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The detection of the type and level of primordial non-Gaussianity in the CMB data is essential to probe

the physics of the early universe. Since one does not expect that a single statistical estimator can be

sensitive to all possible forms of non-Gaussianity which may be present in the data, it is important to

employ different statistical indicators to study non-Gaussianity of CMB. In recent works we have

proposed two new large-angle non-Gaussianity indicators based on skewness and kurtosis of patches

of CMB sky sphere, and used them to find significant deviations from Gaussianity in frequency bands and

foreground-reduced CMB maps. Simulated CMB maps with assigned type and amplitude of primordial

non-Gaussianity are important tools to determine the strength, sensitivity, and limitations of non-Gaussian

estimators. Here we investigate whether and to what extent our non-Gaussian indicators have sensitivity to

detect non-Gaussianity of local type, particularly with an amplitude within the 7 yr Wilkinson Microwave

Anisotropy Probe (WMAP) bounds. We make a systematic study by employing our statistical tools to

generate maps of skewness and kurtosis from several thousands of simulated maps equipped with non-

Gaussianity of local type of various amplitudes. We show that our indicators can be used to detect large-

angle local-type non-Gaussianity only for relatively large values of the nonlinear parameter flocalNL . Thus,

our indicators do not have enough sensitivity to detect deviation from Gaussianity with the nonlinear

parameter within the 7 yr WMAP bounds. This result, along with the outcomes of frequency bands and

foreground-reduced analyses, suggests that non-Gaussianity captured in the previous works by our

indicators is not of primordial origin, although it might have a primordial component. We have also

made a comparative study of non-Gaussianity of simulated maps and of the full-sky WMAP 7 yr

foreground-reduced internal linear combination (ILC)-7 yr map. An outcome of this analysis is that the

level of non-Gaussianity of the ILC-7 yr map is higher than that of the simulated maps for flocalNL within

WMAP bounds. This provides quantitative indications on the suitability of the ILC-7 yr map as Gaussian

reconstruction of the full-sky CMB.
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I. INTRODUCTION

The statistical properties of the temperature anisotropies
of CMB radiation and of the large-scale structure of the
Universe offer a powerful probe of the physics of the early
universe [1–4]. Thus, for example, although a convincing
detection of a significant level of primordial non-
Gaussianity of local type (flocalNL � 1) in CMB data would
not rule out all inflationary models, it would exclude the
entire class of single scalar field models regardless of the
form of kinetic term, potential, or initial vacuum state
[1,5]. Such a detection, however, would be consistent
with some alternative models of the physics of the early
universe, and also with other nonstandard inflationary sce-
narios. On the other hand, a convincing null detection of
primordial non-Gaussianity of local type (flocalNL ’ 0) would
rule out the current alternative models of the primordial
universe (see, e.g., Refs. [1–3,6]). Thus, a detection or null
detection of primordial non-Gaussianity of local type in the
CMB data is crucial not only to discriminate or even
exclude classes of inflationary models, but also to test
alternative scenarios, offering therefore an important win-
dow into the physics of the early universe.

However, there are various effects that can produce non-
Gaussianity. Among them, the most significant are possi-
bly unsubtracted diffuse foreground emission [7,8], unre-
solved point sources [9], possible systematic errors [10],
and secondary anisotropies such as gravitational weak
lensing and the Sunyaev-Zeldovich effect (see, e.g.,
Refs. [1,2]).1 In this way, the accurate extraction of a
possible primordial non-Gaussianity is a challenging ob-
servational and statistical enterprise.
In the search for non-Gaussianity in CMB data, different

statistical tools can, in principle, provide information about
distinct forms of non-Gaussianity. On the other hand, one
does not expect that a single statistical estimator can be
sensitive to all possible forms of non-Gaussianity that may

1For most of these effects there seems to be no evidence of
significant non-Gaussian contamination within Wilkinson
Microwave Anisotropy Probe (WMAP) sensitivity.
Nevertheless, this is not guaranteed to hold true for the
PLANCK experiment [11], due to its much higher sensitivity
[2]. Cosmic variance further complicates the problem, since
some non-Gaussianity may arise from the uniqueness of the
observed CMB sky. Deviation from Gaussianity may also have
a cosmic topology origin [12].
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be present in CMB data. It is therefore important to test
CMB data for deviations from Gaussianity by using differ-
ent statistical tools in order to quantify or constrain the
amount of any non-Gaussian signals in the data, and extract
information on their possible origins. This has motivated a
great deal of effort that has recently gone into the search for
non-Gaussianity in CMB maps by employing several sta-
tistical estimators (an incomplete list of references is given
in the recent reviews [1–3], and also in Refs. [13–15]).

In recent papers [13,14] we have proposed two new
large-angle non-Gaussianity estimators, which are based
upon the skewness and kurtosis of the patches (spherical
caps) of the CMB sky sphere. By scanning the CMB sphere
with evenly distributed spherical caps, and calculating the
skewness S and kurtosis K for each cap, one can have
measures of the departure from Gaussianity on large an-
gular scales. Using this procedure we have carried out
analyses of large-angle deviation from Gaussianity in
both band and foreground-reduced maps with and without
the KQ75 mask recommended by the Wilkinson
Microwave Anisotropy Probe (WMAP) team for
Gaussianity studies of CMB data [13,14]. Thus, we have
found, for example, significant departure from Gaussianity
in all full-sky band maps, while for the Q, V, W maps with
the KQ75 mask, the CMB data are consistent with
Gaussianity. The K and Ka maps, however, show an im-
portant deviation from Gaussianity even with a KQ75
mask. For the full-sky foreground-reduced maps [16–19]
we have found a significant deviation from Gaussianity,
which varies with the cleaning process, as measured by our
indicators [14].

Simulated CMB maps equipped with assigned primor-
dial non-Gaussianity are essential tools to test the sensi-
tivity and effectiveness of non-Gaussian indicators. They
can also be used to study, e.g., the effects of foregrounds
and other non-Gaussian contaminants, and also to disclose
potential systematics. In a recent paper a new algorithm for
generating non-Gaussian CMB temperature maps with
non-Gaussianity of the local type has been devised [20].
In the simulated maps the level of non-Gaussianity is
adjusted by the dimensionless parameter flocalNL . A set of

1000 CMB temperature simulated maps with the resolution
of PLANCK mission [11] for open (unfixed) values of
flocalNL was made available [20].

A pertinent question that arises is whether the indicators
proposed in Ref. [13], and used in Refs. [13,14] to detect
non-Gaussianity in CMB data, have sufficient sensitivity to
detect deviation from non-Gaussianity of local type with an
amplitude flocalNL within the bounds determined by the

WMAP team in their latest data release [21]. Our primary
aim in this paper is to address this question by extending the
results and by complementing the analyses of Refs. [13,14]
in three different ways. First, instead of using CMB data,
we use our statistical indicators to carry out an analysis
of Gaussianity of simulated maps equipped with non-

Gaussianity of local type. Second, by using simulated
maps with different amplitudes flocalNL , we make a quantita-
tive analysis of the degree of sensitivity of our skewness and
kurtosis indicators to detect primordial non-Gaussianity of
local type. Third, we make a comparative study of the
degrees of non-Gaussianity of simulated maps with differ-
ent flocalNL ’s and the full-sky foreground-reduced 7 yrWMAP
internal linear combination (ILC-7 yr) map [16]. An inter-
esting outcome of this comparative analysis is that the level
of non-Gaussianity of the ILC-7 yr is considerably higher
than that of the simulated maps for flocalNL within observa-
tional bounds [21]. This renders information about the
suitability of the ILC-7 yr foreground-reduced map as a
Gaussian reconstruction of the CMB full sky.

II. NON-GAUSSIANITYAND SIMULATED MAPS

A. Primordial non-Gaussianity of local type

The first important ingredient in the study of non-
Gaussianity is the primordial gravitational curvature
perturbations �ðx; tÞ, which were seeded by quantum fluc-
tuations in the very early universe. In the linear order, the
primordial curvature perturbation is related to Bardeen’s
curvature perturbation�ðx; tÞ [22] in the matter dominated
era by � ¼ ð5=3Þ� [23]. The relation with CMB observa-
tions is given in the Sachs-Wolfe limit, where �T=T ¼
��=3 ¼ ��=5 holds [24].
The lower order statistics able to distinguish non-

Gaussian from Gaussian distributions is the three-point
correlation function. Primordial non-Gaussianity can then
be described in terms of the three-point correlation func-
tion of the curvature perturbations �ðxÞ or of its Fourier
transform �ðkÞ by using the ensemble average. Thus, the
three-point correlation function counterpart in Fourier
space—the so-called bispectrum—takes the form

h�ðk1Þ�ðk2Þ�ðk3Þi ¼ �3ðk123ÞB�ðk1; k2; k3Þ; (1)

where �ð3Þðk123Þ � �ð3Þðk1 þ k2 þ k3Þ enforces that the
wave vectors in Fourier space have to close to form a
triangle, i.e., k1 þ k2 þ k3 ¼ 0. Thus, the bispectrum is
a function of the triplet defined by the magnitude of the
wave numbers (k1, k2, k3).
In the examination of primordial non-Gaussianity, the

bispectrum of curvature is rewritten in the form

B�ðk1;k2;k3Þ ¼ h�ðk1Þ�ðk2Þ�ðk3Þi
¼ fNLð2�Þ3�3ðk123ÞFðk1; k2; k3Þ; (2)

where fNL is an overall amplitude (dimensionless) parame-
ter,2 which can be constrained by the CMB data, and where
Fðk1; k2; k3Þ is the so-called shape of the bispectrum and

2The subscript ‘‘NL’’ stands for nonlinear. This notation arises
because an often-used phenomenological parametrization for the
non-Gaussianity of �ðxÞ can be written as a nonlinear trans-
formation of a Gaussian field (see below for more details).
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encodes the functional dependence of the bispectrum on
the triangular configurations. The bispectrum shape is used
to specify the configuration of the wave vectors of curva-
ture perturbations that give the highest contributions to the
amplitude of the bispectrum. In this way, the bispectra are
usually classified according to shapes of the triangles that
give rise to the highest non-Gaussian signal. The most
studied shapes are (i) local, where the bispectrum is maxi-
mum on the squeeze triangle configuration, k1 � k2 � k3;
(ii) equilateral, with the bispectrum maximized on the
equilateral limit k1 � k2 � k3; and (iii) orthogonal, where
the bispectrum has a positive peak at the equilateral con-
figuration and a negative valley along the flattened (elon-
gated) triangular configuration, k3 � k1 þ k2 [1].
Predictions for both the amplitude fNL and the shape of
B�ðk1; k2; k3Þ depend on the early universe models, which
makes apparent the power of the bispectrum as a tool to
probe models of the primordial universe.

In this paper we shall deal with non-Gaussianity of local
type, which is the most studied type of deviation from
Gaussianity. For this type of primordial non-Gaussianity
the curvature perturbation in the real space can be split into
two components: the linear term �L (representing the
Gaussian component) plus a non-Gaussian second term,
namely,3

�ðxÞ ¼ �LðxÞ þ flocalNL ð�2
LðxÞ � h�2

LðxÞiÞ; (3)

where both sides are evaluated at the same spatial location
x.

Finally, we recall that the latest WMAP constraints
reported on flocalNL at the 95% confidence level are given
by �10< flocalNL < 74 [21]. These bounds will be used in
our analyses in one of the following sections.

B. Simulated CMB maps

The first simulated CMB temperature maps endowed
with primordial non-Gaussianity introduced through a
non-Gaussian parameter fNL were generated by the
WMAP team and reported in Ref. [9]. The WMAP algo-
rithm was generalized so as to improve computational
speed and accuracy, and also to include polarization
maps in Ref. [26] (see also Ref. [27]). More recently,
Elsner and Wandelt [20] presented a new algorithm and
generated 1000 high-angular resolution simulated non-
Gaussian CMB temperature and polarization maps with
non-Gaussianities of the local type, for which the level of
non-Gaussianity is determined by the parameter flocalNL . In
their algorithm a simulated map with a desired level of
non-Gaussianity flocalNL is such that the spherical harmonic
coefficients are given by

a‘m ¼ aL‘m þ flocalNL � aNL‘m; (4)

where aL‘m and aNL‘m are, respectively, the linear and

nonlinear spherical harmonic coefficients of the simulated
CMB temperature maps.
In the next sections we shall use the set of 6000 CMB

temperature simulated linear and nonlinear component
maps, generated for an arbitrary (unfixed) value of flocalNL ,
which was made available in Ref. [20]4 with the resolution
of the PLANCK mission [11].

III. NON-GAUSSIANITY INDICATORS AND
ASSOCIATED MAPS

To make our paper clear and self-contained, in this
section we describe the two statistical non-Gaussianity
indicators and their associated maps, which can be calcu-
lated from either simulated or real CMB temperature
(input) maps. The procedure delineated here will be used
in the following sections to investigate large-angle devia-
tion from Gaussianity.
The most important underlying idea in the construction

of our non-Gaussianity indicators and the associated
maps is that one can access the deviation from
Gaussianity of the CMB temperature fluctuations by cal-
culating the skewness S and the kurtosisK, which measure,
respectively, the symmetry about the mean temperature
and the non-Gaussian degree of peakness of the tempera-
ture distribution.
Clearly the calculation of S and K from the whole CMB

sky sphere of temperature fluctuations data would be a
crude approach to measure the complexity of the non-
Gaussianity of the CMB map. However, instead of having
just two dimensionless numbers, one can go further by
taking a discrete set of points j ¼ 1; . . . ; Nc homogene-
ously distributed on the CMB sky sphere S2 as the center of
spherical caps of aperture � (say), and calculate Sj and Kj

for each cap j of the CMB temperature sky sphere. The
values Sj and Kj can then be taken as measures of the non-

Gaussianity in the direction (�j, �j) of the center of the

spherical cap j. Such calculations for the individual caps
thus provide quantitative information (2Nc values) about
non-Gaussianity of the CMB data.
The above procedure is a constructive way of defining

on S2 two discrete functions Sð�;�Þ and Kð�;�Þ that
measure departure from Gaussianity of a CMB tempera-
ture (input) map. In other words, these functions can be
constructed from an input CMBmap through the following
steps [13]:
(i) Take a discrete finite set of points j ¼ 1; . . . ; Nc

homogeneously distributed on the sky sphere of a
CMB input map as the centers of spherical caps of a
chosen aperture �, and calculate for each cap j the
skewness and kurtosis given, respectively, by

3It should be noted, however, that this is not the only way to
produce the bispectrum of local type. A multifield curvaton
inflation, for example, can also produce a bispectrum of local
type [25]. 4http://planck.mpa-garching.mpg.de/cmb/fnl-simulations.
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Sj ¼ 1

Np�
3
j

XNp

i¼1

ðTi � �TÞ3; (5)

Kj ¼ 1

Np�
4
j

XNp

i¼1

ðTi � �TÞ4 � 3; (6)

where Ti is the temperature at the ith pixel, �Tj is the

CMB mean temperature of the jth spherical cap, Np

is the number of pixels in the cap j, and �2 ¼
ð1=NpÞ

PNp

i¼1ðTi � �TÞ2 is the standard deviation.

Clearly, the whole set of values Sj and Kj (for all j)

obtained through this discrete scanning calculation
process, along with the angular coordinate of the
center of the caps (�j, �j), can be taken as measures

of non-Gaussianity in the directions of the center of
spherical caps j.

(ii) Patching together the Sj andKj values for all spheri-

cal caps j, one has two discrete functions S ¼
Sð�;�Þ and K ¼ Kð�;�Þ defined over a two-sphere
S2. These functions provide measurements of the
non-Gaussianity as a function of ð�;�Þ. The
Mollweide projections of the functions S ¼
Sð�;�Þ and K ¼ Kð�;�Þ are nothing but skewness
and kurtosis maps (hereafter denoted by S map and
K map).

Clearly, the functions S ¼ Sð�;�Þ and K ¼ Kð�;�Þ can
be expanded into their spherical harmonics. Thus, for
example, for S ¼ Sð�;�Þ one has

Sð�;�Þ ¼ X1

‘¼0

X‘

m¼�‘

b‘mY‘mð�;�Þ; (7)

and the corresponding angular power spectrum

S‘ ¼ 1

2‘þ 1

X

m

jb‘mj2; (8)

which can be used to quantify the amplitude (level) and
angular scale of the deviation from Gaussianity. In this
paper we shall use the power spectra S‘ and K‘ to estimate
the departure from Gaussianity and calculate the statistical
significance of such a deviation by comparison with the

corresponding power spectra calculated from S and K
maps obtained from input Gaussian maps (flocalNL ¼ 0).
In the next section we will use these statistical indicators

to carry out analyses of Gaussianity of simulated maps
endowed with non-Gaussianity of local type of different
levels to test the sensitivity of S and K indicators to detect
primordial non-Gaussianity of local type. Furthermore, we
will make a comparative study of the degrees of non-
Gaussianity of different simulated maps and the ILC-7 yr
WMAP map.

IV. NON-GAUSSIANITYAND SENSITIVITY
OF SAND K INDICATORS

A. Analyses and results for simulated maps

It is clear from the previous section that in order to study
the sensitivity of the non-Gaussianity indicators S and K,
that is, to construct the functions S ¼ Sð�;�Þ and K ¼
Kð�;�Þ and the associated S and K maps, we need CMB
input maps. The input maps used in our analyses in this
section are high-angular resolution-simulated CMB tem-
perature maps endowed with non-Gaussianities of the local
type introduced through different values of the dimension-
less amplitude parameter flocalNL .
Figure 1 shows two examples of such simulated CMB

maps. The left panel gives a Gaussian map flocalNL ¼ 0,
while the right panel shows a non-Gaussian map for
flocalNL ¼ 5000. We have taken these values for flocalNL as an
illustrative example that makes the non-Gaussian effects
visible to the naked eye through the comparison of these
simulated maps.
Figure 2 gives an illustration of typical skewness S (left

panel) and kurtosis K (right panel) maps, generated from
input CMB simulated maps for flocalNL ¼ 500 (first row) and
flocalNL ¼ 0 (second row). The non-Gaussian maps show
spots with higher and lower values of Sð�;�Þ and
Kð�;�Þ, which suggest large-angle dominant multipole
components (low ‘) in these maps.5 In our calculations

FIG. 1 (color online). The left panel shows a simulated Gaussian CMBmap (flocalNL ¼ 0), while the right panel depicts a non-Gaussian
simulated CMB map calculated for flocalNL ¼ 5000. Temperatures are in mK.

5We have also calculated similar maps from the simulated
maps for the other values of flocalNL . These maps, however, provide
only qualitative information, and to avoid repetition we only
depict maps of Fig. 2 for illustrative purposes.
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of all Smaps and K maps, to minimize the statistical noise,
we have scanned the CMB sphere with Nc ¼ 3072 spheri-
cal caps of aperture � ¼ 90�, centered at points homoge-
neously distributed on the two-sphere.

To obtain quantitative large-angle-scale information, as
a first test of the sensitivity of S and K indicators, for each
of the following values of the nonlinear parameter—
flocalNL ¼ 0, 500, 1000, 5000—we have generated 1000
simulated CMB maps, totalizing 4000 simulated maps.
From each set of 1000 simulated input CMB maps (fixed
flocalNL for each set) we have calculated 1000 S maps and
1000 K maps, from which we computed the associated
power spectra, namely, Si‘ and Ki

‘, where i ¼ 1; . . . ; 1000
is an enumeration index, and ‘ ¼ 1; . . . ; 10 is the range of
multipoles we have focused on in this paper.6 The low ‘
multipole mean components S‘ and K‘ are then obtained
by averaging over 1000 power spectra calculated from
simulated maps with the different values of flocalNL . The
statistical significance of these power spectra is estimated
by comparing the values of S‘ and K‘ obtained from input
maps generated for flocalNL ¼ 500, 1000, 5000 with the
values of the corresponding power spectra S‘ and K‘

obtained from the Gaussian simulated map (flocalNL ¼ 0).
Let us describe with some details the calculations of an

average power spectrum. For the sake of brevity, we focus
on the skewness indicator S along with a set of 1000
simulated non-Gaussian input maps computed for a non-

linear parameter flocalNL ¼ 500, for example.7 Following the
two step procedure described in Sec. III, from these 1000
simulated CMB maps we calculated 1000 S maps, from
which we computed 1000 power spectra Si‘ in order to have
the average values S‘ ¼ ð1=1000ÞP1000

i¼1 Si‘. From this MC

process we have at the end ten mean multipole values S‘
(‘ ¼ 1; . . . ; 10), each of which is then used for a compari-
son with the corresponding average multipole value S‘
calculated by a similar procedure from Gaussian simulated
maps (flocalNL ¼ 0). This allows the evaluation of the statis-

tical significance of S‘ by quantifying the goodness of fit
for S‘ with flocalNL � 0 and S‘ calculated for flocalNL ¼ 0
(Gaussian maps).
Figure 3 shows the average power spectra of the skew-

ness S‘ (left panel) and kurtosis K‘ (right panel), for ‘ ¼
1; . . . ; 10, calculated from simulated Gaussian (flocalNL ¼ 0)
maps, and from CMB maps equipped with non-
Gaussianity of the local type for which flocalNL ¼ 500,
1000, 5000. The 95% confidence level, obtained from the
S and K maps calculated from the Gaussian CMB simu-
lated maps, is indicated in this figure by the dotted line.
To the extent that the average S‘ and K‘ obtained from

input simulated CMB maps endowed with flocalNL ¼ 500 are
within 95%Monte Carlo (MC) average values of S‘ andK‘

for flocalNL ¼ 0, Fig. 3 shows that our indicators are not
suitable to detect primordial non-Gaussianity of local
type in CMB maps smaller than this level. However, this
figure also shows that they can be effectively employed to
detect higher levels of non-Gaussianity of local type. These

FIG. 2 (color online). Examples of skewness (left panels) and kurtosis (right panels) indicator maps calculated from simulated maps
with, respectively, flocalNL ¼ 500 (first row) and flocalNL ¼ 0 (second row).

6The values of ‘max for S‘ and K‘ depend on the resolution of
S and K maps, which clearly depend upon the number of
spherical caps used in the scanning process. For Nc ¼ 3072
one can go up to ‘max ¼ 45.

7A completely similar procedure can clearly be used for the
kurtosis indicator K along with other values of flocalNL .
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results square with the statistical analysis we shall report in
the remainder of this paper, particularly with the �2 test of
goodness of fit.

To have an overall assessment power spectra S‘ and K‘,
calculated from the input simulated non-Gaussian maps
equipped with primordial non-Gaussianity with nonlinear
parameter flocalNL ¼ 500, 1000, 5000, we have made a �2

test to find out the goodness of fit for S‘ and K‘ multipole
values as compared to the MC mean multipole values
obtained from S and K maps of the Gaussian (flocalNL ¼ 0)
simulated maps. In each case, this gives a number that
quantifies collectively the deviation from Gaussianity. For
the power spectra S‘ and K‘ we found the values given in
Table I for the ratio (reduced �2) �2=dof (dof stands for
degrees of freedom) for the power spectra calculated from
non-Gaussianity of local type with flocalNL ¼ 500, 1000,
5000. Moreover, the greater the reduced �2 values (here-
after denoted simply by �2), the smaller the �2 probabil-
ities, that is, the probability that the multipole values S‘
and K‘ and the mean multipole values obtained from the
Gaussian maps (flocalNL ¼ 0) agree.

Thus, Table I, along with Fig. 3, shows that the statistical
indicators S and K can clearly detect deviation from
Gaussianity of simulated maps endowed with primordial
non-Gaussianity of local type with flocalNL * 500.

A question that arises at this point is whether S and K
indicators have sufficient sensitivity to detect deviation
from non-Gaussianity for the values of the non-Gaussian
parameter within the WMAP 7 yr bounds �10< flocalNL <
74 [21]. Table II makes clear that for maps with flocalNL

within this interval, one has a negligible value of �2, which
makes it apparent that there is no significant overall depar-
ture of power spectra S‘ and K‘ for flocalNL ¼ �10 and
flocalNL ¼ 74 from the corresponding MC mean power spec-
tra obtained from the Gaussian (flocalNL ¼ 0) maps, in agree-
ment with the nearly overlapping symbols of Fig. 4. This
makes it apparent that the bispectrum based estimator that
was employed by the WMAP team [9,21] is more sensitive
to primordial non-Gaussianity of local type than the S and
K indicators employed in the present paper (see also the
related references [28]). Thus, for example, the deviation
from Gaussianity as captured by our indicators S and K for
simulated maps with flocalNL ¼ 74 is 4 orders of magnitude
smaller than that for maps with flocalNL ¼ 1000.
To close this section, some words of clarification regard-

ing the forthcoming CMB data from the PLANCK mission
are in order. PLANCK combines high-angular resolution
and sensitivity with a wide frequency coverage (20 GHz to
1000 GHz) and will allow greatly improved foreground
removal, thereby reducing many sources of non-Gaussian
contaminants. The latest constraint on flocalNL from the

TABLE I. Results of the reduced �2 test of the goodness of fit
for S‘ and K‘ calculated from the maps with different levels of
non-Gaussianity as compared with the corresponding mean
values obtained from MC simulated CMB input maps with
flocalNL ¼ 0.

Non-Gaussian parameter �2 for S‘ �2 for K‘

flocalNL ¼ 500 2.10 2:12� 10
flocalNL ¼ 1000 3:02� 10 5:50� 102

flocalNL ¼ 5000 5:54� 103 1:31� 106

TABLE II. Results of the �2 test of the goodness of fit for S‘
and K‘ calculated from the maps with flocalNL ¼ �10 and flocalNL ¼
74 relative to the corresponding mean values obtained from MC
simulated CMB input maps with flocalNL ¼ 0.

Non-Gaussian parameter �2 for S‘ �2 for K‘

flocalNL ¼ �10 2:80� 10�5 4:80� 10�5

flocalNL ¼ þ74 1:10� 10�3 1:00� 10�2

FIG. 3 (color online). Low ‘ average power spectra of skewness S‘ (left panel) and kurtosis (right panel) K‘ calculated from the
Gaussian (flocalNL ¼ 0) and non-Gaussian (flocalNL ¼ 500, 1000, and 5000) input simulated CMB maps. The 1� error bars are also

indicated with a small horizontal shift to avoid overlap. The 95% confidence level relative to the Gaussian maps is indicated by the
dotted line.
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WMAP-7 yr is flocalNL ¼ 32� 21 (68% confidence level),

and from PLANCK we expect �flocalNL ’ 5. This includes
cosmic variance and the detector noise [29]. For a similar
reduction at 2� confidence level, for example, the non-
Gaussian procedure of our paper does not have enough
sensibility to detect deviation from Gaussianity within the
resulting PLANCK range of flocalNL . A preliminary analysis

shows that a new procedure with a different way of scan-
ning input maps (through large pixels cells) seems to be
capable of detecting such a tiny deviation from
Gaussianity, i.e. within the narrow range of flocalNL expected

from the PLANCK mission.

B. Analyses and results for simulated and data maps

Besides the five frequency band 7 yr maps released—K
(22.8 GHz), Ka (33.0 GHz), Q (40.7 GHz), V (60.8 GHz),
and W (93.5 GHz)—the WMAP has also produced a full-
sky foreground-reduced ILC-7 yr map, which is formed

from a weighted linear combination of these five frequency
band maps in which the weights are chosen in order to
minimize the galactic foreground contribution.
The first-year ILC map has been explicitly stated as

inappropriate for CMB scientific studies [30], but in the
subsequent ILC versions, including the ILC-7 yr, a bias
correction has been incorporated as part of the foreground
cleaning process, and the WMAP team suggested that
these maps are suitable for use in large angular scale
(low ‘) analyses, although they have not performed non-
Gaussian tests on these versions of the ILC maps
[16,19,31].
In a recent paper [14] we have performed an analysis of

Gaussianity of all the available full-sky foreground-
reduced maps by using S and K non-Gaussianity indicators
in the search for departure from Gaussianity on large
angular scales [13]. We have shown that the full-sky
foreground-reduced WMAP maps, including the ILC-
7 yr maps [16], present a significant deviation from

FIG. 4 (color online). Low ‘ average power spectra of skewness S‘ (left panel) and kurtosis (right panel) K‘ calculated from the
Gaussian (flocalNL ¼ 0) and non-Gaussian simulated CMB maps for flocalNL ¼ �10 and flocalNL ¼ 74. The 95% confidence level relative to

the Gaussian maps is indicated by the dashed line.

FIG. 5 (color online). Low ‘ mean power spectra of skewness S‘ (left panel) and kurtosis (right panel) K‘ calculated from ILC-7 yr
Gaussian (flocalNL ¼ 0) and non-Gaussian simulated CMB maps for flocalNL ¼ �10 and flocalNL ¼ 74. In these calculations we have used

simulated maps with the same smoothed 1� resolution of the ILC-7 yr WMAP map. The 95% confidence level relative to the Gaussian
maps is indicated by the dashed line.
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Gaussianity, in agreement with the results of
Ref. [13,14,32].

An interesting question that arises here is how one
compares the level of deviation from Gaussianity of the
ILC maps with the level of primordial non-Gaussianity of
local type with different amplitude parameters flocalNL .8 We

undertake this question by using our indicators to carry out
a comparative analysis of non-Gaussianity of simulated
maps for the values of non-Gaussian parameters equal to
the bounds reported by the WMAP team, and the ILC-7 yr
map.

Figure 5 shows the low ‘ mean power spectra of the
skewness S‘ (left panel) and kurtosis K‘ (right panel),
calculated from simulated Gaussian (flocalNL ¼ 0) and non-

Gaussian maps for flocalNL ¼ �10, 74, which are the lower

and upper bounds of the nonlinear parameter reported
recently by WMAP [21]. We have calculated the power
spectra by using 1000 maps for each value of flocalNL . This

figure also displays S‘ and K‘ computed from the full-sky
foreground-reduced ILC-7 yr map. Figure 5 gives a clear
indication that the deviation from Gaussianity of the
ILC-7 yr map (detected by S and K) is greater than the
non-Gaussianity of MC simulated maps for the lower and
upper bounds of flocalNL provided by WMAP [21]. Clearly, in
the calculation of the mean power spectra S‘ K‘ of Fig. 5,
we have used simulated maps with the same smoothed 1�
resolution of the ILC-7 yr WMAP map.

In order to compare quantitatively the deviation from
Gaussianity, we have calculated the �2 test of the goodness
of fit for S‘ andK‘ calculated from ILC-7 yr along with the
simulated maps for flocalNL ¼ �10, 74 relative to the mean

power spectra of Gaussian maps. We have gathered to-
gether in Table III the obtained values for the reduced �2.
Figure 5, along with Table III, shows, on the one hand, a

significant deviation from Gaussianity in the 7 yr full-sky
foreground-reduced ILC-7 yr map, in agreement with the
statistical analysis made in Ref. [14]. On the other hand, it
is apparent that the level of non-Gaussianity of the
ILC-7 yr maps is higher than that of the simulated non-
Gaussian maps with flocalNL equal to the bounds of the
WMAP-7 yr data. This comparison provides indications
of the suitability of the foreground-reduced ILC-7 yr map
as a Gaussian reconstruction of the CMB sky.

V. CONCLUDING REMARKS

The physics of the early universe can be probed by
measurements of statistical properties of primordial fluc-
tuations, which are the seeds for the temperature CMB
anisotropies. Thus, the study of non-Gaussianity of these
anisotropies offers a powerful approach to probe the phys-
ics of the primordial universe. It is essential, for example,
to discriminate or even exclude classes of inflationary
models, and also to test alternative scenarios of the pri-
mordial universe.
Since one does not expect a single statistical estimator to

be sensitive to all possible forms of non-Gaussianity, it
seems important to test CMB data for deviations from
Gaussianity by employing different statistical tools to
quantify or constrain the amount of any non-Gaussian
signals in the data, and extract information concerning
their potential origins.
In recent papers [13,14] we proposed two new large-

angle non-Gaussianity indicators, based on skewness and
kurtosis of large-angle patches of the CMB sky sphere and
used them to find significant large-angle deviations from
Gaussianity in masked frequency bands and foreground-
reduced CMB maps.
Simulated CMB maps with an assigned primordial non-

Gaussianity of a given type and amplitude are important
tools to study the sensitivity, power, and limitations of
non-Gaussian estimators. They can also be used to cali-
brate non-Gaussian statistical indicators, and to study
the effects of foregrounds and other non-Gaussian
contaminants.
In this paper we have addressed the question as to

whether the non-Gaussian indicators proposed in
Refs. [13,14] have sufficient sensitivity to detect non-
Gaussianity of local type, particularly with amplitude
flocalNL within the 7 yr WMAP bounds [21]. To this end,
we have used our statistical indicators along with 6000
simulated maps equipped with non-Gaussianity of local
type with various amplitudes. From these simulated maps,
which include the Gaussian one (flocalNL ¼ 0), we have
generated 6000 S maps and 6000 K maps (see, e.g.,
Fig. 1), calculated the associated low ‘mean power spectra
S‘ and K‘, made a study of the sensitivity and strength, and
determined the limitations of non-Gaussian estimators S
and K. By using the mean power spectra of the simulated
non-Gaussian maps along with the �2 test of goodness, we

TABLE III. Results of the reduced �2 test of the goodness of
fit for S‘ and K‘ calculated from ILC-7 yr and MC simulated
maps for the 7 yr WMAP lower and upper bound values of flocalNL .

In these calculations we have used simulated maps with the same
smoothed 1� resolution of the ILC-7 yr WMAP map. These
values quantify collectively the deviation from Gaussianity
relative to MC Gaussian simulated maps (flocalNL ¼ 0).

Map �2 for S‘ �2 for K‘

flocalNL ¼ �10 6:80� 10�2 3:80� 10�1

flocalNL ¼ þ74 7:10� 10�2 4:24� 10�1

ILC 8.96 5:88� 10

8We note that as the simulated CMB maps are full-sky maps,
and sky cuts induce bias in the Gaussianity analyses, in order to
make a comparative analysis of Gaussianity between simulated
and data maps, a simple suitable choice of CMB data map is to
take the equally full-sky data maps such as the ILC-7 yr.
Nevertheless, in the Appendix we present a comparative analysis
between maps with flocalNL for the WMAP-7 yr bounds and the Q,
V, and W frequency maps.
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have shown that S and K indicators can be used to detect
deviation from Gaussianity of local type for, typically,
flocalNL * 500 (see Fig. 3 and Table I). Thus, our indicators
do not have enough sensitivity to detect deviation from
Gaussianity of local type with the nonlinear parameter
within the 7 yr WMAP bounds. This makes it apparent
that the bispectrum based estimator employed by the
WMAP team is more sensitive to primordial non-
Gaussianity of local type than the S and K.

However, by using the same procedure, which is based
upon the skewness S and kurtosis indicators K of patches
of the CMB sky sphere, we have shown that these indica-
tors do not have enough sensitivity to capture non-
Gaussianity when the nonlinear parameter flocalNL lies within
the 95% confidence level interval reported by the WMAP
team [21] (cf. Fig. 4 and Table II). The positive outcome of
the analysis performed in our previous works [13,14],
together with the present outcome, seems to indicate that
the deviation from Gaussianity captured in Refs. [13,14] is
not of primordial nature, although it might have a primor-
dial component.

Finally, we have also made a comparative study of non-
Gaussianity of simulated maps and of the WMAP full-sky
foreground-reduced 7 yr ILC map [16], which is summa-
rized in Fig. 5 and Table III. An interesting outcome of this
analysis is that the level of non-Gaussianity of ILC-7 yr
(flocalNL 	 775) is higher than that of the simulated maps for
flocalNL within observational bounds [21]. This renders quan-
titative information about the suitability of the foreground-
reduced maps as Gaussian reconstruction of the full-sky
CMB.
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APPENDIX

Here we present the results of a comparative analysis of
deviation from Gaussianity performed by using Q, V, W
band maps and simulated maps equipped with non-
Gaussianity of local type for flocalNL ¼ �10 and 74, which
are the WMAP-7 yr bounds for flocalNL . As the calculations
are similar to those of Sec. IV, we refer the readers to that
section for more details on how they are made.

A word of clarification is in order before proceeding to
the comparative analysis. In order to have an estimation of
the role of the masking process in simulated maps with
large values flocalNL , we have calculated the reduced �2 of the

mean S‘ and K‘ for maps endowed with flocalNL ¼ 500,
1000, 5000 without and with the KQ75-7 yr mask. These
values quantify collectively the deviation from Gaussianity
relative to MC Gaussian simulated maps (flocalNL ¼ 0).
Tables IV and V contain the results of our calculations.
These tables show that the greater flocalNL is, the smaller the

ratio is between �2 values calculated for masked and
unmasked simulated maps, respectively. Hence, the rela-
tive role of non-Gaussianity induced by the KQ75-7 yr
mask in simulated maps is smaller for higher values of
flocalNL , as we expected from the outset. Thus, the role of the

masking process should be bigger for flocalNL , taking the

lower and upper bound values of the WMAP-7 yr, an issue
that will be discussed in the following.
We begin the above-mentioned comparative analysis by

recalling that one either has the full-sky contaminated
(Q, V, W) band maps to compare with full-sky simulated
maps, or one masks both band and simulated maps. While
in the former we have foreground maps that are quite
contaminated, in the latter an induced non-Gaussianity
arises from masking the simulated map process.
We have gathered together in Table VI the values of

reduced �2 for the full-sky Q, V, and W frequency maps
along with the values of the reduced �2 for maps endowed
with non-Gaussianity for flocalNL ¼ �10 and 74. This table

shows that the full-sky Q, V, and W band maps present a
non-Gaussianity, as captured by our indicators, of several
orders of magnitude higher than those of simulated maps
for the lower and upper bound values of flocalNL obtained

TABLE V. Results of the reduced �2 test of the goodness of fit
for the mean power spectra S‘ and K‘ as compared with the
corresponding mean values obtained from MC simulated CMB
input maps with flocalNL ¼ 0. The simulated input maps were

masked with the KQ75-7 yr mask.

Masked map �2 for S‘ �2 for K‘

flocalNL ¼ 500 3:40� 10 5:67� 102

flocalNL ¼ 1000 4:69� 10 6:81� 102

flocalNL ¼ 5000 3:79� 103 4:79� 105

TABLE IV. Results of the reduced �2 test of the goodness of fit
for the mean power spectra S‘ and K‘ as compared with the
corresponding mean values obtained from MC simulated CMB
input maps with flocalNL ¼ 0. Full-sky simulated maps were used.

Full-sky map �2 for S‘ �2 for K‘

flocalNL ¼ 500 2.10 2:12� 10
flocalNL ¼ 1000 3:02� 10 5:50� 102

flocalNL ¼ 5000 5:54� 103 1:31� 106

MAPPING THE LARGE-ANGLE DEVIATION FROM . . . PHYSICAL REVIEW D 85, 023522 (2012)

023522-9



from WMAP-7 yr data. Clearly, this is not a surprising
result since the full-sky Q, V, and W band maps are very
foreground contaminated, but it shows the suitability of our
skewness and kurtosis indicators to detect such a huge
difference in the levels of non-Gaussianity.

We have collected together in Table VII the results of the
calculations of the reduced �2 for masked maps of the Q,
V, andW bands, and for simulated input maps with flocalNL ¼
�10 and 74. Tables VI and VII show that, as expected, the
KQ75-7 yr mask reduced significantly the levels of non-

Gaussianity of bands maps, bringing them down several
orders of magnitude. Even with the mask, the detected
level of non-Gaussianity for Q band maps is about 4 times
the small level of the simulated masked maps for the
WMAP-7 yr upper bound. As for the V and W bands and
simulated maps, Table VII shows that these band maps
present deviations from Gaussianity, as measured by our
indicators, of similar order to those of maps with flocalNL in
the WMAP-7 yr interval.
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