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Models of inflation based on axions, which owe their popularity to the robustness against uv corrections,

have also a very distinct class of signatures. The relevant interactions of the axion are a nonperturbative

oscillating contribution to the potential and a shift-symmetric coupling to gauge fields.We review how these

couplings affect the cosmological perturbations via a unified study based on the in-in formalism. We then

note that, when the inflaton coupling to gauge fields is high enough to lead to interesting observational

results, the backreaction of the produced gauge quanta on the inflaton dynamics becomes relevant during the

final stage of inflation, and prolongs its duration by about 10 e-foldings.We extend existing results on gravity

wave production in these models to account for this late inflationary phase. The strong backreaction phase

results in an enhancement of the gravity wave signal at the scales of interferometers. As a consequence, the

signal is potentially observable at interferometers such as Advanced LIGO/Virgo for the most natural

duration of inflation in such models. Finally, we explicitly compute the axion couplings to gauge fields in

string theory construction of axion-monodromy inflation and identify cases where they can trigger

interesting phenomenological effects.
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I. INTRODUCTION

A. Motivation

The next few years will bring a large amount of new
information about the physics of the very early universe.
Cosmic microwave background (CMB) and large-scale
structure (LSS) probes will measure the primordial cos-
mological fluctuations with increasing accuracy, and over a
widening range of scales. This increasing precision will
allow us to strongly constrain (or perhaps measure) non-
Gaussian statistics of the scalar curvature fluctuations. At
the same time, gravitational waves (tensor perturbations)
will also be probed with substantial improvements in ac-
curacy, by CMB experiments and also—at much smaller
scales—with gravitational interferometry.

It is often claimed that the simplest and most natural
microscopic models of inflation lead to a rather minimal set
of observable predictions for future missions. According to
the standard lore:

(1) Tensor fluctuations (gravitational waves) are gener-
ated entirely by quantum vacuum fluctuations and
their spectrum is simply controlled by the Hubble
parameter during inflation. One can realistically
hope to characterize them by just two numbers:
the Hubble rate when some pivot scale leaves the
horizon, and the tensor spectral index, nT . (The
spectrum of tensor vacuum fluctuations is detectable
only for sufficiently high scale inflation, which may
be unnatural without invoking symmetries.) This
signal is too weak to be observed in any of the
forthcoming gravity waves interferometers [1].

(2) Non-Gaussianity arises entirely due to the (weak)
self-interactions of the inflaton field and is

undetectably small: fNL �Oð�Þ where � ¼ � _H
H2 is

a slow-roll parameter and fNL characterizes the size
of the bispectrum [2–4]. It is often claimed that a
detection of primordial non-Gaussianity would be a
‘‘smoking gun’’ signature of some nonstandard
physics in the early universe.1

We argue that, even in very natural models of inflation, the
situation may be much richer. We present a simple scenario
where a symmetry renders the high scale of inflation
natural, and hence leads to a detectable B mode polariza-
tion from the tensor vacuum fluctuations. We note that this
same symmetry leads also to a series of interesting and,
more importantly, correlated observables. In particular, we
show how detectable resonant and equilateral non-
Gaussianities may naturally arise, in concert with signals
at gravitational wave interferometers (such as Advanced
LIGO/Virgo).
At the heart of our study is a rather simple and general

observation: the inflaton field should couple not only to
itself, but also to ‘‘matter’’ (noninflationary) sectors.2

Indeed, the presence of such couplings would seem to be

1For example: small sound speed [5], higher derivatives [6],
special initial conditions [7–9], potentials with sharp features
[10,11], dissipative effects [12–14], turning trajectories [14],
post-inflationary effects (such as preheating [15,16]), etc.

2In some cases, matter couplings can lead to dangerous loop
corrections which spoil the flatness of the inflaton potential, if
they are too strong. However, this need not be the case in the
most robust and appealing inflation models—they rely on some
symmetry which protects the slow-roll parameters and strongly
constrains the allowed interactions.
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a prerequisite for successful reheating. Although matter
couplings are apparently a ubiquitous feature of realistic
models, their relevance for the phenomenology of the
primordial cosmological scalar/tensor fluctuations has
only recently been appreciated.

In this work, we explore the consequences of matter
couplings in a particularly natural model: inflation driven
by a pseudoscalar axion. In this case, the inflaton enjoys a
continuous shift-symmetry which, although slightly bro-
ken, nevertheless protects the flatness of the potential from
receiving unacceptably large loop corrections; see [17–37]
for model-building. This construction is especially appeal-
ing in the case of high scale inflation—which leads to
observable tensor modes—since an infinite number of
corrections need to be suppressed due to the fact that the
inflaton travels over a super-Planckian distance [38]. In
models of axion inflation, there is generically present a
coupling to gauge fields of the form

L int ¼ � �

4f
’F��

~F��; (1)

where ’ is the inflaton, F�� ¼ @�A� � @�A� is the field

strength associated with some Uð1Þ gauge field A�, ~F
�� ¼

�����F��=ð2 ffiffiffiffiffiffiffi�g
p Þ is the dual field strength (the general-

ization to non-Abelian groups is straightforward), f is the
axion decay constant, and � is a dimensionless parameter.
Notice that, upon integration by parts this is manifestly a
derivative coupling and therefore does not induce pertur-
bative corrections to the inflaton potential. The coupling
(1) has important implications for both gravitational waves
and also non-Gaussianity.

It is natural to split up our discussion of the phenome-
nology of the coupling (1) according to the relevant ob-
servational scales. First, consider CMB/LSS scales. There
are two important sources of non-Gaussianity in axion
inflation:

(1) Couplings of the type (1) to non-Abelian gauge
groups can induce, via instanton effects, nonpertur-
bative oscillatory contributions to the axion poten-
tial.3 These in turn lead to very distinct oscillations
in the scalar power spectrum and also non-
Gaussianity of the resonant type [11,29,39–41].

(2) The homogeneous dynamics of the inflaton can lead
to nonperturbative production of classical gauge
field fluctuations due to the coupling (1). These
produced gauge field fluctuations, in turn, source
scalar inflaton perturbations by inverse decay:
�Aþ �A ! �’. This effect leads to a large equi-
lateral contribution to the bispectrum, as was first
realized in [42].

In Sec. III, we review the computation of both resonance
and inverse decay effects using the in-in formalism,

showing how both effects can coexist in the spectrum
and bispectrum. We also generalize previous studies
[42,43] to allow for the possibility of interactions which
explicitly break the underlying shift symmetry. (Such in-
teractions are actually present in certain string theory con-
structions; more on this later.)
Next, let us consider the phenomenology on much

smaller scales, generated around 10 to 20 e-foldings before
the end of inflation. Since the produced gauge field fluctu-
ations contribute to the anisotropic stress tensor, they
provide an important new source of gravitational waves
which is much larger than the usual one generated by
vacuum fluctuations. Recently, Cook and Sorbo [44] have
realized that this signal should be visible at interferometers
such as Advanced LIGO/Virgo and Einstein Telescope.4

We continue their analysis by taking into account the effect
of the strong backreaction regime that necessarily charac-
terizes the late stage of inflation. We show that in the
regime relevant for observations at interferometers, a co-
pious production of gauge fields leads to about 10 addi-
tional e-foldings of inflation as compared to the case where
the gauge field coupling is absent. As a consequence, the
gravity wave modes left the horizon when the inflaton field
was in a less flat part of the potential (at least, for the
simplest monomial potentials for which this effect has been
studied) and hence a larger population of gauge modes was
present. This enhances the gravitational waves signal, and
makes it detectable for the same range of parameters that
lead to observable non-Gaussianity, when one assumes the
most natural values for the duration of inflation.
Specifically, if one requires that the large CMB scales
left the horizon about 60 e-foldings before the end of
inflation—which, as we show in Sec. II C, is the most
natural expectation given the coupling (1)—then backre-
action effects enhance the gravitational wave signal to a
level that can be observed at Advanced LIGO/Virgo. It is
worth pointing out that tensor modes produced by inverse
decay encode information about the interactions of the
inflaton unlike those produced by vacuum fluctuations,
which depend only on the energy of the background.
It is interesting to note that the same coupling (1) which

leads to interesting non-Gaussianity and gravitational wave
signals will also provide a natural decay channel for the
inflaton. We provide a cursory discussion of the physics of
(p)reheating in axion inflation, arguing that the decay of
the inflaton is extremely efficient in the observationally
interesting regime.
Throughout the first part of this paper, we work in a very

general effective field theory context. However, because
inflationary model-building is sensitive to ultraviolet (UV)
physics, it makes sense to explore the embedding of QFT

3The origin of these oscillations is somewhat different in string
theory constructions, coming from ED1 corrections to the Kähler
potential, but the end effect is equivalent.

4See also [45] for a discussion of the effects of this additional
source of gravitational waves on CMB scales. See [46] for a
discussion of gravitational waves from particle/string production
effects in different models.
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models of inflation into a more complete framework, such
as string theory. In particular we compute the size of the
coupling (1) in a class of axion-monodromy inflation in IIB
string theory [28,29,33]. A model independent coupling is
present to the gauge fields living on the world volume of
the NS5-brane that generates the monodromy.Whether this
is large enough to trigger the inverse decay phenomenol-
ogy depends on the size of gsC0 (the string coupling times
the RR zero form). For gsC0 & Oð1Þ as expected in a
generic perturbative flux compactification, the coupling
(1) is too small. On the other hand, although it is less
common (we found it in.5% of the toy models we consid-
ered), nothing forbids gsC0 * 7 in which case signatures at
interferometers and in the CMB would be present. For
completeness we computed the model dependent coupling
to the gauge fields on a D5-branes wrapping the cycle
defining the axion. This is naturally of the order of the
current experimental bound on inverse decay non-
Gaussianity, and its precise value depends on volume
moduli.

Althoughwewill work in the context of a specific class of
models, our key observation—the importance of inflaton-
matter couplings for non-Gaussian phenomenology—is of
a much broader nature. In [47] it was argued that the
scenario of [42,43] is couched within a more general class
of theories which exhibit the so-called ‘‘feeder’’ mecha-
nism. (Another example was explored in detail in [48–51].)
Indeed, the example interaction (1) serves to highlight an
important point: even very simple QFT models of inflation
can lead to surprisingly complex dynamics and rich
phenomenology.

The paper is organized as follows. In Sec. II we study the
homogeneous background dynamics of the model (10). In
Secs. III and IV we study the scalar cosmological pertur-
bations on scales relevant for CMB/LSS and interferome-
ters, respectively. Finally, after reviewing in Sec. V the
string theory construction of axion-monodromy inflation
and the challenges it faces, in Sec. VI we identify cases
where the coupling to gauge fields is large enough to
trigger interesting phenomenological effects.

B. Effective Field Theory of Axion Inflation

To be concrete, let us assume that the effective field
theory of the inflaton is characterized by a (mildly broken)
shift symmetry

’ ! ’þ const: (2)

Such a symmetry could arise because ’ is a pseudo-
Nambu-Goldstone-boson (PBNG) associated with a global
symmetry that is spontaneously broken at some scale f. In
the context of string theory, the axion arises instead from
the dimensional reduction of a twoform over an internal
two-cycle. In this case, the symmetry (2) has its origin in
the gauge symmetry of the twoform. Models with an
underlying shifty symmetry have attracted a considerable

amount of interest, partially motivated by the fact that such
theories can naturally lead to an observable tensor-to-
scalar ratio [21–37].
The symmetry (2), although valid to all orders in per-

turbation theory, is generically broken by nonperturbative
effects to a discrete subgroup ’ ! ’þ 2�f, leading to a
periodic contribution to the effective potential of the form

Vnpð’Þ ¼ �4 cos

�
’

f

�
þ . . . (3)

where f is the axion decay constant, � is a nonperturba-
tively generated scale, and . . . denotes (subdominant)
higher harmonics. The original natural inflation model
[21] exploited the potential (3) to drive inflation.
However, this simple scenario is compatible with observa-
tion only when f * 4Mp [23], a regime that seems prob-

lematic: In the case of a PBNG, f >Mp would suggest a

global symmetry that is broken above the quantum gravity
scale, where conventional QFT is presumably not valid
[24,52,53]; moreover, values f >Mp do not seem possible

in a controlled limit of string theory [53].
In addition to (3), one may also incorporate additional

ingredients which break the symmetry (2) explicitly at tree
level and lead to a monodromy: the would-be periodic
direction ’ is ‘‘unwrapped’’ [28–31]. In many interesting
scenarios, explicit symmetry breaking ingredients induce a
power-law potential of the form

Vsrð’Þ ¼ �4�p’p: (4)

The case p ¼ 1 is typical of string theory models [28,29]
while p ¼ 2 arises from axion/4-form mixing [30,31].
Notice that, generically, both contributions (3) and (4)

may be present:

Vð’Þ ¼ Vnpð’Þ þ Vsrð’Þ: (5)

As the suffix sr (slow roll) indicates, it is often assumed
that Vsr dominates the potential; one then obtains a real-
ization of large-field inflation, even for f � Mp. The

potential (5) must be constant in the limit that the symme-
try (2) is exact. Hence, we expect that the smallness of
symmetry breaking effects will protect the slow-roll
parameters

�V ¼ M2
p

2

�
V 0

V

�
2
; �V � M2

p

V00

V
; (6)

from receiving unacceptably large radiative corrections.
The same symmetry which protects the slow-roll pa-

rameters also constrains the interactions of ’ and therefore
has implications for non-Gaussianity. In our analysis, a key
role will be played by the presence of pseudoscalar inter-
actions (1) between the inflaton and the gauge fields. The
interaction (1) is consistent with the underlying symme-
tries and, from an effective field theory perspective, it must
be included. The strength of the pseudoscalar interaction
(1) is controlled by the axion decay constant f; absent
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fine-tuning we do not expect � � 1. In passing, notice that
a coupling of the form (1) to the visible sector provides a
natural decay channel for the inflaton and hence may be
considered phenomenologically desirable. In principle,
one can also consider the coupling of the pseudoscalar
inflaton to fermions. However, this results in a helicity-
suppressed decay rate, which vanishes in the limit of
vanishing fermion mass. We expect that, if the inflaton
decays into significantly lighter fields, the decay into fer-
mions can be neglected in comparison to that into gauge
fields.

In the limit that the symmetry (2) is exact, only the
coupling (1) to gauge fields is permitted (we note that the
quantity F ~F is a total derivative so that ’ ! ’þ c shifts
the Lagrangian by a surface term which has no impact on
the classical equations of motion). However, the explicit
symmetry breaking ingredients which lead to the potential
(4) may, in principle, lead to additional couplings. A
generic interaction Lagrangian which is compatible with
gauge symmetry is

L � �Bð’Þ
4

F2 � Cð’Þ
4

F ~F: (7)

The smallness of the symmetry breaking—which is re-
quired to ensure slow roll—implies that Bð’Þ must be
nearly constant. To quantify the slow variation of the func-
tion Bð’Þ, it is useful to define the following parameters

�B � M2
p

2

�
B0

B

�
2
; �B � M2

p

B00

B
(8)

where the prime denotes derivative with respect to ’. The
same logic implies that Cð’Þ must be close to linear, and
hence C0ð’Þ should be nearly constant. We therefore intro-
duce an additional set of slow-variation parameters

�C � M2
p

2

�
C00

C0

�
2
; �C � M2

p

C000

C0 : (9)

(Again, here the prime denotes derivative with respect
to ’.) Throughout this work we assume that �i; j�ij � 1
for i ¼ V, B, C.

Putting everything together, and including mild symme-
try breaking effects, we are led to consider the following
effective field theory description of an axion inflaton

L ¼ � 1

2
ð@’Þ2 ��4�p’p ��4 cos

�
’

f

�

� Bð’Þ
4

F2 � Cð’Þ
4

F ~F: (10)

The theory (10) subsumes nearly all known example of
axion inflation and generalizes the model of [42,43] to
incorporate also explicit symmetry breaking interactions,
parametrized by the coupling functions Bð’Þ, Cð’Þ.

Throughout this paper, we assume a flat Friedmann-
Lemaı̂tre-Robertson-Walker (FLRW) background geome-
try: ds2 ¼ �dt2 þ a2ðtÞdx2 with scale factor aðtÞ. We
sometimes use conformal time 	 ¼ R

dt
a . Derivatives with

respect to cosmic time are denoted as _f � @tf and with
respect to conformal time as f0 � @	f.

II. BACKGROUND EVOLUTION AND
BACKREACTION EFFECTS

In this Section we study the homogeneous background
evolution of the model (10). We are interested in an in-
flaton potential of the form

Vð’Þ ¼ Vsrð’Þ þ�4 cos

�
’

f

�
: (11)

We require that Vsr is sufficiently flat to drive slow-roll
inflation, while the oscillatory term may be treated as a
small modulation. In this Section, we disregard the oscil-
latory term in (11), which has a small impact on the
number of e-foldings of inflation.5 Instead, we focus on
the effect of the gauge field couplings in (10). We will see
shortly that the production of gauge fluctuations can lead to
important backreaction effects on 
ðtÞ ¼ h’ðt;xÞi. These
effects are the subject of this Section. The discussion is
divided in three Subsections. In Sec. II A we review the
production of the gauge quanta due to the motion of the
inflaton, generalizing previous results. Some technical de-
tails of the derivation are relegated to Appendix A. In
Sec. II B we show that, if the inflaton-gauge field coupling
is sufficiently large to lead to observable non-Gaussianity
from inverse decay, then the produced quanta affect the
inflaton dynamics during the last N � 20 e-foldings of
inflation. This effect produces a change of the predicted
scalar spectral index ns and tensor-to-scalar ratio r which
could be effectively ascribed to a shift of �N � 10 of the
number of e-foldings from horizon crossing for CMB
scales to the end of inflation. In Sec. II C we briefly
discuss the endpoint of inflation, commenting, in particu-
lar, on (p)reheating.

A. Gauge Field Production

As first shown in [32], the homogeneous dynamics of the
inflaton leads to an important instability for the gauge
field, A�. To see this effect, we consider the equation of

motion for gauge field fluctuations in the background of the
homogeneous inflaton 
ðtÞ � h’ðt;xÞi. We introduce a
canonical field variable by the rescaling6

5The oscillatory term in (11) is important, however, for the
cosmological fluctuations; see Sec. III.

6In principle this introduces a kinetic mixing with the inflaton,
but since we are assuming �B � 1 this is a subleading effect,
which we therefore neglect.
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~A iðt;xÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bð
ðtÞÞ

q
Aiðt;xÞ (12)

and decompose ~Aiðt;xÞ as

~Aið	;xÞ ¼
X
�¼�

Z d3k

ð2�Þ3=2 ½�
�
i ðkÞa�ðkÞ ~A�ð	;kÞeik�xþH:c:�;

(13)

where ~�� are circular polarization tensors (see [43] for
more details) and the annihilation/creation operators of
the gauge field obey

½a�ðkÞ; ay�ðk0Þ� ¼ ���0�ð3Þðk� k0Þ: (14)

The c-number mode functions obey the follow equation
of motion�

@2

@	2
þ k2 þM2

Að	Þ �
2k�

	

�
~A�ðk; 	Þ ¼ 0; (15)

where

� �
ffiffiffiffiffiffi
�

2

r
Mp

C0

B
signð _
Þ; (16)

M2
Að	Þ ffi �

ffiffiffiffiffiffiffiffiffiffiffi
�
�B

p
	2

signðB0 _
Þ: (17)

and where prime denotes derivative with respect to 
 and
we have introduced the slow-roll parameter

�
 �
_
2

2H2M2
p

: (18)

During the conventional inflationary regime we have the

usual relations �
 ffi �V ffi � _H
H2 (see Eq. (6)). However,

when backreaction effects are important these different
definitions need not coincide.

The quantity M2
Að	Þ, which was not present in

[32,42,43], arises due to the explicit shift-symmetry break-
ing interactions (7); this term vanishes when the shift
symmetry (2) is exact and Bð’Þ ¼ const. Evidently,
M2

Að	Þ is proportional to slow-variation parameters. As
we will see shortly, this contribution to the effective fre-
quency of the gauge field fluctuations does not have any
significant impact on their dynamics. On the other hand,
the term in (15) proportional to � plays a very important
role.

Without loss of generality, we can take � > 0. Moreover,
we will be most interested in � * 1. In this case the
� ¼ þ polarization state experiences a tachyonic instabil-
ity for k=ðaHÞ & 2�, leading to an exponential growth of
fluctuations. (The � ¼ � polarization instead remains in
its vacuum and can be disregarded.) More specifically, for
� ¼ Oð1Þ, the gauge field modes are in the vacuum state
during most of the subhorizon regime, and the tachyonic
instability becomes appreciable only close to horizon
crossing. The growth ceases when the mode becomes

much greater than the horizon, and then the energy density
in that mode decreases due to the expansion of the uni-
verse. Therefore, at any given moment during inflation,
only gauge modes of comparable size to the horizon are
relevant.

Typically, the parameter � / _
=H increases during in-
flation. However, the time variation of � appears only at
higher order in �, �. We can therefore treat � as an
adiabatically evolving parameter: we treat it as a constant
during the interesting part of the evolution of each mode
(since j��j � � over �t ¼ few
H�1). However, when
comparing two well separated stages of inflation, we take
into account that � can be different between them, leading
to a different amount of production. We note that � instead
varies significantly after inflation, so that we do not expect
that treating � as a constant provides a good approximation
to the gauge field production during this stage.
In Appendix A we derive an analytic expression for the

properly-normalized solutions of (15), in the approxima-
tion that �
, �B and �may be treated as constant (slow-roll

approximation). We show that the solutions admit the
simple representation:

~Aþðk; 	Þ ffi 1ffiffiffiffiffi
2k

p
�

k

2�aH

�
1=4

e���2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�k=ðaHÞ

p
: (19)

We note the exponential enhancement, e��, in (19), which
reflects the underlying tachyonic instability. Equation (19)
coincides (up to a change in normalization) with the result
that was first derived in [32] for the case B ¼ 1, C / ’. As
first discussed in [42], this approximation is valid in the
region ð8�Þ�1 & �k	 & 2� that accounts for most of the
power in the produced fluctuations (we stress that this
phase space is nontrivial for � * Oð1Þ, which we assume
throughout; the production of gauge fluctuations is unin-
terestingly small for � < 1). The result (19) highlights our
previous claim that the explicit symmetry breaking inter-
actions (7) do not significantly impact the production of
gauge fluctuations in axion inflation. See Appendix A for
more details.
The modes (19) are real-valued (up to an irrelevant

constant phase); this leads to an important simplification
when we compute non-Gaussian correlators. The fact that
the c-number modes are real-valued implies that the pro-
duced gauge field fluctuations are commuting variables, to
a very good approximation. That is, we have

½@	Aið	;xÞ; Ajð	;x0Þ� � 0; (20)

where it is understood that only the produced fluctuations
with �k	 < 2� are relevant (the modes with �k	 � 2�
remain in their vacuum and their effect is renormalized
away). Equation (20) reflects the essentially classical na-
ture of the tachyonic production of gauge fluctuations (we
note the analogy with the decoherence and semiclassicality
of the standard cosmological perturbations due to the
expansion of the universe [54]).
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B. Classical Evolution

In this subsection, we study the backreaction of the
produced gauge field fluctuations (19) on the homogeneous
dynamics of the inflaton 
ðtÞ. The smallness of the pa-
rameters (8) and (9) implies that Bð’Þ should be very close
to a constant (that can be absorbed into the normalization
of the gauge field) and Cð’Þ should be very close to linear.
Hence, for simplicity, we focus on the case

Bð’Þ � 1; Cð’Þ � �

f
’; ) � ¼ � _


2fH
(21)

for the remainder of this section. We also focus the dis-
cussion to the string theory axion-monodromy inflationary
potential (see Sec. VI)

Vsrð’Þ ¼ �3½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
’2 þ ’2

c

q
� ’c� (22)

During inflation we have ’ � ’c so that Vð’Þ � �3j’j.
(The parameter ’c is, however, relevant during reheating.)

We introduce the physical ‘‘electric’’ and ‘‘magnetic’’
fields as (despite the terminology, the gauge field A� need

not correspond to the standard model photon)

~B ¼ 1

a2
~r
 ~A; ~E ¼ � 1

a2
~A0: (23)

The gauge field fluctuations (19) are produced at the
expense of the kinetic energy of the homogeneous inflaton

ðtÞ, introducing a new source of dissipation into the
equation of motion of 
. Moreover, these produced fluc-
tuations contribute to the energy density of the universe
and thus modify Friedmann equation. These effects are
encoded in the mean field relations

€
þ 3H _
þ V0 ¼ �

f
h ~E � ~Bi;

3H2 ¼ 1

M2
p

�
1

2
_
2 þ V þ 1

2
h ~E2 þ ~B2i

�
; (24)

and, using (19), one finds [32]

h ~E � ~Bi ’ �2:4 � 10�4 H
4

�4
e2��;

� ~E2 þ ~B2

2

�
’ 1:4 � 10�4 H

4

�3
e2��:

(25)

Therefore [42,43],

��3=2e�� � 79
_


H2
) negligible backreaction on
eq:

��3=2e�� � 146
Mp

H

) negligible backreactionon Friedmanneq: (26)

During the standard slow-roll regime _
 ’ ffiffiffiffiffiffiffiffiffi
2�


p
HMp �

HMp, and the first condition is the more stringent than the

second. If we take the standard result for the spectrum of

primordial perturbations, P1=2
 ¼ H2=ð2� _
Þ ’ 5 � 10�5,

this condition reads � < 4:7.

In [42,43] it was shown that � ’ 2:5 leads to the standard
result for the power spectrum (up to a subdominant cor-
rection due to the modes generated by inverse decay), and
to observable (but not yet ruled out) non-Gaussianity from
the inverse decay of the gauge quanta into inflaton quanta.
We see that backreaction is indeed negligible for such
value. However, we note that � typically increases during
inflation. For concreteness consider a linear inflaton poten-
tial (such is the case for monodromy), then � / 1=
 during
the standard slow-roll regime. Let us assume that � ¼ 2:5
at j
j ’ 11Mp, which is the value of the inflaton about 60

e-foldings before the end of inflation, under the standard
slow-roll assumption. We then find that � ¼ 4:7 is reached
at j
j ’ 5:9Mp. This happens before inflation ends. As

discussed in [32], the production of gauge quanta results
in an additional friction on the inflaton motion that, in the
current context, prolongs the duration of inflation. In this
way, there is a final stage of inflation where the slow-roll
inflaton motion is due to energy loss in particle production;
this is similar to the idea of warm inflation [55], with the
difference that in their case it is assumed that the particle
production controls the motion of the inflaton for all the
duration of inflation.
We evolved numerically the two Eqs. (24), keeping into

account the backreaction term in the equation for the scalar
field. We still disregarded the energy density of the gauge
quanta in the Friedmann equation; in this way this equation
remains a simple algebraic equation for H; the right panel
of Fig. 2 shows that this is a good approximation all the
way to the end of inflation. We choose parameters such
that, initially, we are in the standard slow-roll regime
adopted in [42,43]. Therefore, the result for the power
spectrum, and for fNL obtained in [42,43], apply (see
Sec. III B). We note that the coupling between the inflaton
and the gauge field can be given in terms of the initial
values of � and 
:

�j
CMB
¼ 2:5 ) �

f
¼ 5

j
CMBj
M2

p

: (27)

Here and in the following, the suffix ‘‘CMB’’ denotes the
value of quantities when the large-scale CMB perturba-
tions left the horizon (when this statement needs to
be quantified, we refer to the WMAP pivot scale [56]
k ¼ 0:002 Mpc�1).
We obtained j
CMBj ’ 9:9Mp; this is smaller than the

value (j
CMBj ’ 10:9Mp) leading to 60 e-foldings of in-

flation without gauge production, confirming that the back-
reaction of the produced quanta increases the amount of
inflation.
In Fig. 1 we show the evolution of the inflaton field as a

function of the number of e-foldings to the end of inflation
for �CMB ¼ 2:5 (red solid curve) and for � ¼ 0 (green
dashed line), i.e. the standard slow-roll case. The back-
reaction of the produced quanta on the background evolu-
tion becomes noticeable during the last �25 e-foldings of
inflation, while it is negligible at earlier times. The two
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trajectories reach 
 ¼ 0 at different times, showing that
the backreaction increases the duration of inflation by
about 10 e-foldings.

This change in behavior during the last �25 e-foldings
of inflation is also visible in the left panel of Fig. 2, where
we show the evolution of the two friction terms in the
inflaton equation as a function of the number of e-foldings
to the end of inflation. The standard Hubble friction con-
trols the earliest stages, but the system gradually evolves
towards a regime in which the backreaction of the pro-
duced gauge quanta dominates the evolution. Namely, the
system approaches the strong backreaction regime studied
in [32]. Let us stress that in the our case the observable
cosmological fluctuations were produced during the phase
of standard slow-roll inflation (and therefore, the results
of [42,43] apply), while the strong backreaction regime of
[32] here is reached only in the last Oð10Þ e-foldings of
inflation. In the right panel of Fig. 2 we show the relative

contribution to the energy density of the gauge quanta to
the total energy density. This term was neglected in the
numerical evolution of the system (24). The Figure con-
firms that this is a valid assumption.

C. Reheating

We conclude this Section with a brief comment on
reheating in our model. It is interesting that in this model
the same coupling’F ~F which lead to non-Gaussianity will
also provide a natural decay channel for the inflaton. We
expect reheating into the gauge bosons A� to be very

efficient whenever particle production effects are impor-
tant. This is illustrated in the right panel of Fig. 2. There we
see that, already by the end of inflation, the energy density
in gauge field fluctuations is comparable to that of the
inflaton. At this point it may be expected that the conden-
sate 
ðtÞ is efficiently destroyed and thermal equilibrium
may set in rather quickly.
A detailed account of the dynamics of (p)reheating in the

model (10) goes beyond the scope of this paper. Here we
briefly discuss the perturbative decay of an axion inflaton,
anticipating that such an analysis might be viewed as a
lower bound on the efficiency of reheating. The perturba-
tive decay rate into gauge fields associated with the cou-
pling (1) is

�’!AA ¼ �2m3



64�f2
: (28)

The inflaton mass is obtained from the potential Vsr. For
string theory monodromy inflation models this is given by
(22) where, as we discuss in Section VI, ’c ¼ Oð10�1ÞMp

(we note that, indeed, Vsr ’ �3j
j during inflation). This
leads to m
 � 5 � 10�5Mp. Taking �=f as in (27), and

equating �’!AA ¼ H, we obtain the estimate Trh ¼
Oð1012Þ GeV on the reheating temperature of the thermal
bath generated by the perturbative decay. As mentioned
above, for the values of the coupling we are interested in,
the energy density of the gauge quanta becomes compa-
rable to that of the inflaton already at the end of inflation.

FIG. 2 (color online). Left panel: Friction terms in the equation of motion for 
. Right panel: relative strength of the energy density
of the produced quanta; this term is neglected in the numerical evolution of the background equations.
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FIG. 1 (color online). Evolution of the inflaton as a function of
the number of e-foldings to the end of inflation, starting from
j
CMBj ¼ �9:9Mp, with (red solid line) and without (green

dashed line) the coupling to gauge fields. For the first line, the
strength of the inflaton-gauge field coupling is chosen so to lead
to observable non-Gaussianity from inverse decay. For the
second line, we have shifted the number of e-foldings to make
manifest that the two evolutions coincide at early times.
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We expect that this will lead to additional backreaction
effects beyond the mean field backreaction of hE � Bi and
hE2 þ B2i, which is the only effect that enters in (24).
Specifically, we expect strong rescattering effects that
should lead to a much quicker thermalization than the
perturbative rate suggests. As for preheating of scalars,
we believe that it would be worthwhile to study these
processes through lattice simulations.

It is worth mentioning that we have implicitly assumed
that the inflaton-gauge interaction in (1) is the strongest
interaction of the inflaton to any gauge field. Pseudoscalars

have also a natural coupling to fermions �L ¼
� Cmc

f 
 �c�5c , where C is a model dependent quantity

which, in the spirit of an effective field theory, should not
be expected to be� 1. The associated decay into fermions
is helicity-suppressed, �
!c c ’ ðC=fÞm
m

2
c =ð8�Þ for

mc � m
. This is parametrically smaller than the decay

rate into gauge fields if mc � m
.

The detailed history of reheating is necessary to relate
the size of any given mode to the number of e-foldings N
before the end of inflation at which this mode exited the
horizon. This relation is given by [57]:

NðkÞ ¼ 62� ln
k

H0a0
� ln

1016 GeV

V1=4
CMB

þ ln
V1=4
CMB

V1=4
end

� 1

3
ln
V1=4
end

�1=4
rh

;

(29)

where the suffices CMB, ‘‘end,’’ ‘‘rh,’’ and 0 denote hori-
zon crossing during inflation, the end of inflation, the
conclusion of reheating, and the present epoch, respec-
tively. For �CMB ¼ 2:5, and j
CMBj ¼ 9:9Mp, this relation

evaluates to

NðkÞ ’ 61:7� log
k

0:002 Mpc�1
� 1

3
ln
1016 GeV

�1=4
rh

: (30)

(Notice that, due to the logarithmic dependence, this
relation will change only very slightly if �CMB and

CMB differ from the specific values considered here.)
We have normalized the wavenumber k to the WMAP
pivot scale [56].

The dependence on �rh in this relation is due to the
assumption that, between the end of inflation and the
completion of reheating, the massive inflaton field is co-
herently oscillating about the minimum of its potential,
resulting in a matter dominated stage. We see that, in
general, a longer period of matter domination during in-
flation results in a lower value of N. Above, we have seen
that the perturbative decay rate (28) leads to Trh �
1012 GeV. Inserting this in (30), we obtain N ’ 59 for
the CMB pivot scale. This, however, assumes matter domi-
nation of the inflaton oscillations before the perturbative
decay takes place. We, however, see that, already by the
end of inflation, the gauge fields carry a non-negligible

fraction of the total energy density. One may therefore
expect that the equation of state of the universe will have
an intermediate value between that of radiation and matter
[58]. This would lead to a number of e-foldings between
59 and 62 for the CMB pivot scale.

III. FLUCTUATIONS AT CMB/LSS SCALES

In this Section, we study the scalar cosmological fluctu-
ations in the model (10) on CMB/LSS scales, correspond-
ing roughly to scales which left the horizon �55–60
e-foldings before the end of inflation. In Sec. II, we have
seen that backreaction effects are negligible during this
regime. Even though backreaction effects are negligible,
the production of gauge field fluctuations still has an
important impact on the observable cosmological fluctua-
tions, via inverse decay processes [42,43]. Here, we revisit
the computation of [42,43] using the in-in formalism and
allowing for the possibility of explicit symmetry breaking
interactions. We also account for the possibility of reso-
nance effects, showing how these ‘‘add up’’ with the
fluctuations from inverse decay.
This Section is divided into four subsections. In

Sec. III A we derive the interaction Hamiltonian for the
theory (10), accounting for all relevant effects. Technical
details are provided in Appendix B. This effective action is
the key input for a computation of the n-point correlation
functions using the in-in formalism. In Sec. III B we briefly
outline the computation of the spectrum and bispectrum
using the in-in method. Because the technical details are
quite involved, we expand on this analysis in Appendices C
and D. Finally, in Sec. III C we study observational con-
sequences and delineate interesting regions of parameter
space.

A. Effective Action for the Perturbations
and In-In Calculation

We are interested in a potential of the form (11), where
the oscillatory term can be treated as a small correction and
backreaction effects are negligible. It is useful to introduce
a parameter

b � �4

fV 0
srð
?Þ ; (31)

where 
? is 
ðtÞ evaluated at the moment t? when some
relevant pivot scale k? left the horizon. If we assume b < 1
so that (11) is monotonic, then the data require [29] b � 1
so that a perturbative expansion in b is justified. We will
assume this regime throughout the paper. The solution for
the background evolution of the inflaton, 
ðtÞ � h’ðt;xÞi,
can be computed to leading order in b, with the result [39]


ðtÞ ¼ 
0ðtÞ � 3bf2ffiffiffiffiffiffiffiffi
2�?

p
Mp

sin

�

0ðtÞ
f

�
; (32)
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where �? � � _H=H2 is a slow-roll parameter,7 evaluated at
t?. We have also introduced 
0ðtÞ, which is the solution
for the background scalar field in the absence of modula-
tions, that is for b ¼ 0. (Obviously, 
0ðtÞ depends on
the specific choice of Vsr). The slow-roll parameters also
admit an expansion in b � 1. In particular, we can write
� ¼ � _H=H2 as:

� ¼ �0 þ �1 þ � � � ; (33)

�1 ¼ �3b
f

Mp

ffiffiffiffiffiffiffiffi
2�0

p
cos

�

0

f

�
: (34)

We are interested in the n-point correlation functions of
the variable

ðt;xÞ ¼ �H
_

�’ðt;xÞ: (35)

These may be computed using the in-in formula

hk1
k2

� � � kn
ð	Þi

¼ X1
N¼0

ð�iÞN
Z t

0
dt1

Z t1

0
dt2 � � �

Z tN�1

0
dtN


 h½½½k1
k2

� � � kn
ð	Þ; HIðt1Þ�; HIðt2Þ� � � � ; HIðtNÞ�i;

(36)

where HIðtÞ ¼ �R
d3xLI is the interaction Hamiltonian

and, with some abuse of notation, it is understood that the
fluctuation modes on the right hand side correspond to the
free theory solutions.

We choose the free theory to correspond to the quadratic
action for  , neglecting resonance effects (setting b ¼ 0).
To leading order in slow-roll parameters, the free theory
Lagrangian is given by

L 0 ¼ M2
pa

3�0

�
_2 � 1

a2
ð ~rÞ2

�
: (37)

The solutions of (37) are well-known. The q-number
Fourier mode is written as

kð	Þ ¼ bðkÞukð	Þ þ byð�kÞu?k ð	Þ; (38)

where the annihilation/creation operators are

½bðkÞ; byðk0Þ� ¼ �ð3Þðk� k0Þ; (39)

and the c-number modes are given by

ukð	Þ � H2

_
0

e�ik	ffiffiffiffiffiffiffiffi
2k3

p ð1þ ik	Þ; (40)

up to an irrelevant overall phase.

Now we turn our attention to the leading interaction
terms. These were derived in Appendix B. The result is

HIðtÞ ffi �
Z

d3x

�
�

4
�����F��F��

þM2
pa

3�1

�
_2 � 1

a2
ð ~rÞ2

�

þ a3

6
ð2�0Þ3=2�4

M3
p

f3
sin

�

0ðtÞ
f

�
3
�
: (41)

This result is derived neglecting inhomogeneities of the
metric, which has been show to be a good approximation
both in the case where inverse decay effects dominate [43],
and also when resonance effects dominate [40]. The first
term in (41) leads to inverse decay effects. The contribu-
tion to the 2-point and 3-point correlation functions from
this term is studied in Appendix C. There we show explic-
itly that the in-in formula (36) gives the same result as the
method employed in [42,43]. The last two terms in (41), on
the other hand, lead to resonance effects. The relevant
contributions to the 2-point and 3-point functions are com-
puted in Appendix D. Here we notice these two distinct
physical effects ‘‘add up’’ in a very simple way, at the level
of the n-point correlation functions.

B. The Spectrum and Bispectrum

The 2-point correlation function defines the power
spectrum

hkk0ð	Þi ¼ 2�2

k3
P ðkÞ�ð3Þðkþ k0Þ: (42)

The N ¼ 0 term in (36) gives the usual (nearly) scale-
invariant result. There are two important corrections to
this. At N ¼ 1 there is a contribution due to the quadratic
interaction terms in (41); these gives an oscillatory modu-
lation of the power spectrum that was accounted for in
[29,39] using a different approach. See Appendix D for a
derivation. At N ¼ 2 there is an important contribution
from the pseudoscalar coupling which influences the nor-
malization of the spectrum; this was accounted for in
[42,43] and is rederived in Appendix C. Accounting for
all important contributions, we can write the power spec-
trum in the form

P ðkÞ ¼ �2

�
k

k?

�
ns�1þð�ns= lnðk=k?ÞÞ cosð
k=fÞ

: (43)

This is the same form that was analyzed in [29,39]; how-
ever, the parameters now have the meaning

�2 ¼ P ½1þ Pf2ð�Þe4���; (44)

�ns ¼ 3b?

�
2�fffiffiffiffiffiffiffiffi
2�?

p
Mp

�
1=2½1þ Pf2ð�Þe4����1: (45)

7In this Section we work in the regime where backreaction
effects are negligible and it is not important to distinguish
between �
, �V and � _H=H2.
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Recall that P 1=2 � H2=ð2� _
Þ. The function f2ð�Þ was
computed in [43] and is given by

f2ð�Þ ¼
�
3 � 10�5��5:4 if 2 & � & 3;

7:5 � 10�5��6 if � � 1:
(46)

(this function is plotted in Figure 1 of [43]).
The total bispectrum is defined by

hk1
k2

k3
i ¼ BðkiÞ�ð3Þðk1 þ k2 þ k3Þ: (47)

This quantity receives two important contributions. At
N ¼ 1 we have a contribution due to the cubic self-
interaction term in (41); this gives a resonant contribution
that was studied in [29,39,40]. See Appendix D for more
details. At N ¼ 2 we have unimportant corrections to this
result. The leading contribution from the pseudoscalar
interaction in (41) arises at N ¼ 3 and gives an equilateral
contribution to the bispectrum that was first derived in [42];
see Appendix C. Summing up all important contributions,
leads to

BðkiÞ ¼ Binv:decðkiÞ þ BresðkiÞ;

¼ 9ð2�Þ5=2
10

P2
 ðkÞfinv:decNL ð�ÞTeqðkiÞ

þ ð2�Þ5=2P2
 ðkÞ

fresNL

k21k
2
2k

2
3

�
� sin

�

K

f

�

þ fffiffiffiffiffiffiffiffi
2�?

p
Mp

cos

�

K

f

�X
i¼j

ki
kj

�
; (48)

where the nonlinearity parameters are

finv:decNL ¼ f3ð�ÞP 3e6��

P2
 ðkÞ

; (49)

fresNL ¼ 3b?
ffiffiffiffiffiffiffi
2�

p
8

� ffiffiffiffiffiffiffiffi
2�?

p
Mp

f

�
3=2

: (50)

The equilateral shape template is given by

TeqðkiÞ � � 1

k31k
3
2

� 1

k31k
3
3

� 1

k32k
3
3

� 2

k21k
2
2k

2
3

þ 1

k1k
2
2k

3
3

þ ð5� permsÞ (51)

and the function f3ð�Þ is

f3ð�Þ ¼
�
7:4 � 10�8��8:1 if 2 & � & 3;

2:8 � 10�7��9 if � � 1:
(52)

(this function is plotted in Figure 2 of [43]).
To be precise, the shape of the non-Gaussianity from

inverse decay does not coincide exactly with the equilateral
template (see Figure 6 of [43]). The cosine (defined in [59])
between the precise shape and the equilateral template
evaluates to 0.94 [43], so that the equilateral shape can

be used as a good estimate of the actual result. A positive
detection of non-Gaussianity based on the equilateral tem-
plate will justify a more precise analysis where the exact
inverse decay shape is taken into account.
The results of this subsection illustrate two important

points. First, we have seen explicitly that the in-in method
reproduces the same answer as the formalism developed in
[42,43] for inverse decay effects. This serves as a useful
consistency check and helps to verify the equivalence of
two of the most popular methods for computing cosmo-
logical correlation functions. Second, we have shown that
inverse decay effects and resonance effects ‘‘add up’’ in a
simple way, both at the level of the spectrum and at the
level of the bispectrum.
It is interesting to note that the two different effects

which we have discussed—resonance and inverse
decay—lead to very different patterns of higher order
correlation functions [47]. This difference may be relevant
for observables that are sensitive to the pattern of moments,
such as the statistics of rare objects or Minkowski
functionals.

C. Observational Consequences at large scales

Models of axion inflation have a rich phenomenology.
The presence of a periodic modulation in the potential (11)
gives rise to resonant effects, while the inflaton coupling to
gauge fields results in inflaton perturbations from the in-
verse decay of the produced quanta. The resonant signa-
tures were studied in Refs. [11,29,39–41] while the inverse
decay signatures were studied in [42,43]. For definiteness,
we discuss the resonant effects only for the linear case
here, Vsr ffi �3’ during inflation. (This case can be derived
from string theory [28,29] and will be discussed in more
detail in Secs. V and VI.) The parameter � is fixed by
matching the observed power spectrum normalization.
There remain 3 key parameters which determine the cos-
mological observables: the axion scale f, the amplitude �
of the periodic term in the inflaton potential (equivalently,
we can use (31) to replace � with b), and the coupling of
the inflaton to gauge fields �. At a given choice of f, the
magnitude of resonance effects are controlled by b and the
magnitude of inverse decay effects are controlled by �.
The phenomenological constrains on these parameters

are summarized in Fig. 3. The ‘‘TT(res)’’ regions show
one- and two-sigma likelihood contours for the power
spectrum, with the darker regions at large b being disfa-
vored by the too large oscillations in the power spectrum
induce by resonant effect. The ‘‘TTT(res)’’ regions give the
value of resonant non-Gaussianity with (from top left to
bottom right) fres > 200, 20, 2, respectively. The exact
bounds on the size of resonant non-Gaussianity from cur-
rent and future experiments are not yet known, but research
in this direction is in progress. The horizontal lines indicate
the value of equilateral non-Gaussianity due to inverse
decay. For a given choice of �, the region to the left of
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the horizontal red line is ruled out by the 95% C. L.WMAP

[56] bound fequilNL < 266. Recall that the generic expecta-
tion from effective field theory is � ¼ Oð1Þ. We see that,
in this case, observational constraints on equilateral
non-Gaussianity can rule out much of the parameter space

where resonant non-Gaussianity is large, but still allow for
detectable oscillations in the power spectrum. To have a
reasonably large resonant bispectrum without a large in-
verse decay signal requires � much smaller thanOð1Þ. For
such values of the pseudoscalar coupling, we may have a
richness of possible signature in the CMB with oscillations
in the spectrum and bispectrum, along with equilateral
non-Gaussianity.
In Fig. 4 we present instead results both for linear and

quadratic Vsr during inflation. In the left panel we show the
value of inverse decay non-Gaussianity as a function of
f=�. We recall that the inflaton-gauge field coupling is
inversely proportional to f=�, see Eq. (1), which explains
why the resonant decay non-Gaussianity is a decreasing
function of this quantity. The rapid decrease observed in
the Figure is due to the fact that the effect is exponentially
sensitive to the coupling [42,43]. In the right panel we
show instead the phenomenological predictions for the
spectral tilt ns and the tensor-to-scalar ratio r as the
inflaton-axion coupling ranges in the values shown in
Fig. 4. The predictions are compared with the 68% C. L.
and 95% C. L. limits given in [56].
The results shown in Fig. 4 improve over the existing

literature [43] by taking into account the backreaction
effects of the produced quanta on the background evolu-
tion. As we have discussed in Sec. II B, for inflaton-gauge
field coupling leading to interesting non-Gaussianity, back-
reaction is negligible when the scales relevant for CMB
(and LSS) observations left the horizon. However, it be-
comes relevant at the last stages of inflation. The main
backreaction effect is the slow down of the inflaton due to
its loss of kinetic energy into gauge quanta. This in turns
increases the duration of inflation with respect to the
case of no production. As a consequence, the number of
e-foldings NCMB inside inflation at which any CMB scale

FIG. 3 (color online). Parameter space for axion-monodromy
inflation with Vsr ffi �3’. The ‘‘TT(res)’’ regions give the (one-
and two-sigma) likelihood contours for the temperature 2-point
function. The ‘‘TTT(res)’’ regions give fres ¼ 200, 20, 2. The
region to the left of each horizontal line is ruled out by obser-

vational constraints on f
equil
NL , for values of the coupling � ¼

0:04, 0.2, 1 (see Eq. (1)). The Figure has been adapted from [29]

by adding the exclusion regions from f
equil
NL .
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FIG. 4 (color online). The left panel shows the inverse decay non-Gaussianity as a function of the inverse of the inflaton-gauge field
coupling [see Eq. (1)]. The value shown corresponds to modes that left the horizon 60 e-foldings before the end of inflation. The
WMAP limit is obtained from the 95% C. L. WMAP [56] bound on equilateral non-Gaussianity, and from the fact that the shape of
inverse decay non-Gaussianity has a cosine of 0.94 with the equilateral template [43]. The right panel shows values of ns and r for the
same range of inflaton-gauge field couplings. These values are compared with the 68% C. L. and 95% C. L. limits given in [56]. Both
panels show results for linear (p ¼ 1) and quadratic (p ¼ 2) slow-roll inflaton potentials.
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left the horizon is a function of both the initial value of the
inflaton 
CMB and of the coupling of the inflaton to gauge
fields �=f. If we fix the value of NCMB associated to a
given scale (this request can be done once we know the
reheating history after inflation), the increased of the du-
ration of inflation needs to be compensated by a value of

CMB, which would lead to a smaller value of NCMB in the
absence of the coupling. For the monomial slow-roll po-
tentials considered here, this means a smaller value of

CMB. Therefore, Fig. 4 has been obtained for a progres-
sively smaller value of 
CMB as the coupling �=f
increases.

The bottom-right end of each of the two lines shown in
the right panel of Fig. 4 corresponds to the standard chaotic
inflation results obtained in absence of coupling. Such
values are obtained as long as roughly �CMB & 1 (corre-
sponding to f=� * 0:046Mp in the linear case, and f=� *

0:065Mp in the quadratic case). The upper-left ends of the

two curves correspond instead to the maximal couplings
compatible with the CMB non-Gaussianity limit (namely,
we exclude �CMB * 2:66, corresponding to f=� &

0:019Mp in the linear case, and f=� & 0:027Mp in the

quadratic case). As the coupling increases towards the
maximal allowed value, the corresponding decrease in

CMB implies a less flat potential when the CMB modes
leave the horizon. This in turns results in increased values
for 1� ns and r (this is the same reason behind the lines in
the ns � r plot as a function of the number of e-foldings in
the standard case, cf. Figure 20 of [56]). In the present case,
there is an additional effect on r at large couplings.
Namely, the gauge quanta give a greater contribution to
the scalar power spectrum than to the tensor power spec-
trum [42,43]. Specifically, the standard relation r ’ 16� is
modified into r ’ 7�2 in the limit in which the inverse
decay perturbations dominate over the vacuum one [43].
As shown in [42,43], the inverse decay non-Gaussianity
limit forces one to be in the regime in which the power is
dominated by the vacuum mode. For the maximal possible
couplings, the inflaton perturbations from gauge modes
contribute to about 10% of the scalar power spectrum,
while the corresponding contribution to the tensor power
is about 3 � 10�4 for linear inflaton potential, and about
6 � 10�4 for quadratic inflaton potential. This is the cause

of the decrease of r at the left end of the curves shown in
the right panel of Fig. 4.

IV. GRAVITATIONALWAVES
AT INTERFEROMETERS

In Sec. III we discussed the observable cosmological
fluctuations on CMB/LSS scales. Such scales left the hori-
zon roughly 55 to 60 e-foldings before the end of inflation,
during the phase where backreaction effects are negligible.
In this section, we instead study scalar and tensor fluctua-
tions on much smaller scales. These modes left the horizon
closer to the end of inflation, when backreaction effects
start to play an important role in determining the evolution
of the homogeneous background, 
ðtÞ and HðtÞ. Our main
results are summarized in Fig. 6, where we show that
Advanced LIGO/Virgo could detect a stochastic back-
ground of gravitational waves from inflation for �CMB as
small as 2.33 (equivalent to f=ðMp�Þ  0:021) in the case

of a linear inflaton potential, and as small as 2.23 (equiva-
lent to f=ðMp�Þ  0:031) in the case of a quadratic

potential.

A. The Gravitational Wave Signal

The inverse decay of tachyonic gauge fields does not
only affect scalar but also tensor perturbations. The power
spectrum has been computed in [42], and further studied in
[43,45]. Defining gij ¼ a2ð�ij þ hijÞ with hij transverse

and traceless, hii ¼ @ihij ¼ 0, and its Fourier transform as

hijðx; tÞ ¼
Z d3k

ð2�Þ3=2
X

r¼L=R

�ij;rð ~kÞ½hrðk; tÞa ~k þ H:c:�

(53)

one finds the tensor power spectra

PL=R � k3

2�2
jhL=Rj2

¼ H2

�2M2
p

�
k

kp

�
nT
�
1þ 2H2

M2
p

fh;L=Rð�Þe4��
�
; (54)

for the left and right polarization, respectively. Here the
functions fh;L=R are defined by

fh;L=R ¼ 1

�

Z d3q�
ð2�Þ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q�jk̂� q�j

q ð1� cos�Þ2ð1� q� cos�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2q� cos�þ q2�

p Þ2
16ð1� 2q� cos�þ q2�Þ



�Z 1

0
dx

ffiffiffi
x

p ½sinx� x cosx�
�
2�

x
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q�jk̂� q�j

q �
e�2

ffiffiffiffiffiffi
2�x

p
½
ffiffiffiffi
~q�

p
þ

ffiffiffiffiffiffiffiffiffiffiffi
jk̂� ~q�j

p
�
	
2

(55)

where q� and � are, respectively, the magnitude of the (dimensionless) integration momentum q�, and the angle between
this vector and the momentum k of the mode. For details, and for the numerical evaluation of these functions, see [43].

In order to compare our results with the sensitivity of interferometers, it is convenient to introduce the fractional energy
density per logarithmic wavenumber interval
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�GW � 1

3H2
0M

2
p

@�GW;0

@ logk
; (56)

where the label 0 refers to quantities evaluated nowadays
and

�GW;0 �
M2

p

8a2
hh0ijh0ij þ @khij@khiji: (57)

To evaluate �GW;0 we need to evolve the primordial signal
(54) after horizon reentering until today. Using the tensor
transfer function (see e.g. [60,61]) for modes that reentered
the horizon during radiation domination, as it is the case for
the modes relevant for interferometers, one finds

�GW ¼ �R;0

24
ðPL þ PRÞ; (58)

where �R;0 � �R;0=3H0M
2
p ’ 8:6 � 10�5 refers to radia-

tion nowadays (one needs to include also the neutrinos as
if they were still relativistic today). It is useful to plot
�GW;0 as a function of frequency f ¼ k=2�, which is
related to the number of e-foldings by

N�NCMB ¼ ln
kCMB

0:002 Mpc�1
� ln

k

0:002 Mpc�1

¼ ln
kCMB

0:002 Mpc�1
� 44:9� ln

f

102 Hz
: (59)

The resulting signal as a function of frequency is pre-
sented in Fig. 5 for the case of a linear inflaton potential—
which is an excellent approximation to the potential for
axion-monodromy [28]—and for three reference values of
the inflaton-gauge field coupling. Specifically we choose
�CMB ¼ 2:66, corresponding to roughly the highest value
allowed by the CMB limits on equilateral non-Gaussianity,
�CMB ¼ 2:33, corresponding to roughly the lowest pos-
sible value that can be detected at Advanced LIGO/
Virgo, and �CMB ¼ 0, corresponding to standard vacuum
fluctuations.

The results presented in the left panel of Fig. 5 have been
obtained assuming NCMB ¼ 60. A lower duration of infla-
tion leads to a greater signal, as we show in the right panel.8

The fact that the signal grows with �CMB is due to the
exponential term in (54), while its growth with decreasing
NCMB is slightly more subtle. For fixed �CMB, decreasing
NCMB affects the scales relevant for interferometers (N ¼
NCMB � 44:9) in two ways: it decreases H, since these
scales are now closer to the end of inflation and it increases

�, since the _
=H is larger. The latter effect ends up
increasing the total gravitational signal due to the expo-
nential enhancement.

Finally, let us comment on how the consistent account of
the strong backreaction phase affects the results of [44],
where this phase was neglected. One effect can be seen in

Fig. 5 for a fixed �CMB � 0, where one can distinguish
three phases. From left to right one sees the vacuum con-
tribution, then the fast growth of the inverse decay contri-
bution and finally the slow down of the growth when the
backreaction becomes sizable. A second effect, which is
clearly visible by comparing the two curves for different
�CMB is that for larger �CMB the whole signal is effectively
shifted toward lower frequencies (to the left) due to the
larger number of additional e-foldings of strong backreac-
tion at the end of inflation. The two effects act in opposite
direction, but since the latter is stronger than the former,
the net result of the strong backreaction phase is an in-
crease of the signal. This increase is crucial in order to
make the natural window NCMB � 59–62 potentially vis-
ible at Advanced LIGO/Virgo.

B. Perturbations in the Regime of Strong Backreaction

So far, we have discussed the tensor perturbations on
small scales, relevant for interferometers. One should also
study scalar cosmological fluctuations at such scales.
Although these are not directly observable (besides the
possible generation of primordial black holes), it is never-
theless important to verify that scalar fluctuations are
perturbatively small, as a consistency check. For scales
which left the horizon �10–20 e-foldings before the end
of inflation, the calculation presented in Sec. III is not
valid, since backreaction effects no longer have a negli-
gible impact on the homogeneous dynamics. Let us pro-
vide a brief, heuristic analysis of the scalar fluctuations in
the regime of strong backreaction, in order to justify the
validity of perturbation theory (which was implicit in our
previous analysis of gravitational waves). According to
Ref. [32], the inflaton perturbations obey an equation of
the form

FIG. 5 (color online). �GWh2 as function of the frequency f,
for N ¼ 60 e-foldings of observable inflation, a linear slow-roll
inflaton potential, and �CMB ¼ 0, 2.33, 2.66 (the value of � when
the large-scale CMB modes left the horizon). For reference
we also show the expected sensitivity of LISA, Advanced
LIGO/Virgo and Einstein Telescope (at their most sensitive
frequency).

8As we discussed inSec. II C, for � ¼ Oð1Þ, having NCMB <
60 requires however a nonminimal reheating history.
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� €’þ 3�H� _’�
~r2

a2
�’þm2�’ ¼ J; (60)

where the effective coefficient of friction,�, and the source
term, J, are given by

� � 1� 2��
�

f

h ~E � ~Bi
3H _


; J ¼ �

f
½ ~E � ~B� h ~E � ~Bi�:

(61)

We have assumed that �, _
> 0, and (25) shows that

h ~E � ~Bi< 0, so the effect of particle production is always
to increase the effective friction in (60), as would be
expected on physical grounds. Equations similar to (60)
have also been obtained in other scenarios where particle
production effects contribute an important source of fric-
tion; see [12,13,62] for example.

When backreaction effects on the homogeneous dynam-

ics are negligible we have �
f jh ~E � ~Bij � 3Hj _
j; see Sec. II.

In this case � ffi 1 and (60) coincide with the equation
studied in [42,43]. Instead, when backreaction effects are
important � � 1 is possible. We can give a heuristic
estimate of the size of scalar fluctuations in the regime of
strong backreaction as follows. Since most of the interest-
ing production occurs near horizon crossing, we estimate
the derivatives as @�H. In this case, and for � � 1, (60)

gives: 3�H2h�’2i1=2 � hJ2i1=2. We further estimate

hJ2i1=2 � �
f jh ~E � ~Bij and  �� H

_

�’. The variance of fluc-

tuations is roughly

h2i �Oð10�2Þ 1
�2

; (62)

which is consistent with the analysis of [32]. Equation (62)
suggests that curvature fluctuations on small scales are
much larger than on CMB scales, although a perturbative

analysis is still justified. (A useful benchmark value to keep
in mind is �� 5–6 near the end of inflation for the case
where non-Gaussianity is observable, but not yet ruled
out.)

V. AXION-MONODROMY INFLATION

We start this section by reviewing a construction of
axion-monodromy inflation in string theory following
[28,29] and a generalization proposed in [33]. We then
conclude by summarizing and commenting on the main
open issues in the current implementation of this class of
models.

A. Review of the Model

Consider an O3/O7 orientifold Calabi-Yau compactifi-
cation of Type IIB string theory. The relevant four-
dimensional axion9 comes from the RR twoform C2 upon
dimensional reduction. Following [29], we choose the
normalization

Z
�I

!J ¼ ð2�Þ2�0�J
I (63)

for a basis �I of the homology H2ðY;ZÞ and !J of the
cohomology H2ðY;ZÞ, where Y is the Calabi-Yau space
over which we compactify. With an ansatz for the ten-
dimensional RR twoform

C2 ¼ 1

2�
cðxÞ!; (64)

FIG. 6 (color online). Region in the fNCMB; �CMBg plane (values assumed by these quantities when the large-scale CMB modes left
the horizon) for which the gravity wave signal is detectable at Advanced LIGO/Virgo and Einstein Telescope. The left and right panel
refer to a linear and quadratic inflaton potential, respectively.

9B-type axions, coming from the NSNS twoform, receive a
large mass from the nonperturbative corrections used in the
moduli stabilization á la KKLT. Although one might very well
conceive a scenario in which moduli are stabilized by perturba-
tive corrections, this is harder to construct in detail.
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for some base two-cycle !, we get a four-dimensional
axion cðxÞ with periodicity10 2�. The axion decay constant
for c is11

f2

M2
p

¼ gs

12V Eð2�Þ2
�R

! ^ �!
ð2�Þ6�03

�
¼ gs

8�2

c���v�

V E

; (65)

where V E is the six-volume of Y measured with the
Einstein-frame metric. In order to break the axion shift-
symmetry (the details of the resulting potential will be
reviewed in Sec.n VI), we consider a spacetime filling
NS5-brane wrapping the cycle � that defines the axion c.
If this cycle is far away from any O-plane, the local physics
is given by the oriented Type IIB string theory, since the
orientifold projection relates the fields at some point x to
the fields at some other far away image point x0 and so
does not lead to any local constraint. Tadpole cancellation
requires an additional anti-NS5-brane wrapping a homolo-
gous two-cycle. A metastable configuration can be ob-
tained if we assume that � belongs to a one parameter
family of cycles that stretches between two warped throats
and brane and antibrane are located in different throat.
Since the tension of the branes is reduced by warping,
there is a potential barrier for the branes to annihilate.
Inflation takes place as the C2 flux over� slowly decreases
to minimize the NS5-brane (an antibrane) tension. A series
of consistency checks and bounds have been discussed
in [28,29].

To conclude, wewant to mention a slight modification of
the above construction described in [33] that alleviate some
of the difficulties encounter in this model. Imagine that for
some reason it is hard to compute or control the monod-
romy potential generated by the introduction of NS5-
branes (some concrete difficulties will be discussed in the
next subsection). Inflation can still take place if there is
another axion (in general one expects h�1;1 axions, i.e. as

many axions as orientifold-odd two-cycles) which interacts
with the one discussed above via a nonperturbative effect
(which are not forbidden by any apparent symmetry). The
resulting two field potential (plotted in polar coordinates)
closely resemble the Inferno as described by Dante, which
was taken as the name of the model. If there is a mild
hierarchy between the two axion decay constants (the
precise amount depends on the details of the monodromy

potential) a long stage of slow-roll inflation can be
obtained.

B. Issues with Concrete Realizations

Before proceeding to the study of 
F ~F in the string
realization of axion-monodromy, we would like to stress
that there are still several challenges that the explicit con-
structions face. Although addressing these challenges is
beyond the scope of the present paper, we list some of
them below.
Explicit solution. One should provide an explicit solu-

tion with the required geometry (proposals were given in
[28]) and solve the ten-dimensional equations of motion in
the presence of warping, fluxes and an NS5/anti-NS5-
brane pair. Among other things, it would then be interest-
ing to compute the exact warped axion decay constant and
the masses of NS5-brane modes.
Backreaction on four-cycles. The C2 flux (i.e. the infla-

ton) on � induces and effective (anti-)D3-brane charge on
the (anti-)NS5-brane, which changes the warp fact, which
in turns modifies all warped volumes. Since four-cycle
volumes are stabilized, this chain of interactions leads to
an effective potential for the inflaton. In the single axion-
monodromy model this effect can be suppressed if the
NS5/anti-NS5-brane pair behaves effectively as a dipole,
i.e. when the distance between them is much smaller than
the distance to the closest stack of D7-branes. In Dante’s
Inferno this effect is smaller to begin with [33] for two
reasons. First, the flux on the two-cycle wrapped by the
NS5-brane is suppressed by the ratio of the two axion
decay constants, which is assumed to be small, and second
the inflaton direction is almost perpendicular to the direc-
tion for which the backreaction induces a potential.
Light KK-modes. As pointed out in [29], flux along the

compact direction of brane decreases the masses of the
Kaluza-Klein modes. This can be understood by consider-
ing the T-dual picture where flux becomes tilting of a lower
dimensional brane, which is therefore longer that in the
fluxless case. In the single axion-monodromy case, these
lighter masses are very close to the Hubble scale, while
they can be made parametrically heavier in the Dante’s
Inferno scenario.
NS5/D7-brane intersection.12 Just on topological

grounds, any two-cycle should intersect its dual four-cycle
at least at one point. In the Type IIB compactifications
where we understand how to stabilize the moduli (based on
[65]) some nonperturbative corrections are needed to sta-
bilize the Kähler moduli (four- and two-cycles). In the
single axion-monodromy model [28] this should arise via
gaugino-condensation on a stack of spacetime filling D7-
branes wrapped on a four-cycle for each homology class.
The effects of the resulting NS5/D7-brane intersection on

10This can be seen e.g. via S-duality starting from the world-
sheet coupling

R
B=ð2��0Þ. Note that this choice differs from

that in [28], where the axion periodicity was ð2�Þ2.
11Let us check that this is compatible with e.g. (3.5) of [63] and
(2.15) of [28]. The volume scaling L�4 agrees since v� � L2

E.
For the scaling with gs one has to transform from the string-
frame volume of [28,64] to the Einstein-frame volume of (65),
i.e. L4

s ¼ gsL
4
E, so that ðf=MpÞ2 � g2s=L

4
s ¼ gs=L

4
E. The fact

that [28,64] use a different 4D Einstein frame from the one we
use here does not matter since f and Mp scale the same under a
constant red-shift of the metric so that the ratio is invariant.

12This issues was raised in private communications among
R. Flauger, L. McAllister, T. Wrase, and one of the authors
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both the moduli stabilization and on the inflaton potential
should be studied. Perturbative Kähler stabilization could
in principle solve this issue but it is computationally much
harder to make explicit.

In the rest of the paper we will compute certain local
quantities that should be rather independent on the way the
above issues are addressed.

VI. COUPLINGS FROM STRING THEORY

We devote this section to the explicit computation of the
bosonic inflaton couplings induced by the presence of an
NS5 and a D5-brane and their phenomenological
consequences.

A. Model Independent Couplings: NS5-brane

The action for the NS5-brane can be obtained via S-
duality from that of a D5-brane as discussed in
Appendix E. In the following we focus on the potential
for c and its couplings to the gauge field living on the
world-volume of the NS5-brane. Performing an S-duality
transformation on the action for D5-branes one finds

SDBINS5 ¼ ��0�5

Z
dx4

ffiffiffiffiffiffiffiffiffiffiffiffiffi�gE;4
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e
j	j2gE;2 þ ð2�cÞ2
q



�
1þ ð2��0Þ2

4

e�


j	j2 F
2
E

�
; (66)

SCSNS5 ¼
3

3!

�5ð2��0Þ3
j	j2

Z
F ^ FcC0

¼ 1

2ð2�Þ2j	j2
Z

F ^ FcC0; (67)

where a subscript E indicates Einstein frame and 	 �
C0 þ ie�
.

Defining ~F�� � F���
����=ð2 ffiffiffiffiffiffiffiffiffiffi�gE

p Þ, one can rewrite

this action using the notation of Sec. I B. Including also the
axion kinetic term, we have

S ¼
Z

d4x
ffiffiffiffiffiffiffiffiffiffi�gE

p �
�Bð’Þ

4
F��F�� � Cð’Þ

4
F�� ~F��

� 1

2
ð@’Þ2 � Vð’Þ

�
; (68)

where the coupling functions are

Cð’Þ � C0g
2
s’

ð2�Þ2f (69)

Bð’Þ � ð�0Þ2
2�j	j4g2s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gE;2gsj	j2 þ ð2�’=fÞ2

q
: (70)

After imposing that the potential has a vanishingly small
cosmological constant, the inflaton potential takes the form

Vð’Þ ¼ �3½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
’2 þ ’2

c

q
� ’c� (71)

where

’c � Mp

gsj	jgE;2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c���v�

p
ð2�Þ2V E

’ Mp

1þ C0gs

ð2�Þ2 ffiffiffi
2

p � Mp:

(72)

In the last equality we assume an isotropic compactifica-
tion for a rough estimate. During inflation ’ � ’c and
the potential can be approximated as Vð’Þ � �3j’j.
(Notice that, for such large-field values, we also have
Bð’Þ / Vð’Þ.)

B. NS5-brane Phenomenology

As discussed in Sec. II A, the presence of a tachyonic
gauge mode depends on the parameter

� ¼
ffiffiffi
�

2

r
Mp

C;


B
: (73)

To estimate this we assume that 60 e-foldings before the
end of inflation 
� 10Mp � f, hence we can neglect the

first term in the square root in the definition of B. Our
estimate is therefore

� ’ M2
p

2
2
C0g

3
s j	j2: (74)

Notice that all powers of f cancel. Now the two possible
regimes are C0 � 1=gs or the opposite C0 � 1=gs. In
each case one finds

� ’ M2
p

2
2
C0gs � C0gs10

�2 � 10�2 or (75)

� ’ M2
p

2
2
ðC0gsÞ3 � ðC0gsÞ310�2; (76)

respectively. To have nontrivial production of gauge field
fluctuations requires � * Oð1Þ. Evidently, this is possible
only when C0 * 7=gs, while no relevant effect is expected
from the coupling to the NS5-brane degrees of freedom for
C0 & 7=gs. Larger values of C0 seem less natural but not
impossible. Allowing for fine-tuning, C0 can be made
large, as one can see in the explicit examples of [66] where
Eq. (5.7) gives the value of C0 at the minimum. As a figure
of merit, we found that sampling random values for
the fluxes considered in [66] about 0.5% of the cases had
C0 > 70. The phenomenology of the regime C0 * 7=gs is
completely analogous to the one we reviewed in Sec. III.
The inverse decay proceeds through the CF ~F coupling,
while BF2 gives only subleading corrections. Potential
observables are: non-Gaussianity in the CMB, running
of the spectral index and gravitational waves at
interferometers.
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C. Model Dependent Couplings: D5-brane

One could assume that there is also a spacetime filling
D5-brane wrapping a two-cycle13 which contains the two-
cycle � that defines the axion c. This brane is not essential
for the construction, but for completeness we include a
study of its effects. In order for the D5-brane not to
complicate the construction outlined in Sec. V and not to
heavily affect the inflationary dynamics, it must be stabi-
lized at a different location from the NS5-brane. This could
arise because it wraps a distinct but overlapping cycle, or
because of a particular configuration of fluxes.

In this case, a coupling of c to the gauge theory living on
the world-volume of the D5-brane is induced by the Chern-
Simon part of the action. One finds

S � �5ð2��0Þ3 1
2

Z
F ^ Fc; (77)

where of course this F is different from the one living on
the NS5-brane. The kinetic term for F reads

� vs
2

4ð2�Þ3gs
Z

d4x
ffiffiffiffiffiffiffiffiffiffi�gE

p
F2
E; (78)

where vs
2 is the volume (measured in the string frame) in

units of
ffiffiffiffiffi
�0p

of the two-cycle wrapped by the D5-brane.
Canonically normalizing one obtains

S ¼
Z

d4x
ffiffiffiffiffiffiffiffiffiffi�gE

p �
� 1

4
F2
E � �


4f
FE

~FE

�
; (79)

with14

� � 2�gs
vs
2

¼ 2�
ffiffiffiffiffi
gs

p
v2

; (80)

where now v2 is in Einstein frame, and f given by (65).

D. D5-brane Phenomenology

Again the phenomenology is dictated by the size of �.
Focusing on CMB scales we find

� �
ffiffiffiffiffiffi
2�

p
�

2f
¼ 4�2



ffiffiffi
2

p 1

v2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V E

c���v�

s
’ 2:8

1

v2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V E

c���v�

s
:

(81)

For the toy model of an isotropic compactification the
powers of the volume cancel exactly leaving � remarkably

close to but slightly above the bound imposed by non-
Gaussianity. This means that if a D5-brane is present in
the same cycle as the axion, the phenomenology discussed
in this paper is a natural outcome. Avery explicit construc-
tion is needed to evaluate the volume factors which could
easily move � above or below its experimental bound.
Another way of discussing the result (80) is by looking

at Fig. 3. A natural size of � is of order 0.1 to 0.01, which
makes the inverse decay effect of comparable order as the
one induced by oscillations (whose overall size of course
depends on the independent parameter b).

VII. CONCLUSIONS

In this paper, we have studied a very simple and natural
class of inflation models wherein ’ is a pseudoscalar
axion. We have reviewed that this construction leads
to a surprisingly rich array of correlated observables for
both scalar and tensor cosmological perturbations on
CMB scales and also at much smaller scales. For natural
values of the axion decay constant—roughly
f� 10�2Mp—these signals may be detectable in the not-

too-distant future.
On CMB/LSS scales, we have argued that a detectable

non-Gaussian signature arises naturally. Non-Gaussianity
in axion inflation can feature equilateral and resonant
type bispectra or a superposition of the two. We have
reviewed these effects using the in-in formalism and gen-
eralized previous results to allow for more general classes
of gauge field couplings (which explicitly break the under-
lying shift symmetry). Since most axion models are of the
large-field type, we also expect a large tensor-to-scalar
ratio.
We have found that axion inflation may lead also to

detectable gravitational wave signatures at Advanced
LIGO/Virgo scales as realized in [44]. We extended that
analysis by including the backreaction effects on the late
time inflaton dynamics that necessarily arise for couplings
leading to observably large effects. In particular,
we have noticed that such effects can increase the number
of e-foldings by �10, which has important consequences
for observables. Specifically, it increases the values of
1� ns and r at CMB scales, and of �GWh

2 at interfer-
ometer scales. The gravity wave signal is correlated with
the large-scale non-Gaussianity and, if both effects were
detected, it would provide a remarkable confirmation of
this scenario.
We have also noticed that the same pseudoscalar cou-

pling which leads to equilateral non-Gaussianity and
small-scale gravitational waves will also provide a natural
decay channel for the inflaton. Indeed, we have seen that
reheating is likely to be extremely efficient in the observa-
tionally interesting region of parameter space.
Most of our phenomenology relies on the pseudoscalar

coupling ’F ~F, which is constrained only by naturalness at
the effective field theory level. In order to address uv

13Again we assume that in case an orientifold projection has
been performed, the two-cycle in question is far away from
O-planes so the that the local physics is described by Type IIB
string theory.
14Let us compare this with (6.7) of [62]. Those authors define

L2 as the string-frame volume measured in units of
ffiffiffiffiffiffiffiffiffiffiffi
2��0p

as
can be seen from their Eqs. (6.5) and (6.6). This accounts for the
2� difference. On the other hand we seem to disagree on the
factors of gs.
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sensitivity, we have computed this coupling in specific
string theory constructions of axion-monodromy. We
have found that such couplings must be present to gauge
fields living on the NS5 brane. However, the coupling is
large enough to lead to interesting phenomenology only
when the moduli stabilization is such that gsC0 * 7, which
can be achieved roughly at the cost of a 0.5% fine-tuning.
For completeness we noticed that, remarkably, the cou-
pling to a putative D5-brane gauge fields would naturally
take the value currently constrained by observations.

Before concluding we would like to mention a few
interesting directions for future research. It would be in-
teresting to:

(i) Extend to smaller scales the study of the phenome-
nological limits due to inverse decay. The running of
the spectrum is larger than for the vacuum contribu-
tion and could receive bounds competitive with those
from CMB non-Gaussianity from the inclusion of
high l data of experiments like ACT [67] or SPT
[68]. Stronger bounds could also emerge by combin-
ing non-Gaussianity at both CMB and LSS scales,
taking into account the specific evolution of of �
(and of fNL) betweeen the two scales.

(ii) Find the observational bound on resonant non-
Gaussianity.

(iii) Study observational constraints on scales in be-
tween CMB and interferometers. Although probes
of primordial perturbations at these scales might be
less sensitive, and more model dependent (for in-
stance, interesting limits can be obtained for certain
classes of dark matter WIMP’s; see [69] for a
summary of limits at various scales) the signal is
predicted to grow monotonically as one approaches
smaller scales (still remaining perturbative).

(iv) Forecast the constraints that various interferometers
could put on the parameters of the model, in case of
a detection.

(v) Provide a detailed account of (p)reheating in
string theory axion monodromy, along the lines
of [70–74].

(vi) Study in detail the mechanism that keeps perturba-
tion theory under control and determine how large
the tensor-to-scalar ratio can become in the regime
of strong backreaction.

We hope to address some of these questions in future
research.
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APPENDIX A: PRODUCTION OF
GAUGE FLUCTUATIONS

In this Appendix we study the tachyonic production of
gauge field fluctuations in the theory (10). This analysis
generalizes the previous work [32,42,43] to account for
generic coupling functions Bð’Þ,Cð’Þ. We assume that the
slow-variation parameters (8) and (9) are small.
Working in Coulomb gauge, the equation of motion of

the gauge field in the background of the slowly-rolling
inflaton condensate takes the form

A00
i þ


0

B

@B

@’
A0
i � ~r2

Ai �
0

B

@C

@’
ð ~r
 ~AÞi ¼ 0: (A1)

We introduce the rescaled field

~A iðt;xÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bð
ðtÞÞ

q
Aiðt;xÞ; (A2)

and decompose ~Ai into circular polarization modes, as in
Eq. (13). The equation of motion is:�

@2

@	2
þ k2 þM2

Að	Þ �
2k�

	

�
~A�ðk; 	Þ ¼ 0; (A3)

where

M2
Að	Þ ffi �

ffiffiffiffiffiffiffiffiffiffiffi
�
�B

p
	2

signðB0 _
Þ; (A4)

� �
ffiffiffiffiffiffi
�

2

r
Mp

C0

B
signð _
Þ (A5)

where �
 � _
2

2H2M2
p
, which may differ from �V [see Eq. (6)]

or � _H=H2 in the regime of strong backreaction.
In Eq. (A4) we work to leading order in slow-variation

parameters. In the following, for brevity, we assume that
_
C0 > 0 and B0 _
> 0. One can show that

_�

H�
ffi

€
0

H _
0

þ �
 þ 2ð ffiffiffiffiffiffiffiffiffiffiffi
�
�C

p � ffiffiffiffiffiffiffiffiffiffiffi
�
�B

p Þ: (A6)

This shows that, when the slow-variation constraints are
respected, we can treat � as a constant. In this case,
Eq. (A3) has the form of Whittaker’s equation�

d2

dz2
� 1

4
þ �

z
þ 1=4��2

z2

�
W�;�ðzÞ ¼ 0: (A7)

The gauge mode solutions may therefore be expressed
in terms of Whittaker’s function. The correctly normal-
ized solution is

Aþðk; 	Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2kB�

p e��=2W��;�ðþ2ik	Þ; (A8)
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� � i�; � ffi 1

2
þ ffiffiffiffiffiffiffiffiffiffiffi

�
�B
p

: (A9)

where B? is Bð
ðtÞÞ evaluated at horizon crossing for
cosmologically interesting modes. Equation (A8) can be
put in a more illuminating form by using the asymptotic
expansion

W��;�ðzÞ ffi
�
z

4�

�
1=4

���e�e�2
ffiffiffiffi
�z

p
; (A10)

which is valid for large j�j and when Imð�Þ> 0.
Equation (A10) leads immediately to the following
limiting behavior for (A8):

Aþð	; kÞ ffi 1ffiffiffiffiffiffiffiffiffiffiffi
2kB�

p
�

k

2�aH

�
1=4

e���2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�k=ðaHÞ

p
: (A11)

Formally, this expression is only valid for � ! 1.
However, one may verify numerically that it provides
a good fit even for �� 2–3, at least for modes with
ð8�Þ�1 & �k	 & 2�, which account for most of the
power in produced fluctuations.

Equation (A11) differs slightly from the result that was
obtained in [42,43] for the case B ¼ 1 and C / ’. The key
‘‘new’’ feature encoded in this equation is the fact that, if
B � 1 during inflation, then the value of � is effectively
increased. In this case, one can find a much greater pro-
duction of gauge quanta, since the amplitude of Ai is
exponentially sensitive to �.

Notice that Eq. (A11) will fail to adequately describe the
dynamics on sufficiently large scales. This expression
results from neglecting the last term in square braces of
(A7), an assumption that breaks down for �k	 <Oð�=�Þ.
From (A1), we can see that the new interaction associated
with Bð’Þ actually dominates the dynamics of A� in the

limit �k	 ! 0. Hence, we should verify that this interac-
tion does not lead to any interesting particle production
on superhorizon scales, that would not be accounted for by
the asymptotic expansion (A11). Neglecting gradients, the
equation of motion (A1) becomes

€A i þ
�
Hþ 1

B

dB

dt

�
_Ai ffi 0: (A12)

Suppressing the vector index, the solution is

A ¼ A? þ _A?

Z
dt

a?
a

B?

B
: (A13)

Our assumption about slow-variation of BðtÞ means that
ðaBÞ�1 should be a decreasing function of t and the integral
will rapidly converge. Assuming that B varies slowly
enough to pull it out of the integration we have

A ffi A? þ B?

B

_A?

H

�
1� a?

a

�
! const: (A14)

This shows explicitly that the coupling Bð’Þ does not lead
to any interesting particle production on superhorizon
scales.

APPENDIX B: EFFECTIVE ACTION
FOR THE PERTURBATIONS

In this Appendix, we derive the leading interactions
terms in the effective action for the curvature perturbation.
Following [40,42,43] we neglect metric perturbations. The
action for �’, including terms up to third order in fluctua-
tions, is given by

S ¼
Z

dtdxxa3
�
1

2
ð� _’Þ2 � 1

2a2
ð ~r�’Þ2

� 1

2

�
m2 ��4

f2
cos

�

0ðtÞ
f

��
ð�’Þ2

� 1

6

�4

f3
sin

�

0ðtÞ
f

�
ð�’Þ3

�

þ
Z

dtd3xa3
"
�B0

4
�’F��F�� � C0

4
�’F�� ~F��

#
:

(B1)

Here we have introduced the notation m2 � V 00
sr and we

write the zeroth order homogeneous solution 
0ðtÞ in the
trigonometric functions, since the difference 
ðtÞ �
0ðtÞ
is subleading in the small parameter b � �4

fV0
sr
; see (32).

Moreover, we have disregarded a contribution proportional
to V000

sr , which is usually subleading in a slow-roll
expansion.
Our goal is to rewrite the action (B1) using

ðt;xÞ ¼ �H
_

�’ðt;xÞ ) �’ ¼ � ffiffiffiffiffiffi

2�
p

Mp (B2)

and identify the leading interaction terms. Let us focus,
first, on the quadratic terms on the first line of (B1). Using
(B2) is straightforward to derive the result

S � M2
p

Z
dtd3xa3�

�
_2 � 1

a2
ð ~rÞ2 ��22

�
(B3)

where we have defined

�2 � m2 ��4

f2
cos

�

0ðtÞ
f

�

�H2

� _�

H
þ 3�þ 3�þ 2�2 þ 3��þ �2

�
(B4)

and introduced the parameter � � €H=ð2H _HÞ. In the case
without resonance effects (when b ¼ 0) the last term in
(B3) would represent a tiny and unimportant correction.

However, it is important to notice that it is _
, and not _
0,
that appears in (B2), hence there is rapid oscillatory time
dependence implicit in the parameters �, � appearing
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in �2 which could, in principle, lead to interesting effects.
To extract the oscillatory terms from �2, we expand the
slow-roll parameters as

� ¼ �0 þ �1 þ � � � ; � ¼ �0 þ �1 þ � � � (B5)

The subscript i indicates that a quantity is computed at i-th
order in b. The leading corrections are given by [39,40]

�1 ¼ �3b
ffiffiffiffiffiffiffiffi
2�0

p f

Mp

cos

�

0ðtÞ
f

�
; (B6)

�1 ¼ �3b sin

�

0ðtÞ
f

�
; (B7)

which shows that � � �. Using (B6) and (B7) it is straight-
forward to check that oscillatory contribution to �2 can-
cels at leading order. Hence, we are left with

S2 � M2
p

Z
dtd3xa3�

�
_2 � 1

a2
ð ~rÞ2

�
; (B8)

which gives the same linearized equation of motion that
was studied in [40]

 00 þ 2aHð1þ �Þ 0 � ~r2
 � 0: (B9)

We take the ‘‘free theory’’ to correspond to (B8), ne-
glecting resonance effects (setting b ¼ 0), and treat all
other contributions as perturbative ‘‘interactions’’. That
is, we identify the free theory Lagrangian as

L 0 ¼ M2
pa

3�0

�
_2 � 1

a2
ð ~rÞ2

�
: (B10)

The OðbÞ correction to the quadratic Lagrangian gives

L I � M2
pa

3�1

�
_2 � 1

a2
ð ~rÞ2

�
: (B11)

There is also a cubic interaction arising from the last term
on the first line of (B1). To leading order in b this gives

L I � a3

6
ð2�0Þ3=2�4

M3
p

f3
sin

�

0ðtÞ
f

�
3: (B12)

Next, we turn our attention to the gauge field interactions
on the second line of (B1). At leading order we have

L I � a3Bð
0Þ
�
�

2
F ~Fþ signðB0Þ

ffiffiffiffiffiffiffiffi
��B

p
2

F2

�
: (B13)

Notice that, when particle production effects are relevant,
we always have � * 1 � ffiffiffiffiffiffiffiffi

��B
p

. Thus, the first term in

(B13) always dominates in the observationally interesting

regime. We can further simplify the result by making a

field redefinition A� ! B�1=2A� and neglecting deriva-

tives of B, which is justified to leading order in the slow-
variation parameters (8). Thus, we arrive at

L I � �

4
�����F��F�� (B14)

where ����� is the Minkowski-space Levi-Civita symbol,
with �0123 ¼ þ1.
Adding up all the relevant terms, we arrive at the follow-

ing interaction Lagrangian

LI ffi M2
pa

3�1

�
_2 � 1

a2
ð ~rÞ2

�

þ a3

6
ð2�0Þ3=2�4

M3
p

f3
sin

�

0ðtÞ
f

�
3

þ �

4
�����F��F��: (B15)

Equation (B15) is the main result of this Appendix.

APPENDIX C: INVERSE DECAY EFFECTS
WITH THE IN-IN FORMALISM

In this Appendix we study inverse decay effects using
the in-in formalism, showing that this reproduces exactly
the results which were derived in [42,43] using a different
method. The relevant term in the interaction Lagrangian
(B15) is

L inv:dec
I ¼ þa3

�

2
F��

~F��: (C1)

This coincides with the interaction that was studied in
[42,43] (only the meaning of the constant � is changed
due to the presence of nontrivial coupling functions Bð’Þ
and Cð’Þ). The interaction Hamiltonian is given by
HI ¼ �R

d3xLI and may be written in the form

Hinv:dec
I ðtÞ ¼ ffiffiffiffiffiffiffiffi

2�0
p

Mp

Z
d3q�qðtÞJqðtÞ; (C2)

to leading order. Here the ‘‘source’’ term is defined by

JqðtÞ � � a3

2
ffiffiffiffiffiffiffiffi
2�0

p �

Mp



Z d3x

ð2�Þ3=2 e
�ik�x½F�� ~F�� � hF�� ~F��i�: (C3)

Notice that hJqðtÞi ¼ 0 by construction.

The quantity Jq has the same meaning as in [42,43]: it is

the source term in the equation of motion for �’ that
corresponds to the production of inflaton fluctuations by
inverse decay. Defining the canonical field variable

QkðtÞ � � ffiffiffiffiffiffiffiffi
2�0

p
Mpak; (C4)

the equation of motion becomes
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�
@2	 þ k2 � a00

a

�
QkðtÞ ¼ JkðtÞ þ � � � (C5)

where � � � denotes additional corrections, arising from
resonance effects and self-interactions, which will not
concern us here. We are interested in the particular solution
of (C5), which corresponds to the inflaton fluctuations
generated by inverse decay and may be highly non-
Gaussian. Working at the level of the equation of motion,
it is straightforward to see that the inverse decay contribu-
tion to the n-point correlation functions of the curvature
perturbation may be written as

hk1
k2

� � � kn
ijinv:dec

¼
�
� 1ffiffiffiffiffiffiffiffi

2�0
p

Mp

�
n
�Yn
i¼1

Z 	

�1
d	i

Gkið	; 	iÞ
að	Þ

�


 hJk1
ð	1ÞJk2

ð	2Þ � � � Jkn
ð	nÞi (C6)

whereGkð	; 	0Þ is the retarded Green function for Eq. (C5);
see [43] for details. Here we show that the same result may
be derived also from the in-in formalism.
Focusing on the interaction term (C2) the in-in formula

(36) is

hk1
k2

� � � kn
ð	Þi ¼ X1

N¼0

ð�iÞN
Z t

dt1
Z t1

dt2 � � �
Z tN�1

dtN


 h½½½k1
k2

� � � kn
ð	Þ; Hinv:dec

I ðt1Þ�; Hinv:dec
I ðt2Þ� � � � ; Hinv:dec

I ðtNÞ�i

¼ X1
N¼0

ð�i
ffiffiffiffiffiffiffiffi
2�0

p
MpÞN

�YN
i¼1

Z ti�1

dti
Z

d3qi

�


 h½½½k1
k2

� � � kn
ð	Þ; �q1

ðt1ÞJq1
ðt1Þ�; �q2

ðt2ÞJq2
ðt2Þ� � � � ; �qN

ðtNÞJqN
ðtNÞ�i; (C7)

where t0 � t in the product over integrals. A crucial simplification arises from noting that the source terms Jqið	iÞ may be
treated as commuting variables, to a very good approximation. This follows from the discussion in Sec. II A; see Eq. (20) in
particular. This allows us to pull the factors of Jqið	iÞ out of the nested commutator in (C7). Thus, we arrive at a simplified
formula

hk1
k2

� � � kn
ð	Þi ¼ X1

N¼0

ð�i
ffiffiffiffiffiffiffiffi
2�0

p
MpÞN

�YN
i¼1

Z ti�1

dti
Z

d3qiJqi
ð	iÞ

�


 h½½½k1
k2

� � � kn
ð	Þ; �q1

ðt1Þ�; �q2
ðt2Þ� � � � ; �qN

ðtNÞ�i: (C8)

To evaluate the nested commutators on the last line of (C8)
we can use the formula

½k1
ð	1Þ;k2

ð	2Þ�ffi 1

2�0

1

M2
p

½Qk1
ð	1Þ;Qk2

ð	2Þ�

¼ �i

2�0M
2
p

Gk1ð	1;	2Þ
að	1Það	2Þ�

ð3Þðk1þk2Þ; (C9)

where the second equality is valid only for 	1 � 	2.
Let us first consider the 2-point function; Eq. (C8) with

n ¼ 2. The N ¼ 0 term is the summation just gives the
usual (nearly) scale-invariant power spectrum from the
quantum vacuum fluctuations. Inverse decay effects, on
the other hand, are encoded in the N � 1 terms. Using
(C9) it is straightforward to verify that only the N ¼ 2
contribution to the nested commutators gives a nonvanish-
ing contribution. Explicit evaluation gives

hk1
k2

ð	Þijinv:dec
�
� �1ffiffiffiffiffiffiffiffi

2�0
p

Mp

�
2 Z 	

�1
d	1d	2Gk1ð	; 	1ÞGk2ð	; 	2Þ


 hJk1
ð	1ÞJk2

ð	2Þi (C10)

in precise agreement with (C6).

Next, we turn our attention to the 3-point function. This
time the N ¼ 0 term is trivial, since the free theory modes
are Gaussian. It may be readily verified that only theN ¼ 3
term in the summation (C8) survives; all other commuta-
tors are zero. Hence, we find

hk1
k2

k3
ð	Þijinv:dec

�
� �1ffiffiffiffiffiffiffiffi

2�0
p

Mp

�
3 Z 	

�1
d	1d	2d	3Gk1ð	; 	1ÞGk2ð	; 	2Þ


Gk3ð	; 	3ÞhJk1
ð	1ÞJk2

ð	2ÞJk3
ð	3Þi (C11)

which, again, agrees with (C6).The analysis of this
Appendix proves that the formalism developed in [42,43]
is equivalent to the in-in method.

APPENDIX D: RESONANCE EFFECTS
WITH THE IN-IN FORMALISM

In this Appendix we study resonance effects [11,39,40]
on the 2-point and 3-point function, using the in-in formal-
ism. These effects are generated by the first two terms in
the interaction Lagrangian (B15):
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LI � M2
pa

3�1

�
_2 � 1

a2
ð ~rÞ2

�

þ a3

6
ð2�0Þ3=2�4

M3
p

f3
sin

�

0ðtÞ
f

�
3: (D1)

Let us first consider the 2-point function. The relevant
term in the interaction Hamiltonian is

HIðtÞ � �
Z

d3xa3�1

�
_2 � 1

a2
ð ~rÞ2

�
: (D2)

The N ¼ 1 term in the in-in formula (36) gives

hk1
k2

ð	Þi � iM2
p

Z t

0
dt1d

3x�1ðtÞ
��

k1
k2

ð	Þ; ð _ðt1;xÞÞ2

� 1

a2
ð ~rðt1;xÞÞ2

��
: (D3)

Recall that the oscillatory time dependence of �1 is given
by (B6). It is straightforward (but nontrivial) to evaluate
(D3). We find

hk1
k2

ð	Þi � 2H4

_
2
0k

3
�ð3Þðk1 þ k2Þ



Z x

1
dx0

�
3bfffiffiffiffiffiffiffiffi
2�0

p
�
sinð2x0Þ cos

�

0

f

�
; (D4)

where x � �k1	. We can write the homogeneous solution
as 
0 ¼ 
k þ

ffiffiffiffiffiffiffiffi
2�0

p
Mp lnx; see [39]. Following [39], we

introduce the quantity

cð�Þ � �3bi
fffiffiffiffiffiffiffiffi
2�0

p
Z x

1
dx0e2ix0 cos

�

k

f
þ

ffiffiffiffiffiffiffiffi
2�0

p
Mp

f
lnx0

�
:

(D5)

In this case the total 2-point function, accounting also for
the N ¼ 0 term in (36), can be written as

hk1
k2

ð	Þi � 2�2

k31
P ðk1Þ�ð3Þðk1 þ k2Þ (D7)

where

P ðkÞ ¼ P ð1þ 2Re½cð�Þ�Þ: (D8)

This coincides with the result of [39] that was obtained
using a different method.

Next, we turn our attention to the 3-point function. The
relevant term in the interaction Hamiltonian is

HIðtÞ � �
Z

d3x
a3

6
ð2�0Þ3=2�4

M3
p

f3
sin

�

0ðtÞ
f

�
3: (D9)

This interaction was taken into account using the in-in
method in [40], where it was shown that the bispectrum
agrees with [29].

APPENDIX E: S-DUALITY

S-duality is part of the SLð2;RÞ symmetry of the clas-
sical action Type IIB (broken to SLð2;ZÞ at the quantum
level). The 10D Einstein-frame metric GE is related to the

string-frame metric Gs by GE;MN ¼ e�
=2Gs;MN . It is GE

that is invariant under SLð2;RÞ and not Gs. In the 10D
Einstein frame, SLð2;RÞ acts as [75]

	0 ¼ a	þ b

c	þ d
;

H0
3

F0
3

 !
¼ d c

b a

 !
H3

F3

 !
; (E1)

with ad� bc ¼ 1, where 	 � C0 þ ie�
 and all the other
fields being invariant. S-duality corresponds then to the
choice a ¼ d ¼ 0 and b ¼ �c ¼ �1, leading to the trans-
formation 	0 ¼ �1=	 or

C0
0 ¼ � C0

C2
0 þ e�2


; e�
0 ¼ e�


C2
0 þ e�2


: (E2)

The D-brane action in Einstein frame is [76]

SDBI ¼��5

Z
d6�e�


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�detðe
=2Gind

E þBindþ 2��0FÞ
q

:

(E3)

Then by S-duality one finds the NS5-brane action [77]

SDBI¼��5

Z
d6�e�
j	j



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�det½e
=2Gind

E �j	j�1ðCindþ2��0 ~FÞ�
q

(E4)

¼ ��5

Z
d6�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2
C2

0

q
e2


(E5)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� det

�
e
=2Gind

E � e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2
C2

0

q ðCind þ 2��0 ~FÞ
�vuuut ; (E6)

where ~F ¼ d ~A1 is the field strength of the vector field on
the world-volume of the NS5-brane. If we assume C0 ¼ 0
and compactify to four-dimensions we find15

15Note that here we have made a different choice of the four-
dimensional Einstein frame with respect to [28]. There the four-
dimensional metric is the string metric and the extra factors of gs
are reabsorbed in the definition of the Planck constant (which is
hence also different from what we have here). The advantage of
the present choice is that the SLð2;ZÞ transformations are
simpler in the ten-dimensional Einstein frame. On the other
hand, one has to remember to go to Einstein frame when using
the DBI action!

NEIL BARNABY, ENRICO PAJER, AND MARCO PELOSO PHYSICAL REVIEW D 85, 023525 (2012)

023525-22



S � ��5�
0 Z d4�

ffiffiffiffiffiffiffiffiffiffiffiffiffi�gE;4
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l4Ee
�
 � c2

q
; (E7)

where l2E�
0 is the volume of the two-cycle measured

with the Einstein metric. One can check that the tension

of the NS5-brane (in string frame) has an extra factor
of g�1

s with respect to the tension of a D5-brane
as expected since the two 5-branes are related by
S-duality.
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