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We study nonperturbative quantization of the first order formulation of three-dimensional gravity with

positive cosmological constant (de Sitter space being the prototype vacuum solution, whose

Euclideanization gives the three sphere) on the background topology of lens space, which is a three

sphere modulo a discrete group. Instead of the strategy followed by a recent work [A. Castro, N. Lashkari,

and A. Maloney, Phys. Rev. D 83, 124027 (2011); A. Castro, N. Lashkari, and A. Maloney Phys. Rev. D

84, 089904(E) (2011)], which compares results in the second and first order formulations of gravity, we

concentrate solely on the latter . We note, as a striking feature, that the quantization which relies heavily

on the axiomatic of topological quantum field theory, can only be consistently carried by augmenting the

conventional theory by an additional topological term coupled through a dimensionless parameter. More

importantly the introduction of this additional parameter renders the theory finite.

DOI: 10.1103/PhysRevD.85.023520 PACS numbers: 04.60.Ds, 04.60.Kz

I. INTRODUCTION

Most of the nontrivial results in three-dimensional (3D)
gravity, including the famous Banados-Teitelboim-Zanelli
BTZ black hole solution, are known for the negative cos-
mological constant sector. Also, there is a definite trace of
AdS/CFT correspondence when the space-time is asymp-
totically anti-de Sitter (AdS). On the other hand, the study
of 3D gravity with a positive cosmological constant has
generated considerable interest only recently [1]. This
involves evaluation of the 1-loop partition function in the
metric formulation in order to find the de Sitter (dS)
vacuum, namely, the Hartle Hawking state. They showed
for the first time the equivalence of the Chern-Simons (CS)
framework of gravity with Einstein theory up to the 1-loop
level in the quantum regime. In addition, topologically
massive gravity (TMG), which unlike pure gravity consists
of propagating modes, has been thoroughly studied in [2].
The main question these studies aim to address is how one
can make sense of 3D de Sitter quantum gravity through
the vacuum state. Surprisingly, the pure topological gravity
theory fails to give any satisfactory answer to it in the sense
that the partition function (both in 1-loop and nonpertur-
bative computations) tend to diverge unregularizably when
one considers the sum over the infinitely large class of lens
spaces (a typical solution of 3D de Sitter gravity, corre-
sponding to saddle points in the path integral); whereas the
answer for TMG containing local degrees of freedom is in
the affirmative. The latter is tame under the sum over
topologies.

The pure gravity and TMG calculations have been con-
sidered in the Euclidean signature with the motivation that
Euclideanized de Sitter gravity is ‘‘thermal.’’ This has been
made precise in terms of the Euclidean de Sitter geometry

in [1]. Moreover, in the Einstein-Hilbert theory path the
integral is sensible in the Euclidean picture. On the
other hand, if one prefers to study the theory in the first
order formulation, in the Chern-Simons framework,
Euclideanization is not an obvious idea that one would
come across. This is because CS theory is manifestly
topological and does not rely on a background metric as
long as perturbative analysis is not the primary goal. But
once one tries to make contact with the metric formulation
through he�; e�i ¼ g��, Euclideanization can be viewed

from the choice in the internal metric on the frame bundle
(of vielbeins), and hence the structure group. This change
reflects upon the choice of gauge group of the CS theory.
The gauge group changes from noncompact SOð3; 1Þ to
compact SUð2Þ � SUð2Þ, thus making the problem trac-
table from the gauge theory perspective. The action then
becomes the difference of two SUð2Þ CS theories.
This is the motivation for us to look at the Euclideanized

version. In this case, we do not need a Wick rotation in
space-time, and our partition functions keeps the formal
expression

Z ¼
Z

DA exp

�
i
k

4�

Z
tr

�
A ^ dAþ 2

3
A3

��
;

where ‘‘tr’’ stands for the metric over suð2Þ. We can see
that this form of the path integral will help us in the end so
that the trouble of working with imaginary coupling of CS
will not also get in our way.1 Sincewewould be confined in
the first order regime, our concern about the background
appears only through its possible topologies. The choice of
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1In another important work Witten [3] recently pointed out
how quantization of the CS theory with complex coupling can be
carried out by suitably deforming the functional integral contour.
However, for this case one still has to study the possibility of
associating a finite dimensional Hilbert space of CS theory on a
compact Riemann surface, which we need for quantization here.

PHYSICAL REVIEW D 85, 023520 (2012)

1550-7998=2012=85(2)=023520(7) 023520-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.83.124027
http://dx.doi.org/10.1103/PhysRevD.84.089904
http://dx.doi.org/10.1103/PhysRevD.84.089904
http://dx.doi.org/10.1103/PhysRevD.85.023520


topology is however motivated strongly from the fact that
Euclideanized de Sitter space can be identified with S3,
through its metric and topology. We choose it to be of the
form S3=�, or lens spaces to be precise. � is a suitable
discrete group with known action on S3 as in [1]. Of course
feasible solutions are always locally dS.

Now at this point it may seem that we are free to choose
any of the standard quantization techniques for this theory.
This may involve directly evaluating the partition function
or taking recourse to geometric quantization [4]. As is well
known, the former is well suited for perturbative calcula-
tions, and computation of the determinant of the elliptic
operator that arises is well understood in terms of the
analytic torsion even for noncompact gauge groups [5].
But once we are interested in nonperturbative results, we
must investigate the gauge moduli space of solutions, upon
which a suitable canonical quantization may be carried out.
However, on the given topology of lens space the solution
space modulo the gauge transformations give only a col-
lection of finite points, which certainly is not a symplectic
manifold. We therefore use the standard surgery and gluing
prescription for the construction of the space and using
axioms of TQFT find the partition function as [6]2

Z ¼ hc jUjc i: (1)

Here jc i 2 H T2 is a state of quantized CS theory on the
boundary of a solid torus, gluing two of which we construct
a lens space. U is an element of the T2 mapping class
group, specifying which gives us a class of lens spaces.
This is where the ‘‘conventional wisdom’’ of viewing first
order gravity as the difference between two SUð2Þ CS
theories fails. This failure becomes manifest when one
looks at the CS levels � l

8G (l being the inverse of the

root of the cosmological constant and G the Newton’s
constant).

But we see that in the famous work of Witten [7], a
plausible approach of viewing first order gravity theory as a
difference between two CS with unequal levels were pre-
sented. Ab initio this action does not have a metric inter-
pretation. Nevertheless, it gives same equations of motion
as that of ordinary CS gravity, which are equivalent to
Einstein’s equation for the class of invertible vierbeins.
The crux is that as one solves the torsionless condition
(half of the equations of motion) and substitutes in the
action, it becomes metric TMG and gains local excitations.
This is very much unlike the case of CS gravity with equal
and opposite couplings. However, within the arena of first
order gravity alone one could still get back metric inter-
pretation through the construction of a dual conformal field
theory (CFT), especially in the negative cosmological
constant sector. The first step towards this exciting result
was taken in [8] in the metric framework. In a more recent
work (although for a negative cosmological constant) [9]

this approach has been proved to work well in terms of
holomorphically factorizable dual CFTs for CS gravity
with unequal couplings. Chiral and antichiral central
charges are presented there in terms of the CS couplings
(also see [10]) and quantum Banados-Teitelboim-Zanelli
black holes are studied. The resulting CFT has been shown
to be rich in content in reference to the monster group.
The same theory of gravity as two SUð2Þ CS with

unequal couplings has been studied in [11] where geomet-
rical observables like area and length are quantized for
their spectra. This illuminates that one can study quantum
theories involving a metric even without starting with
a theory of metric variable. The new parameter enters
the spectra in a way that makes the spectra physically
meaningful.
The problem with equal and opposite couplings is that

the CS part corresponding to the negative level is ill-
defined and cannot be quantized on T2 [12]. We need to
extend the theory in the way described in [7,9,11,12] so
that the couplings of the CS theories can be tuned to be
positive. This is a necessary condition since dim (H T2)
equals the product of shifted CS couplings. When both the
couplings are positive integers, we get a situation that we
regard as consistent quantization. At the same time it is
worth mentioning that such an extension does not alter the
equations of motion. Hence, the gravitational interpreta-
tion of the theory remains intact.
Furthermore, due to this extension (through introduction

of a new dimensionless parameter) we get a finite answer
for the partition function, as opposed to [1]. We exhibit
the finiteness explicitly at a certain limit of this new
parameter. This is certainly an improvement towards find-
ing an answer about how meaningful 3D de Sitter quantum
gravity is.

II. THE EXTENDED THEORY

The functional of the SUð2Þ vielbein and connection, the
conventional Euclidean theory describing first order 3D
gravity with positive cosmological constant � ¼ 1

l2
is (in

the units where 16�G ¼ 1 ¼ c)

S½e;!�¼2
Z �

eI^ð2d!Iþ�IJK!
J!KÞ

þ 1

3l2
�IJKe

I^eJ^eK
�
: (2)

In terms of SUð2Þ CS connections Að�Þ ¼ !� e=l this
action reads

S ¼ lðI½AðþÞ� � I½Að�Þ�Þ
with

I½A� ¼
Z �

AI ^ dAI þ 1

3
�IJKA

I ^ AJ ^ AK

�

as the integral of the CS form. The variational problem is
perfectly well defined on the topology of the lens space
S3=�. Equations of motion are the well-known ones:2Choosing framing of surgery suitably.
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flat CS connections 2dAð�Þ
I þ �IJKA

ð�ÞJ ^ Að�ÞK ¼ 0

or in terms of variables pertaining to gravity:

torsionless condition deI þ �IJKeJ ^!K ¼ 0 and (3a)

curvature equation 2d!I þ �IJK!J ^!K ¼ � 1

l2
�IJKeJ ^ eK: (3b)

Now the observation that the action

~S½e;!� ¼ 2l
Z �

!I ^ d!I þ 1

l2
eI ^ deI

þ 1

3
�IJK!

I ^!J ^!K þ 1

l2
�IJK!

I ^ eJ ^ eK
�

¼ lðI½AðþÞ� þ I½Að�Þ�Þ (4)

on a closed manifold also gives the same equations of
motion (3) motivates one to linearly combine (4) to (2).
In terms of the CS variables, one therefore constructs the
action with the introduction of a new parameter �:

~I½AðþÞ; Að�Þ� ¼ Sþ 1

�
~S ¼ kðþÞ

2�
I½AðþÞ� þ kð�Þ

2�
I½Að�Þ�; (5)

where kð�Þ ¼ lð1=��1Þ
8G . Here we have restored G so that

Einstein’s equation is satisfied.
It now calls for a short discussion for interpreting (5).

Most interestingly it gives the same equations of motion
(3) [for manifolds without boundary], independent of the
couplings kð�Þ. This feature was first noted in the cele-

brated paper in [7]. When (3a) is solved for ! and sub-
stituted in (3b), one exactly gets the Einstein equation of
the metric theory for the invertible class of vierbeins from
(3). A more detailed description about this theory and its
relationship with Einstein-Hilbert theory and TMG is
available in [12,13].

Although the solution space for this extended theory
remains same, we find that the phase space structures are
different. The presymplectic structure of the theory given
in terms of two arbitrary vector fields tangential to the
space of solutions is

�ð�1;�2Þ¼
kðþÞ
�

Z
�
�1A

ðþÞ ^�2A
ðþÞþkð�Þ

�

Z
�
�1A

ð�Þ ^�2A
ð�Þ:

(6)

� is a suitable Cauchy foliation of the base manifold. It is
clear that the situation kð�Þ ! 0 as � ! 1, is comparable to

the ‘‘chiral point’’ of the theory in the AdS case, which has
a well understood dual CFT. At this point the presymplec-
tic structure automatically becomes degenerate in the

�Að�Þ directions (leaving apart its original gauge degener-
acy). This degeneracy is evident if one considers the equal
Euclidean time Poisson brackets:

f!I
i ðx; �Þ; eJj ðy; �Þg ¼ 4�G

�2

�2 � 1
"ij�

IJ�2ðx; yÞ

f!I
i ðx; �Þ; !J

j ðy; �Þg ¼ �4�G
�=l

�2 � 1
"ij�

IJ�2ðx; yÞ

feIi ðx; �Þ; eJj ðy; �Þg ¼ �4�G
�l

�2 � 1
"ij�

IJ�2ðx; yÞ;

(7)

�IJ is the suð2Þ metric.

III. PROBLEMS WITH CANONICAL
QUANTIZATION ON LENS SPACE

Since we are interested in the nonperturbative evaluation
of the partition function, the information about the lens
space that suffices is its algebraic topology. This is given
by3 Lðp; qÞ ¼ S3=Zp. The physical phase space of this

theory containing only flat connections, is given by
ðhom: �1ðLðp; qÞÞ ! SUð2ÞÞ=� , (moduli space of flat
SUð2Þ connections modulo gauge transformations) where
� denotes gauge equivalence classes. For the lens space
Lðp; qÞ, the fundamental group is isomorphic toZp,which is

freely generated by a single generator, say �; i.e. the group
consists of the elements f�njn ¼ 0; . . . ; p� 1g. The homo-
morphisms to SUð2Þ, which we denote by h must satisfy
h½�p� ¼ ðh½��Þp ¼ 1. In the defining representation (using
the freedom of group conjugation) of SUð2Þ, this gives

h½�� ¼ e2�i	3=p:

Hence, the moduli space consists of only p distinct points
and therefore can in no way be a symplectic manifold. In
physical terms, these points represent holonomies of the p
disjoint noncontractible loops around the p marked points
on Lðp; qÞ.
In this connection we wish to emphasize that the con-

figuration corresponding to n ¼ 0 above, is unique to first
order gravity only. It represents the holonomy of the con-

nection Að�Þ ¼ 0 or its gauge equivalent class. This means
that we are taking the e ¼ 0 ¼ ! solution in our phase
space. These configurations do not give rise to any physi-
cally meaningful metric, as elucidated in [9]. But while

3Role of qðmodpÞ coprime to p comes through the action
Zp: S

3 ! S3. This is most easily viewed by considering S3 as a
unit sphere in C2 and specifying the Zp action as ðz1; z2Þ �ðe2�i=pz1; e2�iq=pz2Þ.
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doing nonperturbative quantization of the first order theory
we must include them in the phase space.

IV. APPROPRIATE QUANTIZATION

A. H T2

Since we have seen that direct attempts to quantize the
theory on Lðp; qÞ fails, we should resort to indirect means
as exemplified in (1). In this respect, we construct Lðp; qÞ
by gluing two solid tori through their boundaries using an
element of the mapping class group

U ¼ q b
p d

� �
2 SLð2;ZÞ: (8)

The quantization strategy [6] as outlined in the
Introduction requires associating two quantum Hilbert
spaces of the CS theory with the boundary of the solid
tori. We therefore have to find H T2 . Although this can be
found in various places, for example, in [4,12,14,15], for
completeness we would like to give a simple and short
description of it.

Since we are quantizing CS theory on T2 (the third
dimension may be taken as R, the whole 3 manifold being
viewed as a trivial line bundle over T2), we have as the
starting point, themoduli space: ðhom:�1ðT2Þ!SUð2ÞÞ=�.

Now �1ðT2Þ ¼ Z � Z and is a freely generated Abelian
group with two generators �, 
 having the relation
�
��1
�1 ¼ 1. Taking advantage of the group conjugacy
as before, we take the two-dimensional (2D) representation
of the homomorphism maps as

h½��¼ ei	3� h½
�¼ ei	3��; �2½��;��: (9)

This endows the 2D moduli spaceM with the topology of
T2 (parameterized by �,�). Note that this simple construc-
tion of M is motivated from the rigorous point of viewing
it as M ¼ T � T=W, where T is the torus of maximal
dimension (for SUð2Þ which is 1 and T ¼ S1) andW is the
Weyl group with Ad action on the group. Our strategy will
be to first quantize T � T and then take Weyl invariant
‘‘parallel’’ sections of the line bundle on it.

The ‘‘pushed down’’ symplectic structure on M is

! ¼ k

2�
d� ^ d�:

An appeal to Weil’s integrality criterion

Z
M

!

2�
2 Z (10)

now assures that k must be an integer. At the stage of
prequantization a prequantum line bundle is chosen over
M and before choosing the polarization for this line
bundle we pick a complex structure � for M (induced
by that on the surface of the solid torus). This gives us
the holomorphic coordinate: z ¼ 1

� ð�þ ��Þ on M. We

re-express

! ¼ ik�

4�2
dz ^ d�z:

We thus work with a Kähler structure on M and a line
bundle on it with a connection whose curvature is �i!.
The rest of the prequantization technique can be analo-
gously constructed as given in [12]. This equips us with

prequantized Hamiltonian functions �̂0 ¼ � 2i
kþ2 �@z þ �z

and �̂0 ¼ 2i
kþ2@z. It is important to note the shift of k by the

dual Coxeter number of SUð2Þ to kþ 2 which originates
from the nontrivial Polyakov-Wiegman factor [16] for non-
Abelian compact gauge groups. In a more rigorous fashion
its appearance is explained due to nonanomalous connec-
tion construction on the Hilbert bundle in [4], which guar-
antees finally the quantum Hilbert space to be independent
of the complex structure initially chosen for quantization.
We finally impose the quantization conditions on the

polarized wave functions c ðzÞ4:

e iðkþ2Þm�̂0e�iðkþ2Þn�̂0
c ðzÞ ¼ c ðzÞ:

This is solved by level r ¼ kþ 2 theta functions:

#j;rðz; �Þ ¼
X
n2Z

exp

�
2�ir�

�
nþ j

2r

�
2 þ 2�irz

�
nþ j

2r

��

with j ¼ �rþ 1; . . . ; r (since #jþ2r;rðz; �Þ ¼ #j;rðz; �Þ).
We will now construct the Weyl invariant subspace of
this 2r dimensional vector space. Weyl invariance on M
means identification of z with �z.5 Observing that
#j;rð�z; �Þ ¼ #�j;rðz; �Þ, we project to the Weyl-odd sub-

space consisting of the r� 1 ¼ kþ 1 vectors:

#�
j;rðz; �Þ ¼ #j;rðz; �Þ � #�j;rðz; �Þj ¼ 1; . . . r� 1:

As per [4], one should now consider a ‘‘quantum bundle’’
over the space of complex structures � with fibers as the
Hilbert space we have just found. The physical states
should be parallel sections of this new bundle with respect
to a projectively flat connection of the ‘‘quantum bundle.’’
Those vectors turn out to be

c j;kðz; �Þ ¼
#�
jþ1;rðz; �Þ
#�
1;2ðz; �Þ

j ¼ 0; . . . k: (11)

By taking the ratio of two Weyl-odd functions we thus
found the Weyl invariant vector space as desired. This
space is orthonormal and serves as the required Hilbert
space.

4The apparent operator ordering ambiguity is unphysical,
costing only up to a phase in the wave function

5This is so because the traces of the holonomies (9) are gauge
invariant rather than h½��, h½
� themselves and the traces do not
distinguish between ð�;�Þ and ð��;��Þ. This is another state-
ment of Weyl invariance.
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B. Gluing and Lðp; qÞ
We know that the mapping class group SLð2;ZÞ or rather

SLð2;ZÞ=Z2 of T2 is ‘‘generated’’ by two modular trans-
formation elements T, S. Any general element U of
SLð2;ZÞ can be expressed as

U ¼ S
Yt�1

s¼1

ðTmsSÞ:

In its 2D representation U produces Lðp; qÞ by gluing two
solid tori for [17]

U ¼ q b
p d

� �
:

The above representation of U in terms of T, S implies the
following identity [6]:

p=q ¼ �mt�1 þ 1

mt�2 � 1
...� 1

m1

: (12)

The Chern-Simons-Witten invariant or the partition func-
tion is given by [18]

ZðrÞLðp;qÞ ¼ hc 0;kjUjc 0;ki
and it is independent of the parameters b, d [6]. From the
knowledge of the action of S and T on theta functions
we can evaluate these matrix elements. In the canonical
2-framing this was evaluated to be

ZðrÞLðp;qÞ ¼ � iffiffiffiffiffiffiffiffi
2rp

p expð6�isðq; pÞ=rÞX
�

Xp
n¼1

� exp

�
2�iqrn2

p
þ 2�inðq� 1Þ

p
� �i

rp

�
; (13)

where

sðq; pÞ ¼ Xp�1

l¼1

l

p

�
lq

p
�

�
lq

p

�
� 1

2

�
:

is theDedekind sumdefined in terms of the floor function [ ].

C. Sum over topologies and finiteness of
the partition function

We note from the construction of H T2 (11) that the
dimension of the Hilbert space is rð�Þ � 1 corresponding,

respectively, to the ‘‘þ’’ type and ‘‘�’’ type CS sectors.
This is meaningful only when rð�Þ � 1 2 N (excluding

zero). These conditions come out to be stringent and restrict

the parameters of the theory. Since rð�Þ � 2 ¼ kð�Þ ¼
lð1=��1Þ

8G , we have (when ℏ and c are restored suitably)6

the following restrictions:

a :¼ l

8lp
¼ s=2s2N and �¼ a

ða�1Þþ t
t2N: (14)

These restrictions are the prototypes of any topological field
theory [14]. One may be tempted to compare these with
those appearing in [9] for kð�Þ, where the unequal CS

parameters are prescribed with discrete values in context
of gravity. The apparent difference is due the choice of a
different background topology used in [9].
These nontrivial restrictions which validate the quanti-

zation (through positivity of the dimension of the Hilbert
space) does not allow � ! 1 which was again the starting
point of the ordinary theory (2). It is also interesting to see
that the set of allowed value of � also includes 1, the
‘‘chiral’’ point for t ¼ 1. This motivates us strongly to
study the corresponding chiral limit of the underlying
dual CFT, if any.
Leaving those issues for later discussion we now return

to our original problem and express the gravity partition
function (henceforth by gravity partition function we mean
the partition function for the first order gravity) as the
product of the partition functions of ‘‘þ’’ type and the
‘‘�’’ type theories (5):

ZGrav
Lðp;qÞ ¼ ZðrðþÞÞLðp;qÞZðrðþÞÞLðp;qÞ: (15)

Full gravity partition function would on the other hand be
stated after summing over all topologies, i.e.

Ztot ¼ X1
p¼1

X
qðmodpÞ
ðq;pÞ¼1

ZGrav
Lðp;qÞ:

This final sum is where one encounters the divergence as
explained in [1] through sums of kind

P
qðmodpÞ
ðq;pÞ¼1

1 ¼ �ðpÞ, the
Euler totient function. For the purpose of comparison with
[1] and to study the convergence property of our partition
function we choose a particular classical saddle for which
the sum over n in (13) is replaced by a particular value of

n ¼ q�1
2 , respectively, for the ‘‘þ’’ and the ‘‘�’’ type

theory instead of taking the corresponding sum in (15).
For clarity, further simplification is made through assum-
ing a to take only integral values and a=� 2 2N. However,
these simplifications do not alter the final convergence
properties of the sum. Using (13) in a more illuminating
form7 we have explicitly:

Ztot ¼ � 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðþÞrð�Þ

p
X1
p¼1

1

p

X
qðmodpÞ
ðq;pÞ¼1

expð6�isðq; pÞ=RþÞ

� exp

�
�i

p
ð2aþ ðqþ q�Þða=�þ 2ÞÞ

�

� ½eð�i=pRþÞþð2�i=pÞðqþ1Þ þ e�ð�i=pRþÞþð2�i=pÞðq�1Þ

� eð�i=pR�Þþð4�i=pÞ � eð��i=pR�Þ�; (16)

where

6lp is the 3D Planck length lp ¼ Gℏ=c3

7Let A be the set of all such integers qðmodpÞ with ðq; pÞ ¼ 1.
It is easy to see that fq�ðmodpÞjqq� ¼ 1ðmodpÞg ¼ A. This
property has been used.
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1

R�
¼ 1

rðþÞ
� 1

rð�Þ
:

It is now easy to see that all the terms in the q summand are
q dependent and the divergence producing totient function
does not occur. However since no closed form of the q sum
is available, for the purpose of explicit checking we go to
the limit where � > 0 is small ( � 1). Since the coupling
constants become effectively large in this limit the partition
function contains the expressions up to one loop. From (14)
one observes that this limit is consistent with our quantiza-
tion program by fixing a and pushing the integer t large. In

this limit 1
Rþ

� 2�
a and 1

R�
� 2�2

a are both small. Out of the �

terms appearing as polynomials in the exponentials of (16)
i.e., 1� , 1, �, �

2 we keep 1
� , 1 and neglect the last two. This

implies

Ztot ¼ ��

a

�
1� 2�

a

� X1
p¼1

1

p
e2�ia=p cosð2�=pÞ

�
�
S

�
a

2�
þ 2;

a

2�
þ 1;p

�

� e2�i=pS

�
a

2�
þ 1;

a

2�
þ 1;p

��
(17)

Sð�;
;pÞ ¼ X
qðmodpÞ
ðq;pÞ¼1

expð2�ið�qþ 
q�Þ=pÞ:

Expanding the exponential and the cosine functions in the
inverse power of p, we obtain an infinite series of
Kloosterman zeta functions defined by

Lðm; n; sÞ ¼ X1
p¼1

p�2sSðm; n;pÞ:

The Kloosterman zeta function is again analytic in the
region <s > 1=2.

Now, as we are in the small � regime, the summand in
(17) can well be approximated as

X1
p¼1

1

p
e2�ia=p cosð2�=pÞ

�
1� e2�i=p

�
S

�
a

2�
;
a

2�
;p

�

¼ X1
m;n;r¼0

ð2�iÞrþnþ2mþ1

rþ 1

an

ð2mÞ!n!r!
X1
p¼1

p�ðrþnþ2mþ2Þ

� S

�
a

2�
;
a

2�
;p

�

¼ X1
m;n;r¼0

ð2�iÞrþnþ2mþ1

rþ 1

an

ð2mÞ!n!r!

� L

�
a

2�
;
a

2�
;
rþ nþ 2m

2
þ 1

�
: (18)

The good news is that we get a series of Lð a2� ; a
2� ; sÞ with

s 	 1. Hence, the partition function is free from divergen-
ces. Had we set a=�þ 2 ¼ 0, the second Kloosterman
sum would have reduced to the totient function. That is a

potential source of singularity, which is obvious since its
zeta function is expressed in terms of the Riemann zeta
function and 
ð1Þ is singular. We again see that the finite-
ness of the parameter � saves us from having a mean-
ingless quantization.
Here we wish to point out that we are evaluating the

partition function in the case of small �. This again corre-
sponds to large CS couplings kðð�ÞÞ. However, quantum CS

theory dictates that large coupling means quantum correc-
tion first [6]. In that sense (17) or (18) corresponds to the
one loop result.

V. THE METRIC COUNTERPARTAND
THE TMG STORY

The key relation connecting the first order formalism
and metric regime is he�; e�i ¼ g��. It should be supple-

mented with the torsionless condition ensuring the geome-
try to be Riemannian. If one starts with the action (5), one
gets this condition (3b) as an equation of motion. Solving
this equation makes (4) the well-known gravitational
Chern-Simons and (2) the Einstein-Hilbert action provided
we use only the invertible subset of vierbeins from (3b).
The action (5) becomes TMG, with � playing the role of
topological mass. It is not surprising that dynamics of
TMG and that of (5) are quite different; including equa-
tions of motion and canonical structures. The most impor-
tant feature perhaps is that TMG has a local degree of
freedom that is absent in the theory described by (5) and
one should not expect similarity in their quantum theories.
However, TMG being the closest kin to our theory in
metric version, for completeness we present a comparative
study with quantum TMG focussing its convergence prop-
erties as worked out in detail in [2].
To be more precise, we first focus on what is meant by

quantum dS TMG. This issue, as we have already men-
tioned, has been exhaustively studied in [2]. The one loop
partition function is shown there to converge. If we denote
the contributions coming from Einstein-Hilbert theory by
E and the contributions from the massive modes by MG
(massive graviton), their result shows that

X1
p¼1

X
qðmodpÞ
ðq;pÞ¼1

Zð0Þ
E Zð0Þ

MGZ
ð1Þ
E � X1

r¼0

ð2�aÞr
r!

L

�
a

2�
;
a

2�
;
r

2
þ 1

2

�

þ trivially analytic terms: (19)

One can now compare this with (18). The interesting fact is
that here the term corresponding to r ¼ 0 in the sum of
the right-hand side is the source of divergence since it
corresponds to Kloosterman zeta function with s ¼ 1=2.

But it is also showed in [2] that when one includes Zð1Þ
MG as

the product and then performs the sum over p, the diver-
gence is eaten up. This means that up to one loop calcu-
lation they have
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Z ¼ X1
p¼1

X
qðmodpÞ
ðq;pÞ¼1

Zð0Þ
E Zð0Þ

MGZ
ð1Þ
E Zð1Þ

MG:

The expression of Zð1Þ
MG as given in [2] is far too compli-

cated for the above expression to be analytically simplified
and compared with (18). But the mechanism through
which the divergence in the above expression is controlled

by Zð1Þ
MG is very similar to the way in which we showed (18)

to be finite. In essence both our topological theory of
gravity and TMG (dynamical) have finite and similarly
convergent partition functions. Since these theories are
classically different, this fact seems to be quite surprising.
That TMG is derived as a metric version of our theory may
however qualitatively explain this similarity in partition
functions up to one loop. We conclude that although the
finiteness of TMG could be ascribed to its propagating
graviton modes, our theory (5), being devoid of massive
gravitons still yields a reasonably similar convergent par-
tition function.

VI. CONCLUSION

Our analysis can be summarized as follows:
(1) Construction of the associated Hilbert spaces on the

torus surfaces is correct only for finite �. These
constructions spell out the set of allowed values of
� and this does not include � ! 1.

(2) That finite values of � can make the partition func-
tion divergence free is shown explicitly for � � 1.
This is most important from the point of view of the
quantization of lens space gravity.

The fact that pure Einstein gravity has a divergent
partition function even at one loop and TMG is finite

may seem to be a lucrative point of discussion in the
context of the work we present here. One can pass over
to TMG (essentially dynamical) from action (5), which is
topological, by imposing the torsionless condition. Hence,
they share the same parameter content. In the AdS sector,
however, this similarity is more pronounced as they have
same dual CFTs. Whereas in the present case, such an
analogy is premature, since dual CFT in 3D de Sitter
gravity is yet to be understood. Any progress on this front
would surely shed light on the proposed dS/CFT [19]
correspondence (which works in four dimensions) in three
dimensions and on its gravitational interpretation.
On the other hand, the finiteness brought in by the

gravitational Chern-Simons term of TMG also may be
interpreted in light of (5). This being parity odd, there
are phases in the partition function. Control of the diver-
gence can be ascribed to this fact. This explanation works
in the perturbative regime for TMG at least, as shown in
[2]. Our result being finite is in conformity with TMG.
Another point of interest, which we leave for future

study, is the interpretation of the theory when � ! 1. In
the AdS paradigm an analogous point in parameter space
has been shown to have critical CFT dual [20,21]. In light
of the proposed dS/CFT [19] framework, this may serve as
exciting evidence for dual critical CFT.
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