Þ ¼ � 2

53D4

Z 1

0

dk1jj
2�

Z 1

�1
dk2jj
2�

BRðk1; k2; k3Þ;
(78)

where

k 1¼ðl1=D;k1jjÞ; k2¼ðl2=D;k2jjÞ; k3¼�k1�k2:

(79)

It is useful to note that with the correspondence between
all-sky and flat-sky expressions [36]

�
S

N

�
2 � 4�

Z d2‘1
ð2�Þ2

Z d2‘2
ð2�Þ2

B2
ð‘1;‘2;‘3Þ

6C‘1C‘2C‘3

: (80)

Scaling relations for the SNR can thus be derived from
scaling relationships for the flat-sky spectra combined with
a counting of triangles in the available phase space.

C. Scaling arguments

Before we numerically compute Eq. (73), we can esti-
mate how strongly we expect the SNR to scale as we add
triangles.

1. Local bispectrum

As a proof of technique, let us first examine the case of a
local non-Gaussianity where the reduced bispectrum is a
constant or

BRðk1; k2; k3Þ ¼ 6
5fNL½PRðk1ÞPRðk2Þ þ perm
: (81)

The signal is dominated by squeezed configurations ‘S �
‘L and the above arguments imply that
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Blocal
ð‘S;‘L;‘LÞ /

�2
Rð‘L=DÞ�2

Rð‘S=DÞ
‘2L‘

2
S

: (82)

Consequently, the SNR for triangles with long and short
sides between ‘min and ‘max for a scale invariant power
spectrum will go as

�
S

N

�
2 /

Z
d2‘S

Z
d2‘L

‘4L‘
2
S

‘4L‘
4
S

/ ‘2max ln

�
‘max

‘min

�
; (83)

where we have used Eq. (66) to take C‘ / ‘�2 in the same
flat-sky, Sachs-Wolfe limit.

The integrals can be thought of as counting triangles:
There are ‘2L ways of choosing one of the long sides of the
triangles and likewise ‘2S ways of choosing the short side.

The final long side is determined by requiring the triangle
close and so the total number of triangles becomes ‘2L‘

2
S.

The naively infrared divergent integral is regulated by
the lowest multipole available, which in our cosmic vari-
ance limited calculation is ‘min ¼ 2. This leaves an overall
scaling of ‘2max, in agreement with the cosmic variance
limit of a well-known result in the literature that the error

on fNL drops as N�1=2
pix , where Npix ¼ fsky‘

2
max is the num-

ber of observed pixels [37,38].

2. Feature bispectrum

We can now look at our feature bispectrum. There are
now three cases we need to consider, the SNR being
dominated by contributions from

(1) equilateral type shapes: k1 � k2 � k3;
(2) flat type shapes: k1 � k2 � 2k3; and
(3) squeezed type shapes, as in the local case k3 �

k1 � k2.

We consider these separately below, estimating how their
contribution to the SNR scales with the number of modes.

Equilateral type.—Consider the leading contribution to
the bispectrum of Eq. (48) assuming a scale invariant
spectrum, and taking f�1

0 ¼ �RðkÞ. In the UV or large-k
limit, the bispectrum is dominated by the term quadratic in
the perimeter of the momentum triangle

BRðk1; k2; k3Þ � C
2
ð2�Þ4 �

4
R

4
D
�
K�f

2xd

�

	
�

1

ðk1k2k3Þ2
ðK�fÞ2 cosðK�fÞ

�
: (84)

The effect of the damping envelope DðxÞ is to impose a
limit on the maximum scale that can contribute to the SNR,
‘max. Neglecting the prefactors and taking ‘f ¼ D=�f, we

expect the projection of the bispectrum in Eq. (84) onto the
flat sky to scale as

Bð‘;‘;‘Þ / 1

‘4

�
‘

‘f

�
¼ ‘�1

f ‘�3; (85)

where the ðK�fÞ2 supplies two factors of ð‘=‘fÞ and the

two integrals over kjj suppress the result by ð‘=‘fÞ�1 due to

the oscillatory integrands as in the power spectrum.
Finally, the integrals over ‘1 and ‘2 provide a factor of
‘4max and yield

�
S

N

�
2

eq
/ ‘4max

‘�2
f ‘�6

max

‘�6
max

/ ‘4max

‘2f
: (86)

The ‘4max factor can be thought of as a counting of equi-
lateral type triangles: In three dimensions, there are ‘2max

ways to choose the first side, another ‘2max ways to choose
the second side, while the third side is determined by
requiring the triangle close, yielding �‘4max triangles.
Flat type.—Flat triangles scale equivalently to equilat-

eral type triangles,

Bð‘;‘;2‘Þ / ‘�1
f ‘�3; (87)

however, due to the restriction that all modes be colinear,
this reduces the number of triangles available. Flat tri-
angles correspond to the restriction j‘1 � ‘2 � ‘3j<�L,
where L ¼ ‘1 þ ‘2 þ ‘3 and�L is the tolerance. With this
restriction, we expect the number of triangles to scale as

‘4max

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�L=‘max

p
. The curved sky imposes a minimum

�L ¼ 1, and thus we expect the number of triangles to
scale as ‘3:5max and the contribution of flat triangles to the
SNR scales as

�
S

N

�
2

flat
/ ‘3:5max

‘�2
f ‘�6

max

‘�6
max

� ‘�2
f ‘3:5max: (88)

Thus flat triangles contribute less to the total SNR than
equilateral triangles for ‘max � ‘f.

Squeezed type.—Considering now squeezed triangles, in
the limit kS � kL, and taking the leading order term

BRðkL; kL; kSÞ � � C
2
ð2�Þ4 �

4
R

4
D
�
kL�f

xd

�
2kL�f

	 sinð2kL�fÞk�3
L k�3

S ; (89)

we estimate that this bispectrum contributes to the signal in
squeezed angular space configurations ‘S � ‘L as

Bð‘S;‘L;‘LÞ / ‘�5=2
S ‘�3=2

L : (90)

Compared to the result in Eq. (85), for a fixed ‘S, the signal
in squeezed triangles falls slower in the UV relative to the
signal in equilateral triangles. However, considering the
SNR, �

S

N

�
2

sq
/
Z

d2‘S
Z

d2‘L‘L‘
�3
S ; (91)

we obtain �
S

N

�
2 / ‘3max

‘min

; (92)
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which implies that the contribution of squeezed triangles
compared to the equilateral type goes to zero as ‘max ! 1.
Interestingly, while squeezed triangles dominate the signal
at high ‘, they do not dominate the signal to noise. The
reason for this is twofold. Squeezed triangles in themselves
suffer from higher cosmic variance which, for a given
triangle, eliminates the scaling advantage. In addition,
there are many less triangles which contribute to the
squeezed limit.

D. Scaling and numerical results

To summarize the scaling relations of the previous sec-
tion, for small values of C,

�
S

N

�
2 / C2

‘4max

‘2f
¼ C2

‘4max�
2
f

D2
; (93)

as d ! 0 and for ‘max � ‘f. With this behavior in mind,

we define the angular bispectrum amplitude,

AB ¼ C
�

�f

1 Gpc

�
¼ 6c

�0 þ 3c

�
�f

1 Gpc

�
¼ AC

�
�f

1 Gpc

�
3=2

;

(94)

which takes into account the dependence of the amplitude
on the step scale, �f. Compared with AC the analogous

amplitude for the angular power spectrum, the bispectrum

amplitude increases as �3=2
f . Recalling that the observatio-

nal errors on AC are only weakly dependent on�f, the SNR

is maximized by placing the feature at the largest observ-
able scales, near the current horizon.

With a finite d there is an effective maximum multipole
beyond which the SNR saturates. This scale depends on
�f as

‘d ¼ 2D

�f

xd ¼ 2D

�f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�0 þ 6c

p
�d

: (95)

In what follows we simply scale out the multipole space
bispectrum amplitude AB, and present the square of the
SNR per unit AB as a function of the multipole space
damping scale, ‘d or ‘max. These redefinitions render our
results independent of the choice of the model parameters
f�f; c; dg. Of course to make connection with a particular

model, one must rescale by the appropriate factors of AB

and choose the correct damping scale.
We verify the SNR scaling behaviors and obtain the

proportionality coefficient in the scaling relations by nu-
merically evaluating Eq. (73). In the upper panel of Fig. 10
we show the contribution to the SNR of all triangles and the
contribution from triangles that are exactly flat. The close
agreement of ‘4 and ‘3:5 curves with the numerical results
verifies our scaling relations, confirming that the SNR is
dominated by triangles whose sides are all of comparable
length. For this test, the feature occurs at a scale
�f ¼ 1:44 Gpc.

The lower panel in Fig. 10 demonstrates that our results
are independent of the specific choice of �f; plotted is the

square of the SNR per unit bispectrum amplitude under a
shift of the feature from 1.44 Gpc (black, solid curve) to
2.88 Gpc (red, dashed curve), while simultaneously reduc-
ing the width of the step as to hold the damping scale, ‘d,
constant.

FIG. 10 (color online). The square of the SNR per unit bispec-
trum amplitude (AB) for ‘d ¼ 8514 for all triangles, and for flat
configurations only. We also plot the scaling relations from
Sec. VI C. In the lower panel, we demonstrate that changing
�f while fixing AB and ‘d leaves the SNR fixed at high ‘.

FIG. 11 (color online). The square of the SNR per unit bispec-
trum amplitude (AB) for various damping scales ‘d. The shaded
regions indicate the prediction of our scaling formula in Eq. (96)
and match the asymptotic high ‘ � ‘d saturation point for
each case.
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In Fig. 11, we show the dependence of the SNR on the
angular damping scale ‘d. Notice the SNR saturates once
the maximum multipole ‘max exceeds the damping scale.
In fact, to excellent approximation, the value at saturation
can be approximated from the d ¼ 0 results by setting
‘max ¼ 1:06‘d. However, for values of d where ‘d >
2000 secondary anisotropy contributions such as gravita-
tional lensing and the Sunyaev-Zeldovich effect become
important. Furthermore the Planck satellite will be limited
by its instrumental beam to lower multipoles.

Thus our rough approximation of the maximal signal to
noise accessible to the CMB temperature bispectrum can
be expressed in terms of our scaling parameters and the
amplitude of the features in the temperature power spec-
trum as �

S

N

�
2 � 1:2

�
AC

0:1

�
2
�

�f

1 Gpc

�
3
�
‘max

2000

�
4
; (96)

where ‘max ¼ minð1:06‘d; 2000Þ. Combined with the
upper limit of AC & 0:05 for a typical value of �f (see

Fig. 8), one infers that sharp steps with �f * 2 Gpc have

potentially observable features in the bispectrum while still
being consistent with current power spectrum results. For
the maximum likelihood model, where AC ¼ 0:11 and
�f ¼ 8:163 Gpc, the maximal ðS=NÞ2 � 790. In fact,

even taking ‘max ¼ 800, the ðS=NÞ2 � 20 and so there
may even be information about this model in the WMAP
data if an optimal analysis can be performed.

Our scaling relation makes it seem that we can increase
the SNR without bound by moving the feature to larger and
larger scales. However, just as was the case in the power
spectrum, our flat-sky approximation overestimates the
bispectrum as �f approaches the current horizon due to

projection effects on the curved sky. Adopting the same
maximal scale of �f < 10 Gpc as was found for the power

spectrum, the SNR can be at most comparable to that of the
maximum likelihood model.

Should a horizon scale feature be detected in the data,
then one should also consider the sample (co)variance of
the finite number of such features that can fit in our horizon
volume when measuring the parameters associated with
the feature. For upper limits, the Gaussian noise variance
suffices.

VII. DISCUSSION

We have investigated the power spectrum and bispec-
trum of curvature fluctuations generated by a sharp-step
feature in the inflationary potential. In the limit where the
change in potential energy due to the step is small com-
pared to the kinetic energy of the inflaton, we have dem-
onstrated that the background system can be solved
perturbatively in this small parameter.

Using this solution for the background evolution of the
inflaton, we obtained closed form, approximate analytic
solutions for both the power spectrum and bispectrum of

curvature fluctuations. The analytic solutions generically
take the form of an oscillating window function times a
damping function. The form of the window function is set
by the behavior of the step in the infinitely sharp limit with
its characteristic frequency determined by the step position
in conformal time, �f. The damping function on the other

hand determines the maximal wave number out to which
the oscillations persist, which scales with the inverse of the
finite width d, with a form factor that depends on the shape
of the step. In this work we have explicitly calculated the
damping function for a step with a hyperbolic tangent
shape.
Our analytic power spectrum and bispectrum solutions

pass several important consistency checks. They vanish for
modes that are superhorizon size when the field crosses the
step, and thus do not introduce spurious superhorizon
effects. They satisfy the consistency relation which relates
the squeezed limit of the bispectrum to the tilt of the power
spectrum, or scalar spectral index. Additionally, leading
order corrections to this relationship scale only as the
square of the squeezed side. Numerically, for very small
perturbations to the kinetic energy, our solutions are accu-
rate to approximately 10%. This difference is largely due to
slow roll corrections to the mode functions, which intro-
duce additional phase shifts and thus alter the form of the
non-Gaussianity. Somewhat surprisingly, rather than 1%
level corrections as one might naively guess, these types of
corrections generically lead to 10% corrections to the
bispectrum.
As the step height increases, and the perturbation to the

kinetic energy becomes large, the analytic solutions begin
to break down due to two effects. First, the perturbation to
the kinetic energy becomes large and inflation ends at an
appreciably different time for a potential with and without
the step. This difference corresponds to a change in the
matching of inflationary field scales to physical scales and
hence a phase shift between the analytic solution and its
numerical counterpart. We make use of the approximate
time translation invariance of the inflationary background
to absorb this phase shift into a redefinition of the confor-
mal time of the unperturbed background. The second effect
is that as the kinetic energy perturbation grows to order
unity, our analytic solutions attain a larger amplitude while
damping away at a faster rate compared with the numerical
results. In our analytic solution these properties are con-
trolled by a single parameter, �H, which effectively mea-
sures the ratio of kinetic to potential energy of the inflaton.
At leading order, our analytic solution takes into account
only the kinetic energy of the inflaton on the background
without the step. However, we have shown that the dis-
crepancy between the numerical and analytic results can be
substantially improved by including the first order kinetic
energy perturbation in �H.
As the step width becomes infinitely sharp, the high

wave number limit of the spectra exhibits some interesting
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behavior. We have found that the perturbation to the curva-
ture power spectrum approaches a constant amplitude os-
cillation, while the reduced bispectrum, or effective
nonlinearity, diverges quadratically in the perimeter of the
momentum space triangle. The reduced bispectrum or non-
linearity parameter fNL can thus reach 104 or more. While
one might naively infer a strongly divergent non-
Gaussianity on small spatial or angular scales, the real
space analogs of the power spectrum and bispectrum, the
two- and three-point correlation functions remain tiny for
most configurations, in particular, all those involving only
small separations. Oscillations largely prevent the various
triangle configurations adding up to anything significant:
For the most part they simply average to zero. However, for
certain configurations, where the separation between points
is comparable to the physical scale of the feature, resonance
in the integral leads to logarithmically large values of the
correlation. High wave number oscillations in the spectra
therefore are the result of Fourier transforming a sharp
feature in the correlation functions on large scales.

The real space picture of the bispectrum suggests that
the k-space triangles are not all independent as they must
sum to yield a sharp feature at a fixed, large scale. This
covariance of triangles must be accounted for if such a
signal in the bispectrum is detected in the future. In prin-
ciple, one could use our methods to evaluate higher
N-point functions which quantify this covariance and that
of the power spectrum. Furthermore, they would provide
corroborating evidence for a step and are expected to grow
even more strongly with the momentum perimeter than the
bispectrum considered here.

On the other hand, to assess the detectability of the
bispectrum, it is sufficient to compute the SNR where the
noise is attributed to Gaussian random fluctuations only.
We utilize our analytic bispectrum solutions to assess
detectability as a function of the step location, height,
and width. For simplicity, we neglect acoustic transfer
and the sky curvature, working in the Sachs-Wolfe and
flat-sky limits. This oversimplification suffices for our
order of magnitude estimate. Under this approximation,
the signal-to-noise ratio is dominated by equilateral tri-
angles and scales with the fourth power of the maximum
multipole due to resolution or finite width d. These scaling
relations allow us to characterize observability as a func-
tion of the step parameters.

The SNR is maximized by placing a sharp feature close
to the horizon scale. Since the effective nonlinearity grows
quadratically with the ratio of the feature scale to the
observed wavelength, placing the feature at larger scales
means it can grow to a larger amplitude within the window
probed by the CMB. The maximum scale at which one can
place the feature before it becomes unobservable is the
horizon scale for both the power spectrum and bispectrum.
In real space, the high-k behavior of either translates to
sharp correlation features at separations comparable to the

physical scale of the step. Because of causality, an observer
confined to a single position cannot measure a correlation
across a distance larger than the horizon. Since in the
d ! 0 limit oscillations in the power spectrum persist
even for superhorizon scale features, the momentum space
results naively seem problematic. However, as the horizon
scale is approached, the frequency of the oscillations in the
spectra approach the fundamental spacing of the spherical
harmonics, �‘ ¼ 1. Thus, as this scale is exceeded, CMB
spectra are rendered insensitive to the presence of the
feature, except for an unobservable shift in the monopole.
While one might guess that the angular power spectrum

of the CMB would place severe restrictions on large, sharp
steps due to their oscillations persisting into the strongly
constrained ‘� 200–400 region, in fact the constraints are
considerably weaker. There is an additional source of
damping when the oscillating features in the momentum
space power spectrum are projected onto the sky.
Additionally, effects such as gravitational lensing tend to
hide the oscillations on very small scales. Curiously, the
WMAP power spectrum data are in fact better fit by such a
feature than a pure power law spectrum with 2� lnL � 12
for the 2 extra parameters. While this improvement may be
due to fitting excess noise in WMAP, it is formally more
significant than a similar fit of the well-known glitch at
‘ ¼ 20–40 with 3 extra parameters [8,9].
If this improvement is due to a slow roll violating feature

such as a step, there are testable consequences in both the
polarization power spectrum and the bispectrum. The po-
larization power spectrum should carry matching oscilla-
tions whose amplitude is less affected by projection. The
bispectrum would be detectable as long as the oscillations
continue undamped to at least ‘� 500. In this case, the
bispectrum may be able to confirm the primordial origin of
such a signal.
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APPENDIX A: REAL SPACE CORRELATION

Given that the step feature is localized in time, it is
interesting to consider the correlation functions, the real
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space analogs of the power spectrum and bispectrum.
While somewhat orthogonal to the main thrust of the paper,
we will see that the real space correlation functions give
insight into causality, sample vs noise variance, consis-
tency relation and the perturbative validity of our expan-
sion of the action. In particular, we shall see that the k ! 1
behavior of the power spectrum and bispectrum correspond
to sharp features in the real space correlation functions.

This Appendix is organized as follows. In Sec. A 1, we
demonstrate that, in the limit in which d ¼ 0, the pertur-
bation to the curvature power spectrum leads to a sharp
feature in real space, the modes as k ! 1 summing to give
a logarithmically divergent derivative at a single point
associated with the physical scale at which the feature
occurs. In Sec. A 2, we show that, despite attaining a large
nonlinearity, fNLðkÞ, the real space analog of the bispec-
trum remains small everywhere, except in the vicinity
special points, associated with the physical scale of the
feature, where it becomes large, diverging as� lnðdÞ. This
behavior is shown to be due to the fact that the momentum
space triangles only coherently add for very special con-
figurations of the spatial points which lead to resonances in
the Fourier integrals. In Sec. A 3, we show that at least
some of this behavior can be anticipated from the consis-
tency relation, which relates the slope of the two-point
correlation function to a certain limit of the three-point
correlation function.

1. Two-point correlation

The two-point correlation function is the Fourier trans-
form of the power spectrum

	2Rðr1;r2Þ� hRðr1ÞRðr2Þi

¼
�Y2
i¼1

Z d3ki
ð2�Þ3e

iki�ri
�
PRðk1Þð2�Þ3�3ðk1þk2Þ

¼
Z dk

k

sinðkrÞ
kr

�2
RðkÞ; (A1)

where r ¼ jr1 � r2j.
With our analytic calculation for the power spectrum of

the step feature in Sec. III we showed that in the limit in
which the step width d ! 0, the power spectrum correction
attains a constant amplitude oscillation which persists to
k ! 1. Corresponding to this high frequency behavior,
there must be sharp features in the correlation function.

The contribution of the step feature to 	ðrÞ can be
calculated from Eq. (32) as

�	2RðrÞ ¼ C
3

Z dk

k

sinðkrÞ
kr

D
�
�dffiffiffiffiffiffiffiffi
2�0

p k�f

�
W 0ðk�fÞ:

(A2)

When d ¼ 0, Eq. (A2) can be evaluated analytically, and
one obtains

�	2RðrÞ ¼ �CJðr=2�fÞ; (A3)

with

JðxÞ ¼ 1

3
� x2

2
þ x

2
ðx2 � 1Þ

�
coth�1x; x > 1;
tanh�1x; x < 1:

(A4)

We plot this function in Fig. 12. In this case, the sum
over all of the modes out to infinity results in a sharp
feature in the slope at r ¼ 2�f while the function remains

finite, and orderOðCÞ everywhere. The fact that r ¼ 2�f is

a special point can in fact be read directly off of the
integrand. Since W 0 / cosð2k�fÞ at high k and the expo-

nentials in the transform give sinðkrÞ, contributions from
different k modes oscillate away except for the stationary
phase point r ¼ 2�f. We will use this type of reasoning to

deduce the behavior of the three-point function in
Sec. A 2 a.
The slope of the correlation function 	2RðrÞ formally

diverges for d ¼ 0 at the point r ¼ 2�f. More generally

d�	2R

d lnr
¼ C

3
�2

R;0

Z dk

k

�
cosðkrÞ � sinðkrÞ

kr

�

	D
�
�dffiffiffiffiffiffiffiffi
2�0

p k�f

�
W 0ðk�fÞ: (A5)

Given that the damping envelope supplies a kmax / d�1,
for kmin�f � 1

d�	2R

d lnr
/
Z kmax

kmin

dk

k
cosðkrÞ cosð2k�fÞ; (A6)

and this integral is logarithmically divergent with d at
r ¼ 2�f. We will relate this divergence to the bispectrum

behavior in Sec. A 3.
Examination of Figs. 1 and 2 also raises an interesting

question about causality. As we have demonstrated, a sharp
feature in the inflationary potential gives rise to oscillating
features in the power spectrum of curvature fluctuations

FIG. 12. Real space two-point correlation function changes
due to the addition of a step feature (d ! 0). At r=�f ¼ 2, the

slope of the correlation function diverges as the dashed line
indicates.
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and as the step becomes sharper and sharper, the oscillating
features ring to larger and larger wave numbers, k, before
decaying. One might then be tempted to conclude that an
observer who only had access to a region of space �< �f

could measure superhorizon perturbations, by observing
oscillations in his power spectra on small scales.

We have, however, also shown that, in real space, these
modes simply sum up to a sharp feature at the physical
scale corresponding to the size of the physical horizon
when the inflaton crosses the feature. One therefore comes
to the conclusion that an observer who has access to only a
region of space � � �f cannot measure the feature. The

resolution to this apparent discrepancy is that the k-space
features are spaced by less than 1=� and so cannot be
sampled in the finite volume. In the CMB this is imposed
by the finite volume within the distance to recombination.
In a large scale structure, this is similarly imposed by the
finite survey volume.

More specifically, in the case of the CMB the projection
of these oscillations onto the angular sky imposes a
very physical cutoff on the frequency of the oscillations,
corresponding to the fundamental spacing of the multi-
poles, �‘ ¼ 1. Oscillations in the power spectrum with a
frequency spacing smaller than this fundamental are ren-
dered unobservable when projected onto the spherical sky.
In the Sachs-Wolfe approximation,

‘ð‘þ 1ÞC‘

2�
¼ 1

52

Z dk

k
j2‘ðkDÞ�2

RðkÞ: (A7)

In the example at hand, at k�f � 1

�2
RðkÞ � �2

R;0ðkÞ½1� C cosð2k�fÞ
: (A8)

Since the Bessel function oscillates only at a frequency kD,
if 2�f � D then the oscillatory piece cancels out of the

integral. This cutoff prevents an observer from obtaining
information about sharp features on scales larger than their
horizon. However, we note that this cutoff is only exactly
enforced by the full projection onto the spherical sky. In
particular, in the periodic flat-sky approximation despite
enforcing a fundamental spacing of �‘ ¼ 1, features with
oscillations at �‘ < 1 can imprint beat frequencies on the

remaining modes making �C‘=C‘ / ð‘�f=DÞ�1=2 as in

Eq. (67). Figure 7 verifies that this scaling breaks in the
full sky calculation for �f * D leaving a suppressed con-

tribution to the anisotropy.

2. Three-point correlation

Similarly, the three-point correlation function is related
to the bispectrum by a Fourier transform of its arguments

	3Rðr1; r2; r3Þ � hRðr1ÞRðr2ÞRðr3Þi

¼
�Y3
i¼1

Z d3ki
ð2�Þ3 e

iki�ri
�
BRðk1; k2; k3Þð2�Þ3

	 �3ðk1 þ k2 þ k3Þ: (A9)

For a general configuration and the step potential bispec-
trum, this integral is difficult to compute. As was the case
with the two-point function, we can gain insight on its
behavior by first studying resonances in the integrand
where the phase is stationary. We can then confirm this
behavior by explicitly evaluating simple configurations.

a. Resonances

The bispectrum of the step feature as its width d ! 0
and the wave numbers ki ! 1 have oscillatory behavior
given by Eq. (56)

BRðk1; k2; k3Þ / cos½ðk1 þ k2 þ k3Þ�f
: (A10)

This implies that in the real space correlation function most
of the contributions will integrate away except for special
resonant points where the frequencies in the transform
match those of the bispectrum.
Without loss of generality, we can set r3 ¼ 0 and inte-

grate out k3 in Eq. (A9)

	3Rðr1; r2; 0Þ ¼
Y2
i¼1

Z d3ki
ð2�Þ3 e

iki�riBRðk1; k2; k3Þ; (A11)

where k3 is now defined by the cosine law. The integrals
are thus sums of bispectrum triangles defined by the
6-dimensional vector K ¼ ðk1;k2Þ. In this 6D vector no-
tation, the phase function

� � k1 � r1 þ k2 � r2 � ðk1 þ k2 þ k3Þ�f

¼ KTR�
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

KT11K
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KT12K

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KTUK

p �
�f;

(A12)

where R ¼ ðr1; r2Þ and we have defined

1 1¼ 13	3 0
0 0

� �
; 12¼ 0 0

0 13	3

� �
; U¼ 13	3 13	3

13	3 13	3

� �
:

(A13)

Now, we can look for points where this is stationary with
respect to triangle configuration. Setting d�=dK ¼ 0, we
obtain

R �
�

11Kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KT11K

p þ 12Kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KT12K

p þ UKffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KTUK

p
�
�f ¼ 0;

(A14)

which can be written

r i ¼ ��fðk̂i � k̂3Þ; (A15)

where hats denote unit vectors. Note that the real space
resonances occur for triangles that are coplanar with the
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k-space triangles. At these solutions, the phase function
reaches

�

�f
¼�ðk1þk2Þ�ðk1þk2Þ � k̂3�ðk1þk2Þ�k3¼0;

(A16)

and so satisfies the constancy condition.
For each k-space triangle geometry there is a resonance

in real space triangles that is fixed by the k-space geometry
(see Fig. 13). The orientations of ri relative to k3 are
determined by the half angles of the respective k-space
triangle angles. The physical length ri varies from a maxi-

mum of 2�f, if kijj � k3; through
ffiffiffi
2

p
�f, if they are

orthogonal; to 0, if they are parallel kijjk3. Note, however,
that if r1 ! 0 then r2 ! 2�f so that resonant triangles

always have characteristic size �f. The maximum size of

the correlation region of 2�f is achieved for flat triangles.

Finally, there is no resonance at r1 ¼ r2 ¼ r3 ¼ 0 since 3
coparallel k vectors cannot close.

The allowed resonances all correspond to points in-
scribed on a sphere of radius �f where rotation in or

around the k3 direction corresponds to a rotation of the
real space resonance.

We can also show that these points are extrema rather
than unstable saddle points by considering the Hessian

Hij ¼ @2�

@Ki@Kj

: (A17)

A similar but more tedious exercise shows that this
matrix is positive semidefinite. Namely, for any vector
Q ¼ ðq1;q2Þ defining a direction in the 6-dimensional
space of bispectrum triangles with a closure relation
q3 ¼ �ðq1 þ q2Þ

Q THQ ¼ X3
i¼1

�f

ki
½q2i � ðqi � k̂iÞ2
  0: (A18)

The eigenvalues vanish along the special directions of
qijjki. There are two cases where this happens. The first
corresponds to fixing the triangle geometry while changing
its overall size. The second is for the family of flat triangles
where the sides are all coparallel but the ratio of lengths
k1=k2 can vary. For these triangles there are two flat
directions whereas nondegenerate triangles have only
one. Equivalently, Eq. (A16) shows that for both of these
cases, the phase function is strictly fixed.
Given the behavior of trajectories in the space of tri-

angles, we can estimate the volume of phase space that
satisfies the resonance condition, and thus contributes to
the integrals. Except for these special flat directions in the
6-dimensional space, the typical width of the resonances is

�q�
ffiffiffiffiffiffiffiffiffiffiffi
k=�f

q
. Putting this together, we can estimate the

degree of convergence or divergence of the three-point
correlation function in Eq. (A11). For a typical real space
configuration where r1 � r2, there is only one flat direction
ks � ki where the triangle size is multiplied by some scale
factor s

	3Rðr1; r2; 0Þ / �2
f

Z
dks

�
ks
�f

�
5=2

k�4
s D / 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kmax�f

p ;

(A19)

where kmax / d�1 from the damping function D.
On the other hand, for the special configuration where

r1 ¼ r2 ¼ 2�f, there are two flat directions, ks and R ¼
k2=k1, which implies the three-point correlation function
will scale as

	3Rðr1; r2; 0Þ / �2
f

Z
ksdks

�
ks
�f

�
2
k�4
s D / lnðkmax�fÞ;

(A20)

where we assume that ki > ��1
f .

The Hessian also identifies another special case where
there is an approximately flat direction if ki � ��1

f . This is

the case of squeezed triangles where one of the sides does
not contribute significantly to the phase function. In this
case k3 � k2 � k1 � k

� ¼ k � ðr1 � r2Þ � 2k�f; (A21)

for which the stationary solutions are

r 1 � r2 ¼ �2�fk̂; (A22)

such that there is a resonance whenever the separation
between any two points is 2�f, regardless of the

position of the third. In this case the dominant term in

k1

r1

r2

r3

k2

k3θ13

θ23

k1 k2

k3
θ23

1
2

θ13
1
2

2ηf

FIG. 13 (color online). Relationship between bispectrum tri-
angle shapes and resonances in the three-point real space corre-
lation function. As d ! 0 each set of self-similar bispectrum
triangles determined by ðk1;k2;k3Þs, where s is some scale
factor, causes a resonance at ðr1; r2; r3Þ and its mirror image. As
the overall size of the triangle s ! 1 this resonance becomes
sharper and sharper in real space but remains associated with
separations Oð�fÞ. Flat triangles are responsible for the largest

scale resonance for r1 � r3 ¼ r2 � r3 ¼ 2�f.
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the bispectrum goes as �fk
�2k�3

3 [see Eq. (89)] and the

resonance contains one flat direction in k parallel to

r1 � r2 and two orthogonal of width
ffiffiffiffiffiffiffiffiffiffiffi
k=�f

q
each.

Therefore the three-point correlation scales as

	3Rðr1; r1 þ 2�fê; 0Þ / �f

Z
dk

�
k

�f

�
k�2D

Z
d3k3k

�3
3

/ lnðkmax�fÞ lnðkmin�fÞ; (A23)

where ê is any unit vector. Here the correlation depends on
a cutoff in the infrared kmin which in practice comes from
the survey volume of the data, i.e. the current horizon for a
cosmic variance limited statistic.

These results imply that, despite the naiveK2 divergence
of the reduced bispectrum, the three-point correlation at
most positions actually converges except if points are
separated by 2�f where flat and squeezed triangles cause

a logarithmic divergence.
The real space picture of the non-Gaussianity of a sharp

step raises an interesting question as to the meaning of the
noise term in our signal-to-noise calculation. In real space,
the increasing ðS=NÞ2 at high k is associated with modes
that superimpose to give a sharp correlation feature on
large scales. Thus each triangle cannot be considered an
independent probe of the non-Gaussianity. By including
only the Gaussian contribution to the noise, we neglect this
sample covariance of triangles. Our SNR therefore only
quantifies detectability of the non-Gaussianity rather than
the measurability of parameters associated with the step
potential. If in the future, non-Gaussianity of this type is
detected, then the covariance must be considered by com-
puting the six-point functions.

b. Configurations

We can test these properties of the three-point function
by explicitly evaluating it for a few simple configurations.
The expression in Eq. (A9) involve six integrals over a
highly oscillatory function, making it difficult to evaluate
numerically. However, in the limit in which two of the
points are coincident, the expression can be simplified to

	3Rðr; 0; 0Þ ¼ ð2�Þ2
Z k1dk1

ð2�Þ3
Z k2dk2

ð2�Þ3

	
Z k1þk2

jk1�k2j
k3dk3BRðk1; k2; k3Þ

	
�
sinðk1rÞ
k1r

þ sinðk2rÞ
k2r

�
: (A24)

In the limit d ¼ 0, using the result for the bispectrum in
Sec. IVB, the integral over k3 in Eq. (A24) can be per-
formed analytically (the result is messy and not particu-
larly enlightening, and we omit it here) leaving a more
tractable problem of evaluating only two integrals. In order
to numerically evaluate the resulting expression, and
render the result at r=�f ¼ 2 finite, we need to impose a

cutoff in the integral at high wave number. However, the
integral needs to be cut off in a way that reflects the fact
that triangles of different shapes experience different
damping behavior. For nonzero values of d, we note that
as long as d is small, this result can be utilized to integrate
the bispectrum at finite d, by parts. We then need only keep
the boundary term, since the remaining term will be sup-
pressed by a factor of d, and will thus be negligible in the
limit d ! 0. Moreover, since this explicitly retains the
form of the damping function, we automatically apply
the correct damping to each shape.
As well as divergences at the point r=�f ¼ 2 arising

from the ultraviolet parts of the phase space, there are also
the usual divergences associated with the infrared parts of
the scale invariant power spectra. In reality, these diver-
gences are regulated by the finite size of the longest
observable wavelength. To perform the numerical evalu-
ation, we simply apply a hard cutoff on the minimum
momenta, kmin.
To perform the integration, we write the bispectrum as

BRðk1; k2; k3Þ

� ð2�Þ4
k31k

3
2k

3
3

�Rðk1Þ�Rðk2Þ�Rðk3Þ
4

	
�
�I0ðKÞk1k2k3 þ I2ðKÞðk31 þ k32 þ k33Þ

þ ðI2ðKÞ � I1ðKÞÞX
i�j

k2i kj

�
: (A25)

In Fig. 14 we show the contribution to the real space three-
point correlation function due to each of the terms in
Eq. (A25) at two different values of the step width, or
damping scale xd. In particular, note that the skewness of

FIG. 14 (color online). Contribution to the real space three-
point correlation function from the three terms in Eq. (A25). The
thick dashed curves were computed for damping scale
xd ¼ xd1 ¼ 200 with an infrared cutoff at kmin ¼ 0:1=�f, while

the corresponding thin solid curves were calculated with
xd2 ¼ 1000.
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the field is finite, and small while 	3Rðr; 0; 0Þ vanishes
quickly for r=�f > 2. The three-point function is also

largely insensitive to the value of the damping scale, xd,
which regulates the UV, except at the special point, r ¼
2�f, where it diverges. In Fig. 15 we demonstrate that this

divergence is no more pathological than lnðdÞ. Figure 15
also demonstrates the scaling behavior of Eqs. (A20) and
(A23); note that the contribution to the three-point function
due to the most dominant UV term, I0, is insensitive to the
infrared cutoff, kmin, while the term which dominates the
squeezed contribution, I2 � I1, is logarithmically sensitive
to the infrared cutoff. The remaining term, in Eq. (A25) is
not UV divergent and we omit it from the plot.

All of these properties and scalings are consistent with
our resonance estimates from Sec. A 2 a.

3. Real space consistency

To shed light on why the two-point correlation reaches
infinite slope at r ¼ 2�f while the three-point correlation

logarithmically diverges there, we can extend the familiar
k-space consistency relation between the power spectrum
and squeezed bispectrum to real space correlation
functions.

In fact the k-space consistency argument itself comes
from a real space derivation. We follow the analysis of [25]
here but make more explicit what is meant by the back-
ground. To this end, we split the field up into low pass and
high pass filtered pieces

R ðxÞ ¼ �Rþ ~R

¼
Z
k<k�

d3k

ð2�Þ3 Rke
ik�x þ

Z
k>k�

d3k

ð2�Þ3 Rke
ik�x:

(A26)

That is, we split the contributions of the field at each point
into contributions from modes shorter than some reference
mode k�, and long wavelength modes assumed to be much
longer than this scale. Next we consider the two-point
function of the high pass field in the fixed background.
Since the background fluctuation is expected to be small,
we can functionally expand

h ~Rðx1Þ ~Rðx2Þi¼h ~Rðx1Þ ~Rðx2Þi
�������� �R¼0

þ �RðxþÞ

	 �

� �R
h ~Rðx1Þ ~Rðx2Þi

�������� �R¼0
þ��� ; (A27)

where the background field is slowly varying and evaluated
in the vicinity of the points, which for definiteness we take
to be xþ ¼ ðx1 þ x2Þ=2. In the presence of the background
mode, the metric is

ds2 ¼ �dt2 þ aðtÞ2e2 �RðxÞdx2: (A28)

Then, absorbing the effect of the background mode into a

change in variable x ! x0 ¼ e
�RðxÞx, we induce a change

in the separation between points

�x ! e
�RðxÞ�x: (A29)

Defining the two-point correlation function of the high and
low pass fields

~	 2Rð�x12Þ ¼ h ~Rðx1Þ ~Rðx2Þij �R¼0

¼
Z
k>k�

dk

k
�2

RðkÞ sink�x12
k�x12

; (A30)

�	 2Rð�xþ3Þ ¼ h �RðxþÞ �Rðx3Þi

¼
Z
k<k�

dk

k
�2

RðkÞ sink�xþ3

k�xþ3

; (A31)

where �xij ¼ jxi � xjj, we obtain

h ~Rðx1Þ ~Rðx2Þi ¼ ~	2Rð�x12Þ þ �RðxþÞ d~	2R

d ln�x12
; (A32)

which then correlates with a third point as

h ~Rðx1Þ ~Rðx2Þ �Rðx3Þi ¼ �	2Rð�xþ3Þ d~	2R

d ln�x12
:

This defines the squeezed contribution to the analogous
three-point function.
Note that we can Fourier transform this relation to obtain

the bispectrum. Given that through integration by parts

d~	2R

d lnr
¼ �

Z
k>k�

d3k

ð2�Þ3 e
ik�r

�
1

k3
dðk3PRÞ
d lnk

�
; (A33)

we obtain immediately

BRðk1; k2; k3Þ ¼ �PRðk3Þ
�
1

k3
dðk3PRÞ
d lnk

�
k�k1�k2

; (A34)

FIG. 15 (color online). Behavior of the various contributions to
the real space three-point correlation function 	3Rðr; 0; 0Þ in
Eq. (A25) at the point r ¼ 2�f as a function ultraviolet cutoff

xd. The dependence on the infrared cutoff is also demonstrated.
Here kmin;1 ¼ 0:1=�f, while kmin;2 ¼ 0:001=�f.
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for k3 < k�; k1 � k2 > k� and zero otherwise. This is the
well-known Fourier space consistency relation.

Thus we expect the three-point correlation in real space
to have a contribution proportional to the slope of the two-
point correlation function. For the step potential, the slope
of the two-point correlation function at r ¼ 2�f diverges

as lnkmax, whereas �	2Rð�xþ3Þ diverges as lnkmin. Thus,
with a sufficiently small kmin, we expect that the three full
three-point function will be dominated by these squeezed
contributions. Specifically, including the cyclic permuta-
tions which account for the pairings of high and low pass
filtered fields we expect

	3Rðr; 0; 0Þ � �2 lnðkmin�fÞ�2
R;0

d	2R

d lnr
; (A35)

near r ¼ 2�f for nearly scale invariant spectra taking k�
comparable to but smaller than ��1

f . This explains the

scaling of Eq. (A23). In Fig. 16 we demonstrate this
relation numerically. Plotted is the contribution to the
real space three-point correlation function due to the I1
and I2 terms of Eq. (48) and the relation in Eq. (A35). We
take kmin to be a factor of 10

3 smaller than the feature scale.
The agreement is only approximate; however, this is pos-
sibly due to the fact that we have not omitted the contri-
bution of nonsqueezed triangles to 	3R.

The lnkmin divergence is the usual IR divergence of a
scale invariant spectrum and is cured in any physical ob-
servable by the finite size of the Hubble radius today. The
UV divergence from the slope of the two-point function at
r ¼ 2�f, however weak, signals a breakdown of perturba-

tion theory. In the consistency relation context, the as-
sumed change in the two-point correlation in response to
the background mode in Eq. (A27) exceeds the total
change in the two-point correlation as a function of r.

This is consistent with the findings of Sec. IVB, where it
was shown that perturbative validity places a weak con-
straint of c=d < 104 such that a finite step cannot have
infinitesimal width.

APPENDIX B: SLOW ROLL CORRECTIONS
TO THE BISPECTRUM

In this Appendix we show that one of the largest and
simplest corrections to the bispectrum can be associated
with the difference in phase between the slow roll spacetime
and de Sitter space. This phase difference leads to a real
component of the growing mode on superhorizon scales. We
show that these slow roll corrections are largely responsible
for the 10% error in the approximations in Sec. IV.
In deriving the expression for the bispectrum, Eq. (48),

we used only the de Sitter form for the mode function yðxÞ,
which is related to the curvature perturbation by

R k ¼
ffiffiffiffiffiffiffiffiffi
2�2

k3

s
xyðxÞ
f

: (B1)

Here x ¼ k� and yðxÞ is the solution of the Mukhanov-
Sasaki equation,

d2y

dx2
þ
�
1� 2þ gðlnxÞ

x2

�
y ¼ 0; (B2)

where

gðlnxÞ ¼ f00 � 3f0

f
; (B3)

and primes denote derivatives with respect to lnx. In the
de Sitter limit, g ¼ 0, and

yðxÞ ¼
�
1þ i

x

�
eix: (B4)

In this approximation, for modes that are outside the
horizon, x � 1, the growing mode of y which yields
the constant part of the curvature R is purely imaginary,
while the real component decays as x2 in this limit. Writing
the bispectrum in Eq. (45) as

BRðk1; k2; k3Þ � �4Im½Rk1ð��ÞRk2ð��ÞRk3ð��Þ

	 Re

�Z 1

��

d�

�2
a2�Hð�H � �HÞ0

	 ðR�
k1
R�

k2
R�

k3
Þ0
�

� 4Re½Rk1ð��ÞRk2ð��ÞRk3ð��Þ

	 Im

�Z 1

��

d�

�2
a2�Hð�H � �HÞ0

	 ðR�
k1
R�

k2
R�

k3
Þ0
�
; (B5)

we expect that the bispectrum is dominated by the first
term, whereas the second term should be of order Oð�HÞ.

FIG. 16 (color online). The contribution to the real space
three-point correlation function from the infrared terms (the
second two terms) in Eq. (A25) (dashed black curve) and the
consistency relation of Eq. (A35) (red solid curve). We take
xd ¼ 100 with an infrared cutoff at kmin ¼ 0:001=�f.
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Since �H � 0:01, one may expect that neglecting the slow
roll corrections amounts to a small percent level correction
to the leading order bispectrum. However, as we will see
the coefficient in front of these terms is such that the
correction is on the order of 10% (see also [27]).

In the limit where the inflaton is slowly rolling down its
potential, the function gðlnxÞ is smooth, slowly varying and
Oðns � 1Þ. The scalar fluctuations, governed by Eq. (B2),
begin as plane waves y / eix in Minkowski space at x �
1 before they begin to feel the expansion when their
wavelength becomes comparable to the horizon, x� 1,
where they begin to grow as y / 1=x for x � 1. As long
as g is slowly varying, the only time it is important is when
the mode crosses the horizon. Thus for a given wave
number k, to a good approximation, we can Taylor expand
about the time of horizon crossing, and to a first approxi-
mation, write

d2y

dx2
þ
�
1� 2þ g0

x2

�
y ¼ 0; (B6)

where g0 ¼ gðx ¼ 1Þ is a function of k, but is time inde-
pendent. In this limit, Eq. (B6) can be solved exactly.
Demanding that y is asymptotically a positive frequency
plane wave as x ! 1 implies that

yðxÞ ¼ �e�ið�
=2Þþið3�=2Þ
ffiffiffiffiffiffiffi
�x

2

r
Hð1Þ


 ðxÞ; (B7)

where Hð1Þ

 ðxÞ is the Hankel function of the first kind and


 ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 4g0

p � 3

2
þ g0

3
: (B8)

Now, as described in Sec. IV, the bispectrum due to a step
feature in the potential is dominated by modes that are deep
inside the horizon when the inflaton crosses the feature. At
early times, the modes are identical to the de Sitter modes,
at leading order in x, while at late times, expanding the
Hankel function one finds

xyðxÞ ! ie�ið�
=2Þþið3�=2Þ�ð
Þ
ffiffiffiffi
2

�

s �
2

x

�

�ð3=2Þ

� iþ i
½2� �� lnð2Þ � lnðxÞ


3
g0 þ �g0

6

þOðx2; g20Þ: (B9)

The growing mode on superhorizon scales is no longer
purely imaginary. There is also a correction to the ampli-
tude of the imaginary part of the growing mode; however,
note that we have already taken this correction into account
by using the square root of Eq. (22) in Eq. (48) which
contains slow roll corrections in �2

R;0. In this approxima-

tion, in the superhorizon limit, xyðxÞ is not only not con-
stant but diverges as lnðxÞ. However, it is easy to see that
the curvature perturbation, defined in Eq. (B1), is actually

constant in this limit. The assumption that g ¼ const
implies that the function f has time dependence

f � f0

�
1� g0

3
lnðxÞ

�
þOðg20Þ; (B10)

to leading order in g0, which is precisely the right behavior
to cancel out the time dependence of Eq. (B9).
In the limit of large momenta, corresponding to modes

well inside the horizon, the leading order (in k and slow
roll) correction to the bispectrum is given by

Bð1Þ
R ðk1; k2; k3Þ � � ð2�Þ4

k21k
2
2k

2
3

�Rðk1Þ�Rðk2Þ�Rðk3Þ
4

	 �

2
g0I3ðKÞ; (B11)

where

I3ðKÞ ¼
Z 1

��

d�

�
G0

Bðln�ÞK� cosðK�Þ: (B12)

In the same approximation as Sec. IV, we can evaluate this
integral to obtain

I3ðKÞ ¼ C
2f0

D
�

�d

2
ffiffiffiffiffiffiffiffi
2�0

p K�f

�
X3ðK�fÞ; (B13)

where

X3ðKÞ ¼ � ðx4 � 9x2 þ 54Þ sinðxÞ
x2

þ ð�2x4 þ 27x2 � 54Þ cosðxÞ
x3

þ 54

x3
: (B14)

Relative to the dominant zeroth order term [the X0 term of
Eq. (55)] the main contribution from this slow roll correc-
tion is �=2 out of phase, but has the same envelope. Notice
also that, in the limit x ! 0, this window function vanishes
only as X3ðxÞ �OðxÞ, compared to Oðx2Þ for the window
functions of Eq. (55). This implies that, at sufficiently
small x, this correction will eventually dominate the lead-
ing order result. This is not particularly surprising given
that we have only considered the dominant correction in
the high momentum limit. Near the horizon scale at feature
crossing, k�f ¼ 1, many other terms become equally, if

not more important.
The upper panel of Fig. 17 shows a comparison between

the analytic approximation to this first order term,
Eqs. (B11) and (B14) and the second term in Eq. (B5)
for a step with height c ¼ 10�5 and width d ¼ 0:001. The
prefactor for this term varies slowly over the range of wave
numbers considered, and we take the value �g0=2 ¼ 0:1
which is near the middle of its range for this plot. The
lower panel in Fig. 17 shows the fractional error on the full
bispectrum when this term is added to the analytic approxi-
mation of Sec. IV. While the approximation is improved
significantly at large k, the improvement gets steadily
worse as the horizon scale is approached. This is to be
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expected, given that we have not attempted to calculate all
of the terms that are important for modes that are near the
horizon as the feature is crossed.

We also note that these corrections are important for the
power spectrum of Sec. III [2]. In particular, note that the
squeezed limit consistency relation (see Sec. IVC) implies
that there should be a correction to the power spectrum of
the same order of magnitude. We leave the calculation of
further slow roll corrections to future work.

Before we end this section, we clarify one point that may
confuse the reader. In deriving the correction Eq. (B9), at
first glance it appears that the prefactor is simply an
irrelevant global phase that will simply cancel once all
terms are taken into account. Indeed, the bispectrum is
constructed out of the two-point functions which always
involve the pair

hR̂kð�ÞR̂k0 ð~�Þi ¼ Rkð�ÞR�
kð~�Þð2�Þ3�3ðkþ k0Þ:

(B15)

However, if one were to choose to cancel the phase in each
propagator, one would of course obtain the same answer.
While the growing mode would be purely imaginary out-
side the horizon, at very early times the mode would look
as if it initially started with a phase shift relative to the
de Sitter space modes, leading to the same correction we
have calculated here.

APPENDIX C: SEPARABILITY

Separability of the bispectrum into products of functions
that depend only on the individual ki’s is desirable in that
the angular bispectrum can then also be constructed from
separate ‘i calculations using the full radiation transfer
function instead of the flat-sky Sachs-Wolfe expressions
used in the main text.
The formulation of the eigenmode decompositions of

Fergusson, Liguori, and Shellard [39,40] which allow for
the projection of nonseparable bispectra onto a (band-
limited) complete basis of separable functions has largely
ameliorated the need for the bispectra themselves to be
separable. However, for a polynomial basis of degree n,
one can only accurately fit a function with n zero crossings,
and thus, it seems that projection of the highly oscillatory
functions considered here might prove to be very ineffi-
cient with this method. Polynomials, however, are not the
only such basis that has been proposed; the oscillatory
basis of Meerburg [41] would perhaps be more suited for
this type of bispectra. Nonetheless, in this Appendix, we
point out that the analytic form of the bispectrum derived
above is, to a very good approximation, separable.
The bispectrum from Eqs. (48), (54), and (55) appears to

be inseparable due to the fact that the damping factor
appears to depend on the perimeter of the triangle in
momentum space

D ðxÞ ¼ x

sinhx
; x ¼ X3

i¼1

xi; (C1)

where xi ¼ ki�fð�d=2
ffiffiffiffiffiffiffiffi
2�0

p Þ. This cannot be exactly writ-
ten in the form

D ðxÞ ¼ Y3
i¼1

DiðxiÞ: (C2)

We can, however, approximate the damping factor in this
form. First note that at x � 1

lim
x�1

DðxÞ ¼ 2xe�xð1þ e�2xÞ; (C3)

which is separable. In the opposite limit, the damping
factor vanishes as x2 whereas the expansion goes as 4x.
To fix this problem we take

D ðxÞ � 2xe�xð1þ e�2xÞ þ e�4x; (C4)

which is of the form of a sum of separable components
since e�x ¼ Q

ie
�xi . The remaining inseparable 1=Kn type

factors that appear in the window functions can be written
in separable form by introducing Schwinger parameters as
described in [42]. However, we note that the terms that
require this treatment are subdominant, and to a reasonable
approximation away from K ¼ 0, the bispectrum is domi-
nated by terms that are separable.

FIG. 17 (color online). First order corrections to the equilateral
bispectrum computed using the analytic approximation
Eqs. (B11) and (B14) compared with the numerical evaluation
of the second term in Eq. (B5) for a step with height c ¼ 10�5

and width d ¼ 0:001. The lower panel here shows the fractional
error of the full bispectrum, once this first order correction is
taken into account. We take �g0=2 ¼ 0:1 for this plot.
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