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The geometrical adhesion model that we described in previous papers provides a fully solved model for

the nonlinear evolution of fields that mimics the cosmological evolution of pressureless fluids. In this

context, we explore the expected late-time properties of the cosmic propagators once halos have formed,

in a regime beyond the domain of application of perturbation theories. Whereas propagators in Eulerian

coordinates are closely related to the velocity field, we show here that propagators defined in Lagrangian

coordinates are intimately related to the halo mass function. Exact results can be obtained in the one-

dimensional case. In higher dimensions, the computations are more intricate because of the dependence of

the propagators on the detailed shape of the underlying Lagrangian-space tessellations, that is, on the

geometry of the regions that eventually collapse to form halos. We illustrate these results for both the one-

dimensional and the two-dimensional dynamics. In particular, we give here the expected asymptotic

behaviors obtained for power-law initial power spectra. These analytical results are compared with the

results obtained with dedicated numerical simulations.

DOI: 10.1103/PhysRevD.85.023516 PACS numbers: 98.80.�k, 47.27.Gs, 98.65.�r, 98.80.Bp

I. INTRODUCTION

Precision measurements and precision calculations of
the statistical properties of the large-scale structure of the
Universe are becoming key topics in observational and
theoretical cosmology, in particular, in the context of
dark energy searches. Within the concordant model of
cosmology (see e.g., [1] and now strongly supported by
the observations, see for instance [2]), the dynamical
growth of structure is a priori governed since z� 3000
by collisionless dark matter components (although dark
energy dominates the expansion at about z < 1), and struc-
tures are thought to emerge out of primordial nearly scale-
invariant Gaussian metric perturbations. This gives rise to a
hierarchical evolution, as increasingly larger scales turn
nonlinear (very large scales being in the linear Gaussian
regime and small scales in the highly nonlinear regime).
Today, scales beyond �10 Mpc are well described by
linear theory while scales below �1 Mpc are within the
highly nonlinear regime. Providing theoretical insights into
such a field is therefore a challenging idea.

The highly nonlinear regime has proved very difficult to
handle by analytical tools so far (see for instance [3]), and
one must resort to numerical simulations and phenomeno-
logical models (such as the halo model [4]) that involve
some free parameters that are fitted to numerical results.

The quasilinear regime on the other hand provides us
with a priori robust and controlled predictions. In this
regime, indeed perturbation theory techniques can be em-
ployed and many have already been developed. They are
various extensions of the standard perturbation theory [3],
such as the renormalized perturbation theory (RPT) [5–7],
large-N expansions [8,9], the closure theory [10,11], the
time renormalization equation [12], etc., usually developed

in Eulerian space but sometimes in Lagrangian space as in
[13]. The validity regime of such perturbation theories is
however limited in nature, and in a noncontrollable way, by
the effects of shell crossings. Indeed, as small-scale non-
linear regions form, fluid flows originating from different
parts of the Universe cross each other leading to local
multivalued velocities, hence to vorticity and effective
anisotropic pressure (see review [3]). So far, those effects
have been observed to have limited effects on large scales,
either through simple analytic investigation, as in [14,15],
or a posteriori from the successes of perturbation theory
results. It remains that being able to explore the analytical
properties of tools of interest in regimes where shell cross-
ing is present is of crucial importance.
The geometrical adhesion model (GAM) provides for

such an appealing framework [16,17]. It is based on the
Burgers equation [18] in the inviscid limit which, before
shell crossing, reproduces the well-known Zel’dovich ap-
proximation [19]. At shell crossing however particles are
prevented from crossing with the introduction of an infini-
tesimally small viscosity. The GAM is based on a subse-
quent prescription concerning the way matter flows within
these critical regions. This model is examined in [20,21]
where it is argued that it provides an attractive toy model
for the cosmic matter distribution. In this paper, we aim at
taking advantage of this fact to explore statistical indica-
tors in their full complexity.
The quantities we are more particularly interested in are

the so-called propagators. Indeed, while standard pertur-
bation theory only involves many-body density and
velocity correlation functions, or polyspectra, most resum-
mation schemes also involve ‘‘propagators’’ or ‘‘response
functions.’’ These unequal-time quantities describe the
evolution with time of small fluctuations, and often appear
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at intermediate stages in these resummation procedures.
Such quantities appear for instance in the ‘‘large-N’’ ex-
pansions developed in [8,9,22], the ‘‘closure approxima-
tion’’ of [10,11], and also in the ‘‘RPT’’ approach of [5–7]
where they were initially introduced. In addition to encap-
sulating diagrammatic resummations, they also have a
well-defined physical meaning. Propagators are defined,
as is usual in statistical physics, as two-time response
functions of the system. For instance, the density propa-
gator in real-space coordinates, G�� ðx2; t2;x1; t1Þ, is the

ensemble average, over all intervening modes, of the func-
tional derivative

t2 � t1: G�� ðx2; t2;x1; t1Þ ¼
�
D�ðx2; t2Þ
D�ðx1; t1Þ

�
; (1)

where � is an infinitesimal external perturbation to the
density contrast, or velocity field, applied at time t1. This
gives the ‘‘linear response’’ of the system, with respect to
the density contrast at position x2 and time t2, to an
external perturbation applied at position x1 at the earlier
time t1 [23]. In this article, we shall focus on the propagator
from initial-time fluctuations, t1 ! 0. Then, this is the
response to the initial conditions themselves, which can
be defined through the initial velocity potential c 0 or the
linear density contrast �L0. Thus, as in [24], we define the
density propagator,

t � 0: G�ðx; t;qÞ ¼
�
D�ðx; tÞ
D�L0ðqÞ

�
: (2)

It gives the change in the density contrast at position x and
time t induced by an infinitesimal change to the initial (or
linear) density contrast at position q.

One of the aims of this paper is to derive the properties
of propagators in as much detail as possible and compare
the results with numerical experiments. In particular, we
want to see how these functions behave, and what they are
sensitive to, when a full nonlinear evolution of the fields is
taken into account. There are a priori two means of de-
scribing the large-scale structure dynamics and properties;
one is based on the use of the Eulerian coordinates, this is a
natural choice since it is directly related to observations,
the other is based on the Lagrangian coordinates. As we
shall see below, and as pointed out in [22,25], the Eulerian
response functions and propagators are dominated by a
‘‘sweeping effect,’’ that is, the collective transport of
small-scale density fluctuations by the long wavelengths
of the velocity field [26]. This holds for both the gravita-
tional and the Burgers dynamics, and it means that the
properties of these two-time functions are not a very good
probe of the properties of the large-scale structures, ob-
served at a given time. This shortcoming led to the study in
[24,25] of Lagrangian-space propagators. Indeed, in a
Lagrangian framework, where one follows the motion of
particles, the impact of uniform translations is automati-
cally removed (because they do not change the system as

viewed from a particle). Then, propagators or correlation
functions automatically go beyond the sweeping effect and
directly probe the deformation of the density field (e.g.,
tidal effects). This suggests that Lagrangian propagators
should generally provide more sensitive probes of the
matter distribution. This is one of the motivations for the
study presented here. In the context of the GAM, it is
indeed possible to relate propagators in Lagrangian coor-
dinates to geometrical properties of the late-time field.
As noticed in [6] from the perturbative expansion of the

nonlinear density contrast �ðx; tÞ over powers of the linear
growing mode �L0, for Gaussian initial conditions the
response function (2) is related to the cross correlation
��ðx; t;qÞ by

��ðx; t;qÞ � h�ðx; tÞ�L0ðqÞi
¼

Z
dq0G�ðx; t;q0Þh�L0ðq0Þ�L0ðqÞi: (3)

As shown in [22], this relation can actually be obtained by
a simple integration by parts and does not rely on pertur-
bative expansions. Indeed, writing the nonlinear density
contrast as a functional of the initial condition �L0,

�ðx; tÞ ¼ F x;t½�L0ðqÞ�; (4)

the response function (2) writes as

G�ðx; t;qÞ ¼
Z

D�L0e
�ð1=2Þ�L0�C�1

0
��L0

DF x;t½�L0�
D�L0ðqÞ ; (5)

where we did not write an irrelevant normalization con-
stant and C0ðq1;q2Þ ¼ h�L0ðq1Þ�L0ðq2Þi is the two-point
correlation of the initial Gaussian field. Integrating Eq. (5)
by parts gives

G�ðx; t;qÞ ¼
Z

D�L0e
�ð1=2Þ�L0�C�1

0
��L0F x;t½�L0�

�
�Z

dq0C�1
0 ðq;q0Þ � �L0ðq0Þ

�
(6)

¼
Z

dq0C�1
0 ðq;q0Þ � h�ðx; tÞ�L0ðq0Þi: (7)

Multiplying by the operator C0, we recover Eq. (3). Thus,
the identities (3) and (7) are quite general and also apply to
nonanalytic functionals F x;t. In particular, they remain

valid after shell crossing, where perturbative expansions
break down. Although in numerical simulations for the
three-dimensional (3D) gravitational dynamics [6] it is
usually more convenient to compute the cross correlation
h�ðx; tÞ�L0ðqÞi, from which the response function follows
from (7), in our case where the functional F x;t is explicitly

known it turns out that the definition (2) is better suited to
analytical computations.
The plan of the paper is the following. In Sec. II, we

present the equations governing the Burgers dynamics
and the geometrical adhesion model. Analytical results
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regarding this model are presented in the following
Sec. III. In Sec. IV, we present numerical results that
illustrate our analytical findings.

II. BURGERS DYNAMICS AND
GEOMETRICAL ADHESION MODEL

A. Equations of motion and geometrical constructions

We first recall in this section the definition of the ‘‘geo-
metrical adhesion model,’’ GAM, described in more detail
in a previous paper [20]. This model coincides with the
well-known Zel’dovich dynamics [19] before shell cross-
ing [16,17], and beyond shell crossing it is built from the
d-dimensional Burgers equation [18] for the velocity field
uðx; tÞ,

@tuþ ðu � rÞu ¼ ��u; � ! 0þ; (8)

where we consider the inviscid limit. As is well known,
for curlfree initial velocity fields the nonlinear Burgers
Eq. (8) can be solved through the Hopf-Cole transforma-
tion [28,29], by making the change of variable c ðx; tÞ ¼
2� ln�ðx; tÞ, where c ðx; tÞ is the velocity potential defined
by

u ðx; tÞ ¼ �rc : (9)

This yields the linear heat equation for�ðx; tÞ, which leads
to the solution

c ðx; tÞ ¼ 2� ln
Z dq

ð4��tÞd=2 exp

�
c 0ðqÞ
2�

� jx� qj2
4�t

�
:

(10)

Then, in the inviscid limit � ! 0þ, a steepest-descent
method gives [18,30]

c ðx; tÞ ¼ sup
q

�
c 0ðqÞ � jx� qj2

2t

�
: (11)

If there is no shock, the maximum in (11) is reached at a
unique point qðx; tÞ, which is the Lagrangian coordinate of
the particle that is located at the Eulerian position x at time
t (hereafter, we note by the letter q the Lagrangian coor-
dinates, i.e., the initial positions at t ¼ 0 of particles, and
by the letter x the Eulerian coordinates at any time t > 0).
If there are several degenerate solutions to (11), we have a
shock at position x and the velocity is discontinuous.

Thus, a key property of the nonlinear Eq. (8) is that we
know its explicit solution (11) at any time t. Therefore, we
can build the velocity field at any time t from the max-
imization (11), which also corresponds to a Legendre
transform, without solving the dynamics at intermediate
times. In a cosmological context, we are more particularly
interested in the matter distribution; it is therefore very
useful to extend this property to the density field. As
explained in detail in [20], this is possible provided we
use a specific continuity equation, which differs from the
usual continuity equation by a peculiar diffusive term,

proportional to �, that vanishes outside of shocks in the
inviscid limit. More precisely, one obtains in this case
the matter distribution from the Lagrangian map (i.e., the
displacement field), q � x, which is defined as follows.
Defining the ‘‘linear’’ Lagrangian potential ’Lðq; tÞ by

’Lðq; tÞ ¼ jqj2
2

� tc 0ðqÞ; (12)

so that in the linear regime the Lagrangian map is given by

x Lðq; tÞ ¼ @’L

@q
¼ qþ tu0ðqÞ; (13)

and introducing the function

Hðx; tÞ ¼ jxj2
2

þ tc ðx; tÞ; (14)

one can see that the maximum (11) can be written as the
Legendre transform (see note [31])

Hðx; tÞ ¼ sup
q

�
x � q� jqj2

2
þ tc 0ðqÞ

�
¼ Lx½’Lðq; tÞ�:

(15)

Therefore, Eq. (15) yields the inverse Lagrangian map,
x � q, qðx; tÞ being the point where the maximum in
Eq. (11) or (15) is reached. This is only a rewriting of
the Hopf-Cole solution (11), but this is not sufficient to
fully define the density field in dimension greater than one.
Indeed, because of shocks there is no unique way to invert
the mapping x � q. Then, the geometrical adhesion model
[17,20] consists in choosing the direct Lagrangian map-
ping, q � x, as the Legendre conjugate of x � q,

q ðx; tÞ ¼ @H

@x
; xðq; tÞ ¼ @’

@q
; (16)

where the potential ’ is given by

’ðq; tÞ � Lq½Hðx; tÞ� ¼ sup
x
½q � x�Hðx; tÞ�: (17)

From standard properties of the Legendre transform, this
only gives back the linear Lagrangian potential ’Lðq; tÞ of
Eqs. (12) and (15) if the latter is convex, and in the general
case it gives its convex hull,

’ ¼ convð’LÞ: (18)

Then, the density field is determined by the conservation
of matter [20,32,33],

�ðx; tÞdx ¼ �0dq; (19)

which reads as

�ðxÞ
�0

¼ det

�
@q

@x

�
¼ det

�
@x

@q

��1
: (20)

Here, we used the fact that both determinants are positive,
thanks to the convexity ofHðxÞ and ’ðqÞ, and we assumed
a uniform initial density �0 at t ¼ 0. Thus, the
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‘‘Lagrangian-Eulerian’’ mapping q $ x of Eq. (16) and
the density field (20) define the geometrical adhesion
model that we study in this article, where both the velocity
and density fields can be obtained at any time from the
initial fields by geometrical constructions [34].

B. Initial conditions and self-similarity

As in [21], we consider Gaussian random initial con-
ditions, which are isotropic and homogeneous, with power-
law initial power spectra. They can be defined in terms of
the initial velocity potential, c 0ðxÞ, or equivalently in
terms of the linear density contrast, �Lðx; tÞ, which is the
usual approach in cosmology. Thus, introducing the den-
sity contrast,

�ðx; tÞ ¼ �ðx; tÞ � �0

�0

; (21)

one can see that in the linear regime [35], where the
particles follow the trajectories (13) that still coincide
with the Zel’dovich dynamics [19], the density contrast
behaves at linear order as

�Lðx; tÞ ¼ t�L0ðxÞ; with �L0 ¼ �r � u0 ¼ �c 0:

(22)

Going to Fourier space, with the normalization,

�Lðx; tÞ ¼
Z

dkeik�x ~�Lðk; tÞ; (23)

the linear density field �L is taken as Gaussian, homoge-
neous, and isotropic. Then, it is fully described by its
power spectrum P�L

ðk; tÞ,
h~�Li ¼ 0; h~�Lðk1Þ~�Lðk2Þi ¼ �Dðk1 þ k2ÞP�L

ðk1Þ;
(24)

which we choose of the power-law form

� 3< n< 1: P�L
ðk; tÞ ¼ D

ð2�Þd t
2knþ3�d; (25)

where D and n are the amplitude and slope parameters.
In the inviscid limit, one can check [21,36,37] that the

power-law initial conditions (25) give rise to a self-similar
dynamics [38]: a rescaling of time is statistically equivalent
to a rescaling of distances, as

� > 0: t ! �t; x ! �2=ðnþ3Þx: (26)

Thus, the system displays a hierarchical evolution and the
only characteristic scale at a given time t is the so-called
integral scale of turbulence, LðtÞ, which is generated by the
Burgers dynamics and grows with time as in (26).
Hereafter, we choose the normalization

LðtÞ ¼ ð2Dt2Þ1=ðnþ3Þ; (27)

where the constant D was defined in Eq. (25). This scale
measures the typical distance between shocks, and it

separates the large-scale quasilinear regime, where the
density power spectrum keeps its initial power-law form,
(25), from the small-scale nonlinear regime, which is
governed by shocks and pointlike masses, where the den-
sity power spectrum reaches the universal white-noise
behavior (i.e., P�ðk; tÞ has a finite limit for k � 1=LðtÞ).
Detailed numerical studies of the cluster mass functions
and density fields generated in one dimension and two
dimensions are presented in [17,21].

III. ANALYTICAL RESULTS

A. Definitions

1. Eulerian quantities

In the following, we will be interested in quantities
defined in both Eulerian coordinates and Lagrangian coor-
dinates. In practice, since the system is statistically homo-
geneous and isotropic, it is convenient to work in Fourier
space, and we define the Fourier-space counterpart of the
response G� of Eq. (2) by

t � 0:

�
D~�ðk; tÞ
D~�L0ðk0Þ

�
¼ �Dðk� k0Þ ~G�ðk; tÞ; (28)

which is related to the real-space response by

~G�ðk; tÞ ¼
Z

dxe�ik�xG�ðx; tÞ; (29)

where we used G�ðx; t;qÞ ¼ G�ðjx� qj; tÞ. The relation
(3) reads in Fourier space as

h~�ðk; tÞ ~�L0ðk0Þi ¼ �Dðkþ k0Þ ~G�ðk; tÞPL0ðkÞ: (30)

Here, we focused on the density propagator or response
function, but we can also consider the velocity potential c ,
such as

Gc ðx; t;qÞ ¼
�
Dc ðx; tÞ
Dc 0ðqÞ

�
; (31)

and mixed statistics, such as

G�c ¼
�
D�ðx; tÞ
Dc 0ðqÞ

�
; (32)

and their respective Fourier-space counterparts.

2. Lagrangian quantities

Similar quantities can be defined in a Lagrangian frame-
work. Following [25], we first introduce the divergence �
of the displacement field,

�ðq; tÞ ¼ d� @x

@q
¼ �rq � ½xðq; tÞ � q�; (33)

where xðq; tÞ is the position at time t of the particle of
Lagrangian coordinate q. From the conservation of matter,
Eq. (20), we can see that at linear order � is also the density
contrast,
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�Lðq; tÞ ¼ �Lðq; tÞ ¼ t�L0ðqÞ with �L0ðqÞ ¼ �L0ðqÞ:
(34)

It is clear from the definition (33) that a uniform translation
does not change the value of �, so that it is not sensitive to
the sweeping effect discussed in the Introduction [22,25].
Then, as above, we define the associated Lagrangian
propagators,

t � 0: G�c ðq; t;q0Þ ¼
�
D�ðq; tÞ
Dc L0ðq0Þ

�
; (35)

and

t � 0: G�ðq; t;q0Þ ¼
�
D�ðq; tÞ
D�L0ðq0Þ

�
: (36)

This again reads in Fourier space as

t � 0:

�
D~�ðk; tÞ
D ~c L0ðk0Þ

�
¼ �Dðk� k0Þ ~G�c ðk; tÞ; (37)

and

t � 0:

�
D~�ðk; tÞ
D~�L0ðk0Þ

�
¼ �Dðk� k0Þ ~G�ðk; tÞ: (38)

Using the property ~�L0ðkÞ ¼ ~�L0ðkÞ ¼ �k2 ~c 0ðkÞ, from
Eqs. (34) and (22), we also have the relation

~G�ðk; tÞ ¼ �k�2 ~G�c ðk; tÞ: (39)

Similarly to the Eulerian case, we also have the relation

h~�ðk; tÞ~�L0ðk0Þi ¼ �Dðkþ k0Þ ~G�ðk; tÞPL0ðkÞ: (40)

Thanks to the explicit Hopf-Cole solution (11) and its
geometrical interpretation in terms of first-contact parabo-
las [18,30], very fruitful insights on the behavior of the
propagators can be obtained. Exact results for the one-
dimensional case have been recently derived in [24], which
we will briefly recall in the course of the general
calculation.

B. Eulerian response functions

To take advantage of the Hopf-Cole solution (11), it is
convenient to first consider the response function Gc as

defined in Eq. (31).
In any dimension, we can use the Hopf-Cole solution

(10) to obtain the propagator Gc . Thus, as in the one-

dimensional (1D) case [24], taking the functional deriva-
tive of Eq. (10) and next taking the inviscid limit we obtain

Gc ðx; t;q0Þ ¼ h�D½qðx; tÞ � q0�i ¼ pxðq0; tÞ
¼ 1

td
pðu; tÞ; (41)

with

u ¼ x� q0

t
: (42)

Here, pxðq0; tÞ is the probability distribution function of
the Lagrangian coordinate q0 of the particle that is located
at position x at time t, and pðu; tÞ is the probability
distribution function of the velocity u at position x and
time t (it does not depend on x because of statistical
homogeneity).
Therefore, the Eulerian propagator Gc is always given

by the one-point velocity probability distribution, irrespec-
tive of the space dimension. As such, it is still governed by
the sweeping effect mentioned in the Introduction, and for
convergent initial power spectra it obeys in the weakly
nonlinear regime behavior,

~GRPT
c ðk; tÞ � te�t2k2	2

u0
=2;

GRPT
c ðx; t;qÞ � 1

ð ffiffiffiffiffiffiffi
2�

p
t	u0Þd

e�jx�qj2=ð2t2	2
u0
Þ;

(43)

where 	2
u0 ¼ hju0j2i=d is the variance of the initial veloc-

ity along any given direction. The behavior (43), which is
more general than the adhesion model, also applies to the
gravitational dynamics in general. Indeed, it only relies on
the transport of particles by long-wavelength modes of the
velocity field (see [22,27] for an account of this effect in a
perturbative approach), in other words, on the Galilean
invariance further discussed in Sec. III C 2 below. It is
also at the basis of the RPT resummation scheme intro-
duced in cosmology [5].
As discussed in [24] for d ¼ 1, and remains valid in

higher dimensions, for the power-law initial conditions
(25) the weakly nonlinear regime (43) does not exist.
For�3< n<�1, the variance 	2

u0 diverges because of

low-kmodes. This means that as we increase the size of the
system (since in practice, for instance in numerical simu-
lations, we consider finite-size systems and eventually take
the infinite-size limit) the contribution from long wave-
lengths keeps increasing and particles are transported over
increasingly large distances. This yields a divergent sweep-
ing effect and the propagators vanish as soon as t > 0.
However, this is not a genuine loss of memory since this
divergence is due to almost uniform random translations
and thanks to Galilean invariance the structures of the
density field are not affected. In particular, as we recall
in Sec. III C below, Lagrangian propagators remain finite.
For �1< n< 1, the variance 	2

u0 diverges because of

high-k modes. However, as soon as t > 0 this ultraviolet
divergence is regularized by the dynamics, more precisely
by the nonperturbative ‘‘sticking’’ of the particles at colli-
sion. This means that the one-point velocity probability
distribution pðu; tÞ, whence the response functions, are
finite and well defined. However, they are governed by
nonperturbative effects and do not obey the Gaussian
behavior (43). For d ¼ 1 and in the case n ¼ 0, one can
actually obtain its exact expression [24,39,40], and this

gives, in particular, the exponential decays G�
e�ðx�qÞ3=t2 and ~G� e�tk3=2 at large jx� qj and large k.
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For generic n, we only know the large-separation tail
[37,41,42]

� 1< n< 1;

jx� qj ! 1: Gc ðx; t; qÞ � e�jx�qjnþ3=t2 ;
(44)

which depends on n, contrary to the weakly nonlinear
regime behavior (43). For d > 1, we no longer have exact
expressions for pðu; tÞ, even for n ¼ 0, but in the large-
separation limit we expect from rare-event analysis [37]
the tail

� 1< n< 1;

jx� qj ! 1: Gc ðx; t;qÞ � e�jx�qjðnþ3Þ=t2 ;
(45)

as in (44).
The probability distributions pðq0; tÞ and pðu; tÞ being

well defined and normalized to unity for �1< n< 1, we
obtain from Eq. (41) the low-k limit

~G c ð0; tÞ ¼ 1: (46)

This agrees with the linear regime prediction but this exact
result is more general since it follows from the nonpertur-
bative identity (41). Thus, it remains valid for the scale-
invariant initial conditions with �1< n< 1, where there
is no true weakly nonlinear regime in the sense of (43)
because linear velocity fields are divergent. However, par-
ticles are not transported arbitrarily far away but on dis-
tances that scale with the characteristic length LðtÞ defined
in (27). Thus, even though the ‘‘confining’’ process is
strongly nonperturbative, due to the collisions and sticking
of particles, initial density fluctuations seen on scales much
larger than LðtÞ are not erased and evolve as in linear
theory (in a weak sense, that is, if we consider smooth
windows such as a Gaussian rather than a top-hat). In terms
of Burgers turbulence, this is related to the principle of
‘‘permanence of large eddies’’ [36].

For d ¼ 1, the density contrast �ðx; tÞ associated with
the matter distribution (20) also reads as

�ðx; tÞ ¼ t
@2c

@x2
: (47)

Then, from Eq. (41) one obtains (e.g., by going to Fourier
space)

G�ðx; t; qÞ ¼ pðu; tÞ; with u ¼ x� q

t
: (48)

In agreement with physical arguments and perturbative
analysis [22,25], the results (41) and (48) explicitly show
that Eulerian response functions are dominated by the
sweeping effect, that is, by the transport of particles by
the underlying velocity field. Since only the one-point
velocity distribution appears in (48), these Eulerian propa-
gators are not very sensitive probes of the density field
(which depends on relative motions).

For d � 2, the density contrast is no longer related to
the velocity potential c by a linear relationship. From
Eqs. (16) and (14), we obtain

@qi
@xj

¼ �i;j þ t
@2c

@xi@xj
; (49)

and Eq. (20) yields

1þ �ðx; tÞ ¼ det

�
�i;j þ t

@2c

@xi@xj

�
; (50)

which contains terms up to power d over c . The Eulerian
density response function must still be sensitive to the
sweeping effect and dominated by the properties of the
velocity field, in agreement with the response function of
the velocity potential c itself. However, because of the
nonlinear dependence (50), the response function G� is no
longer merely proportional to the one-point velocity proba-
bility distribution and the relationship is more complex,
and depends on the dimension d. For power-law initial
conditions, it should again vanish as soon as t > 0 for�3<
n<�1, and be finite for�1< n< 1, with the asymptotic
behavior (45) at very large separations.

C. Lagrangian response functions

1. General formalism

As seen in [20,43], for the power-law initial conditions
that we consider here, all the matter clusters into a set of
point masses that defines a Voronoi-like tessellation in
Eulerian space and a dual triangulation in Lagrangian
space. This Lagrangian-space tessellation is built from
segments in one dimension, triangles in two dimensions,
tetrahedra in three dimensions, and higher-order simplices
in higher dimensions [32]. A sketch of such a partition in
two dimensions is to be found on Fig. 1. In this picture, one
halo is associated with each Lagrangian triangle and it is
formed from all the particles that were initially in this
corresponding triangle. As a result, the mass distribution
is nothing but the volume distribution of those triangular
cells. Moreover, the position of the halos in Eulerian space

depends on the potential heights ’ðqð
Þ
i Þ on each of the

summits qð
Þ
i of the triangle. As time evolves, the relative

heights of the summits change leading to halo motions and
eventually to halo mergings. These processes were de-
scribed in detail in [20].
The final matter distribution can be characterized by the

density field or equivalently by the displacement field, a
quantity that better suits the Lagrangian description. What
this construction tells us is that within each Lagrangian cell

V ð
Þ the Lagrangian mapping xðqÞ ¼ xð
Þ is constant, as
all particles that originate from this region belong to a

single pointlike cluster at position xð
Þ at time t. And,
because the displacement is potential it is entirely deter-
mined by its divergence �. It is clear here that the diver-
gence within each cell is constant. Indeed, from the
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definition (33) this yields �ðq; tÞ ¼ d within each of these
Lagrangian cells, with the addition of a Dirac term on the
boundaries of these cells associated with the jump from

xð
Þ to xð
0Þ as one goes from cell V ð
Þ to cell V ð
0Þ. This
more formally reads as

�ðqÞ ¼ d�
Z
�
dd�1s�D½q� q�ðsÞ�jn ��xj; (51)

where q�ðsÞ is the (d� 1)-dimensional manifold � built
by the boundaries of the Lagrangian cells (i.e., all triangle
sides in two dimensions), parameterized by a coordinate s,
dd�1s is the natural surface element on � embedded in d
dimensions, n is the unit normal vector to this manifold,

and �x ¼ xð
0Þ � xð
Þ is the separation vector between the
Eulerian positions xð
Þ and xð
0Þ of the two mass clusters
associated with the two Lagrangian cells ð
Þ and ð
0Þ that
are on either side of �. In one dimension, the integral (51)
simplifies to the sum over all endpoints qi of the
Lagrangian intervals ½qi; qiþ1�, associated with the shocks
of Eulerian position xi, as �ðqÞ ¼ 1�P

i�Dðq� qiÞðxi �
xi�1Þ [24].

It is convenient to decompose the integral (51) over all

cells V ð
Þ. The absolute value jn � �xj arose from the
convexity of the mapping xðqÞ, that is, the fact that ’ðqÞ
is convex in Eq. (16). This ensures that @xi=@qi � 0 along
any direction i [15,44,45], so that the contribution ðn ��xÞ
must be taken positive. This can also be written as

� jn � �xj ¼ nð
Þ
out � xð
Þ þ nð
0Þ

out � xð
0Þ; (52)

where nð
Þ
out and nð
0Þ

out are the unit normal vectors to the

surface �ð
;
0Þ that point outward from the neighboring

cells V ð
Þ and V ð
0Þ. Then, Eq. (51) reads as

�ðqÞ ¼ dþX
ð
Þ

Z
�ð
Þ

ds � xð
Þ�D½q� q�ð
Þ ðsÞ�; (53)

where we note ds ¼ noutds.
Next, to estimate the Lagrangian response functions (35)

and (36) we must consider the variation of Eq. (53) for
infinitesimal changes of the initial conditions. The mani-
fold � is set by the convex hull construction (18). For
instance, in one dimension the boundaries qi are the con-
tact points between the linear Lagrangian potential ’LðqÞ
and its convex envelope ’, whereas in two dimensions the
triangles of the Lagrangian-space tessellation are the tri-
angular facets of the convex hull ’ [and the triangle

summits qð
Þ
i are again the contact points between ’L

and ’, for each facet ð
Þ and i ¼ 0, 1, 2 indices the three
summits]. Then, in the nondegenerate case (e.g., in two
dimensions a planar facet only makes contact with three
points), which has a unit probability, an infinitesimal
change of the initial conditions, whence of ’LðqÞ, does
not modify the set fqð
Þ

i g of the contact points, but only

their heights ’ðqð
Þ
i Þ. This is because for the power-law

initial conditions (25) the potentials c 0 and ’L have no
finite second derivatives and the contact points are isolated
infinitesimally thin spikes, see [20]. As a result, infinitesi-
mal variations [46] of the initial conditions change neither

the manifold � nor the Lagrangian cells V ð
Þ; they only

change the Eulerian positions xð
Þ of the mass clusters
associated with each Lagrangian cell. This is the core
property which determines how Lagrangian response func-
tions and halo mass functions are related. We then have

D�ðqÞ
Dc 0ðq0Þ ¼ X

ð
Þ

Z
�ð
Þ

ds � Dxð
Þ

Dc 0ðq0Þ�D½q� q�ð
Þ ðsÞ�:

(54)

Following the definition (35), the Lagrangian propagator
is then given by the statistical average of Eq. (54). Because
the system is statistically homogeneous and isotropic,
G�c ðq;q0Þ only depends on j�qj with �q ¼ q� q0, and
we obtain

G�c ð�q; tÞ ¼
Z 1

0
dmnðmÞ

�Z
�
ds � Dx

Dc 0ðqðsÞ � �qÞ
�
m
;

(55)

where nðmÞdm is the mean number of Lagrangian cells of
mass m (or of pointlike clusters of mass m in Eulerian
space), per unit volume. Here, h::im is the statistical average
over cells of fixed mass m. In one dimension, this is
immediate since Lagrangian intervals are fully defined by
their mass (i.e., their length), but in higher dimensions we
must average over the distribution of shapes and angles at
fixed mass m. We will show explicit examples of such
averaging in the following.

FIG. 1. In a triangulation, the matter in each triangle moves
toward a single halo. Infinitesimal variation of the potential at
position qið
Þ induces an infinitesimal change in the displacement

field within the triangles qið
Þ is a summit of. This change can

entirely be described by a change in the positions of the corre-
sponding halos.
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As recalled above, the Eulerian position x of the mass
cluster only depends on the values c 0;i of the velocity

potential at the (dþ 1) summits qi that define the
Lagrangian cell V , hence we can write the functional
derivative in Eq. (55) as

Dx

Dc 0ðq0Þ ¼ Xd
i¼0

@x

@c 0;i

�Dðq0 � qiÞ: (56)

By symmetry, the contributions of all (dþ 1) summits are
identical, after we average over shapes and angles, and
choosing the origin of coordinates on summit q0 we obtain

G�c ð�q; tÞ ¼ ðdþ 1Þ
Z 1

0
dmnðmÞ

�
�Z

�
ds � @x

@c 0;0

�DðqðsÞ ��qÞ
�
m
; (57)

where q0 ¼ 0. This yields in Fourier space

~G�c ðk; tÞ ¼ �tk2
Z 1

0
dmnðmÞ‘d ~Wðk;mÞ; (58)

where ‘ is the typical size of cells of mass m, defined as

m ¼ �0‘
d; (59)

and the dimensionless kernel ~Wðk;mÞ reads as
~Wðk;mÞ ¼ �ðdþ 1Þ

tk2‘d

�Z
�
ds � @x

@c 0;0

e�ik�½qðsÞ�q0�
�
m
;

(60)

where again h::im is the statistical average over cells of

fixed mass m. Then, from Eq. (39) the propagator ~G�

writes as

~G�ðk; tÞ ¼ t
Z 1

0
dmnðmÞ‘d ~Wðk;mÞ: (61)

2. Large-scale behavior

We first explore the behavior of ~Wðk;mÞ for k ! 0 and
show that it correctly reproduces what one expects from
the linear theory. For that, we simply use Eq. (60) and
Taylor expand it at k 	 0. Let us first note that the term in
1=k vanishes by symmetry, because the factors k � ½qðsÞ �
qi� average to zero as we integrate over the global orienta-
tion of the Lagrangian cell V . We then get

~Wðk;mÞ ¼ �1

k2t‘d

�Z
�
ds �X

i

@x

@c 0;i

�
m

þ 1

2t‘d

�X
i

Z
�
ds � @x

@c 0;i

ðk̂ � ½q� qi�Þ2
�
m

þOðk2Þ; (62)

where we replaced the factor (dþ 1) by the sum over the
derivatives with respect to the (dþ 1) summits, going back

to Eq. (56), and where in the second term k̂ ¼ k=jkj is a

unit vector along an arbitrary direction. It can then be
observed that the sum in the first term vanishes since the
position x of the mass cluster is not modified by a uniform
shift of the velocity potential. We can also observe that,
using Gauss’ theorem, the integral on the surface � in the
second term can be written in terms of an integral on the
volumeV . Using again the property

P
i@x=@c 0;i ¼ 0, this

yields a volume factor jV j ¼ ‘d so that

~Wðk;mÞ ¼ �1

t

�X
i

ðk̂ � qiÞ
�
k̂ � @x

@c 0;i

��
m
þOðk2Þ:

(63)

This sum is in fact constrained by the Galilean invariance
of the dynamics. Indeed, adding a uniform initial velocity
v0, u0ðqÞ ! u0ðqÞ þ v0, also corresponds to the changes

x ðq; tÞ ! xðq; tÞ þ v0t; c 0ðqÞ ! c 0ðqÞ � v0 � q
(64)

and does not modify the structure of the Lagrangian-space
tessellation. This implies that an infinitesimal uniform
velocity perturbation v0 leads to the shift of cluster position

v 0t ¼ �x ¼ X
i

@x

@c 0;i

�c 0;i ¼ �X
i

@x

@c 0;i

ðv0 � qiÞ;

(65)

and taking the scalar product with v0 yields

jv0j2 ¼ �1

t

X
i

ðv0 � qiÞ
�
v0 � @x

@c 0;i

�
: (66)

This equation holds for v0 of any direction and any length
(since both sides scale linearly with jv0j2), and taking
jv0j ¼ 1 we obtain that the average in (63) writes as
~Wð0;mÞ ¼ h1im, whence

~Wðk;mÞ ¼ 1þOðk2Þ; (67)

independently of the statistical properties of the
Lagrangian-space tessellation.
Finally, since all the matter is contained in the mass

clusters, the mass function obeys the normalization

Z 1

0
dmnðmÞ m

�0

¼ 1; (68)

and using Eqs. (59) and (61) we obtain

~G�ð0; tÞ ¼ t; (69)

which agrees with the linear regime prediction associated
with Eq. (34), i.e., the displacement field follows the linear
theory at large-enough scale.
It is interesting to make the connection between the

exact result (69), which does not rely on perturbative
arguments, and the comparison between Eulerian and
Lagrangian propagators. The Galilean transformation
(64) merely states how particles are transported over a
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distance v0t by long-wavelength modes of the velocity
field. In the Eulerian framework, this sweeping effect leads
to the Gaussian decay (43) after we take the statistical
average over these long-wavelength modes. In contrast,
in the Lagrangian framework the analysis above explicitly
shows that this Galilean law only sets the normalization at
k ¼ 0 of the propagator, and its values at k > 0 probe how
trajectories depend on the curvature and higher-order de-
rivatives of the velocity potential, associated with higher
orders of the expansion over k of the expression (60).
Moreover, in the Lagrangian framework the Galilean
transformation (64) appears through relative displacements
of well-separated regions instead of absolute displace-
ments [47].

3. Scaling laws

In arbitrary dimensions, computing the averages (57) or
(60) can lead to lengthy expressions. However, before we
explicitly consider the 1D and 2D cases, we give some
general scaling arguments. We first need to evaluate the
variation of the halo position x for infinitesimal variation
of the potential at a summit position qi. By construction, in
the (dþ 1) space fq; ’g the convex hull ’ðqÞ of Eq. (18) is
an hyperplane over the region V , defined by the (dþ 1)
points fqi; ’L;ig, and its equation reads as

det
q1 � q0 :: qd � q0 q� q0

’L;1 � ’L;0 :: ’L;d � ’L;0 ’� ’L;0

� �
¼ 0:

(70)

Thus, over this cell ’ðqÞ takes the form
’ðqÞ ¼ ’L;0 þ ðr’LÞ � ðq� q0Þ; (71)

where we note ðr’LÞ a constant vector that is linear over
the potentials f’L;0; ::; ’L;dg and that scales as the ratio

ð�’LÞ=‘, where ‘ and ð�’LÞ are the typical differences of
position and height between the (dþ 1) summits [‘ was
defined in Eq. (59)]. From Eq. (16), the position x of the
associated mass cluster is given by x ¼ ðr’LÞ, and from
Eq. (12) we obtain the scaling

@x

@c 0;i
� t

‘
: (72)

Substituting into Eq. (60), we check that the kernel
~Wðk;mÞ is dimensionless and behaves as

~Wðk;mÞ � ~W0ðk‘Þ; (73)

in terms of a scaling kernel ~W0. We have seen in Eq. (67)
that ~Wð0;mÞ ¼ 1, whence ~W0ð0Þ ¼ 1. On the other hand,
at high kwe can expect the exponential factor in Eq. (60) to
cut large distances beyond s� 1=k, which gives a power-
law decay,

k � ‘�1: ~W0ðk‘Þ � ðk‘Þ�d�1: (74)

At low masses, numerical simulations and heuristic argu-
ments [17,21,43] suggest that the cluster mass function
obeys the power-law tail

� 3< n< 1; m 
 �0LðtÞd: nðm; tÞ � t�dmðn�1Þ=2;
(75)

which has only been proved rigorously in one dimension
for the Brownian case n ¼ �2 [48–50] and for the white-
noise case n ¼ 0 [39,40,51]. Then, the cutoff (74) gives
rise to two different behaviors. For small values of n, the
integral (61) is dominated by small massesm, withm / ‘d

and ‘� 1=k, because of the cutoff (74) of ~W0ðk‘Þ, and we
obtain the scaling

n <
2

d
� 1; k � LðtÞ�1: ~G�ðk; tÞ � tðkLÞ�dðnþ3Þ=2;

(76)

whereas for large values of n the cutoff (74) is too shallow
and the integral is dominated by large masses (set by the
cutoff of the mass function), and lengths ‘� LðtÞ of the
order of the typical nonlinear scale (27), which yields

n >
2

d
� 1; k � LðtÞ�1: ~G�ðk; tÞ � tðkLÞ�d�1: (77)

The scaling laws (76) and (77) have been derived assum-
ing that small-mass Lagrangian cells are characterized by a
single scale ‘, which leads to Eq. (73). As we discuss in
Sec. III C 5 below, in dimensions greater than one small
cells may be characterized by several length scales, which
behave as power laws over mass with different exponents.
This would violate the scaling laws (76) and (77) and give
rise to new exponents.

4. 1D case

In one dimension, the computations greatly simplify,
since cells are mere intervals characterized by a single
scale, their length ‘, or equivalently their mass m ¼ �0‘.
In agreement with Eq. (70), the convex hull ’ðqÞ between
the boundary points q0 and q1 is the straight line

’ðqÞ ¼ ’L;0 þ q� q0
q1 � q0

ð’L;1 � ’L;0Þ; (78)

the Eulerian position x of the cluster (shock) is

x ¼ ’L;1 � ’L;0

q1 � q0
; (79)

and its derivative reads as

@x

@c 0;0
¼ t

q1 � q0
: (80)

The integral over s in Eq. (57) is now the discrete sum over
the two boundary points, q0 and q1, and taking the average
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over the two orientations of the interval with respect to
q0 ¼ 0, that is, either q1 ¼ ‘ or q1 ¼ �‘, we obtain

G�c ð�q; tÞ ¼
Z 1

0
dmnðmÞ t

‘
½�Dð�qþ ‘Þ

þ �Dð�q� ‘Þ � 2�Dð�qÞ�: (81)

This is the result that was already obtained in [24], which
yields in Fourier space

~Wðk;mÞ ¼ 2

k2‘2
½1� cosðk‘Þ�; (82)

and

~G�ðk; tÞ ¼
Z 1

0
dmnðmÞ 2t

k2‘
½1� cosðk‘Þ�: (83)

This also means that we recover the high-k decay (74) and
the high-k power law (76) is indeed realized for all values
of n in the range �3< n< 1 that we consider in this
paper, because for high k the integral (83) is always gov-
erned by the region ‘� 1=k. Thus, we recover the results
(74) and (76) that were obtained in Sec. III C 3 from simple
dimensional and scaling arguments. This is not surprising
since in one dimension Lagrangian cells are characterized
by a single scale.

5. 2D case

In two dimensions, the computation follows the same
route, the Lagrangian cellsV being now triangular. Let us
consider a triangle of summits fS1; S2; S3g, inner angles
f
1; 
2; 
3g, and opposite-side lengths fs1; s2; s3g. We can
also choose the triangle to be positively oriented, that is,

S1S2
! � S1S3

! ¼ s2s3 sinð
1Þe3, where fe1; e2; e3g is a 3D
right-handed coordinate system and the triangle is in the
plane fe1; e2g. Then, from Eq. (70) we obtain the equation
’ðqÞ of the planar facet that goes through the three sum-
mits, and from Eq. (16) the position of the mass cluster is
x ¼ @’=@q. Taking the derivative with respect to c 0;S1 ,

from Eq. (12), we obtain

@x

@c 0;S1

¼ t

2‘2
S2S3
! � e3; (84)

where ‘2 is now the triangle area, and the scalar product
with the outer normal nout along each triangle side reads as

ðS1S2Þ: nðS1S2Þ
out � @x

@c 0;S1

¼ �ts1
2‘2

cos
2; (85)

ðS2S3Þ: nðS2S3Þ
out � @x

@c 0;S1

¼ ts1
2‘2

; (86)

ðS3S1Þ: nðS3S1Þ
out � @x

@c 0;S1

¼ �ts1
2‘2

cos
3: (87)

Then, the kernel ~W reads from Eq. (60) as

~Wðk;mÞ ¼
�

3s1
2k2‘4

Z 1

0
du½s3 cos
2e

�iuk�qS2

� s1e
�ik�½qS2

þuðqS3
�qS2

Þ�

þ s2 cos
3e
�iuk�qS3 �

�
m
; (88)

where we chose the origin of coordinates as qS1 ¼ 0.

Taking the average over the global direction of the triangle
(which is equivalent to averaging over the direction of k),
we obtain

~Wðk;mÞ
¼
�

3s1
2k2‘4

Z 1

0
du

�
s3 cos
2J0ðuks3Þþs2 cos
3J0ðuks2Þ

�s1J0ðk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s22u

2þs23ð1�uÞ2þ2s2s3uð1�uÞcos
1

q
Þ
��

m
:

(89)

We can be here a bit more explicit in the ensemble average
calculations. Let us define the angle distribution
Ptrið
1; 
2;mÞd
1d
2 for a given mass (i.e., area) with
the relations (with 
3 ¼ �� 
1 � 
2),

‘2 ¼ 1
2s2s3 sin
1; (90)

s23 ¼ 2‘2ðcot
1 þ cot
2Þ (91)

and those obtained by circular permutations. As a result,
the expression (89) can be rewritten

~Wðk;mÞ
¼ 3

k2‘2

Z 1

0
du

Z
Ptrið
1; 
2;mÞd
1d
2

�
cot
2J0ðuks3Þ

þ cot
3J0ðuks2Þ � ðcot
2 þ cot
3Þ
� J0

�
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s22u

2 þ s23ð1� uÞ2 þ 2s2s3uð1� uÞ cos
1

q ��
:

(92)

Note that expanding the Bessel functions up to order k2 and
using standard relations between the angles, sides, and area
of triangles, the property (67) can be easily recovered.
The actual distribution Ptri to use actually depends on

the details of the Lagrangian-space tessellation, which in
turn depend on the index n of the initial conditions. For
instance, if all triangles were equilateral, we would have

~W eqðk;mÞ¼ 8

k2s2

Z 1

0
du

�
J0ðuksÞ�J0

�
ks

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2�uþ1

p ��

(93)

with s2 ¼ ð4mÞ=ð ffiffiffi
3

p
�0Þ. Another interesting, and probably

more realistic, case is provided by the angle distribution
obtained in the Delaunay triangulation of a Poisson point
process, for which we have, [52,53],
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Ptrið
1; 
2Þd
1d
2 ¼ 8

3�
sinð
1Þ sinð
2Þ

� sinð
1 þ 
2Þd
1d
2 (94)

with

0<
1 <�; 0<
2 <�; 0<
1 þ 
2 <�;

(95)

independently of the area ‘2 of the considered triangles.
The resulting angle integration cannot be performed ex-
plicitly. We instead propose a fit to the resulting dimen-
sionless kernel,

~Wðk;mÞ ¼ 0:749 428e�0:206 885ðk‘Þ2

þ 0:250 572ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:007 075 79ðk‘Þ6 þ 1:008 06ðk‘Þ2 þ 1

p :

(96)

The resulting shapes of the kernel are shown on Fig. 2.
These forms illustrate the high-k asymptotic forms of the

propagators. At fixed triangle area and shape, the integra-
tion over the Bessel functions in (89) leads to a high-k
power-law decay of the form ~Wðk;mÞ � ðk‘Þ�3, in agree-
ment with Eq. (74). This gives the n-dependent decay
~G�ðk; tÞ � tðkLÞ�n�3 of Eq. (76) for n < 0, and the

constant-slope decay ~G�ðk; tÞ � tðkLÞ�3 of Eq. (77) for
n > 0.

However, these exponents could be modified if the
distribution of triangle shapes, unlike the two cases con-
sidered above, gives significant weight to configurations
where the three sides have very different lengths. For
instance, in the extreme case where triangles are increas-
ingly ‘‘squeezed,’’ with two sides that remain of order LðtÞ
and a third side � that scales with mass as m� �L, the
kernel (89) is dominated by the case where the summit S1
is at one end of the small side and it behaves at high k (and
small mass) as

m� �L; ~Wsqueezedðk;mÞ � k�3��2L�1: (97)

This now gives over the full range �3< n< 1 the high-k
decay

k � LðtÞ�1: ~G�;squeezedðk; tÞ � tðkLÞ�3ðnþ3Þ=4; (98)

which is shallower than the scalings (76) and (77). This
shows how the results of Sec. III C 3, which rely on simple
scaling arguments and dimensional analysis, can be vio-
lated in complex cases where Lagrangian cells of a given
mass involve several scales with different characteristic
exponents.
We can expect the scalings (98), (76), and (77) to bracket

the high-k exponents that can be reached for arbitrary
triangle distributions, depending on scaling or on the frac-
tion of squeezed triangles as a function of mass. This holds
for mass functions that satisfy the low-mass power laws
(75), but for more general cases we could extend this
analysis to arbitrary low-mass behaviors of the mass func-
tions. In any case, these results show that the Lagrangian
propagator is a sensitive probe of the structure of the matter
distribution. Moreover, in dimensions 2 and higher, it
involves both the cluster mass function and key properties
of the shape of Lagrangian-space tessellations, that is, of
the shape of the initial regions that eventually end up in
small-mass clusters.
Another significant difference with the Eulerian propa-

gators discussed in Sec. III B, which vanished for �3<
n<�1 because of infrared divergences of the initial ve-
locity field, is that the Lagrangian propagators are finite
and well defined over the full range �3< n< 1.

IV. NUMERICAL SIMULATIONS

We now describe the results that we obtain from a
numerical study, in both the 1D and 2D cases. This allows
us to check the exact results presented in Sec. III and our
predictions (for d ¼ 2), which we think are illustrative of
what is happening at higher dimension. The details of our
numerical simulations, and of the new efficient algorithms
that we use, are given in [21]. There, the statistical prop-
erties of the matter distributions built by the geometrical
adhesion model defined in Sec. II A, for the same Gaussian
scale-invariant initial conditions given in Sec. II B, are
described in detail. In particular, it is shown that the density
probability distributions and the mass functions exhibit
qualitatively the same properties as those observed for
3D gravitational clustering (see also [17,54,55]).
Evolving from the initial Gaussian, that remains relevant

on large scales and at early times, the density probability
distribution gradually broadens and builds an intermediate
power-law regime, in between rare voids and rare over-
densities. On the other hand, the shock mass function
shows a low-mass power tail and a high-mass
exponential-like falloff, and obeys up to a good accuracy
the Press-Schechter-like scaling in terms of the reduced
variable � ¼ �L=	ðMÞ [56]. However, while in one di-
mension the scaling mass function fð�Þ agrees quite well
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FIG. 2 (color online). The resulting kernel function ~W�ðk;mÞ
for equilateral triangles (dashed line) and for the angle distribu-
tion of a Delaunay triangulation of a Poisson point process (solid
line).
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with the original Press-Schechter ansatz (which actually
happens to be exact in the case n ¼ �2 [50]), in two
dimensions it is significantly different and it shows a �2

low-mass tail instead of the Press-Schechter prediction/ �.
These studies have shown that the adhesion model

shares many properties with the gravitational dynamics,
which motivates a further investigation with respect to the
response functions and correlators, which are critical
ingredients in analytical approaches to gravitational
clustering.

The advantages for using the adhesion model are dis-
cussed in [21] where one can further find the description of
the algorithms we use. Let us remind the reader that our
method allows us to get the mass distribution without
introducing further discretization, either in time or in
space. We can also cover a greater range of masses and
scales as compared with usual gravitational dynamics
(especially as we consider lower-dimensional systems,
either 1D or 2D), which gives us a better control of
asymptotic regimes. For numerical purposes, the power-
law initial conditions (25) also improve the statistics since
by using the self-similarity (26) we can rescale coordinates
and propagators to obtain time-independent functions, so
that we can take the mean over all output times when we
compute statistical averages.

More precisely, it is convenient to introduce the dimen-
sionless scaling variables

Q ¼ q

LðtÞ ; X ¼ x

LðtÞ ; K ¼ LðtÞk;

U ¼ tu

LðtÞ ; M ¼ m

�0LðtÞd
:

(99)

Then, equal-time statistical quantities (such as correlations
or probability distributions) written in terms of these var-
iables no longer depend on time and the scale X ¼ 1 is the
characteristic scale of the system, associated with the
transition from the linear to nonlinear regime. In terms of
the propagators, this gives for instance

G�ðx; tÞ ¼ t

LðtÞd G�ðXÞ; ~G�ðk; tÞ ¼ t ~G�ðKÞ: (100)

In particular, in the linear regime we have

Glin
� ðXÞ ¼ �DðXÞ; ~Glin

� ðKÞ ¼ 1: (101)

The Lagrangian propagator ~G� obeys the same relations.
As in [21], we consider the cases n ¼ 0:5, 0, �0:5, �1,

�1:5, �2, and �2:5 to cover the range �3< n< 1 that
we study in this article, where the self-similarity (26)
holds. This is also the range of interest for cosmological
purposes. In particular, the definition of the slope n in
Eq. (25) is such that, whatever the dimension d that we
consider, it corresponds to the usual slope n that appears in
papers on 3D gravitational clustering in cosmology [thus,
with this choice the scaling law (26) does not depend on d].

We focus on the Fourier-space propagators in the main
text because they are the quantities that appear in the
resummation schemes used in cosmology, However, we
briefly describe in Appendix B our results in real space, for
the response function Gc ðXÞ. This is of interest by itself

because for the Burgers dynamics this is also the one-point
velocity probability distribution, as seen in Eq. (41).
Moreover, in the nonlinear regime real-space methods
may prove as useful as the Fourier-space methods that
have been developed so far.

A. Eulerian propagators

1. Numerical estimates of propagators

To compute the Fourier-space response function, we use
the definition (28), as the mean functional derivative of the
fields in Fourier space. Thus, taking as a reference an initial

condition c 0ðxÞ, i.e., ~c 0ðkÞ in Fourier space, we obtain the
nonlinear field c ðx; tÞ, whence c ðk; tÞ, at time t. Then, we
perturb the initial condition at a given wave number k0.
Since all fields are real, this means that we consider the
change c 0ðxÞ ! c 0ðxÞ þ �c 0ðxÞ with �c 0ðxÞ ¼
�2 cosðk0 � xÞ, with a small amplitude �. Then, we com-
pute the nonlinear field c þ �c at time t generated by
this new initial condition, we take its Fourier transform,

and we obtain the functional derivative as D ~c =D ~c 0 ¼
�~c ðk0Þ=�. Next, to estimate the response function
~Gc ðk0; tÞ as in Eq. (28), with the statistical averaging h::i,
we repeat the operation above for many reference initial
conditions c 0, with the Gaussian statistics of Sec. II B, and
the mean over all these simulations gives our final estimate

of ~Gc ðk0; tÞ. In two dimensions, we perturb the initial

condition along the two axis, k0 ¼ k0e1 and next k0 ¼
k0e2, which provides two measures of the functional de-
rivative. Finally, using the self-similarity (26) we rescale
the results obtained at different output times and we make a
final averaging to increase the statistical accuracy, to obtain
the dimensionless propagators as in Eq. (100). A similar

procedure also provides the propagator ~G�. Note finally
that for the 1D case and for the reduced variable K, we
have

~G 1d
� ðKÞ ¼ ~G1d

c ðKÞ; (102)

but this identity is not true for higher dimensions, as shown
in Sec. III B.

Instead of computing the response functions ~GðKÞ
through functional derivatives as in Eq. (28), it is possible
to derive these propagators through cross correlations as in
Eq. (30). We also considered this alternative method to
check our numerical algorithms. This also provides a con-
firmation of the general identities (3) and (7) into the shell-
crossing regime. We briefly show a comparison of these
two procedures in Appendix C for the 1D case (we obtain
similar but somewhat more noisy results in two
dimensions).
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2. One-dimensional dynamics

We show in Fig. 3 the Fourier-space Eulerian response

function ~Gc ðKÞ ¼ ~G�ðKÞ, in terms of the reduced wave

number K of Eq. (99) for the 1D case. From Eqs. (41) and
(48), we have in real space

G�ðXÞ ¼ Gc ðXÞ ¼ PðUÞ; with U ¼ X; (103)

where PðUÞ is the one-point probability distribution of the

reduced velocity U, so that ~G�ðKÞ and ~Gc ðKÞ are also the

Fourier transforms of the velocity distribution. Since for
�3< n<�1 the response functions are not well defined
because of the divergent sweeping effect, we only show
our results for the cases n ¼ 0:5, 0, and�0:5. For the case
n ¼ 0, we also plot the exact result, given by Eq. (65) and
Figs. 1 and 2 in [24]. We can check that our numerical
result agrees quite well with this analytical result and its

strong exponential-like decay �e�K3=2
. However, the nu-

merical error bars are too large to distinguish the oscilla-
tory behavior (i.e., changes of sign) in the far tail, where
~G< 10�3. Our numerical results show that this response
function obeys a similar exponential-like decay at high K
for n ¼ 0:5 and n ¼ �0:5. A priori the falloff can depend

on n, as ~G� e�K

with some exponent 
ðnÞ. The range of

scales available in Fig. 3 is too small to obtain a precise
measure of 
ðnÞ, but it suggests that 
 does not vary too
much over �0:5 � n � 0:5.

For K ! 0, we recover ~Gc ! 1, in agreement with

Eq. (46) and with the normalization to unity of PðUÞ in
Eq. (103).

3. Two-dimensional dynamics

Let us now consider the 2D case. We show in Fig. 4 the

2D Fourier-space propagators ~G�ðKÞ and ~Gc ðKÞ. As in the

1D case of Fig. 3, we can clearly see the steep exponential
cutoff, but with a slightly stronger dependence on the
exponent n of the initial conditions. We also recover the

exact low-K limit ~Gc ð0Þ ¼ 1.

As explained in Sec. III B, in dimension greater than one
the density and velocity-potential propagators are no lon-
ger identical, because of the nonlinear relationship (50),
but they are all expected to be governed by the sweeping
effect. This is confirmed by our numerical results, since we

clearly see in Fig. 4 that ~G�ðKÞ shows the same
exponential-like cutoff at high K. In fact, in two dimen-
sions the density propagator is very close to its velocity-
potential counterpart, although there are hints of a slightly
steeper falloff for the density response function.

B. Lagrangian propagators

As for the Eulerian propagators studied in Sec. IVA, we

measure the response function ~G�ðKÞ from its definition
(38), by estimating the functional derivative from the
difference between two very close initial conditions. In
contrast to the Eulerian propagators, the Lagrangian propa-
gators are well defined over the full range �3< n< 1,
hence we plot the cases n ¼ 0:5, 0, �0:5, �1, �1:5, �2,
and �2:5.

1. One-dimensional dynamics

We show in Fig. 5 the Fourier-space Lagrangian propa-

gator ~G�ðKÞ. For the two cases n ¼ 0 and n ¼ �2, we
obtain a very good agreement between our numerical
results and the exact analytical results derived in [24]
(the numerical and analytical curves cannot even be dis-
tinguished in this figure). We recover the exact low-K limit
~Gð0Þ ¼ 1, which corresponds to Eq. (69). As explained in
Sec. III C 2, this is related to the relative motions of well-
separated regions by long-wavelength modes of the veloc-
ity field, and it applies to the full range �3< n< 1.

FIG. 3 (color online). The 1D Fourier-space propagator
~G�ðKÞ ¼ ~Gc ðKÞ from numerical simulations. We show the

cases n ¼ 0:5, 0, and �0:5, as a function of the reduced wave
number K. For n ¼ 0, we also plot the exact analytical result
(dash-dotted line) from [24].

FIG. 4 (color online). The 2D Fourier-space propagators
~G�ðKÞ (solid line) and ~Gc ðKÞ (dashed line).
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Figure 5 clearly shows a power-law tail at high K,
contrary to the exponential-like cutoff seen in Fig. 3,
with a slope that depends on n. To clearly see this power-
law tail, we show in Fig. 6 the logarithmic derivative

�d ln ~G�=d lnK, as well as its asymptotic theoretical
prediction from Eq. (83), which agrees with Eq. (76)
and reads as

d¼1; �3<n<1; K!1:
dln ~G�

dlnK
!�nþ3

2
: (104)

We can check that our numerical results are consistent
with this analytical result and we clearly see the con-
vergence to the high-K slope (104).

2. Two-dimensional dynamics

We show in Fig. 7 the Fourier-space Lagrangian re-

sponse function ~G�ðKÞ. As in the 1D case plotted in

Fig. 5, we recover the low-K limit ~G�ð0Þ ¼ 1. We again
obtain a clear power-law tail at highK, but the convergence
to this asymptotic regime is somewhat slower than in one
dimension, especially for low values of n.
To estimate the high-K exponent we plot in Fig. 8 the

logarithmic derivative, �d ln ~G�=d lnK. As explained in
Sec. III C 5, depending on the shape of the Lagrangian-
space tessellation, we have two different predictions for the
extreme cases of small-mass triangles characterized by a

single scale ‘�m1=2, that is, triangles of approximately
‘‘equilateral’’ shape,

equil ; K ! 1:
d ln ~G�

d lnK
! �minðnþ 3; 3Þ; (105)

FIG. 6 (color online). The logarithmic derivative,
�d ln ~G�=d lnK, of the Lagrangian propagator, from 1D numeri-
cal simulations (solid line), and its theoretical asymptotic limit
ðnþ 3Þ=2 (dashed line).

FIG. 5 (color online). The Fourier-space response function
~G�ðKÞ (solid line) from 1D numerical simulations. For n ¼ 0
and n ¼ �2, we also plot the exact analytical result (dash-dotted
line) from [24].

FIG. 7 (color online). The 2D Fourier-space propagator ~G�ðKÞ
(solid line) from numerical simulations.

FIG. 8 (color online). The logarithmic derivative,
�d ln ~G�=d lnK, of the Lagrangian propagator, from 2D numeri-
cal simulations (solid line). We also show the two theoretical
predictions of Eq. (105) (upper dashed line) and Eq. (106) (lower
dash-dotted line).
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which follows from Eqs. (76) and (77), and for squeezed
triangles, where two sides remain on the order of the non-
linear scale LðtÞ whereas the third side decreases as
‘3 �m,

squeezed ; K ! 1:
d ln ~G�

d lnK
! � 3ðnþ 3Þ

4
; (106)

from Eq. (98). We clearly see in Fig. 8 the convergence
toward a constant logarithmic slope, although for low n the
convergence is quite slow and is not complete yet on this
range. As expected, the high-K exponent is between the
two limiting values (105) and (106). Unfortunately, it also
seems that it is different from these two values, which
means that the triangulation is neither dominated by equi-
lateral (i.e., ‘‘single-scale’’) triangles nor by ‘‘maximally
squeezed’’ triangles. The Lagrangian tessellation is proba-
bly more complex than these two simple cases and Fig. 8
suggests that there is a broad distribution of shapes for
low-mass triangles.

This agrees with a qualitative inspection of Fig. 6 in
[20], where we showed two examples of Lagrangian trian-
gulations obtained for n ¼ 0 and n ¼ �2. There, one can
clearly see that the summits of the Lagrangian cells are not
distributed at random but show a strong clustering. One can
see distant groups of Lagrangian summits, separated by a
length of order LðtÞ, with small triangles within each group
(they would correspond to low-mass equilateral shapes)
and very thin triangles that join two summits in one group
to a third summit in a second group (they would correspond
to low-mass squeezed shapes). This suggests that the
Lagrangian-space tessellation contains both equilateral
and squeezed configurations. However, it is not clear
whether there is a bimodal or a continuous distribution of
triangle shapes.

For completeness, we should point out that numerical
results suggest that the number of mass clusters per unit
Lagrangian or Eulerian volume is infinite if �3< n<�1
and finite if �1< n< 1, as seen from the low-mass tail
(75) of the mass function [17,21]. Moreover, it appears that
clusters are dense in Eulerian space for �3< n<�1
while they are isolated for �1< n< 1. In Lagrangian
space, the geometry is somewhat more complex. For�1<
n< 1, there is still a finite number of cells and summits per
unit area, but for �3< n<�1 the infinite number of
triangles and summits does not cover the whole plane.
This is obvious from the fact that there are some large
triangles associated with finite-mass clusters. Therefore,
the infinitely many summits ‘‘gather’’ in some regions of
Lagrangian space, in between the large triangles associated
with massive halos [57]. Nevertheless, these rather differ-
ent properties of the Eulerian and Lagrangian tessellations
with n [20] do not seem to have a strong impact on the low-
mass tail nor on the high-K asymptote of the Lagrangian
response function (e.g., there is no clear sign in Fig. 8 that

the exponent switches from (105) to (106) as n goes to
either side of �1).

3. 2D triangle shape distribution

As discussed in the previous section, an important in-
gredient for the derivation of the Lagrangian propagator is
the triangle shape distribution function. In particular, the
derivation of Eq. (105) assumes that the triangles that build
the Lagrangian-space tessellation of the matter distribution
[20] are scale invariant in the small-mass limit. In other
words, it neglects any dependence of their shape probabil-
ity distribution on scale since it assumes that typical
lengths scale as the square-root ‘ of the triangle area (in
the limit of small triangles). This assumption is violated if
the shape distribution does not converge to a finite limit, for
instance if smaller triangles are increasingly squeezed as in
Eq. (106).
To investigate this point, we consider in this section the

dependence on scale of the triangle geometry. Thus, for
each realization and at each output time, we label the three
sides of each triangle of the Lagrangian-space tessellation
according to

‘1 � ‘2 � ‘3; (107)

that is, ‘1 is the longest side and ‘3 the shortest side. Then,
we plot in Figs. 9 and 10 the averages of the ratios

L1=
ffiffiffiffiffi
M

p ¼ ‘1=
ffiffiffiffiffiffi
A

p
and L3=

ffiffiffiffiffi
M

p ¼ ‘3=
ffiffiffiffiffiffi
A

p
, where

A ¼ ‘2 is the triangle area. To do so, we first bin the
dimensionless triangle area M (which is also the dimen-
sionless mass) over a finite number of bins. Then, for each
realization we compute the dimensionless lengths L1 and
L3 and mass M of all triangles found in the Lagrangian-
space tessellation at a given time, we count all triangles
that fall within a given mass bin, and we also store their
lengths L1 and L3. Repeating this operation over several

FIG. 9 (color online). The statistical average hL1i of the lon-
gest triangle side L1. We plot this quantity for a series of triangle
mass bins and we divide hL1i by the factor

ffiffiffiffiffi
M

p
, where M is the

mean mass of each bin.
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output times [taking advantage of the self-similarity (26)]
and over many initial conditions, characterized by the
Gaussian statistics described in Sec. II B, we obtain
the means hL1i and hL3i within each mass bin, whence

the ratios hL1i=
ffiffiffiffiffi
M

p
and hL3i=

ffiffiffiffiffi
M

p
plotted in Figs. 9 and 10.

If the triangle distribution is scale invariant in the small-
mass limit (i.e., for small area) these ratios must go to finite
and nonzero constants at low M. Figures 9 and 10 suggest

that this is not the case, and that hL1i=
ffiffiffiffiffi
M

p
keeps increasing

while hL3i=
ffiffiffiffiffi
M

p
keeps decreasing at low mass. This means

that triangles become increasingly squeezed, that is, ‘1 ’
‘2 and ‘3 
 ‘1. This behavior is consistent with a visual
inspection of Fig. 6 in Bernardeau and Valageas [20]. It
also agrees with the analytical result obtained in [58] when
the velocity potential c 0ðqÞ is a random Poisson point
potential. However, this corresponds to very different ini-
tial conditions than the ones studied in this paper, since
then c 0ðqÞ is drawn from a finite probability distribution at
each point and there are no correlations between different
points. In contrast, in our case there are significant large-
scale correlations, which are characterized by the exponent
n. As discussed in Sec. IVB 2, this leads to strong corre-
lations in the Lagrangian-space tessellation itself, with a
combination of equilateral and squeezed triangles that join
summits that are in the same or two well-separated groups.

We can see in Figs. 9 and 10 that the scale-dependence
of the mean triangle shape is however quite weak and only
logarithmic (or possibly a power law with a small expo-

nent), since the ratio hL1i=
ffiffiffiffiffi
M

p
typically grows by a factor

5 and hL3i=
ffiffiffiffiffi
M

p
decreases by a factor 2 when M decreases

by 4 orders of magnitude. This would validate the scaling
prediction (105), up to logarithmic corrections. However,
the deviations seen in Fig. 8 suggest that the mean values
hL1i and hL3i are not sufficient to derive the precise be-

havior of ~G�, which is quite sensitive to the relative frac-
tions and squeezed and equilateral configurations, and of

the intermediate shapes, since different exponents for L3 as
a function of M give rise to different exponents for the
high-K tail, in between the two limiting cases (105) and
(106). Nevertheless, the slightly steeper dependence on

mass of the ratios hL1i=
ffiffiffiffiffi
M

p
and hL3i=

ffiffiffiffiffi
M

p
observed for

larger n agrees with Fig. 8, where the asymptotic slope of
the propagator appears to move farther from the equilateral
prediction for larger n.
Here, we should note that these results differ from the

properties associated with the Delaunay triangulation of a
Poisson point process, which are recalled in Appendix A.
This is not surprising, since the Lagrangian-space tessel-
ation is not a Delaunay triangulation and the supporting
points are non-Poisson distributed. Thus, this discrepancy
is another signature of the non-negligible correlations that
are the results of the power-law initial conditions (25),
which provide important large-scale correlations.

V. DISCUSSION AND CONCLUSION

In this paper, we have explored the concept of propa-
gators for the geometrical adhesion model, paying special
attention to the Lagrangian propagators. As recalled in the
Introduction, propagators are defined in general as re-
sponse functions of the final density field, or velocity field,
to an infinitesimal change of the initial conditions. For
Gaussian initial conditions, these propagators can also be
expressed in terms of unequal-time correlation functions
(correlators). (As shown by the derivation in the
Introduction, this relationship can be extended at once to
non-Gaussian initial conditions, using again a simple in-
tegration by parts, but the unequal-time correlation is no
longer quadratic and for a polynomial action S½�L0� of
order p it involves up to p fields.)
The main result of this paper is the relation between the

Lagrangian propagators and the halo mass function that we
uncovered in the context of the GAM. The key point with
which we established this connection is that, as soon as all
the particles are gathered in halos, the displacement field in
Lagrangian coordinates describes the formation of a parti-
tion where each cell corresponds to a single halo. Then, the
convex hull construction that underlies the GAM explicitly
shows that an infinitesimal variation of the initial condi-
tions does not induce a change in this Lagrangian partition,
or in the mass of each halo, but only modifies the halo final
positions. This can be understood by noticing that propa-
gators are defined as linear response functions, in the sense
that they describe the sensitivity of the system to perturba-
tions up to linear order (but include the full nonlinear
background dynamics). Although we did not do it explic-
itly, it is clear that they can also be generalized to higher
orders by expanding the response over powers of the
perturbation. It is also clear that this result is not specific
to this model. It should be valid as long as the dynamics
result in the partition of the Lagrangian space into cells
associated with distinct halos.

FIG. 10 (color online). The statistical average hL3i of the
shortest triangle side L3. We plot this quantity for a series of
triangle mass bins and we divide hL3i by the factor

ffiffiffiffiffi
M

p
, where

M is the mean mass of each bin.
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With the key property described above, the functional
relation (61) between the halo mass function and the
propagator takes the form,

~G�ðkÞ �
Z 1

0
dmnðmÞm ~Wðk;mÞ: (108)

This provides an explicit link between the low-mass tail of
the halo mass function and the high-k tail of the propagator.
Moreover, the dimensionless kernel ~Wðk;mÞ contains
some further information on the low-mass Lagrangian
cells, more precisely it describes the scalings with mass
of their typical lengths (in dimension greater than one there
may be more than one relevant scale, as cells may become
more or less squeezed or ‘‘flattened’’). This relationship
provides a well-defined range of possible exponents for the
asymptotic behavior of the Lagrangian propagator, if we
know the low-mass tail of the halo mass function, and a
definite prediction if we also know the shape of low-mass
cells.

In a more general context, such as the 3D gravitational
dynamics, we cannot derive an explicit relationship of this
form. However, it is natural to expect again a strong link
between the Lagrangian propagators and the halo mass
function. This must be contrasted with the Eulerian propa-
gators, where in both dynamics the main process at play for
these initial conditions is a sweeping effect due to long-
wavelength modes of the velocity field. Thus, our results
strongly suggest that Lagrangian propagators are generally
much better probes of the density field, and, in particular,
of the halo mass function. Moreover, a new result that we
have uncovered in this paper and that appears in dimen-
sions greater than one is the sensitivity to the shape of the
underlying Lagrangian-space tessellation, through the
kernel ~Wðk;mÞ, which should also remain valid for more
general cases.

It would be interesting to use the deeper understanding
brought by such studies to improve or build quantitative
tools. With respect to the Lagrangian propagators, two
avenues naturally appear. One could first use Lagrangian
response functions to probe some properties of the system.
However, in a cosmological context where one cannot
perform actual experiments (except for numerical simula-
tions) this may not be very practical. A second route would
be to use our understanding to build more efficient analyti-
cal schemes, such as new resummation methods of
Lagrangian perturbation theory.

APPENDIX A: ANGLE DISTRIBUTION IN
DELAUNAY TRIANGULATION FROM

A POISSON POINT PROCESS

We consider a set of points with a Poisson distribution in
a d ¼ 2 space and the Delaunay triangulation associated
with those points. It is then possible to derive the joint
probability distribution function of the three angles, 
1,


2, and 
3 ¼ �� 
1 � 
2, of the triangles. It is given by
[52,53]

Ptrið
1; 
2Þd
1d
2

¼ 8

3�
sinð
1Þ sinð
2Þ sinð
1 þ 
2Þd
1d
2 (A1)

with

0<
1 <�; 0<
2 <�; 0<
1 þ 
2 <�:

(A2)

This distribution entirely characterizes the shape distribu-
tion of the triangles. In particular, one can derive the
average length of each side for a given area. Each side
length is given by

s23
A

¼ 2 sin
3

sin
1 sin
2

; (A3)

whereA is the surface area of the triangle and where the 2
other side lengths are obtained by circular permutations of
the indices. The resulting average values of the longest and
shortest sides are then, respectively,

hL1iffiffiffiffiffiffi
A

p ¼ 2:392 98 (A4)

and

hL3iffiffiffiffiffiffi
A

p ¼ 1:121 87: (A5)

These results are to be compared to those obtained in our
construction.

APPENDIX B: REAL-SPACE
EULERIAN PROPAGATORS

As seen in Eq. (41), the real-space response function
Gc ðx; t;q0Þ of the velocity potential is given by the one-

point velocity probability distribution function. In terms of
the reduced variables (99), using the statistical homoge-
neity of the system, this reads as

Gc ðXÞ ¼ PðUÞ; with U ¼ X; (B1)

which holds in any dimension. We show in this Appendix
our results in one dimension and two dimensions for this
propagator, or velocity distribution, which is also the in-
verse Fourier transform of the propagators plotted in
Figs. 3 and 4. To measure this real-space quantity, we do
not use the functional derivative (31). Instead, using
Eq. (B1) we simply measure the velocity distribution.
We can note that the identity (B1) implies that the real-

space propagatorGc is always positive. This is not the case

for its Fourier-space counterpart ~Gc . For instance, it was

proved in [24] that in one dimension for n ¼ 0 the far tail

of ~Gc ðKÞ shows fast oscillations that are exponentially
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damped (a first oscillation can be distinguished on the
dash-dotted curve in Fig. 3).

As in Sec. IVA, we only consider the initial conditions
n ¼ 0:5, 0, and�0:5, since as explained in Sec. III B these
Eulerian propagators and one-point velocity distributions
do not exist for n <�1.

1. 1D case

We show in Fig. 11 the real-space response function
Gc ðXÞ ¼ G�ðXÞ. As in Sec. IVA2, we can check that for

n ¼ 0 our numerical result agrees very well with the exact
result (which cannot even be distinguished in this figure),
given in [24,39,40]. The response functions obtained for
n ¼ 0:5 and �0:5 show the same behavior, with a sharp
large-distance falloff, but contrary to its Fourier transform

plotted in Fig. 3 we can clearly see the dependence on n
(especially for n ¼ �0:5).
To clearly see this large-distance falloff, we plot in

Fig. 12 the ratio � ln½Gc ðXÞ�=Xðnþ3Þ, which must go to a

constant at large X from the analytical result (44). As in
Fig. 11, we can check that for n ¼ 0 our numerical result
follows the exact result from [24,39,40]. The curves ob-
tained for n ¼ 0:5 and�0:5 display a similar behavior, but
as shown by the explicit case n ¼ 0 the curves have not
converged to their asymptotic limit yet. Therefore, we
cannot precisely measure from the simulations the expo-
nent of the large-distance falloff, but they are consistent
with the analytical result (44). The values reached in
Fig. 12 correspond to Gc ðXÞ and PðUÞ below 10�10 for

the case n ¼ 0, which means that the convergence of the

ratio � ln½Gc ðXÞ�=Xðnþ3Þ to its asymptotic limit is rather

slow.

2. 2D case

We show in Fig. 13 the real-space response function
Gc ðXÞ, or more precisely the velocity probability distri-

bution PðUÞ, using the identity (B1). This is the inverse

Fourier transform of the response function ~Gc ðKÞ shown
in Fig. 4. As in the 1D case, we obtain a sharp exponential-
like cutoff at large distance [i.e., at large velocity in terms
of PðUÞ], which is consistent with Eq. (45).

APPENDIX C: CROSS CORRELATIONS

We show in Figs. 14 and 15 the relative difference

between the response functions ~GðKÞ, computed through
functional derivatives as in Eq. (28), and the same quanti-
ties computed through cross correlations as in Eq. (30),

which we denote as ~SðKÞ to distinguish between

FIG. 11 (color online). The real-space response function
Gc ðXÞ ¼ G�ðXÞ from 1D numerical simulations (solid line).

We show the cases n ¼ 0:5, 0, and �0:5, as a function of the
reduced distance X. For n ¼ 0, we also plot the exact analytical
result (dash-dotted line) [24].

FIG. 12 (color online). The ratio� ln½Gc ðXÞ�=Xðnþ3Þ from 1D
numerical simulations (solid line). For n ¼ 0, we also plot the
exact analytical result (dash-dotted line) and its asymptotic limit
(dashed line) [24].

FIG. 13 (color online). The real-space response function
Gc ðXÞ ¼ PðUÞ, with X ¼ U. We show the probability distribu-

tion of each velocity component, PðUiÞ (solid line), and the
probability distribution of the total amplitude, PðjUjÞ (dashed
line).
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both procedures. We show our results for the 1D

Eulerian propagator ~Gc in Fig. 14, and for the 1D

Lagrangian propagator ~G� in Fig. 15. We plot the upper

limit that we obtain for the relative difference j ~G� ~Sj=j ~Gj,
since our error bars are everywhere consistent with the

exact equality ~G ¼ ~S. (Of course, this upper limit weakens
at high K where the propagators are very small and
numerical measures are more difficult.) We obtain similar

results in two dimensions but the tests of this identity
are somewhat weaker because of the lower-quality
statistics.
These figures show the validity of our numerical algo-

rithms and provide an estimate of the accuracy of our
measures of the propagators. They also confirm the validity
of the identities (3) and (7) into the nonlinear regime, in
agreement with the derivation presented in the
Introduction.
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