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We consider possibly observable effects of asymmetric dark matter (ADM) in neutron stars. Since dark

matter does not self-annihilate in the ADM scenario, dark matter accumulates in neutron stars, eventually

reaching the Chandrasekhar limit and forming a black hole. We focus on the case of scalar ADM, where

the constraints from Bose-Einstein condensation and subsequent black hole formation are most severe due

to the absence of Fermi degeneracy pressure. We also note that in some portions of this constrained

parameter space, nontrivial effects from Hawking radiation can modify our limits. We find that for scalar

ADM with mass between 5 MeV and 13 GeV, the constraint from nearby neutron stars on the scattering

cross section with neutrons ranges from �n & 10�45 cm2 to 10�47 cm2.

DOI: 10.1103/PhysRevD.85.023519 PACS numbers: 95.35.+d, 98.80.Cq

I. INTRODUCTION

The characteristics of dark matter (DM) and the nature
of its production mechanism have so far eluded descrip-
tion. While cosmological observations provide compelling
evidence for its existence, its mass and the nature of its
interactions with the standard model remain unknown. One
popular hypothesis holds that the DM interacts with stan-
dard model particles via the weak interaction and is also
self-annihilating. In this weakly interacting massive parti-
cle (WIMP) scenario [1], the correct relic density of DM is
a natural consequence of the thermal history of the early
Universe.

Alternatively, DM may carry a conserved charge, analo-
gous to baryon number. This asymmetric DM (ADM)
scenario is motivated by the fact that the DM and baryon
densities are of the same order of magnitude. The earliest
models attempting to relate the DM to the baryon asym-
metry made use of electroweak sphalerons [2] or out-of-
equilibrium decay [3]. The former often run into tight
constraints from LEP measurements. In contrast, the mod-
ern incarnation of ADM makes use of higher-dimension
operators to transfer the asymmetry in a robust way that is
relatively free of electroweak constraints [4]. ADMmodels
prefer to have DM mass around a few GeV (see for
example [5–7]), which is consistent with hints from recent
direct detection experiments [8,9]. It is also possible for
ADM to have weak scale mass [10,11], or mass well below
a GeV [12].

The DMmass and its scattering cross section with nuclei
have been constrained by various underground direct de-
tection experiments [13–15], as well as by particle col-
liders [16–19]. In this article, we study the properties of
ADM through its impacts on stellar systems. It has long
been appreciated that a finite DM-nucleon cross section
would result in DM capture in stars [20–22]. In the WIMP
scenario, DM annihilation can generate an additional heat
source, which may affect stellar formation [23] and evolu-
tion [24], or cause anomalous heating of white dwarfs

[25,26] and neutron stars [27–29]. In the ADM case, DM
particles do not annihilate and hence provide no additional
power for stars. However, since there is no annihilation to
deplete ADM particles, stars can accumulate far more
ADM particles than usual WIMPs, which can lead to
different effects. For example, it could have implications
for solar physics [30–32], or change the mass-radius rela-
tion of neutron stars [33–35]. The most extreme possibility
is that captured particles can become self-gravitating,
forming a black hole that will eventually destroy the host
stars [36–38].
Recently, constraints on fermionic ADM through the

survival of compact stars have been discussed in [29,39].
In a certain class of ADM models, the DM candidate is a
boson [6,7]. In this paper, we study constraints on this
scalar ADM from compact stars. Scalar DM particles differ
from fermions by spin statistics, which has a significant
impact on black hole formation conditions. Black hole
formation occurs only when the total number of self-
gravitating DM particles is larger than the Chandrasekhar
limit [40]. Fermions obey the Pauli exclusion principle,
and the Chandrasekhar limit is set by the balance between
gravity and the Fermi pressure, while scalar particles have
no Fermi pressure to hinder gravity. In this case, the lower
limit for gravitational collapse is determined by the bal-
ance between gravity and the pressure induced by the zero
point energy, which is much smaller than the Pauli pressure
experienced by fermions. Therefore, we derive much
stronger constraints on scalar ADM from compact stars.
Since neutron stars have much higher matter density and
escape velocity than any other stars, we will mainly focus
on neutron stars. Note that neutron star constraints on
scalar DM has been discussed in [36]. In this early work,
the cross section for the DM capture is set by the geometric
cross section, and the DM mass range is between 1 GeV
and 100 TeV. In this work, we treat the DM-neutron cross
section as a free parameter and use neutron stars to
constrain it. Other important considerations that we treat
here are the effect of Bose-Einstein condensation, which
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significantly alters the constraint derived on the DM-
neutron scattering cross section, and Hawking radiation,
which modifies our constraints for high-mass DM. We also
explore a wider DM mass range and use the most recent
neutron star data.

This paper is organized as follows. In Sec. II, we discuss
the Chandrasekhar limit for fermions and bosons. In
Sec. III, we discuss ADM capture in neutron stars. In
Sec. IV, we discuss thermalization, condensation and black
hole formation of captured scalar ADM in neutron stars. In
Sec. V, we discuss Hawking radiation and destruction of
the host neutron star. In Sec. VI, we discuss observational
constraints. We present our conclusions in Sec. VII.

II. CHANDRASEKHAR LIMIT

First, we review the derivation of the Chandrasekhar
limit for a system of fermions. Suppose there are N fermi-
ons of mass m distributed in a sphere with radius R, so that
the number density of fermions is approximately N=R3.
Because of the Pauli exclusion principle, the average dis-

tance between two fermions is �R=N1=3. The uncertainty
principle requires that each fermion have Fermi momen-

tum p� N1=3=R. If the total number N is small and m>

p� N1=3=R, the system is in the nonrelativistic limit. The
average energy per fermion is

E��GNm2

R
þ 1

m

�
N1=3

R

�
2
; (1)

where G is Newton’s constant. Once the gravitational and
Fermi pressures reach equilibrium, the system can have a
stable spherical configuration with radius

R� 1

Gm3N1=3
: (2)

As N increases, the radius shrinks and the Fermi momen-
tum increases; eventually fermions become relativistic
with total energy

E��GNm2

R
þ N1=3

R
: (3)

If the total number of the fermions increases beyond the
limit

Nfermion
Cha �

�
1

Gm2

�
3=2¼

�
Mpl

m

�
3’1:8�1051

�
100GeV

m

�
3
;

(4)

where Mpl ¼ 1:2211� 1019 GeV is the Planck scale, the

gravitational energy will dominate the total particle energy
and gravitational collapse will occur. This is the famous
Chandrasekhar limit [40].

Now we discuss bosons. Similar to the fermion case, the
gravitational collapse occurs when particles are relativistic.
But the bosonic system is significantly different from the
fermionic system because it has no Fermi pressure to

hinder gravity. Since the bosons are confined inside a
sphere with radius R, they have zero point energy 1=R
due to the uncertainty principle in the relativistic limit.
Therefore, the typical energy for a boson in a sphere of
radius R is

E��GNm2

R
þ 1

R
: (5)

Again, the radius cancels in the critical limit. In this case,
the Chandrasekhar limit is

Nboson
Cha ’

�
Mpl

m

�
2 ’ 1:5� 1034

�
100 GeV

m

�
2
: (6)

Comparing Eq. (4) and (6), we can see that for a given
particle mass, a particle that obeys Bose-Einstein statistics
will experience gravitational collapse much more readily
than a particle that obeys Fermi-Dirac statistics.
When the total number of DM particles accumulated

in a neutron star surpasses the Chandrasekhar limit, the
captured DM particles collapse to a black hole and
destroy the host neutron star. Therefore, observations of
old neutron stars can be used to constrain the DM-neutron
scattering cross section. Since bosons have much smaller
Chandrasekhar limit than fermions, we can obtain stronger
limits on bosonic DM. In this work, we take typical neutron
star parameters Mn ¼ 1:44M�, Rn ¼ 10:6 km and the
central density �B ¼ 1:4� 1015 g=cm3 [29,41].

III. CAPTURE OF ASYMMETRIC DARK MATTER
IN NEUTRON STARS

The accretion of DM onto stars has been studied in
[20–22]. In this section, we review the basic formulas for
the capture of asymmetric DM in neutron stars.
In the absence of annihilation, the number of DM par-

ticles in a star is determined by the differential equation

dNX

dt
¼ CB; (7)

where NX is the total number of DM particles in the star
and CB is the DM capture rate through scattering with
baryons. In this study, we assume there is no symmetric
component and neglect DM annihilation completely. In
some ADMmodels, a portion of the symmetric component
can be regenerated by oscillation effects [11,12]. For those
models, bounds derived from the survival of the neutron
stars can be weaker.
Additionally, we ignore the self-capture effect. Dark

matter may have a sizable self-interaction that leads to
self-capture [42]. However, the self-capture saturates
when the sum of the individual self-scattering cross sec-
tions becomes larger than the geometrical area over which
the DM particles thermally distribute. As we will show in
the next section, due to the large baryon density the cap-
tured DM particles are thermally distributed in a very small
region of radius �1 m in the core of the neutron star. We
have checked that the baryonic capture always dominates
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the DM accretion process in neutron stars for the parameter
space of interest, even if we take the upper limit of the self-
scattering cross section allowed by the elliptical halo shape
bound [43].

A. Capture rate

The number of DM particles in the neutron star is set by
CB. Since neutrons are degenerate in the neutron stars,
capture can occur only when the momentum transfer is
larger than the difference between the Fermi momentum
and the neutron momentum. As we will show, this will
affect the capture efficiency significantly for DM with
mass less than 1 GeV. For larger DM mass the effect is
negligible, because the momentum transfer is always
sizable.

The accretion rate CB is given by [21]

CB ¼ 4�
Z Rn

0
r2

dCBðrÞ
dV

dr; (8)

where Rn is the radius of the neutron star and the capture
rate per unit volume for an observer at rest with respect to
the DM distribution is given by

dCBðrÞ
dV

¼
ffiffiffiffi
6

�

s
nXðrÞnBðrÞ�vðrÞ

2

�v2
ð �v�XBÞ

�
1�1�expð�B2Þ

B2

�
:

(9)

Here nXðrÞ is the ambient DM number density; nBðrÞ is the
number density of the stellar baryons; �v is the DM velocity
dispersion around the neutron star; vðrÞ is the escape
velocity of the neutron star at the given radius r; �XB is
the effective scattering cross section between DM particles
and nucleons in the neutron star; and � takes into account
the neutron degeneracy effect on the capture. The factor B2

is given by

B2 ¼ 3

2

vðrÞ2
�v2

�

�2�
; (10)

where � ¼ mX=mB and �� ¼ ð�� 1Þ=2.
Now we specify the factor �. All energy levels below the

Fermi momentum pF have been occupied. During the
scattering process, if the momentum transfer to the neutron
is larger than pF, the scattered neutron can be excited
above the Fermi surface. In this case, all neutrons can
participate the capture process, and the capture efficiency
is � ¼ 1. On the other hand, if the momentum transfer �p
is less than pF, only those neutrons with momentum larger
than�pF � �p can participate in the capture process. The
fraction of these neutrons is ��p=pF, so we can approxi-
mate � as � ’ �p=pF. Depending upon the momentum
transfer �p, we can parameterize � as

� ¼ Min

�
�p

pF

; 1

�
: (11)

When theDMparticle approaches the surface of the neutron
star, its velocity is close to the escape velocity. Hence, the

typical momentum transfer is �p ’ ffiffiffi
2

p
mrvesc, wheremr ¼

mXmB=ðmX þmBÞ is the reduced mass, and typically

vesc ’ 1:8� 105 km=s. The Fermi momentum is pF ’
ð3�2�B=mBÞ1=3 ’ 0:575 GeV for �B¼1:4�1015 g=cm3.
Therefore, � ’ 1 for all mX * 1 GeV. In contrast, the cap-
ture rate is suppressed by a factor �mXvesc=pF if the DM
mass smaller than the neutron mass.
To estimate the capture rate, we take the conservative

limit that vðrÞ ¼ vðRnÞ � vesc, and we assume that nXðrÞ
and nBðrÞ are independent of the radius; thus, the total
capture rate can be simplified to

CB’
ffiffiffiffi
6

�

s
�X

mX

v2
esc

�v2
ð �v�XBÞ�NB

�
1�1�expð�B2Þ

B2

�
; (12)

where NB is the total number of neutrons in the host star.
When B2 � 1, the term in the square bracket is close to 1;
for typical values vesc ’ 1:8� 105 km=s and �v ’
220 km=s, and a DM mass smaller than 9:4� 105 GeV,
this condition is obtained. If DM has mass larger than
�9:4� 105 GeV, a lower probability to lose enough ki-
netic energy to be captured after single scatter results [29].
In our numerical work, we use the full expression of
Eq. (12).

B. Total number of ADM in neutron stars

Here we only consider DM particles captured by the
neutron star itself and neglect those the neutron star can
inherit from its progenitor. Compared to the neutron star
phase, the progenitor usually has much lower density and
shorter lifetime which results in lower capture efficiency.
The total number of DM particles captured by the neutron
star is given by the solution of Eq. (7)

NX ¼ CBt: (13)

To evaluate CB, we note that if the sum of individual
nucleon-DM scattering cross sections is larger than the
geometric surface area of the star, the capture rate will
saturate. Therefore, the capture rate increases with the cu-
mulative nucleon-DM scattering cross section �tot ¼
NB�n, where �n is the DM-neutron elastic scattering cross
section, as long as�tot is smaller than�geom ¼ �R2

n; that is,

we can constrain the individual scattering cross section�n as
long as �n is less than or equal to �max ¼ �R2

n=NB. Taking
typical neutron star parameters Mn ¼ 1:44M� and Rn ¼
10:6 km, we estimate the maximum cross section as [29]

�max ¼ 2:1� 10�45 cm2

�
Rn

10:6 km

�
2
�
1:44M�
Mn

�
; (14)

and the effective cross section is given by

�XB ¼ Min½�n; �max�: (15)

Note that since we consider scattering off only one nucleon,
this scattering can be regarded as either spin-dependent or
spin-independent.
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Now we can estimate the total number of ADM in the
neutron star at a given time, using generic parametersvesc ¼
1:8� 105 km=s, �v ¼ 220km=s, and NB ’ 1:7� 1057. In
the regime mX * 1 GeV, we have � ’ 1, which gives

NX ’ 2:3� 1044
�
100 GeV

mX

��
�X

103 GeV=cm3

�

�
�

�XB

2:1� 10�45 cm2

��
t

1010 years

�
: (16)

When the DM mass is less than �1 GeV, the degeneracy

effect on the capture process is important so that � ’ffiffiffi
2

p
mXvesc=pF, and we have

NX ’ 3:4� 1046
�

�X

103 GeV=cm3

��
�XB

2:1� 10�45 cm2

�

�
�

t

1010 years

�
: (17)

It is interesting to note that the DM number does not depend
on the DM mass in the second case.

In the above derivation of NX, we have assumed that the
evaporation effect is negligible for the DM. Now we esti-
mate the DM mass scale below which the evaporation is
relevant. Since energy states below the Fermi surface are
occupied, only those neutrons with momentum above pF

can transfer kinetic energy to the DM. Since T � pF for
the neutron star, the number of these free neutrons is order
�10�8 smaller than that of the neutrons in the Fermi sea.
So the scattering probability for the DM evaporation is
highly suppressed. Furthermore, compared to the sun,
neutron stars have much higher density and deeper gravi-
tational wells, so it is much more difficult to accelerate
trapped DM above the escape velocity through interactions
with neutrons. To evaporate from the neutron star, the DM
has to gain enough energy such that its velocity is larger
than the escape velocity of the neutron star. Because of the
degeneracy effect, the typical energy transfer from the free
neutron is �T; so the evaporation effect is relevant only
when the DMmass is less than�2T=v2

esc � 48 eV for T ¼
105 K, which is much below the lower mass limit of our
constraints�2 keV in the most optimistic case. Therefore,
we can safely ignore the evaporation process.

IV. ASYMMETRIC SCALAR DARK MATTER
IN NEUTRON STARS

A. Thermalization

When DM particles are captured by the neutron star they
lose energy via scattering with neutrons, and soon attain
thermal equilibrium with the star. To estimate the thermal-
ization time scale we calculate the DM energy loss rate:

dE

dt
¼ ��nB�nv�E; (18)

where nB is the neutron number density in the center of the
neutron star, �E is the energy loss of the DM particle

during each scattering event, and we use � defined as in
Eq. (11) to parameterize the neutron degeneracy effect on
the DM thermalization process. The typical velocity and

the momentum transfer �p ¼ ffiffiffi
2

p
mrv fully determine �.

However, unlike the capture case, where the velocity is set
by the escape velocity vesc, the thermal equilibrium

of DM particles and neutrons now sets v� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Eth=mX

p
,

where Eth ’ 3T=2 is the energy after thermalization.

In the case of mX * 1 GeV, �p� ffiffiffi
2

p
mBv ’ 2:1�

10�5 GeVðT=105 KÞ1=2ð100 GeV=mXÞ1=2, which is much
smaller than pF ’ 0:575 GeV. For mX & 1 GeV, the mo-

mentum transfer is given by �p� ffiffiffi
2

p
mXv ’ 6:8�

10�5ðT=105 KÞ1=2ðmX=0:1 GeVÞ1=2, which is again less
than pF. Therefore, the neutron degeneracy effect reduces
the DM thermalization efficiency over the entire DM mass
range, and � is everywhere given by � ’ �p=pF.
To estimate the thermalization time scale, we solve

Eq. (18) and get

tth ’ m2
XmBpF

4
ffiffiffi
2

p
nB�nm

3
r

1

Eth

: (19)

In the limit of mX * 1 GeV, the thermalization time scale

can be further simplified to tth ’
ffiffiffi
2

p
m2

XpF=ð12m2
BnB�nTÞ.

Taking typical values, we see

tth ’ 0:054 years

�
mX

100 GeV

�
2
�
2:1� 10�45cm2

�n

��
105 K

T

�
:

(20)

If DM mass is less than 1 GeV, the thermalization time
scale is given by

tth’7:7�10�5 years

�
0:1GeV

mX

��
2:1�10�45 cm2

�n

��
105 K

T

�
:

(21)

To derive constraints on scalar ADM from black hole
formation, we will assume the captured scalar ADM fol-
lows the thermal distribution in the neutron star. This is
only true when tth is less than the neutron star age
�1010 years. As we can see from Eqs. (20) and (21), light
DM easily satisfies this condition. For heavy DM, tth is not
always less than the neutron star age. In the following
discussion we first assume the DM reaches thermal equi-
librium with neutrons, and then we check the consistency
of this assumption.
After attaining thermal equilibrium, captured DM parti-

cles drift to the center of the star and form an isothermal
distribution with the typical radius

rth¼
�

9T

4�G�BmX

�
1=2’24 cm

�
T

105K
	100GeV

mX

�
1=2

: (22)

We can see that the captured DM particles very quickly
occupy a very small region near the neutron star core.
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B. Self-gravitation and black hole formation

If the DM density is larger than the baryon density
within the thermal radius rth, the DM particles can become
self-gravitating. For a total DM mass MX ¼ NXmX within
a thermal radius rth, this condition is

3MX

4�r3th
* �B: (23)

Therefore, the DM becomes self-gravitating once the total
number of DM particles is larger than a critical number

Nself ’ 4:8� 1041
�
100 GeV

mX

�
5=2

�
T

105 K

�
3=2

: (24)

Recall the upper limit for the bosonic system given in
Eq. (6) above which the zero point energy cannot prevent
gravitational collapse

Nboson
Cha ’ 1:5� 1034

�
100 GeV

mX

�
2
: (25)

Thus, if the scalar ADM thermalizes and the mass satisfies
mX & 1017 GeVðT=105 KÞ3, we always have Nself *
Nboson

Cha . In this case, gravitational collapse occurs as soon

as DM particles become self-gravitating in neutron stars.

C. Bose-Einstein condensation

In the above discussion, we implicitly assumed that all
captured scalar ADM particles followed a Maxwellian
velocity distribution. At the extreme densities we are con-
sidering here, however, this minimal assumption is not
necessarily satisfied. In particular, ensembles of bosonic
particles at high densities exhibit novel statistical proper-
ties. If the central temperature of the neutron star falls
below the critical temperature to form a Bose-Einstein
condensate (BEC), the particles in the ground-state con-
dense and no longer follow the thermal distribution. We
will now show that for light ADM this condensation
increases the density and reduces the restriction on self-
gravitation to such an extent that the number of ADM
particles necessary for self-gravitation is less than the
bosonic Chandrasekhar limit. Thus, gravitational collapse
is set by Nboson

Cha .

To check this sequence of events, we begin by noting
that for a given bosonic DM number density nX, the critical
temperature to form a BEC is given by

Tc ¼ 2�

mX

�
nX

�ð3=2Þ
�
2=3

; (26)

where � is the Riemann-Zeta function, �ð3=2Þ ’ 2:612,
and nX ¼ 3NX=ð4�r3thÞ. To see how likely it is that the

captured ADM will form a BEC in the neutron star, we can
estimate the critical ADM number as

NX ¼ �

�
3

2

��
mXT

2�

�
3=2 4�r3th

3
’ 1:0� 1036

�
T

105 K

�
3
; (27)

where we have used Eq. (22). Therefore, if the total number
of captured ADM in the neutron star is larger than 1:0�
1036ðT=105 KÞ3, some of captured ADM particles will go
to the ground state and form a BEC. This condition can be
satisfied for a neutron star with relatively low central
temperature as indicated by Eqs. (16) and (17).
For T < Tc, the BEC forms and the number of particles

in the condensed ground state is

N0
X¼NX

�
1�

�
T

Tc

�
3=2

�
’NX�1:0�1036

�
T

105 K

�
3
: (28)

Since these ground-state particles effectively have zero
temperature, they sink deep into the core of the neutron
star. We can estimate the radius of distribution of the
ground state by requiring the zero point energy equal the
gravitational energy

rBEC¼
�

3

8�Gm2
X�B

�
1=4’1:5�10�5 cm

�
100GeV

mX

�
1=2

:

(29)

This is much smaller than rth, which indicates a much
higher DM density. Thus, the ground state itself may
become self-gravitating. The critical number for the self-
gravity of the DM particles in the condensed state is

N0
self ¼

4�

3

�Br
3
BEC

mX

’ 1:0� 1023
�
100 GeV

mX

�
5=2

: (30)

Once the number of DM particles in the ground state is
larger than N0

self , these ground-state particles become self-

gravitating. Since N0
self is less than Nself , the onset of self-

gravity is marked by N0
self instead of Nself in conditions

where a BEC forms. As indicated above, this leads to
qualitatively different behavior as compared to the case
when a BEC does not form, since nowN0

self can be less than

Nboson
Cha . If this is the case, as soon as a condensed ADM

system reaches the Chandrasekhar limit it will undergo
gravitational collapse.
For this effect to be important, N0

X has to grow larger
than the Chandrasekhar limit for a bosonic system, so that
the condition for black hole formation of the BEC becomes
N0

X * Nboson
Cha . By using Eq. (28), we get a lower limit on the

total DM number NX,

NBEC ¼ Nboson
Cha þ 1:0� 1036

�
T

105 K

�
3

’ 1:5� 1034
�
100 GeV

mX

�
2 þ 1:0� 1036

�
T

105 K

�
3
:

(31)

We can see that the value of the right-hand side of Eq. (31)
is less than Nself if the DM mass mX & 1:9� 104 GeV
(4:7� 103 GeV) for a central temperature T ¼ 105 K
(106 K). In the situation where this condensation can oc-
cur, the BEC shortens the time scale for the black hole
formation for the scalar ADM in the low-mass range.
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V. HAWKING RADIATION AND DESTRUCTION
OF THE HOST STAR

During the collapse process, the gravitational contrac-
tion releases energy which can be absorbed by neutrons
through DM-neutron scattering. This cooling mechanism
is so efficient that eventually the DM sphere collapses to a
black hole [36]. Once a black hole is formed at the center of
the neutron star, it will rapidly capture the baryonic matter
of the neutron star. Hawking radiation will also be active,
reducing the mass of the black hole and possibly heating
the remaining DM. Finally, the black hole may also con-
sume the ambient DM particles, which can be crucial for
the stability of the black hole. Here, we analyze the relative
contributions of these effects, and we see that in the
majority of our parameter space the black hole will grow
and eventually consume the host neutron star. Once the
physics of the accretion is properly considered, we find that
Hawking radiation could be important for high- and
intermediate-mass ADM.

For a black hole with mass MBH, the differential equa-
tion that governs the rate of change of mass is

dMBH

dt
’ 4��s

�
GMBH

v2
s

�
2
�Bvs � 1

15360�G2M2
BH

þ
�
dMBH

dt

�
DM

: (32)

The second term of Eq. (32) represents the Hawking
radiation rate, while the third term is the accretion rate of
ambient DM particles. The first term of right-hand side of

Eq. (32) is the Bondi-Hoyle accretion rate, in which vs ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dP=d�

p
is the sound speed and �s is the accretion eigen-

value for the transonic solution. To determine vs and �s,
we characterize the equation of state of the neutrons by
P ¼ K�	, where K and 	 are constant. For a nonrelativ-
istic degenerate neutron gas, which is a good approxima-
tion for neutrons in the neutron star, we have 	 ¼ 5=3 and

K ¼ 32=3�4=3=ð5m8=3
B Þ [40]. We estimate the sound speed

as vs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K	�	�1

p � 105 km=s, where we take �� 1:4�
1015 g=cm3. The accretion constant is given by �s ¼
ð1=2Þð	þ1Þ=ð2	�2Þ½ð5� 3	Þ=4��ð5�3	Þ=ð2	�2Þ ¼ 0:25 [40].

A. Black hole mass without Bose-Einstein condensation

For large ADM mass, we found above that Nself <NBEC

and a black hole forms without the assistance of a BEC.
After formation of the black hole, the neutron star contin-
ues capturing DM particles. These newly captured DM
particles eventually sink to the center of the neutron star
and distribute themselves within rth. In principle, the
black hole can increase its mass by capturing these addi-
tional DM particles. However, we find that this capture rate
is very small and ðdMBH=dtÞDM is negligible. This is
because, for a nonrelativistic particle moving towards
the black hole, its impact parameter must be less than

bmax ¼ 4GMBH=v1 [40] to penetrate the angular momen-
tum barrier and fall into the black hole. Here, v1 is the
particle’s velocity when it is far away from the black hole.

Taking MBH �mXNself and v1 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3T=mX

p
, we can es-

timate bmax as

bmax � 1:6� 10�5 cm

�
10 TeV

mX

��
T

105

�
; (33)

which is much smaller than the thermal radius rth ’
2:4 cmðT=105KÞð10 TeV=mXÞ1=2. Therefore the majority
of DM particles captured after formation of the black hole
do not fall directly into the black hole. The remaining DM
particles orbit the black hole at a distance of order rth; the
black hole gains mass from these particles at a rate set by
the collisionless spherical accretion approximation [40].
We find that the DM accretion rate is much less than the
baryon accretion rate, so we can safely ignore the
ðdMBH=dtÞDM term in this case, and we obtain a critical
initial black hole mass

Mcrit
BH ’ 1:2� 1037 GeV: (34)

Without a BEC, the initial black hole mass is MBH �
NselfmX. If we demand NselfmX * Mcrit

BH, we find that for
mX & 2:6� 106 GeVðT=105 KÞ the Hawking radiation
has a longer time scale than the accretion process. Hence
in this mass range the black hole will continuously accrete
baryonic matter until the neutron star is consumed entirely.

B. Black hole mass with Bose-Einstein condensation

For low-mass ADM, particles in the BEC ground state
form a black hole. We must check the mass above which
the black hole evaporates. If we naively ignore the term
ðdMBH=dtÞDM and demand MBH �mXN

boson
Cha * Mcrit

BH, we

find that the black hole mass increases only for the DM
mass less than �13 GeV. If so, the constraint is valid for
mX & 13 GeV. But in contrast to the non-BEC case,
ðdMBH=dtÞDM may have an important effect on the black
hole mass evolution, and we find that the bound can be
sensitive to masses higher than �13 GeV. We detail our
reasoning below.
Since the black hole forms only from ADM particles in

the ground state, the remaining ADM particles follow an
isothermal distribution with a radius rth. As discussed
above, the thermally distributed DM particles do not fall
into the black hole, and so the phase space of the non-BEC
state is still completely occupied. Hence, if any more ADM
particles are introduced to the thermal region, a new BEC
ground state must form in the center of the star. In this way,
the introduction of more DM particles into the thermal
radius essentially forces the formation of a BEC ground
state. Before and after the mini black hole forms, the
neutron star continuously captures ADM particles. All of
the captured ADM particles will eventually thermalize,
sink to the center of the neutron star, and prompt the
formation of a new BEC state.
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If the thermalization time scale is shorter than the
evaporation time scale of the mini black hole, the black
hole can always efficiently accrete ADM particles in the
new BEC state. Taking the initial black hole mass as
MBH�mXN

boson
Cha ¼1=ðGmXÞ, we can conservatively esti-

mate the black hole evaporation time scale in the
absence of particle accretion as thaw’15360�G2M3

BH=3’
5�104 yearsð100GeV=mXÞ3. This is much longer than the
thermalization time scale given in Eq. (20). Since all newly
captured ADM particles eventually go to the ground state
after the amount of time it takes them to thermalize, the
rate at which ADM particles fall into the BEC ground state
per unit time is given by the capture rate CB. To check
whether or not the ADM particles in the BEC state feed
the black hole efficiently we calculate the maximal impact
parameter bmax and compare it with the distribution radius
rBEC. With MBH�1=ðGmXÞ and v1�1=ðmXrBECÞ, we
have

bmax � 4rBEC; (35)

where rBEC is given by Eq. (29). Since bmax * rBEC, we see
that the black hole can efficiently consume the BEC. This
occurs at a rate given by ðdMBH=dtÞDM �mXCB:�
dMBH

dt

�
DM

’ 2:3� 1036 GeV=year

�
�X

103 GeV=cm3

�

�
�

�XB

2:1� 10�45 cm2

�
: (36)

This new source of accretion overwhelms the Hawking
radiation, which is emitted at the rate ðdMBH=dtÞhw �
1027 GeV=yearðmX=100 GeVÞ2. Thus, in the BEC case
our constraints can be sensitive to scalar ADM with mass
much higher than the naive estimate, mX � 13 GeV.

In this discussion, we have assumed that the black hole
formation and Hawking radiation do not destroy the BEC
state. However, one may note that the black hole radiates as
a blackbody at a very high temperature, Thaw ¼
ð8�GMBHÞ�1 �mX=8�. If this Hawking radiation is emit-
ted solely as relativistic particles of the standard model
such as photons and neutrinos, these particles will heat the
neutrons which in turn heat the ADM. We may estimate
the change in neutron temperature by assuming that all of
the initial rest mass energy of the black hole goes into heat.
We see that in this case equipartition of energy requires
that �T �mXN

boson
Cha =NB ’ 1:0� 10�7 Kð10 GeV=mXÞ,

and there is no change in the thermal ADM distribution.
On the other hand, if the energy produced by the

Hawking radiation is efficiently transferred to DM parti-
cles, the situation may change. For example, the DM may
couple to some light mediator particles, which can be
produced by the Hawking radiation. These light mediators
may heat the ADM directly and transfer the black hole
energy to the thermal energy of ADM particles. In this
case, the calculation is rather complicated and a detailed
analysis is beyond the scope of the current paper. Here we

give a conservative estimate by assuming that all of the
initial black hole mass goes to the thermal energy of DM
particles. The equipartition of energy gives �T �
mXN

boson
Cha =Nth ’ 1:7� 1014 Kð10 GeV=mXÞðT=105 KÞ�3,

where the number of remaining non-BEC particles is
Nth ¼ 1:0� 1036ðT=105 KÞ3, from Eq. (31). This heating
will greatly affect the thermal distribution of the scalar

ADM particles. Since rth /
ffiffiffiffi
T

p
, the phase space will ex-

pand greatly, and the newly captured ADM particles do not
form the BEC state. Thus, the black hole constraints are
lifted in this case.
In practice, for heating processes to occur, ADM parti-

cles must couple to light mediator particles, since the black
hole can only produce particles with mass much less than
Thaw �mX=8�. On the other hand, the presence of the
light mediator may also give rise to DM self-interactions,
and the observed ellipticity of DM halos places a lower
bound on the mediator mass [43]. As an example, if mX �
13 GeV, the halo shape constraint requires the mediator
mass be larger than�40 MeV [44]. Thus, for scalar ADM
with mass mX � 13 GeV the existence of a mediator with
mass in the range�40 MeV� 0:5 GeVmay help in evad-
ing the black hole formation constraints, while remaining
consistent with the halo shape bound. We can see that the
constraints for mX * 13 GeV in the BEC case are rather
model-dependent, and we specify these regions in our
plots.
Now we estimate the destruction time scale. If the initial

black hole mass exceeds the critical value Mcrit
BH, the time

scale to destroy the neutron star is set by the Bondi-Hoyle
rate

t� v3
s

�G2�BMBH

’ 2:3� 10�5 s

�
M�
Mi

BH

�
; (37)

where we take vs � 105 km=s and M� is the mass
of sun. Therefore, the characteristic time scale is

t� 17 yearsðmX=100 GeVÞ3=2ð105 K=TÞ3=2 and 5:4�
106 yearsðmX=GeVÞ for the non-BEC case and BEC
case, respectively, which we note is much shorter than
the typical old neutron star age �1010 years.

VI. OBSERVATIONAL CONSTRAINTS

So far, we have gone through the conditions for the
captured scalar ADM particles to form a black hole.
Such a black hole can destroy the host neutron star. We
can see that these conditions are easily satisfied if the ADM
particles have a sizable scattering cross section with neu-
trons. However, we observe many old neutron stars near
the solar system and in globular clusters. Therefore, these
observed old neutrons stars constrain the ADM-neutron
scattering cross section. In this section, we proceed to
derive upper bounds on the ADM-neutron scattering cross
section for a given ADM mass. In Secs. VIA and VIB we
first derive constraints on �n by assuming fiducial neutron
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star parameters for the case without (with) Bose-Einstein
condensation. In Sec. VI C, we apply these bounds to
observed neutron stars in the solar neighborhood and in
the globular cluster M4.

A. Constraints on DM-neutron cross section without
Bose-Einstein condensation

We first discuss constraints in the absence of BEC for-
mation; this gives rise to conservative constraints in the
low-mass range but is more stringent for high masses,
where BECs do not readily form. Since in this case Nself >
Nboson

Cha for mX & 1017 GeVðT=105 KÞ3, gravitational col-
lapse occurs as soon as DM particles start self-gravitating.
In order to avoid the destruction of neutron stars, we
demand NX < Nself and get an upper bound on DM-
neutron scattering cross section �n. For DM with mass
mX * 1 GeV we derive the following bound on �n using
Eqs. (16) and (24) and requiring that the host neutron star is
not destroyed over the course of its lifetime t

�n < 4:4� 10�48 cm2

�
103 GeV=cm3

�X

	 10
10 years

t

�

�
�
100 GeV

mX

	 T

105 K

�
3=2

: (38)

For mX & 1 GeV, the bound on �n is

�n < 9:3� 10�46 cm2

�
106 GeV=cm3

�X

	 10
10 years

t

�

�
�
0:1 GeV

mX

�
5=2

�
T

105 K

�
3=2

: (39)

Since the capture rate saturates when the DM-neutron
scattering cross section is larger than �max ’ 2:1�
10�45 cm2, the upper bound on �n is only valid when the
value of the right-hand side of Eq. (38) and (39) is smaller
than �max. Because the capture and thermalization pro-
cesses do not distinguish between spin-dependent and
spin-independent cross sections, the bound on �n applies
to both cases.
We depict the constraints from requiring the neutron star

survival in the left panel of Fig. 1 with various values of the
DM density. We take the central temperature as 105 K and
neutron star age to be 1010 years. The most prominent
qualitative feature, the sharp vertical cutoff, corresponds
to cross sections �n ’ 2:1� 10�45 cm2. Here, the geomet-
ric cross section limits the capture of DM particles, so we
cannot constrain the interaction cross section for the mass
below the cutoff. Furthermore, without a BEC, we can
constrain scalar ADM with mass mX & 100 MeV only if
the DM density �X * 106 GeV=cm3. One may find re-
gions with such high DM density near the galactic center.
As we discussed before, if the DM mass is less than
�1 GeV, the capture rate is reduced due to the neutron
degeneracy effect, which is indicated by the change in

FIG. 1 (color online). Regions (gray) of DM-neutron scattering cross section in which accumulated scalar ADM forms a black hole.
We have �X ¼ 0:1 GeV=cm3 along the dotted red lines, which is approximately the DM density in the solar neighborhood. In the left
panel, we assume a BEC does not form and all captured DM particles become self-gravitating and collapse. In the right panel, we
assume a BEC does form and DM particles in the BEC ground-state collapse and form a black hole. We take the neutron star age to be
1010 years with a central temperature 105 K. In the diagonally shaded regions, DM particles cannot thermalize with neutrons within
the age of neutron star. In the diagonally cross-hatched region, the black hole can evaporate due to the Hawking radiation. In the
square-hatched regions, Hawking radiation may interfere with DM accretion by heating the thermalized DM, and in some cases the
black hole can evaporate (see discussion in Sec. V). In these hatched regions, the bounds are lifted. The black regions are excluded by
recent CDMS results (spin-independent) [13].
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slope of the curve with �X ¼ 106 GeV=cm3 when mX &
1 GeV. For DM mass mX * 106 GeV, the factor B2 in
Eq. (12) falls below 1 and the capture probability through a
single scatter becomes lower, as shown by the bump in the
left panel of the figure. In the hatched region, DM particles
cannot thermalize with the surrounding neutrons within the
age of neutron star as discussed in Sec. IVA. In this region,
the captured DM does not necessarily distribute within the
small thermal radius of the neutron star core, and the bound
does not apply. In the cross-hatched region, the initial black
hole mass is so small that it can evaporate due to the
Hawking radiation as shown in Sec. VA. In the square-
hatched region, the Hawking radiation may interfere with
DM accretion, and the black hole will evaporate in some
cases as discussed in Sec. VB.

We can also estimate the analogous bound from white
dwarf stars. Typical white dwarf parameters are [45]: mass
�0:7M�, radius �6:3� 103 km, density �106 g=cm3,
central temperature �107 K and escape velocity �6�
103 km=s. White dwarfs are composed of carbon and oxy-
gen; we make the conservative assumption that the white
dwarf is entirely composed of carbon. We find that the
white dwarf bound on �n is about 9 orders of magnitude
weaker than the limit derived for typical neutron stars.

B. Constraints on DM-neutron cross section
with Bose-Einstein condensation

If the captured scalar ADM does form a BEC, the
constraints on the DM-neutron cross section become
stronger. This is because NBEC & Nself for the DM mass
less than a few TeV, dependent on the central temperature
T. In this case, self-gravitation and gravitational collapse
will occur more quickly due to the heightened density of
the ADM.

For mX * 1 GeV, the requirement NX & NBEC gives

�n&9:1�10�54 cm2

�
103 GeV=cm3

�X

	10
10 years

t

�

�
�

mX

100GeV

��
1:5�10�2

�
100GeV

mX

�
2þ

�
T

105 K

�
3
�
:

(40)

In the case of mX & 1 GeV, the upper limit on �n is given
by

�n & 6:2� 10�56 cm2

�
103 GeV=cm3

�X

	 10
10 years

t

��
1:5

� 104
�
0:1 GeV

mX

�
2 þ

�
T

105 K

�
3
�
:

(41)

Again, we derive bounds by requiring that the host star is
not destroyed by the gravitational collapse of the ADM.

In the right panel of Fig. 1, we display the DM-neutron
scattering cross section with various values of the DM

density that satisfy NX * NBEC. For mX & 10 GeV, the
BEC forms before the Chandrasekhar mass is reached,
while for mX * 10 GeV, the Chandrasekhar mass is
reached before the BEC forms, so that collapse of the
DM to a black hole occurs as soon as the BEC forms.
The change in the slope of the curves around mX � 1 GeV
is a combination of this effect with a decreased capture
efficiency below mX � 1 GeV. We can see the formation
of the BEC significantly improves the bound for light
ADM. As an example, we see that for �X ¼ 1 GeV=cm3,
BEC formation strengthens the constraint as long as mX &
13 GeV, while for higher masses the entire mass of ADM
becomes self-gravitating before BEC formation occurs.

C. Constraints from observed pulsars

Now we consider the observations of a few relatively
cold and old neutron stars that can provide tests of this
effect. PSR J0437-4715 is a nearby pulsar at a distance of
about 139
 3 pc from the solar system. The surface tem-
perature is Te ¼ 1:2� 105 K [46]. When its secular mo-
tion is accounted for, calculations indicate its age is
6:69� 109 years [47]. Another nearby pulsar is PSR
J2124-3358, located 270 pc away from us with a surface
temperature Te < 4:6� 105 K [46]. Its age is 7:81�
109 years [47].
For these nearby pulsars, we can calculate the central

temperature from the surface temperature Te by using the
analytical formula [48]

T ’ 1:288� 108 K

�
1014 cm=s

gs

�
Te

106 K

�
4
�
0:455

; (42)

where gs ¼ GMn=R
2
n is the surface gravity and we take

gs ’ 1:7� 1014 cm=s2 for Mn ¼ 1:44M� and Rn ¼
10:6 km. We find the central temperature is 2:1� 106 K
and 2:5� 107 K for J0437-4715 and J2124-3358, respec-
tively. We take the ambient DM density to be
0:3 GeV=cm3, because these pulsars are in our relative
neighborhood.
In Fig. 2, we show the constraints on the DM-nucleon

scattering cross section of the scalar ADM from the nearby
pulsars J0437-4715 (left panel) and J2124-3358 (right
panel). We can see that J0437-4715 can constrain scalar
ADM with mX * 10 TeV without a BEC. With the for-
mation of a BEC, it is also sensitive to the mass range
mX � 5 MeV� 13 GeV. The captured scalar ADM can-
not form a BEC in the pulsar J2124-3358. This is because it
has a relatively high central temperature, and the formation
of a BEC requires a DM-nucleon cross section larger than
the saturation cross section �max ’ 2:1� 10�45 cm2.
Since the bound is sensitive to the DM density, we also

consider neutron stars in regions with high �X. Globular
clusters possibly offer this type of environment, and ob-
servations of Pulsar B1620-26 place it in the globular
cluster M4 [49] with an age of 2:82� 108 years [46].
Since it is far away from us, its surface temperature is
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unknown, and we are not able to calculate its central
temperature. In our analysis, we take T ¼ 106 K as a
reasonable approximation due to its advanced age. We
take �X ¼ 103 GeV=cm3 for the DM density and �v ¼
20 km=s, motivated by discussions in Refs. [25,38]. Note
that the exact value of DM density in globular clusters is
unknown. Globular clusters are baryon-dominated sys-
tems, and currently there is no evidence that DM is present
in these systems; see Ref. [50] for simulations of DM

content in globular clusters. In Fig. 3, we show the con-
straints on the DM-nucleon scattering cross section of
scalar ADM from the pulsar B1620-26 in the globular
cluster M4. Note that when the DM mass is larger than
�4:7� 103 GeV, NBEC * Nself and all captured DM par-
ticles collapse before a BEC forms.

VII. CONCLUSIONS

We have studied the consequences of scalar ADM
accumulation in neutron stars. Neutron stars have high
density and are ideal objects for capturing DM at high
rates. Since ADM does not self-annihilate, a high mass
of DM can accrete in the neutron star, and, lacking Fermi
degeneracy pressure, rapidly self-gravitate and exceed
the Chandrasekhar limit. Furthermore, the formation of a
BEC increases the density of the ADM by several orders
of magnitude, which greatly accelerates the onset of gravi-
tational collapse and considerably strengthens the con-
straints in certain regions of parameter space. For high
dark matter mass, which corresponds to a low initial
black hole mass, Hawking radiation can weaken the con-
straints. In the absence of light messenger particles, this
effect is quite limited in scope, but if the black hole can
heat the ADM directly it may affect a larger range of
parameters.
We have computed the size of all of these effects and

found that some presently observed pulsars constrain sca-
lar ADM far more tightly than what is currently possible
with direct detection experiments. These constraints
are stronger even than the upcoming generation of
experiments. We also note that these constraints can be
significantly improved in the future with observations of
old pulsars in regions of DM density greater than
103 GeV=cm3.

FIG. 2 (color online). Regions (colored) excluded by the nearby pulsars J0437-4715 (left) and J2124-3358 (right). The shaded,
diagonal and square cross-hatched, and black regions are as in Fig. 1. In hatched regions, the bounds are lifted.

FIG. 3 (color online). Regions (colored) excluded by the pul-
sar B1620-26 in the globular cluster M4. Note the globular
cluster M4 is a baryon-dominated system, and there may in
fact be no dark matter in this system. Here, we take �X ¼
103 GeV=cm3 motivated by numerical results in Refs. [25,38].
The shaded, diagonal and square cross hatched, and black
regions are as in Fig. 1. In hatched regions, the bounds are lifted.
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Note added.—Since the first version of our paper ap-
peared, [51] was written. In the case where a BEC forms
and Hawking radiation is important, the authors of [51]
find that scalar ADM with mass �0:75 MeV� 16 GeV is
excluded by nearby neutron stars if the scattering cross

section with neutrons is sizable. Our results exclude scalar

ADM in the mass range �5 MeV� 13 GeV in the same

scenario. The discrepancy in the low-mass limit comes

about because we take into account the neutron degeneracy

effects on the capture rate. This is important for DM mass

below �1 GeV.
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