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The problem of time evolution in quantum cosmology is studied in the context of a dust-filled, spatially

flat Friedmann-Robertson-Walker universe. In this model, two versions of the commonly-adopted notion

of internal time can be implemented in the same quantization, and are found to yield contradictory views

of the same quantum state: with one choice, the big-bang singularity appears to be resolved, but with

another choice it does not. This and other considerations lead to the conclusion that the notion of internal

time as it is usually implemented has no satisfactory physical interpretation. A recently proposed variant

of the relational-time construction, using a test clock that is regarded as internal to a specific observer,

appears to provide an improved account of time evolution relative to the proper time that elapses along the

observer’s worldline. This construction permits the derivation of consistent joint probability densities for

observable quantities, which can be viewed either as evolving with proper time or as describing

correlations in a timeless manner. It turns out that the observer whose sense of time originates in this

test clock will find herself to be living in a bouncing universe.
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I. INTRODUCTION

It has long been appreciated that time evolution in
generally-covariant theories such as general relativity is,
on the face of it, a gauge transformation and, contrary to
everyday experience, should therefore be unobservable.
Reviews of this ‘‘problem of time’’ are given, for example,
in [1–3], and textbook discussions may be found in [4,5]. In
recent years, detailed studies of quantized models of cos-
mology (see, e.g. [6–10] for reviews) have demanded a
practical solution to this problem, and a certain notion of
‘‘internal time’’ introduced by Rovelli [11–13] and further
developed in, for example, [14–17] has been quite widely
adopted. The ‘‘evolving constant of the motion’’ construc-
tion advocated in these papers is a particular implementa-
tion of the idea of relational time, according to which time
evolution in covariant theories can be described only rela-
tive to the values assumed by some physical quantity that is
chosen to serve as a clock. In simple cosmological models,
the clock is typically a scalar field, say �, and in the
quantum theory one obtains a wave function c ðv;’Þ,
where v is a variable describing the geometry of the model
universe, as the solution of a Schrödinger-like equation in
which the parameter ’ plays the role of time. In this paper,
we take v to be the volume of a spatially compact universe,
in which case jc ðv;’Þj2 is interpreted as a probability
density for the volume at the time when the scalar field
� takes the value ’.

Recently [18], we have argued that this interpretation is
hard to sustain because, for the reasons summarized in
Sec. IVA below, the values assigned to ’ cannot be re-
garded as readings obtained by inspection of the ‘‘clock’’
�. Indeed, according to the usual rules of quantum

mechanics, the scalar field is not an observable at all,
which is especially disconcerting if it constitutes the entire
matter content of the universe. In view of this difficulty, we
proposed a variant of the relational-time idea, which makes
use of a small test clock, regarded as internal to some
observer from whose point of view the universe is to be
described. In this alternative construction, the test clock is
unobservable, and we obtain a wave function1 c ðv;�; �Þ,
evolving with a time parameter � which is not a clock
reading, but corresponds classically to the geometrical
proper time that elapses along the observer’s worldline.
This new wave function yields a joint probability density,
evolving in textbook fashion with proper time �, for v and
�, which are now genuine observable quantities.
In this paper, we first wish to investigate whether, de-

spite the above-mentioned difficulties, the internal-time
wave function c ðv;’Þ can be interpreted as expressing a
correlation between two quantities (the volume and scalar
field), both of which are observable in some suitably
broadened sense. Specifically, we ask whether jc ðv;’Þj2
can be regarded as a conditional probability density for the
volume, given that the scalar field has been determined to
have the value ’. To that end, we study a simple model of
an homogeneous universe filled with pressureless matter,
described, following Brown and Kuchař [19], by a single
scalar field. The classical version of this model is intro-
duced in Sec. II, and we find that two complementary
notions of internal time can be straightforwardly defined,
using either the volume or the scalar field as a clock. These
two internal times carry over to the quantized theory, as
discussed in Sec. III, and we use them in Sec. IV to
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1Later on, we will adjust the notation in which various wave
functions are expressed, so as to maintain some important
distinctions, which will be made precise in due course.
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compute two corresponding probability densities. If the
conditional-probability interpretation is feasible, then
these ought to represent, on the one hand the conditional-
probability density for the volume given some value of the
scalar field and, on the other hand, the conditional proba-
bility for the scalar field given some value of the volume.
We find, however, that these probabilities are inconsistent.
In fact, the two notions of internal time lead to two mu-
tually contradictory views of time evolution: if the volume
is used as internal time, the quantum theory appears to
reproduce the classical big-bang singularity, whereas, if the
scalar field is used as internal time, exactly the same
quantum state appears to describe a universe in which
the singularity is replaced by a bounce. This result serves
to strengthen our conviction that the internal-time formal-
ism, while resulting from perfectly sound mathematical
manipulations, has no satisfactory physical interpretation.

In Sec. V, we augment the model by the addition of a test
clock. As already indicated, the modified relational-time
construction proposed in [18] leads to a joint probability
density for the volume and scalar field, both of which are
now bona fide observables, which evolves, according to a
standard Schrödinger equation, with proper time �. Like
the usual time parameter in nonrelativistic physics, � is not
itself observable. In principle, no set of experimental re-
sults records the evolution of an observed quantity relative
to the time parameter that appears in Newton’s laws or in
Schrödinger’s equation. Rather, what is recorded is an
observed correlation between the object of interest and
the readings of some time-keeping device, and the ration-
ale underlying the internal-time formalism is that taking
this practical fact seriously is the key to solving the prob-
lem of time. Consequently, it is of some interest to recover
a ‘‘timeless’’ interpretation, by supposing that the observer
to whom our unobserved test clock is internal also pos-
sesses a time-keeping instrument that is observed. This
issue is taken up in Sec. VC. For the model at hand, though
not in general, it turns out that the role of a time-keeping
instrument can conveniently be assigned to the scalar field
(but not to the volume). When that is done, we obtain a
genuine conditional-probability density for the volume,
which coincides, to a good approximation, with the func-
tion jc ðv;’Þj2 found from the internal-time formalism
with ’ as the internal time. In that indirect and approxi-
mate sense, the Brown-Kuchař scalar field emerges as a
preferred internal time, indicating a bouncing universe.

II. CLASSICAL DUST-FILLED COSMOLOGY

A. The model

As described in detail by Brown and Kuchař [19] (and in
earlier work by Brown [20]), an effective hydrodynamic
description of pressureless matter, or dust, is furnished by a
collection of scalar fields f�;Wk; Z

k;Mg (k ¼ 1, 2, 3) with
a Lagrangian density of the form

L D ¼ �1
2

ffiffiffiffiffiffiffi�g
p

Mðg��U�U� þ 1Þ; (2.1)

where the 4-velocity field is U� ¼ �@��þWk@�Z
k.

When the equations of motion are satisfied, the integral
curves of U can be interpreted as the worldlines of dust
particles, and the scalar field � is linear in the geometrical
proper time t that elapses along these worldlines. We
consider the case of an homogeneous, spatially flat
Friedmann-Robertson-Walker universe, with metric g ¼
diagð�N2; a2; a2; a2Þ. To be concrete, we take spatial sec-
tions of this universe to be compact, with coordinate vol-
ume

R
d3x ¼ 1. Homogeneity implies that spatial

derivatives of � and Zk vanish, and variation with respect
to Wk leads also to @0Z

k ¼ 0. In this special case, there-
fore, the dust is modeled by a single scalar field �, along
with the Lagrange multiplier M:

L D ¼ 1
2Na3M½N�2ð@s�Þ2 � 1�; (2.2)

where s is an arbitrary time coordinate. The momentum
conjugate to � is p� ¼ N�1a3M@s�, and variation with

respect to M yields the constraint p2
� � ða3MÞ2 ¼ 0,

which is second-class, because it fails to commute with
the primary constraint pM ¼ 0. Up to a sign, this constraint
is trivially solved for M, and we can construct the uncon-
strained dust Hamiltonian

HD ¼ Np�: (2.3)

Evidently, p� is the total energy content of the dust, and

we resolve the sign ambiguity by requiring this to be
non-negative.
In the standard way, the Einstein-Hilbert action leads to

a gravitational Hamiltonian, which we write in terms of
the volume v ¼ a3 and its conjugate momentum pv ¼
�ð12�GÞ�1N�1@sv=v as

Hgrav ¼ �Nð6�GÞvp2
v ¼: NCgrav; (2.4)

G being the usual gravitational constant. The function
Cgrav defined by this equation is the gravitational contri-

bution to the Hamiltonian constraint.
Taking the lapse function NðsÞ to be a strictly positive,

but otherwise arbitrary function, we introduce the invariant
proper time

tðsÞ ¼
Z s

0
Nðs0Þds0 (2.5)

and express the Hamilton equations of motion as

_� ¼ N�1@H0=@p� ¼ 1 (2.6)

_v ¼ N�1@H0=@pv ¼ �ð12�GÞvpv (2.7)

_p v ¼ �N�1@H0=@v ¼ ð6�GÞp2
v; (2.8)

where the overdot denotes differentiation with respect
to t. The total Hamiltonian here is H0 ¼ Hgrav þHD
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(distinguished by its subscript from the Hamiltonian of an
extended model to be considered later) and the energy p� is

a constant of the motion. Finally, the Hamiltonian constraint

C0 :¼ @H0=@N ¼ �ð6�GÞvp2
v þ p� ¼ 0 (2.9)

reproduces the Friedmann equation.

B. Dirac observables and internal time

The equations of motion (2.6), (2.7), and (2.8) are easily
solved. Denoting by ��ðv; pv;�; p�; tÞ, etc. the phase-

space trajectory that passes through ðv; pv;�; p�Þ at

t ¼ 0, we have

��ðv; pv;�; p�; tÞ ¼ �þ t (2.10)

�vðv; pv;�; p�; tÞ ¼ vð1� 6�GpvtÞ2 (2.11)

�p vðv; pv;�; p�; tÞ ¼ pvð1� 6�GpvtÞ�1: (2.12)

Heuristically, given initial conditions that satisfy the con-
straint (2.9), these solutions provide a complete descrip-
tion of the evolution of this simple universe relative to the
proper time t that elapses along the worldline of a comov-
ing observer. Classically, this is possible because the
equations of motion were derived before imposing the
constraint. In a quantum-mechanical treatment, this time
evolution cannot be reproduced, because the Hamiltonian

Ĉ0 that is supposed to generate it vanishes when acting on
a physically allowed state. The same difficulty arises
classically in a more formal treatment of the constrained
Hamiltonian dynamics. Here, one has to recognize that,
while the proper time defined in (2.5) is invariant under
reparametrizations of the coordinate s with N0ðs0Þ ¼
NðsÞds=ds0 (the remnant, in this symmetry-reduced
model, of the general coordinate invariance of general
relativity), it is not invariant under an arbitrary change in
the undetermined lapse function NðsÞ unless this is ac-
companied by a compensating reparametrization. From
this perspective, a change in NðsÞ, and hence evolution
with respect to t, is a gauge transformation generated by
the constraint function C0. One has the option of fixing a
gauge, by specifying once and for all a definite function
NðsÞ. Classically, at least, the content of (2.10), (2.11),
and (2.12) is independent of the actual function chosen,
and can be regarded as physically meaningful. But in a
manifestly gauge-independent approach, which we follow
here, genuine physical information is carried only by
gauge-invariant (Dirac) observables, which commute, in
the sense of Poisson brackets, with C0, and are therefore
constants of the motion.

A construction due to Rovelli [11,13] allows us to obtain
a 1-parameter family of gauge-invariant quantities—an
‘‘evolving constant of the motion’’—as follows. Denote
by t’ the time at which �� in (2.10) has the value ’. Then

the quantity

Vð’Þ :¼ �vðt’Þ ¼ v½1� 6�Gpvð’��Þ�2; (2.13)

in which we suppress the dependence of �v on the phase-
space coordinates ðv; pv;�; p�Þ, can be interpreted

classically as ‘‘the volume at the time when the scalar field
has the value ’.’’ It is easy to check explicitly that
fVð’Þ; C0g ¼ 0 for each value of the parameter ’.
A parameter such as ’ is commonly referred to in the

literature as a ‘‘relational,’’ ‘‘emergent’’ or ‘‘internal’’
time, or simply as ‘‘time,’’ the idea being that the scalar
field serves as a physical clock, and the function Vð’Þ
describes the evolution of the volume with respect to the
readings of this clock. In the present case, this may seem
especially apt, in view of the linear dependence (2.10) of
the scalar field on t. In [19], indeed, this idea is enshrined in
the notation: these authors use T for the scalar field that we
denote by �. For reasons that will become clear later,
however, we wish to maintain a clear distinction between
the geometrical proper time defined by (2.5) and a scalar
field � whose equation of motion happens to have the
solution (2.10).
We now wish to define a second family of Dirac observ-

ables, taking the volume, rather than the scalar field, as an
internal time. This entails solving (2.11) for the time t� at
which the volume has the value �, and requires a little care
with regard to signs. First, we take the volume always to be
positive, in contrast to the loop-quantum-gravity-inspired
treatment described in [21,22], where the physical volume
is the absolute value of a more fundamental variable,
whose sign reflects the orientation of a cotriad [23].
Next, it follows from the equation of motion (2.8) that
the evolution preserves the sign of pv, so the quantity �
that we provisionally identify as � ¼ �sgnðpvÞ, is a con-
stant of the motion. Inspection of the solutions (2.11) and
(2.12) then reveals that trajectories on which pv is negative
correspond to an expanding universe, starting from an
initial singularity at t ¼ �ð6�GjpvjÞ�1, while those on
which pv is positive correspond to a contracting universe
and terminate at a final singularity at t ¼ ð6�GpvÞ�1.
Consequently, we can take the square root of (2.11), with
�v ¼ �, to obtain

�1=2 ¼ v1=2 � 6�Gv1=2pvt�; (2.14)

the sign of the square root being determined unambigu-
ously by the requirement that � is an increasing function of
t� when pv is negative. Thus, the Dirac observable that
represents ‘‘the value of the scalar field when the volume is
�’’ is

�ð�Þ :¼ ��ðt�Þ
¼ �þ ð6�GpvÞ�1 � ð6�Gv1=2pvÞ�1�1=2: (2.15)

Again, one may check that f�ð�Þ; C0g ¼ 0 for every value
of �.
Finally, with a view to quantization, we define the Dirac

observables
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V :¼ Vð0Þ ¼ vþ 12�Gvpv�þ ð6�GÞ2vp2
v�

2 (2.16)

Y :¼ �ð12�GÞ�1V 0ð0Þ ¼ vpv þ 6�Gvp2
v� (2.17)

� :¼ �ð0Þ ¼ �þ ð6�GpvÞ�1; (2.18)

and we note that Cgrav, defined in (2.4), is a constant of the

motion, and hence also a Dirac observable. We have the
Poisson-bracket relations

fV; Yg ¼ V; fV;Cgravg ¼ �12�GY;

fY; Cgravg ¼ Cgrav; f�; Cgravg ¼ �1
(2.19)

and the evolving observables can be expressed as

Vð’Þ ¼ V � 12�GY’� 6�GCgrav’
2 (2.20)

�ð�Þ ¼ �þ �ð�6�GCgravÞ�1=2�1=2; (2.21)

where we now identify

� :¼ �sgnðv1=2pvÞ: (2.22)

The factor v1=2 here, which follows from (2.15) appears
inessential, but it will prove convenient to retain it.

We now have two notions of evolution with respect to
internal time, and it will be useful to identify the generators
of these evolutions. Indeed, we easily discover from (2.19),
(2.20), and (2.21) that

dVð’Þ
d’

¼ fVð’Þ; H’g (2.23)

d�ð�Þ
d�1=2

¼ f�ð�Þ; H�g (2.24)

with

H’ :¼ Cgrav (2.25)

H� :¼ �ð�Cgrav=6�GÞ1=2: (2.26)

On any classical trajectory, �ð�Þ is just the inverse of
Vð’Þ, but we shall see that this inverse relationship is not
preserved in the quantum theory.

III. QUANTUM DUST-FILLED COSMOLOGY

We consider a quantization scheme of the Wheeler-
de Witt type in which, in the first instance, the canonical
coordinates ðv; pv;�; p�Þ are promoted to operators acting

in an auxiliary (or kinematical) vector space. A convenient
representation is that in which the operators v̂ and p̂� act

by multiplication on wave functions �ðv; �DÞ, while their
conjugate variables act by differentiation:

v̂�ðv; �DÞ ¼ v�ðv; �DÞ;
p̂��ðv; �DÞ ¼ �D�ðv; �DÞ
p̂v�ðv; �DÞ ¼ �iℏ@v�ðv; �DÞ
�̂�ðv; �DÞ ¼ iℏ@�D�ðv; �DÞ:

(3.1)

The notation �D reflects the fact that p̂� corresponds to the

energy content of the dust. As in [18] we follow the authors
of [21,22] in choosing for the gravitational constraint the
operator ordering

Ĉ grav ¼ �6�Gp̂vv̂p̂v: (3.2)

Then the Hamiltonian constraint equation (2.9) reads

½ð4=�2Þ@vv@v þ �D��ðv; �DÞ ¼ 0; (3.3)

where

� :¼
�

2

3�Gℏ2

�
1=2

: (3.4)

With the definition

z :¼ ��1=2D v1=2; (3.5)

the general solution to this equation can be expressed as

�ðv; �DÞ ¼ cþð�DÞHþðzÞ þ c�ð�DÞH�ðzÞ; (3.6)

where, in terms of the usual Hankel functions, we write

HþðzÞ ¼ �iHð2Þ
0 ðzÞ and H�ðzÞ ¼ iHð1Þ

0 ðzÞ.
The classical phase space consists of two disjoint re-

gions, distinguished by the discrete variable (2.22), con-
taining expanding (� ¼ 1) and contracting (� ¼ �1)
trajectories. [We ignore, for now, the hyperplane pv ¼ 0,
on which the volume is constant, but see the comment
following (4.14)]. The corresponding operator is

�̂ ¼ sgn

�
iℏ��1=2D

2

@

@z

�
; (3.7)

and we see from the integral representation

H�ðzÞ ¼ 2

�

Z 1

0
d	 expð�iz cosh	Þ (3.8)

that HþðzÞ is a linear superposition of eigenfunctions
of i@z with positive eigenvalues, while H�ðzÞ is a super-
position of eigenfunctions with negative eigenvalues.
Consequently, the expression (3.7) defines an operator
which acts on solutions to the constraint equation as

�̂�ðv; �DÞ ¼ cþð�DÞHþðzÞ � c�ð�DÞH�ðzÞ; (3.9)

though it does not necessarily have an unambiguous action
on more general functions fðv; �DÞ.
Clearly, a solution of the constraint equation is specified

by a pair of functions c�ð�DÞ, which we will now write as
c ð�D; �Þ, with � ¼ �1. We construct a physical Hilbert
space H phys by equipping the set of such solutions with

the inner product
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ðc 1;c 2Þphys¼
X

�¼�1

Z 1

0
d�D �c 1ð�D;�Þc 2ð�D;�Þ; (3.10)

and restricting to functions that are normalizable under this
inner product. Thus,H phys is the direct sum of two copies

of L2ðRþ; d�DÞ. Then the classical expression (2.22),
which is a constant of the motion, is represented in
H phys, by the operator

�̂c ð�D; �Þ ¼ �c ð�D; �Þ: (3.11)

This operator is self-adjoint, since it acts by multiplication
in the ð�D; �Þ representation.

The operators v̂, p̂v and �̂ defined in (3.1) do not have
any well-defined action inH phys; that is, they do not act on

one solution of the constraint equation (3.3) to produce
another solution. As one might expect, however, we can
convert the classical Dirac observables V, Y and (with
slightly more difficulty) � given in (2.16), (2.17), and

(2.18) into operators that do act in H phys. For V̂ and Ŷ

we choose the operator orderings

V̂ ¼ v̂þ 6�Gðv̂p̂v þ p̂vv̂Þ�̂� 6�GĈgrav�̂
2 (3.12)

Ŷ :¼ 1

2
ðv̂p̂v þ p̂vv̂Þ � Ĉgrav�̂; (3.13)

with Ĉgrav given by (3.2). These three operators have the

commutation relations ½Â; B̂� ¼ iℏfdA; Bg, with the Poisson
brackets shown in (2.19), and it follows that the Heisenberg
equation of motion (2.23) is promoted to

iℏ
dV̂ð’Þ
d’

¼ ½V̂ð’Þ; Ĥ’� (3.14)

with Ĥ’ ¼ Ĉgrav and V̂ð’Þ the operator version of (2.20).

With the use of Bessel’s equation ðz@zz@z þ z2ÞH�ðzÞ ¼ 0,
it is straightforward to find that each of these operators
converts an expression of the form (3.6), namely, a linear
combination of order-0 Hankel functions with
z-independent coefficients, into another expression of the
same form, the new coefficients being given in each case
by

V̂c ð�D; �Þ ¼ � 4

�2

@

@�D
�D

@

@�D
c ð�D; �Þ (3.15)

Ŷc ð�D; �Þ ¼ iℏ�1=2D

@

@�D
�1=2D c ð�D; �Þ (3.16)

Ĥ ’c ð�D; �Þ ¼ Ĉgravc ð�D; �Þ ¼ ��Dc ð�D; �Þ: (3.17)

These equations specify the actions of the gauge-invariant

operators inH phys. With the inner product (3.10), V̂ and Ŷ

are clearly symmetric, and Ĥ’, which acts by multiplica-

tion, is self-adjoint.

Construction of an operator �̂ corresponding to (2.18)
needs a little more thought, because p̂v ¼ �iℏ@v does not
have a unique inverse. That is, the antiderivative
iℏ�1

R
v �ðv0; �DÞdv0 does not yield a definite function

until the lower limit of integration is specified.2 Consider,
however, a wave function �ðv; �DÞ ¼ c ð�DÞC0ðzÞ, where
C0 is any Bessel function of order 0. We define an operatordp�1
v by writing

�̂�ðv; �DÞ ¼ iℏ
@�ðv; �DÞ

@�D
þ iℏ�2

4

Z v

v0

�ðv0; �DÞdv0

¼ iℏ
@c ð�DÞ
@�D

C0ðzÞ þ iℏ
2�D

c ð�DÞ�ðzÞ;

where

�ðzÞ ¼ z@zC0ðzÞ þ
Z z

z0

C0ðz0Þz0dz0;

z0 is a constant, and v0 ¼ z20=�
2�D. By virtue of Bessel’s

equation, we have

�ðzÞ ¼ z@zC0ðzÞ �
Z z

z0

@z0 ½z0@z0C0ðz0Þ�dz0 ¼ z0C00ðz0Þ:

This function is actually independent of z, and cannot be
expressed as a linear combination of H�ðzÞ. It can, how-
ever, be made to vanish if we choose z0 to be a zero of
zC00ðzÞ, which is at a complex infinity in the case of the

Hankel functions. In this way, we obtain

�̂c ð�D; �Þ ¼ iℏ@�Dc ð�D; �Þ: (3.18)

It is perhaps worth noting that although this operator
appears superficially to have the same action as the kine-

matical operator �̂, it is a different operator. Thus, the
derivative of (3.6) with respect to �D contains, in addition
to the derivatives of c�ð�DÞ, terms proportional to
z@zH�ðzÞ, which are not linear combinations of H�ðzÞ.
With the above construction, these unwanted terms are

precisely cancelled by the action of dp�1
v , arising from the

last term in (2.18). Correspondingly, while the kinematical

operator �̂ commutes with v̂ and p̂v, the operator �̂ does

not commute with V̂ or Ŷ. In fact, it can be expressed in
terms of the gravitational variables as

�̂ ¼ Ĉ�1
gravð12 iℏ� ŶÞ; (3.19)

and does not represent an independent physical degree
of freedom. Alternatively, of course, the gravitational

2If, as is often done, we were to define a kinematical Hilbert
space H kin, say with the inner product ð�1;�2Þkin ¼R
dvd�D ��1�2, we would find that the restriction of p̂v to

H kin does have a unique inverse. However, as often happens,
solutions of the constraint equation are not normalizable under
this inner product, and do not belong to H kin, so the Hilbert-
space inverse of p̂v has no well-defined action on these solutions.
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variables can be expressed in terms of �̂ and its conjugate
momentum, which is multiplication by �D.

The operator �̂ is symmetric under the inner product

(3.10), and has the commutator ½�̂; Ĉgrav� ¼ �iℏ, in agree-
ment with the last Poisson-bracket relation of (2.19).
Consequently, the equation of motion (2.24) becomes the
operator equation

iℏ
d�̂ð�Þ
d�1=2

¼ ½�̂ð�Þ; Ĥ��; (3.20)

where Ĥ� is the operator in H phys whose action is speci-

fied by

Ĥ �c ð�D; �Þ ¼
�
2�D
3�G

�
1=2

�c ð�D; �Þ: (3.21)

This operator is self-adjoint, since it acts by multiplication
in the ð�D; �Þ representation, and the evolution it generates
is therefore unitary.

IV. INTERPRETATION OF INTERNAL TIME

A. Conditional and joint probabilities

We argued in [18] that, while an operator such as V̂ð’Þ is
a perfectly good Dirac observable, the internal-time pa-
rameter ’ cannot bear the interpretation that one would
like to place on it (and which indeed is placed on it, in a
significant part of the literature).

At the level of the classical equations of motion (2.6),
(2.7), and (2.8) and their solutions (2.10), (2.11), and (2.12),
it seems quite feasible to say that Vð’Þ is the volume
‘‘when’’ the scalar field has the value ’, provided that
one does not enquire too closely about the instant of time
‘‘when’’ this pair of values is realized. But even classically,
if one follows the systematic procedure of constructing a
reduced, physical phase space, whose points are gauge
orbits in the constraint manifold, one finds that this physi-
cal phase space is 2-dimensional. The corresponding con-
figuration space is 1-dimensional: there do not exist two
independent physical quantities which might simulta-
neously be determined to have the values ’ and Vð’Þ.

Quantum mechanically, the configuration space on
which states in H phys are defined is again 1-dimensional.

The parameter ’, which labels the family of Dirac observ-

ables V̂ð’Þ, cannot be construed as a value obtained by
observation of a physical clock (the scalar field),3 because

there is no operator acting in H phys, independent of V̂, to

represent any such observable clock. In particular, the

operator �̂ cannot serve this purpose, for two related

reasons. First, �̂ does not commute with V̂ð’Þ for any
value of ’, so the rules of quantum mechanics do not allow
simultaneous measurements of the quantities represented
by these two operators. Second, the reason these operators
do not commute is that they were constructed through the
‘‘evolving constant of the motion’’ algorithm, and are thus

quite different from the kinematical operators v̂ and �̂.
Classically, to interpret ’ as a value of � is to interpret
Vð’Þ as ‘‘the volume at the time when the value ’ is
assumed by ’the scalar field at the time when the volume
is zero.’’’ This is, of course, incoherent, and is made no less
so by the transition to quantummechanics. Similar remarks
apply, of course to the parameter � that labels the family of

observables �̂ð�Þ: it cannot be construed as the result of a
measurement of the volume. Given that these parameters
cannot be construed as values obtained from measure-
ments, it is hard to see that they have any physical meaning
at all.
We now wish to strengthen this conclusion by consider-

ing the possibility that, notwithstanding the arguments just
given, the internal-time formalism might be construed as
yielding a joint probability distribution that represents a
correlation between observable quantities, in this case the
volume and the scalar field. That is to say, we will try to
extend the notion of ‘‘observables’’ by dropping the re-
quirement that they be represented by mutually commuting
operators in H phys. This is, in particular, a timeless inter-

pretation, in which one might decide to ignore conundrums
concerning the times at which specific values of the
observables are realized. We will show, though, that in
general no such probability distribution exists.

The idea is this. If V̂ð’Þ is regarded as the Heisenberg-
picture operator associated with evolution in an internal

time ’, generated by the Hamiltonian Ĥ’, then we can

construct the corresponding Schrödinger-picture wave
function

~c ð~�;�;’Þ ¼ expð�iĤ’’=ℏÞ ~c ð~�; �; 0Þ; (4.1)

where ~c ð~�; �; 0Þ is a suitable transform of c ð�D; �Þ on
which V̂ (that is, V̂ð0Þ) acts by multiplication:

V̂ ~c ð~�;�; 0Þ ¼ ~� ~c ð~�;�; 0Þ. According to the usual inter-
pretation, the object

~P ð~�;’Þ :¼ X
�

j ~c ð~�;�;’Þj2 (4.2)

is the time-dependent probability density for obtaining
the value ~� from a measurement of the volume performed
at ‘‘time’’ ’. In particular, this probability has the time-

independent normalization
R1
0
~P ð~�;’Þd~� ¼ 1. According

to the foregoing discussion, the problemwith this is that we
have no idea what is meant by ‘‘performing the measure-
ment at time ’.’’
The problem might be alleviated if we could reinterpret

(4.2) as a conditional probability density ~P ð~�j’Þ for the

3That is, the usual rules of quantum mechanics do not allow it
to be construed in this way. One might perhaps adopt the view
that the usual rules of quantum mechanics should be adjusted in
some way to accommodate the notion of internal time. One
possibility for such an adjustment is considered in this section,
and we discuss this issue more generally in Sec. VI.
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volume, given that some other quantity (which we hope to
identify with the scalar field) has been determined to have
the value ’, even though that other quantity does not
appear explicitly in our formalism. An interpretation of
that kind requires the existence of a joint probability
density P ð~�;’Þ, with the normalizationZ 1

0
d~�

Z 1

�1
d’P ð~�;’Þ ¼ 1; (4.3)

such that

~P ð~�j’Þ ¼ P ð~�; ’ÞR1
0 P ð~�0; ’Þd~�0 : (4.4)

If this joint probability density does exist, we can use it to
find the conditional-probability density

P�ð’j~�Þ ¼
P ð~�;’ÞR1

�1 P ð~�;’0Þd’0 (4.5)

for the scalar field, given that the volume has been deter-
mined to have the value ~�.

For the model under consideration, it happens that we
already have such a probability density to hand, namely

P�ð’�j�Þ :¼
X
�

jc
�
ð’
�
; �;�Þj2; (4.6)

where c
�
ð’
�
; �;�Þ is the wave function evolved in the

internal-time parameter �, and expressed in the represen-

tation where �̂ acts by multiplication: �̂ c
�
ð’�; �;�Þ ¼

’� c
�
ð’�; �;�Þ. More precisely, if the expression on the right

of (4.2) can be interpreted as a conditional probability, then
it must be possible to interpret (4.6) in the same way. Up to
this point, we have maintained a notational distinction
between quantities that prima facie have quite different
meanings, namely f�; ’g, which are internal-time parame-
ters, and f~�;’

�
g, which are configuration-space coordinates.

However, if the internal-time formalism is to be inter-
preted as expressing an observable correlation between, in
this case, the volume and the scalar field, then it must be
possible to use these variables interchangeably, and wewill
now do so, until further notice. In particular, we would like
to identify the probability density (4.6) with the one dis-
played in (4.5).

In the light of the arguments summarized at the begin-
ning of this section, one might expect the conditional-
probability interpretation to present some difficulty. Let
us, indeed, attempt to construct the required joint proba-

bility P ð�;’Þ from the conditional probabilities ~P ð�j’Þ
and P�ð’j�Þ, which can be calculated once a wave function
is specified. Denote by fð’Þ the denominator in (4.4) and
by gð�Þ the denominator in (4.5). Then we have

fð’Þ ~P ð�j’Þ ¼ P ð�;’Þ ¼ gð�ÞP�ð’j�Þ: (4.7)

Up to constants f0 :¼ fð0Þ and g0 :¼ gð0Þ, which are fixed
by normalization, the unknown functions are determined by

fð’Þ ¼
g0P�ð’j0Þ
~P ð0j’Þ (4.8)

gð�Þ ¼ f0
~P ð�j0Þ

P�ð0j�Þ
: (4.9)

We see that the joint probability density is well defined (the
first and last expressions in (4.7) are consistent) only if

R :¼
f0P�ð’j�Þ ~P ð�j0Þ ~P ð0j’Þ
g0

~P ð�j’ÞP�ð0j�ÞP�ð’j0Þ
¼ 1: (4.10)

In the following, we will calculate the ratio R for a specific
state, and find that it is not equal to 1. This counterexample
is sufficient to demonstrate that R is not equal to 1 in
general, but we will also argue that our example is not
especially atypical.

B. Inconsistent probabilities

We begin by constructing the wave function ~c ð~�;�;’Þ
that appears in (4.1) and (4.2). To simplify matters, we
consider a state for which c ð�D;�1Þ ¼ 0, a condition that

is preserved by evolution with respect to both Ĥ’ and Ĥ�.

That is, we focus on the sector that corresponds classically
to an expanding universe, and we will drop the label � ¼ 1
that indicates this explicitly. The representation in which

the volume operator V̂ acts by multiplication is obtained by
the Hankel transform

~c ð�;’Þ ¼ �

2

Z 1

0
d�DJ0ð��1=2D �1=2Þei�D’=ℏc ð�DÞ;

(4.11)

where J0 is the Bessel function of the first kind. Bessel’s
equation ðz@zz@z þ z2ÞJ0ðzÞ ¼ 0 implies that the operator

V̂ defined in (3.15) does indeed act on this function by

multiplication, if c ð�D;’Þ ¼ ei�D’=ℏc ð�DÞ belongs to the

domain on which V̂ is symmetric. Provided that c ð�D; ’Þ
possesses an invertible Hankel transform, it is straightfor-
ward to verify that this transform preserves the normaliza-

tion,
R1
0 j ~c ð�;’Þj2d� ¼ R1

0 jc ð�DÞj2d�D.
We consider normalized states of the form

c ð�DÞ ¼ ½ð2
Þ2nþ1=ð2nÞ!�1=2�nDe�
�D ; (4.12)

where n is a positive integer and
 a real, positive constant,
which satisfy both of these requirements. Our main moti-
vation for this choice is that the Hankel transform can be
calculated analytically. In these states, the mean energy of

the dust is ��D ¼ ðnþ 1
2Þ
�1 and its dispersion is ��D ¼

ð2nþ 1Þ�1=2 ��D, so for large values of n the energy distri-
bution becomes quite sharply peaked. However, the

analytic expressions for ~c ð�;’Þ become very cumbersome
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for large n, so we focus on the case n ¼ 1. In that case, we
find

~P ð�j’Þ ¼ ð�2=
�3Þð�� ��þ 1
4 ��

2Þe� ��=�; (4.13)

with

�� :¼ �2�=2
; � :¼ 1þ ð’=
ℏÞ2:

It is easy to check that
R1
0
~P ð�j’Þd� ¼ 1.

Evolution in the internal time �1=2 is generated by Ĥ�,
whose action on the � ¼ þ1 subspace, and in the �D
representation is multiplication by ð2�D=3�GÞ1=2 ¼
�ℏ�1=2D . The representation in which �̂ acts by multiplica-
tion is obtained by Fourier transformation:

c
�
ð’; �Þ ¼ ð2�ℏÞ�1=2

Z 1

0
d�De

i�D’=ℏe�i��1=2
D

�1=2
c ð�DÞ:

(4.14)

Again, one may easily check that �̂ c
�
ð’; �Þ ¼ ’c

�
ð’; �Þ,

provided that c ð�DÞ ¼ 0 when �D is 0 or 1, which is the
condition for the operator (3.18) to be symmetric. We note
in passing that classically, when the constraint is satisfied,
�D ¼ 0 implies pv ¼ 0. On this hypersurface, the volume
is constant and the Dirac observable (2.15) is not well
defined. The need to restrict attention here to wave func-
tions that vanish at �D ¼ 0 is therefore not surprising.

Using the wave function (4.12) with n ¼ 1, we obtain

P�ð’j�Þ ¼
2
3

�ℏ
j�ðÞj2

ð
2 þ ’2=ℏ2Þ2 ; (4.15)

where  :¼ �2�=ð
� i’=ℏÞ and

�ðÞ :¼ 1

8

�
8� 2þ i

ffiffiffiffiffiffiffi
�

p ð� 6Þe�=4

�
�
1� erf

�
i
ffiffiffiffi


p
2

���
: (4.16)

We do not know (and neither does any computer-algebra
package available to us) how to compute the integralR1
�1 P�ð’j�Þd’ analytically, but numerical evaluation

yields the value 1 for randomly selected values of �.
With these probabilities in hand, we find the ratio (4.10)

to be

R ¼ �e� ��j�ðÞj2ð1� ��þ 1
4 ��

2Þ
e� ��=�j�ð2 ��Þj2ð�� ��þ 1

4 ��
2Þ : (4.17)

While R is equal to 1 by construction when ’ ¼ 0 or
� ¼ 0, it is not equal to 1 elsewhere. Consequently, the

functions ~P ð�j’Þ and P�ð’j�Þ cannot consistently be in-

terpreted as conditional-probability densities arising from
some underlying joint probability distribution. Certainly,
this conclusion is based on a single counterexample, but

it seems that our sample wave function has no special
pathological feature, and the inconsistency is very likely
to be generic. This will become a little clearer on exami-
nation of the kinds of evolution that are associated with the
two internal times ’ and �.

C. Singularity resolution

It is of considerable interest to see exactly what is
implied by the two probability distributions. To this end,
we evaluate them using a wave function of the form (4.12)
with n ¼ 4. The resulting analytic expressions are lengthy
and unilluminating, but the somewhat more sharply peaked
energy distribution leads to probability densities whose
nature is more readily apparent to the eye.

Figure 1 shows the probability density ~P ð~�;’Þ for the
volume, evolved with the internal-time parameter ’. (We
revert to the notation of (4.2), since the conditional-
probability notation has proved to be inappropriate).
Clearly, the classical singularity at v ¼ 0 is resolved, in
the sense that it has been replaced by a bounce in the

quantum theory. (Since the generator Ĥ’ of evolution in

’ is independent of �̂, the probability density for the
corresponding state in the classically contracting sector
� ¼ �1 is exactly the same). This agrees qualitatively
with the results of Amemiya and Koike [24], who studied
a similar model, adopting the Brown-Kuchař scalar field as
an internal time, though the quantization schemes they
considered differ in detail from ours. In loop-quantum-
gravity-inspired treatments, such as those described in
[21,22,25], the singularity is also seen to be resolved, but
the mechanism appears to be different. In particular, it is
found in [21] (where the matter content is a conventional
massless scalar field, which is also used as internal time)
that the minimum volume at the bounce corresponds to a
density crit ¼ 3=ð16�2�3G2ℏÞ, � being the Barbero-
Immirzi parameter, independent of the details of the
quantum state. In the present treatment, by contrast, the

minimum value of hV̂ð’Þi is just hV̂i, which is given by

0

1000

v

10

0

10

FIG. 1. The probability density for the volume ~� evolved
in the internal-time parameter ’. The wave function is of the
form (4.12) with n ¼ 4, and inessential constants have the values
ℏ ¼ � ¼ 
 ¼ 1.
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2
=�2 in any state of the form (4.12). (That the bounce
occurs at ’ ¼ 0 is a consequence of choosing 
 to be real
in (4.12); it apparent from (4.11) that an imaginary part of

 simply shifts ’ by a constant). This gives a maximum
density bounce ¼ �2 ��2D=ð2nþ 1Þ. Physically, a universal
critical density of the order of the Planck density seems
more reasonable, so it is worth emphasizing that our pur-
pose here is to explore the nature of time evolution, not to
construct an optimal model of cosmology, or an optimal
quantization scheme.

Figure 2 shows the probability density P�ð’�;�Þ for the
scalar field, evolved with the internal-time parameter �. It
clearly indicates a universe expanding from the initial
singularity: the scalar field, which classically increases
linearly with proper time, here increases with the volume.
In the same sense, a state in the � ¼ �1 sector would be
seen to contract towards a final singularity. [Specifically,

replacing �1=2D with ��1=2D in (4.14) leads to the mirror
image of Fig. 2] From this perspective, the two sectors of
the quantum theory reproduce the expanding and contract-
ing regions of the classical phase space. A similar result is
found in [21] for a Wheeler-de Witt quantization of the
model whose matter content is a massless scalar field, and
more recently in [26], where the same model is treated in a
consistent-histories approach.

It is obvious from these figures that the two probability
densities they depict cannot arise as conditional probabil-
ities from an underlying joint probability density. We
emphasize that they are computed from exactly the same
quantum state; the difference arises solely from the two
different notions of internal time used to construct the

families of Dirac observables V̂ð’Þ and �̂ð�Þ and their
associated Schrödinger-picture wave functions. It seems
clear that these two notions of internal time ‘‘see’’ the
expanding and contracting sectors of the theory very differ-
ently, and that the difference is unlikely to be attributable to
specific features of our chosen states.4

D. Difficulties with internal time

The probability densities shown in Figs. 1 and 2 under-
line in a rather striking way (which we did not anticipate at
the outset of this investigation) the difficulties of interpre-
tation of the internal-time formalism discussed in

Sec. IVA. It seems to us that the two notions of internal
time must stand or fall together, since they are merely two
different implementations of the same algorithm. That is to
say, since the two families of Dirac observables are con-
structed in the same way, one cannot consistently maintain

that V̂ð’Þ represents the volume when the scalar field has
the value ’ without accepting that, by the same token,

�̂ð�Þ must represent the scalar field when the volume is �.
Since the two associated probability distributions, which
arise in exactly the same quantum state are seen to be in
gross conflict, we conclude that both viewpoints cannot
simultaneously be correct, and therefore that neither of
them is correct. As argued above, the underlying reason
for this is that neither ’ nor � can be interpreted as a value
assumed by any physically observable quantity.
Some might wish to claim that the conflict should be

resolved in favor of ’ as a preferred internal time, because
the model can be ‘‘deparametrized’’ in this variable: that is,
the constraint (2.9) can be solved to obtain p� ¼
��ðv; pvÞ, where the function � is independent of �,
and serves as the generator of evolution in the internal time
’. We do not think that this is a good argument in itself, but
defer discussion of this point to Sec. VI.
It is perhaps also worth pointing out that the difficulties

discussed here are quite distinct from a well-known tech-
nical problem that arises, for example, in the double-
oscillator model studied by Rovelli [11,27], where no
single internal-time variable can uniquely parametrize the
whole of a classical trajectory. In the quantum theory, one
finds that the evolution in any one internal time is at best
approximately unitary in some restricted range. Here, by
contrast, every classical trajectory is completely parame-
trized either by the volume or by the scalar field, and in the
quantum theory both evolutions are exactly unitary over
the whole parameter range �1<’<1 or 0 � � <1
corresponding to the configuration space on which the
theory is defined.
A pressing question raised by the above results is, of

course, does the quantum theory resolve the classical
singularity or not? More generally, since in this example

0

1000

v

10

0

10

FIG. 2. The probability density for the scalar field ’ evolved in
the internal-time parameter �. The quantum state is exactly the
same as in FIG. 1.

4Both classically and quantum mechanically, various functions
of the internal-time parameter �, including the classical Dirac
observable (2.15) and the wave function (4.14), can be smoothly
continued to negative values of

ffiffiffi
�

p
. Figure 2 is obtained by using

only positive values of
ffiffiffi
�

p
, as required by (2.14), which account

for all possible values of the volume, regarded as a physical
clock. One might perhaps wonder whether continuation of this
probability density to negative values of

ffiffiffi
�

p
would show the

classical singularity to be resolved, as in Fig. 1. A detailed
discussion of this question is given in the appendix, where we
find that the quantum-mechanical situation exactly parallels the
classical one, and the singularity is not resolved.
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the answer seems to depend on an arbitrary choice of the
variable that is to serve as internal time, do we have a
reliable way of deciding whether or not the singularity is
resolved in the context of any cosmological model and
quantization scheme? A possible answer is that quantum
mechanics is actually ambivalent on this question. It could
be, for example, that given some definite quantum state,
different classes of observer will unavoidably disagree on
whether that state involves a singularity or not. We pro-
posed in [18], following earlier work in [28], a variant of
the idea of relational time that seems to avoid the difficul-
ties of interpretation we have stressed up to now, by
introducing a ‘‘test clock,’’ which provides a preferred
notion of time evolution from the point of view of a specific
observer. As described in the following section, this pre-
ferred description, from the point of view of a comoving
observer internal to the model universe, effectively coin-
cides with that furnished by ’ as an internal time.

V. DUST-FILLED COSMOLOGY
WITH ATEST CLOCK

A. Quantization of an extended model

As explained at greater length in [18], we supplement the
model studied in previous sections with a rough-and-ready
description of a small clock, which we consider to be
internal to a specific observer, and thus localized on that
observer’s worldline. In a complete description, the coor-
dinate functions, say x�ðsÞ, that locate this worldline should
appear as extra phase-space coordinates (as should a com-
plete set of metric and matter fields, g��ðxÞ and�aðxÞ), but
in the spirit of simplified cosmological models of the sort
considered here, we assume that these degrees of freedom
can be neglected. If the observer is comoving, then the
proper time along the worldline is the same t as appears in
(2.5). From the set of variables qi that describe the internal
workings of the clock, we suppose that a function rðfqgÞ can
be constructed, which constitutes the reading of the clock.
Crucially, however, we take the view that this reading, being
internal to the observer in question, is in principle inacces-
sible to that observer, and for that reason need not feature in
the physical phase space that describes the universe from
that observer’s point of view. Rather, it provides the context
for observations of other physical quantities to be made.
Solution of the equations of motion for the variables
�qiðfqg; tÞ yields the clock reading rðfqg; tÞ :¼ rðf �qðfqg; tÞgÞ
at the proper time t. This reading need not be linear in t, but,
if the clock is fit for our purpose, theremust be, classically, a
unique function t0ðfqgÞ, such that rðfqg; t0Þ ¼ 0. That is,
t0ðfqgÞ is the proper time at which the clock reads 0. It is
not hard to show that ft0; hg ¼ �1, where Nh is the clock’s
Hamiltonian. Because the system described byh is (ideally)
localized on a single worldline, h and t0 are independent
of the cosmological variables ðv; pv;�; p�Þ. The total

Hamiltonian constraint is

C :¼ C0 þ h ¼ Cgrav þ p� þ h (5.1)

and, as shown in [18], the quantity

Vð�Þ :¼ �vðv; pv;�; p�; t0 þ �Þ (5.2)

is, for each �, a Dirac observable, fVð�Þ; Cg ¼ 0. So, of
course, are �ð�Þ, etc., defined in the same way. Thus, we
obtain a new set of evolving constants of the motion,
which can be interpreted classically as the volume, etc.,
when a proper time � has elapsed along the observer’s
worldline since the clock read 0. The second crucial
feature of this construction is that � is not to be interpreted
as a reading obtained from observation of a physical
clock. From the point of view of the dynamical system
governed by the constraint (5.1), it is an external,
‘‘Heraclitian’’ time, in the sense of Unruh and Wald [29].
We quantize this enlarged model using essentially the

same scheme as in Sec. III, adopting a kinematical repre-

sentation in which v̂, p̂� and ĥ act by multiplication on

wave functions �ðv; �D; �cÞ, where �c is the energy of the
clock. The kinematical operator representing the fiducial
proper time t0 is then t̂0 ¼ �iℏ@=@�c. Since we are no
longer using the notion of evolution in the internal-time
parameter �, no operator of interest distinguishes the two
sectors � ¼ �1, and we will focus on a single sector,
writing a solution to the constraint equation as

�ðv; �D; �cÞ ¼ c ð�; �DÞC0ð��1=2v1=2Þ; (5.3)

where � :¼ �D þ �c is the total energy, and C0 is any
Bessel function of order 0. The physical Hilbert space is
now H phys ¼ L2ðR2þ; d�Dd�cÞ, with the inner product

ðc 1; c 2Þphys ¼
Z 1

0
d�D

Z 1

0
d�c �c 1ð�D þ �c; �DÞ

� c 2ð�D þ �c; �DÞ
¼

Z 1

0
d�

Z �

0
d�D �c 1ð�; �DÞc 2ð�; �DÞ: (5.4)

The intention is that �c should be small compared with �D
in the same sense that the biological system responsible for
an astronomer’s circadian rhythm, say, is small compared
with the energy content of the visible universe, and we
implement this by restricting attention to states such that
jc j2 is very small unless �c � �D. The resulting limita-
tions on the resolution with which �-dependent observ-
ables might be determined are examined in some detail in
[18] for a universe whose matter content is a massless
scalar field, and we will not repeat the analysis for the
present model.
Acting in H phys, we find families of Dirac observables

V̂ð�Þ ¼ V̂ � 8ðℏ�Þ�2Ŷ�� 4ðℏ�Þ�2Ĉgrav�
2 (5.5)

�̂ð�Þ ¼ �̂þ �; (5.6)

where, acting on c ð�; �DÞ,
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V̂ ¼ �ð4=�2Þ@��@� (5.7)

Ŷ ¼ iℏ�1=2@��1=2 (5.8)

Ĉ grav ¼ �� (5.9)

�̂ ¼ iℏ@�D : (5.10)

Note, in particular, that in (5.10), the derivative is with
respect to �D keeping the total energy � fixed. Treating �D
and �c as independent variables, we have �̂ ¼ �̂þ t̂0 ¼
iℏð@�D � @�cÞ. Consequently, the observables V̂ð�Þ and

�̂ð�Þ now commute for every � and, according to the usual
rules of quantum mechanics, can simultaneously be as-
signed measured values � and ’. A domain on which all of

these operators are symmetric is provided by the boundary
conditions

c ð�; �Þ ¼ c ð�; 0Þ ¼ @�c ð�; �DÞj�¼�D ¼ 0: (5.11)

Of course, � ¼ �D means that the clock energy �c vanishes,
and we always take c ð�; �DÞ to vanish fast enough at large
arguments to ensure square integrability.

B. Joint probability density

Evolution of the Heisenberg-picture operators (5.5) and

(5.6) is generated by the self-adjoint Hamiltonian Ĥ� ¼
Ĉgrav þ p̂� ¼ �D � �, and states satisfying the boundary

conditions (5.11) can be expressed in a representation in

which both V̂ and �̂ act by multiplication, through com-
bined Fourier and Hankel transformation. Thus, we can
now define a bona fide joint probability density, which
evolves in the usual way with proper time �, namely

P ð�;’; �Þ ¼ jc ð�; ’; �Þj2; (5.12)

where

c ð�; ’; �Þ ¼ �

2
ffiffiffiffiffiffiffiffiffiffi
2�ℏ

p
Z 1

0
d�

Z �

0
d�De

i�D’=ℏeið���DÞ�=ℏ

� J0ð��1=2�1=2Þc ð�; �DÞ: (5.13)

In particular, this probability density has the �-independent
normalization

R1
0 d�

R1
�1 d’P ð�;’; �Þ ¼ 1.

To make contact with the probabilities discussed in
Sec. IV, consider a state that factorizes as

c ð�; �DÞ ¼ c ð�Þc cð�cÞ; (5.14)

where c c is a wave function for the clock and, as above,
�c ¼ �� �D is the clock’s energy. (Recall, though, that
the clock is not represented by any operator independent

of V̂ and �̂ acting in H phys, and � is not a value obtained

from observation of the clock). The wave function (5.13)
becomes

c ð�;’; �Þ ¼ �

2

Z 1

0
d�ei�’=ℏJ0ð��1=2�1=2Þc ð�Þ

� 1ffiffiffiffiffiffiffiffiffiffi
2�ℏ

p
Z �

0
d�ce

i�cð��’Þ=ℏc cð�cÞ: (5.15)

The idea of a test clock described previously implies that
c ð�Þ should be peaked around a value �� of the order of
the energy content of the visible universe, while c cð�cÞ
should be peaked around a value ��c somewhat smaller
than the mass of an astronomer. Under these circumstan-
ces, it is an excellent approximation to extend the upper
limit of the �c integral to infinity, in which case the wave
function (5.15) and the probability density (5.12) also
factorize. In fact, we have

P ð�;’; �Þ ’ ~P ð�j’ÞP ð’; �Þ; (5.16)

where ~P ð�j’Þ coincides with the probability density de-

fined in (4.2), except that we do not now need to distin-
guish the sectors � ¼ �1. Here, however, the arguments
� and ’ genuinely stand for values obtained from obser-

vation of the quantities represented by the commuting

operators V̂ and �̂, and ~P ð�j’Þ is a genuine conditional

probability. The function

P ð’; �Þ :¼ 1

2�ℏ

��������
Z 1

0
d�ce

i�cð��’Þ=ℏc cð�cÞ
��������2

(5.17)

is just the probability density for obtaining the value ’

from a measurement of the scalar field at proper time �.
Given a suitable choice of c cð�cÞ, it will be sharply
peaked on a trajectory of the form ’ ¼ �0 þ �, consis-

tent with the solution (5.6) of the Heisenberg equation of
motion.

C. Timeless interpretation

We have emphasized that the parameter �, which labels

the families of Dirac observables V̂ð�Þ and �̂ð�Þ is an
unobservable, external time parameter. Classically, it co-
incides with the arc length of an observer’s worldline, on
which the fiducial event, that the unobserved clock reads 0,
serves to define an origin. Naturally, the time-dependent
observations recorded by an astronomer who wishes to test
a theoretical expression such as (5.12) will not refer either
to � or to the internal, unobserved clock that we have
pictured, for the sake of argument, as a biological clock.
Instead, they will refer to the observed readings of some
time-keeping device, which we will call (taking a cautious
view of the generosity of the relevant funding agency) a
‘‘wristwatch.’’
From an operational point of view (more or less in the

sense of Bridgman [30]) substantive physics is contained
only in correlations between measured values of observ-
able quantities. The idea that a solution to the problem of
time in constrained systems is to be sought in such corre-
lations is explicitly developed in, for example, [31–33],
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and is implicit in much of the recent literature. We have
argued that the required correlations are not directly pro-
vided by a wave function such as (4.1), but in the model
considered here, it is straightforward to see that this wave
function does indirectly lead to an estimate of the desired
correlation, to an approximation that might be extremely
good. In principle, we would like to study correlations
between observed values of the volume, the scalar field
and the astronomer’s wristwatch. Since the wristwatch is
another small clock, which classically follows, for practi-
cal purposes, the same worldline as the unobserved test
clock, we could incorporate it into our model by adding its
energy hw to the total constraint:

Ctotal :¼ Cgrav þ p� þ hw þ h: (5.18)

This presents no technical difficulty, but since, for this par-
ticularmodel,p� andhw appear in the sameway inCtotal, it is

clear that we can usefully economize on clocks by deleting
hw and treating the scalar field as the astronomer’s time-
keeping device. (Here, we profit from the enormous simpli-
fication that results from the assumptionof homogeneity. In a
more general setting, we envisage that Dirac observables
depending on � can be constructed only from fields in the
observer’s immediate locality. Technical difficulties aside,
this is no significant limitation, since the local fields include,
for example, the cosmic microwave background radiation
photons entering the astronomer’s telescope.)

Suppose, then, that simultaneous measurements of vol-
ume and scalar field are performed at a sequence of proper
times �i, distributed according to some density function
�ð�Þ, with R1

�1 �ð�Þd� ¼ 1. [�ð�Þ may have support only
in a subinterval of ð�1;1Þ if, for example, the observer’s
worldline terminates at a singularity.] The function

P ð�; ’Þ :¼
Z 1

�1
P ð�;’; �Þ�ð�Þd� (5.19)

is a correctly normalized joint probability density, which
furnishes a timeless description of the correlation between
these measured quantities.5 In the approximation that the
joint probability density factorizes as in (5.16), we find

P ð�; ’Þ ’ ~P ð�j’ÞP ð’Þ; (5.20)

where P ð’Þ ¼ R1
�1 P ð’; �Þ�ð�Þd� is the probability for

finding the measurement of the scalar field on a randomly
selected occasion to have yielded the value ’. For the state

studied in Sec. IVC, ~P ð�j’Þ is precisely the function

depicted in Fig. 1, but the introduction of an unobserved
test clock now allows us to interpret this function as a bona
fide conditional probability. In that indirect and approxi-
mate sense, we identify ’ as a preferred internal time, and
conclude that the singularity is resolved in this quantum
theory—or at least that the observer whose unobserved
clock is represented by h will discover herself to be living
in a bouncing universe.
In part, this conclusion is specific to our somewhat

artificial model, in which the matter content of the universe
is provided by the Brown-Kuchař scalar field. More gen-
erally, consider a Hamiltonian constraint of the form

C :¼ Cgravþmatt þ pw þ h ¼ 0: (5.21)

In this expression, Cgravþmatt is the contribution of metric

and matter fields, h is the Hamiltonian of an unobserved
test clock, and pw is the momentum conjugate to the
pointer reading rw of a wristwatch following essentially
the same worldline as the test clock. By taking the
Hamiltonian of the wristwatch to be just pw, we model a
time-keeping device that is manufactured so as to supply a
linear measure of the proper time along its worldline.
Following the same steps as before, we expect to obtain a
physical Hilbert space of functions c ð�; �; �wÞ, where � ¼
�w þ �c is the total energy of the wristwatch and the
unobserved clock, while � collectively denotes the remain-
ing metric and matter variables. Operators on H phys rep-

resenting Dirac observables include

Ĉ gravþmatt ¼ �� (5.22)

r̂ w ¼ iℏ
@

@�w
; (5.23)

as in (5.9) and (5.10). Taking a wave function that factor-
izes as c ð�; �; �wÞ ¼ c ð�; �Þc cð�cÞ, we will obtain a
Schrödinger-picture wave function analogous to (5.15),
of the form

c ð�; rw; �Þ ¼
Z 1

0
d�ei�rw=ℏc ð�; �Þ

�
Z �

0
d�ce

i�cð��rwÞ=ℏc cð�cÞ: (5.24)

From this, we obtain a joint probability P ð�; rw; �Þ ¼
jc ð�; rw; �Þj2 and, if we wish, the timeless version

P ð�; rwÞ ¼
R
P ð�; rw; �Þ�ð�Þd�, which describe correla-

tions between observed values of the cosmological quanti-
ties � and the wristwatch pointer rw. However, because the
energy � ¼ �w þ �c is now the total energy of two small

5This argument takes no account of any ‘‘collapse of the wave
function’’ occasioned by performance of the measurements.
Consequently, in the spirit of the Copenhagen interpretation,
the sequence of measurements should strictly be understood as
being performed on an ensemble of identically prepared uni-
verses. We find this deeply unsatisfactory, but the problem
concerns the interpretation of quantum mechanics, especially
as applied to the universe as a whole, about which we have
nothing useful to say, rather than the interpretation of time, about
which we believe we do have something useful to say. We adopt
a Copenhagen-like point of view, not because we find it con-
vincing, but because we find rival interpretations to be more
cumbersome without being any more convincing. While recog-
nizing that many physicists would disagree with this, we do not
think that the present paper would be enhanced by a digression
on this issue.
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clocks, thewide separation of energy scales which led to the
factorization in (5.16) is no longer present, and the cosmo-
logical field ’ is replaced by the wristwatch pointer rw.
Generically, therefore, we do not automatically recover a
conditional-probability interpretation of any internal time
chosen from among the cosmological variables �.

VI. DISCUSSION

We argued in [18] that the notion of internal time,
especially as commonly implemented in models of quan-
tum cosmology, is unsatisfactory, for two reasons. First, it
offers no account of the passage of time as it is ordinarily
conceived. Ordinarily, there seems to be a clear sense in
which a well-constructed clock reads ‘‘10s’’ seven seconds
after it read ‘‘3s,’’ and this does not appear merely to result
from a conspiracy amongst the manufacturers of timepie-
ces. That is, a time-keeping device can be said to work
accurately (or not), because there is a time to be kept, not
merely because its readings tend to agree (or not) with
those of other devices of the same sort. In general relativity,
this notion of time is provided, for some specific observer,
by the proper time that elapses along that observer’s world-
line, but it is not recovered in a treatment that describes
evolution by correlating, for example, the volume of a
spatial region with the value of a scalar field. Second, as
summarized in Sec. IVA, the meaning of a parameter that
serves as an ‘‘internal time’’ is unclear; in particular, it
cannot be construed, within the usual rules of quantum
mechanics, as a value obtained from the observation of any
physical quantity that is to be regarded as a clock, because
no such quantity is represented by any operator acting in
the physical Hilbert space H phys.

Various points of view might, perhaps, be adopted with
regard to the meaning of internal-time parameters, and to
the adjustments to the rules of quantum mechanics that one
might be willing to contemplate in order to accommodate
them. Let us consider some possibilities, starting from the

need to find a meaning for the wave function ~c ð~�;�;’Þ
constructed in (4.1) and for the parameter ’ that appears in
it. This wave function is a solution of the Schrödinger-like
equation

iℏ@’ ~c ð~�; �;’Þ ¼ Ĥ’
~c ð~�; �;’Þ; (6.1)

and it is expressed in the representation in which the Dirac

observable V̂ associated with the volume acts by multi-

plication, V̂ ~c ð~�;�;’Þ ¼ ~� ~c ð~�;�;’Þ. It is worth point-
ing out that an equation of the same form arises directly
from the constraint equation (3.3) if this is expressed in a

representation in which the kinematical operator �̂ acts by
multiplication on kinematical wave functions �ðv;�Þ.
Some authors might choose to work directly with this
constraint equation, constructing the physical Hilbert space
as a subspace of functions �ðv;�Þ which solve the con-
straint, and are normalizable in some �-independent inner

product. For the model at hand, the resulting quantum
theory would be broadly similar to the one obtained in
this paper, though it might differ in detail, depending on the
various choices to be made. For example, our inner product
(3.10) respects the positivity of the dust energy, and to
reproduce this feature, the Fourier transforms with respect
to � of wave functions �ðv;�Þ included in H phys should

be restricted to those having support only on the positive
real axis. In either theory, the physical wave function
~c ð~�; �;’Þ or �ðv;�Þ is defined on a 1-dimensional con-
figuration space, with coordinate ~� or v, while the scalar-
field variable ’ or � appears in the final physical theory
merely as a parameter, and it is the status of this parameter
that needs to be elucidated. The following possibilities
would seem to present themselves.
Viewpoint 1: internal time is not observable Suppose

that the internal-time parameter ’ (or �) is interpreted not
as the value of some observed quantity, but rather as a
‘‘Heraclitian’’ variable [29] which, like the Newtonian
time of nonrelativistic quantum mechanics, specifies the
circumstances under which observations are made. From
this point of view, there is no formal difficulty in applying
the usual interpretation of the wave function. One might

phrase this interpretation by saying that
P

�j ~c ð~�;�;’Þj2 is
the probability density for obtaining the result ~� from a
measurement of the volume at internal-time ’. What,
though, are the circumstances specified by saying that the
measurement was made ‘‘at internal-time ’’’? Since ’ is a
possible value of a scalar field, this can only mean that the
measurement coincided with the scalar field actually hav-
ing the value ’ (or �). According to the point of view we
are considering, this means that the scalar field is unob-
servable in principle (not merely owing to the lack of a
suitable observing instrument) and also that it is not subject
to quantum indeterminacy, since we take it to assume the
definite value ’ (or �) without being observed. The ex-
istence of a field with these unusual properties is not ruled
out by observation. Its theoretical status is, however, very
awkward. In the collection of kinematical operators (3.1)
and in the constraint equation (3.3), expressed in the

representation-independent form ðĈgrav þ ĈmatterÞ� ¼ 0

with Ĉmatter ¼ p̂�, the scalar field appears on exactly the

same footing as the volume. In a more general model, any
field that is treated as giving rise to an internal-time pa-
rameter, whether it be a matter field or a metric field,
appears on exactly the same footing as any other quantum
field. Its special ‘‘Heraclitian’’ status is conferred purely by
the decision to construct a particular family of gauge-

invariant quantities, such as V̂ð’Þ, or to assign a special
role to � in writing a solution to the constraint equation.
This status might instead be conferred on some other
variable, as we have done for the volume in the present
example. It seems unreasonable to us that this arbitrary
choice should suffice to render unobservable some field
whose energy nevertheless contributes to the constraint (or
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Friedmann) equation, so we conclude that viewpoint 1 is
hard to sustain consistently. The alternative is

Viewpoint 2: internal time is observable We now sup-
pose that ’ is a value obtained from observation of a
physical scalar field. What can now be made of the state-

ment that
P

�j ~c ð~�; �;’Þj2 is the probability density for
obtaining the result ~� from a measurement of the volume at
internal-time ’? Once again, it is necessary to ascertain
what is meant by ‘‘at internal-time ’’’. Since ~� and ’ are
both values obtained from observation, this phrase must
mean that the two observations coincide, in some suitable
sense. (In ordinary language, one would like to say that this
coincidence consists in the volume and the field being
observed at the same time, but if the notion of time is
provided by ’ itself, such an explanation is of doubtful
value.) The scalar field either is or is not indeterminate.
Suppose that it is not subject to quantum-mechanical in-
determinacy. We might then envisage the history of the
universe as a sequence of states, labeled by determinate
values of the scalar field, and say that ‘‘at internal-time ’’’
means ‘‘in the state labeled by the value ’’’, regardless of
whether that value is actually determined by observation or
not. Here, we encounter the same difficulty as with view-
point 1, namely, that the scalar field is deprived of its
quantum indeterminacy only by an arbitrary choice in the
way the mathematics is presented, and it still appears
unreasonable to us that this should be so. Suppose, then
that both ~� and ’ are indeterminate. The only method
known to us of quantifying the results of joint observations
of a pair of indeterminate variables is a joint probability
density, and the only way we know of restricting probabi-
listic statements to a specified value of one of these vari-
ables is the associated conditional probability. If wewish to
retain some aspect of the probability interpretation of a
wave function, then, it seems that the probabilities must be
given in these terms. We considered in Sec. IV the possi-
bility of modifying the usual probability interpretation in

order to do that. The object ~P ð~�;’Þ ¼ P
�j ~c ð~�;�;’Þj2

treats ~� and ’ asymmetrically: because of its

’-independent normalization
R ~P ð~�;’Þd~� ¼ 1, it can

serve as a probability density for ~� at a fixed value of ’,
but not the other way round. It is therefore a candidate
(and, in fact, the only available candidate) for a
conditional-probability density. Assuming that the possible
results of joint measurements of two indeterminate varia-
bles are governed by some joint probability density, there is
a well-defined way of obtaining conditional probabilities
for either of them, and if the two variables appear in the
quantum theory on the same footing, then the same
quantum-mechanical procedure for obtaining these condi-
tional probabilities must work for both of them. In this
paper, we have studied an model for which two candidates
for the conditional-probability densities can be found ex-
plicitly by the same procedure, and we have shown that
they are not consistent with any joint probability density.

This counterexample is enough to show that the joint
probability interpretation is not valid in general. We con-
clude that viewpoint 2 is also hard to sustain consistently.
We think that the possibilities considered above cover all

the readily apparent strategies by which one might attempt
to supply a clear meaning for the notion of internal time
and, for the reasons given, we do not think that any of them
is successful. Moreover, we believe it would be hard to find
one that does not fall foul of one or more of the difficulties
we have identified. One would have, for example, to find
the physical principle that explains why some particular
quantum field takes on determinate values, while other
fields that appear in one’s theory on the same footing retain
their quantum indeterminacy; or to explain why the statis-
tics of several indeterminate variables need not involve the
existence of a joint probability density; or, perhaps, to
explain why internal time is neither observable nor unob-
servable, so that neither of the above viewpoints applies.
As described in Sec. V, a variant of the relational-time

construction proposed in [18,28] is capable of circumvent-
ing these difficulties. We augmented the model by includ-
ing an idealized description of a small test clock, which we
imagine to be internal to a specific observer, in this case a
comoving observer. The time parameter � that labels fam-
ilies of Dirac observables is, classically, at least, the proper
time that elapses along the observer’s worldline. Its value is
not to be regarded as obtained from observation of any
physical clock and, from the point of view of the observer
in question, plays the same role as the external time in
textbook Newtonian or quantum mechanics. The test clock
itself we take to be unobservable in principle by the
observer in question, by virtue of being internal to that
observer. Using this construction, we could obtain bona
fide joint probabilities, which describe genuine correlations
between cosmological observables and whatever time-
keeping device the observer might use in the course of
recording observations.
In the case that the observer uses the cosmological

scalar field as a (large) clock, the resulting conditional-
probability density for the volume essentially coincides
with the evolving probability density obtained using the
scalar field as an internal time. This is a special feature of
the Brown-Kuchař field, whose contribution to the
Hamiltonian constraint (2.9) is just its canonical momen-
tum. For the same reason, this model is deparametrizable
in the variable �: as indicated above, by substituting
p� ! �iℏ@�, one converts the constraint equation into a

Schrödinger-like equation that governs evolution in the
internal time �. We do not think, however, that deparame-
trizability is in itself sufficient to identify a preferred
internal time, though it does, of course, make the
implementation straightforward. In general, a model is
deparametrizable in a variable � if the constraint
Cð�;p�;!Þ ¼ 0 can be solved to obtain p� ¼ ��ð!Þ,
where� is independent of�, and! denotes the remaining
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canonical variables. Again, one can substitute p� !
�iℏ@� to obtain a Schrödinger-like equation, but, again,

the parameter’ cannot be interpreted as the observed value
of some physical quantity, and it is hard to see what other
meaning it might have. Moreover, this strategy suffers from
what Kuchař [2] calls the ‘‘Hilbert space problem’’. That is,
the Schrödinger-like evolution can be implemented only if

the inner product onH phys is chosen so as to make �̂ self-

adjoint. The same inner product will not necessarily confer
self-adjointness on the generators of evolution with respect
to other candidates for an internal time, and it seems some-
what unreasonable that the inner product, and hence the
quantum theory as a whole, should depend on this arbitrary
choice of an internal time. In the present example, � has a
preferred status not because of deparametrizability as such,
but rather because its contribution to the constraint is linear
in p� with a constant coefficient.

We believe that the idea of a test clock, internal to some
specific observer and localized on that observer’s world-
line, as implemented here provides an improved notion of
time evolution, but it would be at best premature to suggest
that it yields a definitive solution to the problem of time in
general. Among the limitations of the proposal as we have
so far described it are the following. (1) While the con-
struction appears to be successful in spatially homogene-
ous models with a single constraint, it does not follow that
a similar construction will work in more general space-
times. (2) In particular, we have bypassed any explicit
description of the observer’s worldline by considering
only a comoving observer in a Friedmann-Robertson-
Walker universe. In more general situations, it would be
essential to retain as further quantum degrees of freedom
the coordinates x̂�ð�Þ that specify the worldline, and it
remains to be seen whether this more general construction
can be implemented successfully. A scheme of this kind is
likely to yield time-dependent Dirac observables con-
structed only from fields in the vicinity of the observer’s
worldline. This, however, is in principle sufficient to ac-
count for the time-dependent observations made by an
(ideally very long-lived) astronomer, since these local
fields would include all the photons entering the astrono-
mer’s telescope. (3) The time parameter � survives the
passage to quantum mechanics as a c-number parameter,
but it is not obvious that this parameter can be unambig-
uously described in the quantum theory as the arc length of
a worldline. (4) In the context of simple cosmological
models, at least, it seems to be an inevitable consequence
of the constraint that some object to which one is inclined
to attribute a real physical existence turns out to be unob-
servable. We think it is plausible that a clock which is
internal to some observer should turn out to be unobserv-
able in a description of the universe ‘‘from that observer’s
point of view’’. However, this plausible form of words is
not directly mandated by the formalism, and some other
way of understanding the unobservability of whatever

quantity is eliminated by solution of the constraint may
turn out to be better founded. We plan to address these
issues in future work.

APPENDIX: EXTENSION OF EVOLUTION TO
NEGATIVE VALUES OF

ffiffiffiffi
�

p

The unitary evolution of, say, the wave function (4.14) in
the parameter

ffiffiffi
�

p
is smooth at

ffiffiffi
�

p ¼ 0, and can be con-
tinued to negative values of this parameter. Here, we
examine what, if anything, this continuation might mean
and, in particular, whether it leads to a resolution of the
classical singularity, contrary to what is suggested by
Fig. 2.
Observe first that this continuation can equally well be

carried out at the classical level. In terms of the proper time
coordinate t, the volume �vðtÞ given in (2.11) vanishes at
ts ¼ ð6�GpvÞ�1, but both �vðtÞ and ��ðtÞ, given in (2.10) are
smooth functions over the whole range of proper time
values�1< t <1. Eliminating t from these two smooth
functions, we obtain the Dirac observable �ð�Þ given in
(2.15), which is a smooth function of the parameter

ffiffiffi
�

p
, for

�1<
ffiffiffi
�

p
<1. The ‘‘big-bang’’ singularity is not appar-

ent in any of these smooth functions, but it is apparent in
the canonical momentum �pvðtÞ given in (2.12), which has
an infinite discontinuity at t ¼ ts. A short calculation
shows that the Dirac observable Pvð�Þ :¼ �pvðt�Þ (where,
as in Sec. II B, t� is the time at which �vðt�Þ ¼ �) can be
expressed as

Pvð�Þ ¼ 1

6�G½�ð0Þ ��ð�Þ� ; (A1)

and of course it exhibits an infinite discontinuity at
ffiffiffi
�

p ¼ 0.
To be clear about the meaning of this discontinuity,

consider the projection of the phase-space trajectories
onto the ðv; pvÞ plane, depicted schematically in Fig. 3.
As we have remarked previously, these trajectories fill out
two disjoint regions of the phase plane, which we have

v

pv

FIG. 3. Schematic depiction of the classical phase-space tra-
jectories projected onto the ðv; pvÞ plane. Arrows indicate the
direction of increasing t.
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labeled by � ¼ �sgnðv1=2pvÞ. Each expanding trajectory
in the lower quadrant of the phase plane, � ¼ 1, is com-
pletely parametrized by the range of values ts < t <1. It
has an initial singularity, in the precise sense that it reaches
the end of the available phase space at a finite parameter
value t ¼ ts. Similarly, each contracting trajectory in the
upper quadrant of the phase plane, � ¼ �1 is completely
parametrized by�1< t < ts and has a final singularity at
t ¼ ts. We emphasize that the expanding trajectories are
distinct from the contracting ones: no trajectory passes
from one of the regions � ¼ �1 to the other. Thus,
although the two functions �vðtÞ corresponding to an ex-
panding trajectory and its mirror-image contracting trajec-
tory can be combined to form a single smooth function,6

they nevertheless still describe two distinct trajectories. In
terms of the Dirac observables, the infinite discontinuity
(and the associated sign change) in Pvð�Þ, regarded as a
function of

ffiffiffi
�

p
, indicates that positive and negative values

of
ffiffiffi
�

p
correspond to distinct trajectories, notwithstanding

the fact that�ð�Þ is smooth at
ffiffiffi
�

p ¼ 0. In fact, we see that
allowing for both signs of

ffiffiffi
�

p
is completely redundant; the

classical dynamics is fully described by restricting
ffiffiffi
�

p
to

positive values, and using the discrete parameter � to
distinguish expanding and contracting trajectories.
Indeed, the continuation to negative values of

ffiffiffi
�

p
is poten-

tially misleading: it suggests that the system can pass from
a contracting state to an expanding state by dynamical
evolution, which is not true.

The preceding discussion involves an assumption that
deserves to be made explicit, namely, that the points of the
half-plane depicted in Fig. 3 are in one-to-one correspon-
dence with distinct physical states of the system in ques-
tion. In particular, (i) the geometrical state of the universe
is completely specified by the values of v and pv, so that
the positive and negative square roots of v specify exactly
the same state, and (ii) the limits pv ! þ1 (the Hubble
parameter _a=a approaches �1) and pv ! �1 (the
Hubble parameter approachesþ1) are physically different
limits. To see the importance of this assumption, consider
the change of variable v ¼ u2, and suppose that positive
and negative values of u ¼ ffiffiffi

v
p

specify physically distinct

states. The momentum conjugate to u is pu ¼ 2v1=2pv,
and the solutions (2.11) and (2.12) to the Hamilton equa-
tions become

�uðtÞ ¼ u� 3�Gput (A2)

and �puðtÞ ¼ pu ¼ constant. For this system, the phase
space is the whole ðu; puÞ plane. It is a different system

from the one described by ðv; pvÞ because, although the
dynamical equations of the two systems are locally related
by a canonical transformation, there is no one-to-one cor-
respondence between their distinct physical states. For the
ðu; puÞ system, the distinct trajectories are simply the lines
pu ¼ constant, each smoothly parametrized by t in the
whole range �1< t <1. The ‘‘big bang’’ at v ¼ 0 cor-
responds to the line u ¼ 0, but this is now in the interior of
the phase space, and there is no singularity there. As with
any dynamical system, one is free to contemplate quantities
such as pv :¼ pu=2u, which diverge at u ¼ 0, but that is a
different matter. Each trajectory of the ðu; puÞ system is
divided, at �u ¼ 0, into two segments; on one segment, the
volume �uðtÞ2 is an increasing function of t, while on the
other it is a decreasing function. Thus, although there is no
unique correspondence between states of the ðv; pvÞ and
ðu; puÞ systems in general, one can map a mirror-image pair
of ðv; pvÞ trajectories into a single ðu; puÞ trajectory. The
image of this map excludes the point u ¼ 0, unless one adds
to the ðv; pvÞ phase space the ‘‘points at infinity’’ ðv; pvÞ ¼
ð0;�1Þ, and stipulates that both of these points map to the
single point ð0; puÞ for the appropriate value of pu.
It seems fairly clear that classical Friedman-Robertson-

Walker cosmology corresponds to the ðv; pvÞ system rather
than to the ðu; puÞ system. The basic metric variable is the

square of the scale factor, a2 ¼ v2=3, and real, non-
negative values of a2 correspond straightforwardly to
real, non-negative values of v. Were we to write instead

a2 ¼ u1=3, then allowing u to assume negative values en-
tails allowing a2 to assume complex values—a possibility
not conventionally embraced by cosmologists. We might
protect the reality of the scale factor by writing instead

a2 ¼ juj1=3. In that case, negative values of u specify
exactly the same geometry as positive values, and should
be excluded, to avoid overcounting of states. With that
restriction, expanding and contracting states once more
belong to distinct classical trajectories, which terminate
at finite parameter values at initial or final singularities: this
restriction of the ðu; puÞ system is equivalent to the ðv; pvÞ
system. This, of course, accords with the conventional
view that the ‘‘big bang’’ of classical FRW cosmology is
an initial singularity, rather than the midpoint of a bounc-
ing history, at which the Hubble parameter happens to
change sign via an infinite discontinuity. According to
this conventional view (which we adopt throughout),
avoidance of the singularity must involve a nonzero mini-
mum volume.
In this paper, we describe a quantization of the ðv; pvÞ

system. One might perhaps attempt to quantize the ðu; puÞ
system, and to interpret it as a quantum cosmology in
which complex values of the scale factor are allowed, on
the grounds that a quantum system can exist in states that
are classically inaccessible. These are not necessarily good
grounds, because quantization typically preserves the
configuration space (in this case,

ffiffiffi
v

p
> 0) of the original

6Specifically, for pv > 0, say, the function �vðtÞ ¼
vð1� 6�GpvtÞ2 describes, for t < ð6�GpvÞ�1, the volume on
the contracting trajectory that passes through ðv; pvÞ at t ¼ 0.
Writing t ¼ 2ð6�GpvÞ�1 þ t0, we find that for t > ð6�GpvÞ�1,
the same function �vðtÞ ¼ vð1þ 6�Gpvt

0Þ2 describes the vol-
ume on the expanding trajectory that passes through ðv;�pvÞ at
t0 ¼ 0.
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classical system. (For example, the wave function of a
quantum mechanical particle in a box may have support
at points inside the box which a classical particle cannot
reach, but it is not defined outside the box). Because we
deal specifically with the ðv; pvÞ system, it is meaningful to
ask whether the classical singularity is resolved in the
quantum theory. This question would not arise for the
ðu; puÞ system, because it has no classical singularity.

The issue this appendix is intended to address can now be
stated clearly. In nonrelativistic quantum mechanics, evo-
lution with respect to an external time parameter t, imple-

mented by a unitary operator ÛðtÞ ¼ expð�iĤt=ℏÞ, can be
extended to the whole range of parameter values�1< t <
1. An impediment to this evolution typically indicates a
failure of unitarity. That is, if we find a state � such that

ÛðtÞ� is not well defined for all t, then Û is not a genuine
unitary operator. In constructing the wave function (4.14)
and exhibiting the corresponding probability density in
Fig. 2, we have terminated the evolution at

ffiffiffi
�

p ¼ 0. Two
questions might be raised: (i) does this termination indicate
some failure of unitarity and, consequently, a flaw in our
quantization scheme? (ii) by terminating the evolution, do
wemiss some important feature of the quantum theory, such
as the resolution of the singularity that seems to be apparent
from Fig. 1, where the internal-time parameter is ’?

The answer to both of these questions is no. The evolu-

tion in
ffiffiffi
�

p
is perfectly unitary, because the Hamiltonian Ĥ�

is self-adjoint, and can perfectly well be continued to
negative values of

ffiffiffi
�

p
. We have actually terminated it atffiffiffi

�
p ¼ 0, because � is not an external time, but an internal
time parameter. That is, it is supposed to correspond in
some way to a value of the volume v, and all physically
distinct, positive values of v are accounted for by the
corresponding positive values of

ffiffiffi
�

p
.

As we have discussed at length above, negative values offfiffiffi
�

p
are redundant, and potentially misleading, in the clas-

sical theory. To ascertain whether the same is true in the
quantum theory, we first replot, in Fig. 4, the probability
density of Fig. 2 as a function of

ffiffiffi
�

p
, allowing for negative

values. It is peaked on a function ’
�
ð ffiffiffi

�
p Þ corresponding to

the family of Dirac observables (2.15), with a negative
value of pv (because we chose a wave function c ð�D; �Þ
that vanishes for � ¼ �1). This function corresponds to a
contracting universe for

ffiffiffi
�

p
< 0, and to an expanding

universe for
ffiffiffi
�

p
> 0 but, as discussed above, the fact that

this smooth function can be constructed does not imply that
the singularity is resolved. In particular, ’�ð

ffiffiffi
�

p Þ is just a

straight line, passing smoothly through ð ffiffiffi
�

p
; ’�Þ ¼ ð0; 0Þ,

so there is no minimum volume. Moreover, having in hand

the quantum Dirac observable �̂, given in (3.18), we can

construct the operator P̂vð�Þ from the classical expression
(A1), and it clearly diverges at

ffiffiffi
�

p ¼ 0. Thus, the view of
this quantum-mechanical state furnished by � as an

internal-time parameter exactly parallels the classical situ-
ation. The

ffiffiffi
�

p
< 0 region of Fig. 4 simply reproduces the

probability density that would be obtained by choosing an
initial wave function in the � ¼ �1 sector instead of the
� ¼ þ1 sector. Classically, the fact that �ð�Þ can be
smoothly continued to artificial negative values of

ffiffiffi
�

p
does not imply that the system can pass dynamically
between the � ¼ �1 sectors. The fact that a wave function
peaked at this same function can be constructed gives no
reason to suppose that the quantum-mechanical situation is
any different.
How does this affect the comparison of Fig. 2 with

Fig. 1? Recall that, while Fig. 2 depicts the evolution
with the internal-time parameter � of the probability den-
sity for values ’

�
of the scalar field, Fig. 1 shows the

evolution with internal-time parameter ’ of the probability
density for values ~� of the volume. To make a meaningful
comparison with Fig. 4, we convert the latter to a proba-

bility density for values
ffiffiffi
~�

p
of the square root of the

volume. According to the standard formula, the required
expression is

~P ð~�;’Þ
�������� d~�

d
ffiffiffi
~�

p
��������¼ 2 ~P ðð ffiffiffi

~�
p Þ2;’Þj ffiffiffi

~�
p j: (A3)

This probability density is clearly an even function of
ffiffiffi
~�

p
,

and is shown in Fig. 5. We observe again a clear qualitative
difference between Figs. 4 and 5. Thus, the expedient of
continuing to negative values of

ffiffiffi
�

p
does not remove the

contradiction between the views provided of the same
quantum state by the two choices of internal time.
For completeness, we mention that there is a strategy

(though one that we believe to be unsound) which serves to
lessen the discrepancy apparent to the eye between the
pairs of probability densities exhibited in Figs. 1, 2, 4,
and 5. By contemplating both positive and negative values
of

ffiffiffi
�

p
, we implicitly adopt the view that these values

correspond to physically distinct states of the internal clock
that supplies this notion of internal time. As we have
argued, this view is misguided in the context of the
ðv; pvÞ system we are dealing with. To adopt this view
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FIG. 4. The probability density for the scalar field ’ evolved in
the internal-time parameter

ffiffiffi
�

p
.
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consistently, one should instead quantize the ðu; puÞ sys-
tem which, we have argued, does not have a satisfactory
cosmological interpretation. The relationship between the
two resulting quantum systems is ambiguous, not only
because of the operator-ordering choices that must be
made in quantizing each system separately, but also be-

cause the equation pu ¼ v1=2pv that relates them classi-
cally has itself an ordering ambiguity if we try to regard it
as a quantum-mechanical statement. Let us, however, set
these important difficulties aside, and suppose that,
although on the occasion of any particular measurement
our clock reading actually supplies a value of

ffiffiffi
�

p
, which

may have either sign, we record only the value � ¼
ð ffiffiffi

�
p Þ2. Assuming that positive and negative clock read-
ings are equally likely, we obtain a probability density for
’� at the internal time �, namely

P�ð’�;�Þ ¼
1

2

�
P�ð’�;

ffiffiffi
�

p Þ þ P�ð’�;�
ffiffiffi
�

p Þ
�
; (A4)

where, on the right-hand side, P�ð’�;
ffiffiffi
�

p Þ is the function

depicted in Fig. 4.

This new probability density is shown in Fig. 6, which
appears similar, though not identical, to Fig. 1. In particu-
lar, because Fig. 6 merely presents Fig. 4 in a different
form, it depicts a probability density peaked on a classical
trajectory that passes through the point ð�;’

�
Þ ¼ ð0; 0Þ,

indicating that the singularity is not resolved. Exact agree-
ment is, of course, not to be expected, because Fig. 1 is the
probability for the volume, evolved with internal time ’,
while Figs. 2 and 6 are probability densities for the scalar
field, evolved with internal time �. To make a quantitative
comparison, we can ask whether the new probability den-
sity (A4) satisfies the consistency condition (4.10) for these
two probability densities to arise from one underlying joint
probability density. The answer is that it does not. Thus,
even if one is willing to accept the construction of (A4)
as plausible, the two views of the quantum evolution
furnished by the two choices of internal time remain
inconsistent.
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[2] K. V. Kuchař, in Proceedings of the 4th Canadian
Conference on General Relativity and Astrophysics,
University of Winnipeg, 1991, edited by G. Kunstatter,
D. E. Vincent, and J. G. Williams (World Scientific,
Singapore, 1992).

[3] E. Anderson, arXiv:1009.2157.
[4] C. Rovelli, Quantum Gravity (Cambridge University

Press, Cambridge, 2004).
[5] T. Thiemann, Modern Canonical Quantum General

Relativity (Cambridge University Press, Cambridge,
2007).

[6] M. Bojowald, Living Rev. Relativity 11, 4 (2008) [http://
relativity.livingreviews.org/Articles/lrr-2008-4].

[7] A. Ashtekar, Gen. Relativ. Gravit. 41, 707 (2009).
[8] A. Ashtekar, AIP Conf. Proc. 1241, 109 (2010).
[9] A. Ashtekar and P. Singh, Classical Quantum Gravity 28,

213001 (2011).
[10] M. Bojowald, arXiv:1101.5592.
[11] C. Rovelli, Phys. Rev. D 43, 442 (1991).
[12] C. Rovelli, Classical Quantum Gravity 8, 317 (1991).
[13] C. Rovelli, Phys. Rev. D 65, 124013 (2002).
[14] B. Dittrich, Classical Quantum Gravity 23, 6155 (2006).
[15] B. Dittrich, Gen. Relativ. Gravit. 39, 1891 (2007).
[16] T. Thiemann, Classical Quantum Gravity 23, 1163

(2006).

0

500

1000
v

10

5

0

5

10

FIG. 6. The probability density for the scalar field ’ evolved in
the internal-time parameter �. In contrast to FIG. 2, we suppose
that different signs of

ffiffiffi
�

p
correspond to distinct states of the

internal clock.

30

0

30

v

10

0

10

FIG. 5. The probability density for the square root of the
volume,

ffiffiffi
~�

p
evolved in the internal-time parameter ’.

IAN D. LAWRIE PHYSICAL REVIEW D 85, 023512 (2012)

023512-18

http://arXiv.org/abs/1009.2157
http://relativity.livingreviews.org/Articles/lrr-2008-4
http://relativity.livingreviews.org/Articles/lrr-2008-4
http://dx.doi.org/10.1007/s10714-009-0763-4
http://dx.doi.org/10.1063/1.3462605
http://dx.doi.org/10.1088/0264-9381/28/21/213001
http://dx.doi.org/10.1088/0264-9381/28/21/213001
http://arXiv.org/abs/1101.5592
http://dx.doi.org/10.1103/PhysRevD.43.442
http://dx.doi.org/10.1088/0264-9381/8/2/012
http://dx.doi.org/10.1103/PhysRevD.65.124013
http://dx.doi.org/10.1088/0264-9381/23/22/006
http://dx.doi.org/10.1007/s10714-007-0495-2
http://dx.doi.org/10.1088/0264-9381/23/4/006
http://dx.doi.org/10.1088/0264-9381/23/4/006


[17] K. Giesel and T. Thiemann, Classical Quantum Gravity
27, 175009 (2010).

[18] I. D. Lawrie, Phys. Rev. D 83, 043503 (2011).
[19] J. D. Brown and K.V. Kuchař, Phys. Rev. D 51, 5600
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