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We study the fluctuations in luminosity distances due to gravitational lensing by large scale

(*35 Mpc) structures, specifically voids and sheets. We use a simplified ‘‘Swiss cheese’’ model

consisting of a �CDM Friedman-Robertson-Walker background in which a number of randomly

distributed nonoverlapping spherical regions are replaced by mass-compensating comoving voids, each

with a uniform density interior and a thin shell of matter on the surface. We compute the distribution of

magnitude shifts using a variant of the method of Holz and Wald [2], which includes the effect of lensing

shear. The standard deviation of this distribution is �0:027 magnitudes and the mean is �0:003

magnitudes for voids of radius 35 Mpc, sources at redshift zs ¼ 1:0, with the voids chosen so that

90% of the mass is on the shell today. The standard deviation varies from 0.005 to 0.06 magnitudes as we

vary the void size, source redshift, and fraction of mass on the shells today. If the shell walls are given a

finite thickness of �1 Mpc, the standard deviation is reduced to �0:013 magnitudes. This standard

deviation due to voids is a factor �3 smaller than that due to galaxy scale structures. We summarize our

results in terms of a fitting formula that is accurate to �20%, and also build a simplified analytic model

that reproduces our results to within�30%. Our model also allows us to explore the domain of validity of

weak-lensing theory for voids. We find that for 35 Mpc voids, corrections to the dispersion due to lens-lens

coupling are of order �4%, and corrections due to shear are �3%. Finally, we estimate the bias due to

source-lens clustering in our model to be negligible.
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I. INTRODUCTION

A. Background and Motivation

A number of surveys are being planned to determine
luminosity distances to various different astronomical
sources, and to use them to constrain properties of the
dark energy or modifications to gravity that drive the cos-
mic acceleration. It has long been recognized that pertur-
bations to luminosity distances from weak gravitational
lensing will be a source of error for these studies, both
statistical and systematic [1–5]. For supernovae the lensing
noise becomes significant only at high redshifts [6], but for
gravitational wave sources the lensing noise dominates over
the intrinsic luminosity scatter [7,8]. Theoretical predic-
tions for the magnification probability distribution can be
folded into the data analysis of surveys to improve the
results [9], and, in particular, it is possible to exploit the
known non-Gaussian nature of this distribution [10]. In
addition, it is possible to treat the ‘‘lensing noise’’ in
luminosity distances as a signal in its own right, which
provides useful information [11]. (A tentative detection of
this signal in supernovae data has been claimed in

Ref. [12].) For these reasons, it is useful to have a detailed
understanding of the magnification probability distribution.
There are a number of methods that have been used to

study the effects of weak lensing on luminosity distances:
(i) Weak-lensing theory can be used to predict the vari-

ance of the magnification distribution from the matter
power spectrum [13]. However, the accuracy of this
approach is limited and, in particular, it does not allow
one toprobe the non-Gaussian tails of the distribution.1

(ii) One can use numerical ray tracing using the results of
cosmological simulations of a large-scale structure,
such as the Millennium simulation [15] and the
Coyote Universe project [16], see, e.g. Ref. [17].
This approach is highly accurate and is based on a
realistic density distribution. However, it requires
substantial computational power and is also limited
in some other respects. The largest simulations to
date are confined to a cube of comoving size z�
0:16, so only a limited range of source redshifts can
be considered.Although the calculations evolve large
scale structure nonlinearly, it is impractical to get a
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1We note however that there is a proposal for an approximate
‘‘universal probability distribution’’ for magnifications that take
as input only the variance of the distribution as predicted by
weak-lensing theory, and which would allow prediction of the
non-Gaussian tails [14].
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continuous description of the evolution, which is
needed for computing the perturbations to light ray
paths; only snapshots of the density distribution are
available. Finally, because the calculations required
to evolve thematter distribution are formidable, it can
be difficult to comprehensively survey the space of
the underlying parameters of the model, such as the
primordial perturbation spectrum.

(iii) A third approach is to use simplified analytical
models of the distribution of matter that allow rapid
computation of the full probability distribution of
magnifications, see, e.g., Refs. [2,4,18,19].

In this paper we follow the third approach. We develop
an idealized ‘‘Swiss cheese’’ model [2,20–23] of large-
scale structures to study the effect of density inhomogene-
ities on luminosity distances. Our model is complementary
to many of the existing models in that we focus on lensing
produced by structures at the largest scales, voids and
sheets, rather than that produced by individual galaxies
and halos, the focus of many existing models.

B. Our void model

In ‘‘Swiss cheese’’ models [2,20–23], the Universe
contains a network of spherical, nonoverlapping, mass-
compensated voids. The voids are chosen to be mass-
compensated so that the potential perturbation vanishes
outside each void. We idealize these models even further
by assuming that each void consists of a central, uniformly
underdense region surrounded by a zero thickness shell.
Mass flows outward from the evacuated interior and is then
trapped on the wall. Although it would be more realistic to
consider voids with smooth density profiles, this very sim-
plified model should capture the essence of the effect of
large-scale density inhomogeneities on luminosity dis-
tances. Since voids in the observable Universe tend to be
surrounded by shells that are relatively thin compared to the
size of their evacuated interiors, the idealization of zero
thickness may not be a severe simplification, particularly
because we expect that the main effect of inhomogeneities
on the luminosity distance depends only on the integral of
the density contrast along the line of sight from the source
to the observer. A key feature of our idealized models is that
they can be evolved in time continuously and very simply.

Within the context of this highly idealized class of
models, we study the distribution of magnitude shifts
relative to what would be found in a smooth cold dark
matter (CDM) model of the Universe with a cosmological
constant,�, for different void sizes and present day interior
underdensities, and for a range of different source red-
shifts. Moreover, although we shall use a Newtonian de-
scription that is valid as long as the void radii are small
enough compared with the Hubble length H�1

0 , the calcu-

lations can be made fully relativistic if desired. (We discuss
some corrections that are higher order in H0R, where R is
the void radius.)

This paper is a follow-up to our earlier work [20] (hence-
forth VFW08), in which we considered the effect of a
randomized set of voids with a single and rather large
comoving radius, 350 Mpc, using a particular model for
a smooth underdense interior inside a mass-compensated
shell. That study found that for a source with redshift zs ¼
1:8, the mean magnitude shift relative to smooth flat, CDM
for an ensemble of realizations of large scale voids was
unimportant (� 0:003), but the distribution of magnitude
shifts was fairly broad, with a standard deviation of about
0.1. Here, we consider a wider range of redshifts and void
sizes, and compute magnitude shifts relative to a more
realistic �CDM background with matter density today
�M ¼ 0:3 and dark energy density today �� ¼ 0:7.

C. Predictions for lensing noise

Our results for the standard deviation�m of themagnitude
shifts are summarized by the approximate fitting formula

�m � ð0:027� 0:0007Þ
�

R

35 Mpc

�
�
�
f0
0:9

�
�
�
zs
1:0

�
�
: (1.1)

Here, R is the comoving radius of the voids, zs is the source
redshift, and f0 is the fraction of the total void mass in its
shell today. The exponents are � ¼ 0:51� 0:03, � ¼
1:07� 0:04, � ¼ 1:34� 0:05. This fit is accurate to
�20% for 35 Mpc � R � 350 Mpc, 0:01 � f0 � 0:9,
and 0:5 � zs � 2:1. The mean magnitude shift is again
unimportant, roughly a factor of 10 smaller than the standard
deviation (1.1).
Our result (1.1) is computed in the limit of zero shell

thickness. This idealization is not very realistic, since as we
discuss in Sec. III below there is a logarithmic divergence
in the variance of the lensing convergence in the zero
thickness limit. This divergence arises from rays that
pass very near to the void walls. The variance in the
magnitude shift, however, is finite because of the nonlinear
dependence of magnitude shift on lensing convergence; the
divergence is cut off at lensing convergences of order unity.
(The divergence can also get regulated by finite sampling
effects; see Sec. III). To address this issue we also consider
a more realistic model with void walls of some finite
thickness �r. We estimate in Sec. III D that for f0 ¼ 0:9,
R ¼ 35 Mpc, and zs ¼ 1:0, the standard deviation in mag-
nitude shift is

�m � 0:013

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 0:23 ln

�
1 Mpc

�r

�s
; (1.2)

a factor of �2 smaller than the thin-shell limit (1.1) for
�r ¼ 1 Mpc.
The rms magnitude shift (1.2) due to voids is a factor of

�3 smaller than that computed from individual galaxies and
halos [4], in accord with expectations from weak-lensing
theory using the power spectrum of density perturbations
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(see Ref. [5] and Appendix A). Thus, lensing due to voids is
subdominant but not negligible.

We also use our model to estimate the sizes of various
nonlinear effects that go beyond linear, weak-lensing the-
ory. We estimate that for R ¼ 35 Mpc voids, the dispersion
�m is altered by �4% by lens-lens coupling, by �3% by
shear. There are also large nonlinearities (�30%–40%Þ in
our model that arise from the nonlinearity of void evolu-
tion. These results are qualitatively in agreement with
some previous studies of nonlinear deviations from
weak-lensing theory [24–26].

We also study the source-lens clustering effect [27], the
fact sources are more likely to be located in high density
regions, which enhances the probability of a lens being
located near the source. We estimate that the corresponding
bias in the distribution of magnifications is negligible in
our model.

D. Organization of this paper

This paper is organized as follows. Section II reviews our
Swiss cheese void model. We discuss how the voids evolve
in a Friedman-Robertson-Walker (FRW) background and
describe the model parameters. Next, we describe how our
void locations are randomized, by choosing impact parame-
ters randomly as light rays exit one void and enter the next.
Finally, we describe our method of computing the magni-
fication. Section III describes our simple analytical model
which reproduces the results of the simulations to within
�30%. It also describes a modification of our void model in
which the shell walls are given a finite thickness, and gives
the corresponding analytical results. Section IV gives the
results of our Monte Carlo simulations for the probability
distributions of magnifications, and discusses the depen-
dence of the variance on the parameters of the model. In
Section V, we study the source-lens clustering effect and the
associated bias. Section VI summarizes our results and their
implications. In Appendix A, we discuss the power spec-
trum of our void model and the corresponding weak-lensing
prediction. Appendix B reviews the derivation of the
method we use to compute the magnification distribution.
Finally, Appendix C is a comparison of our results with
other recent studies of lensing due to voids [18,19,28–31].
Our results are broadly consistent with these previous stud-
ies but our model is simpler in several respects.

II. SIMPLE MODEL OF LENSING DUE TO VOIDS

In this section, we describe our simplified Swiss cheese
model of large scale voids, and explain how we compute
the distribution of magnifications in the model.

A. Newtonian model of a single void

As discussed in the introduction, we will consider void
radii R ranging from 35 Mpc to 350 Mpc, which are small
compared to the Hubble length. Therefore, we can use

Newtonian gravity to describe each void; the correspond-
ing error is of order ðH0RÞ2 � 1 which we ignore.
We choose the background cosmology in which we

place our voids to be an FRWUniverse with matter fraction
�M and cosmological constant fraction 1��M. We de-
note by aexðtÞ the corresponding scale factor, which is
normalized so that aexðtÞ ¼ 1 today. It satisfies the
Friedman equation�

_aex
aex

�
2 ¼ H2

0

�
�M

a3ex
þ 1��M

�
; (2.1)

where H0 is the Hubble parameter, which has the solution

3H0t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��M

p
2

¼ sinh�1

�
a3=2ex

a3=2�

�
: (2.2)

Here, a� ¼ ð�M=ð1��MÞÞð1=3Þ is the scale factor at
which the cosmological constant starts to dominate.
Our void model consists of a spherical region of constant

comoving radius R, with a uniform density interior sur-
rounded by a thin shell. We assume that the void is mass-
compensated, so the total mass enclosed is the same as
what it would be in FRW, namely,

M ¼ H2
0�MR

3

2G
: (2.3)

We denote by fðtÞ the fraction of this mass in the thin shell,
so that the mass in the interior is ½1� fðtÞ�M. The frac-
tional density perturbation in comoving coordinates
�mðx; tÞ ¼ ��ðx; tÞ=� is therefore

�mðx; tÞ ¼ �fðtÞ�ðR� rÞ þ 1
3fðtÞR�ðr� RÞ; (2.4)

where �ðxÞ is the function defined by �ðxÞ ¼ 1 for x > 0
and �ðxÞ ¼ 0 for x < 0.
The corresponding potential perturbation �, in a

Newtonian gauge in which the metric has the form

ds2 ¼ �ð1þ 2�Þdt2 þ a2exðtÞð1� 2�Þdx2; (2.5)

is given by solving the Poisson equation r2� ¼
3H2

0�M�mðx; tÞ=ð2aexÞ. This gives

�ðx; tÞ ¼ H2
0�MfðtÞ
4aexðtÞ ðR2 � r2Þ�ðR� rÞ: (2.6)

The corresponding radial acceleration is

ar ¼ �H2
0�MfðtÞ
2aexðtÞ2

r�ðR� rÞ:

For each void, the potential will take the form (2.6) in a
spherical polar coordinate system centered on that void,
and the total potential is given by summing over the voids.
The potential vanishes in between the voids.
We next discuss how to compute the time evolution of

the fraction fðtÞ of the void mass in the thin shell. We will
work to leading, Newtonian order in ðH0RÞ2, and we will
also neglect the surface pressure that would arise in a
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relativistic calculation. The uniform interior behaves like a
positive energy FRW cosmology. It has negative curvature,
k < 0, and a scale factor ainðtÞ that obeys the equation�

_ain
ain

�
2 ¼ H2

0

�
�M

a3in
þ 1��M � k

a2inH
2
0

�
; (2.7)

since the cosmological constant is the same inside and
outside the void but the matter density is not. We define
the positive constant a0 ¼ ��MH

2
0=k, the inverse of

which is proportional to the density contrast at early times.
The solution to Eq. (2.7) is

3H0t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��M

p
2

¼
Z ðain=a�Þð3=;2Þ

0

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þx2þxð2=3Þ a�a0

q : (2.8)

This solution assumes that ain ¼ aex ¼ 0 at t ¼ 0, so that
the interior and the exterior regions started expanding at
the same time. Otherwise the deviations from FRW are
large at early times. Eliminating t between Eqs. (2.2) and
(2.8) gives the relationship between ain and aex, which is

sinh�1

�
a3=2ex

a3=2�

�
¼
Z ðain=a�Þð3=2Þ

0

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2 þ xð2=3Þ a�a0

q : (2.9)

Note that the above equations imply that ain > aex, as k < 0.
The density of the interior is equal to the mean FRW density
times ðaex=ainÞ3 < 1, and so the fraction of mass in the shell
is

fðtÞ ¼ 1�
�
aex
ain

�
3
: (2.10)

We numerically solve Eq. (2.9) to obtain aex=ain as a func-
tion of aex=a�, �M, and a0. In the remainder of the paper,
we will parameterize our void models in terms of the value
today f0 ¼ fðt0Þ of the mass fraction fðtÞ in the shell. We
will usually pick f0 ¼ 0:9. The parameter a0 can be com-
puted from f0 and�M.

B. Algorithm for randomization of void placement

Wenow discuss howwe choose the number and locations
of voids in our model. In some previous studies [32–34], the
centers of all the voids encountered by a given ray were
chosen to be collinear, so that the ray passed through the
centers of all the voids. In these studies the lensing demag-
nification was large enough to successfully mimic the
effects of dark energy. However, as discussed in VFW08,
the large demagnification was an artifact of the nonrandom-
ness of the void locations, which is not in accord with
observations of the distribution of voids [35–38]. In this
paper, we use a more realistic void distribution, which we
compute according to the following procedure:

(1) Fix the comoving void size R.
(2) Fix the redshift of the source zs.
(3) Place voids all along the ray from the source to the

observer, lined up so that they are just touching. The

source and the observer are placed in FRW regions.
The distance from the source to the shell of the
adjacent void is chosen to be a fixed small parame-
ter, and the distance between the observer and the
shell of the adjacent void then depends on the num-
ber of voids that can fit between the source and
observer.

(4) Randomize impact parameters by shifting each void
in a random direction perpendicular to the direction
of the light ray, so that the square b2 of the impact
parameter is uniformly distributed between 0 andR2.

Note that with this algorithm, each ray spends some time
in FRW regions between each pair of voids. An alternative
procedure would that used by Holz and Wald [2], in which
after exiting a void, a ray immediately enters another void
without traversing an FRW region. In this model the effec-
tive packing fraction of voids would be a factor �2 or so
higher than in our model, and the rms magnifications and
demagnification would be correspondingly enhanced.

C. Method of computing magnification along a ray

We now turn to a description of the method we use to
compute the magnification for a ray propagating through a
Universe filled with randomly placed voids, as described in
the last subsection. Our method is essentially a modifica-
tion of the method introduced by Holz and Wald [2], and
goes beyond weak-lensing theory. In this section we de-
scribe the computational procedure; a derivation is given in
Appendix B.
Starting from the perturbed FRW metric (2.5), we con-

sider an observer at t ¼ t0 (today) and x ¼ 0, or equiv-
alently at � ¼ �0, where � ¼ R

dt=aexðtÞ is conformal
time. We consider a source at x ¼ xs ¼ xsn, where n is
a unit vector. The geodesic joining the source and observer
in the background FRW geometry is

x�ðxÞ ¼ ð�0 � x;nxÞ; (2.11)

for 0 � x � xs, where x is the comoving distance (or affine
parameter with respect to the flat metric d�s2 ¼
aexðtÞ�2ds2 ¼ �d�2 þ dx2). Following Holz and Wald
[2], we solve the geodesic deviation equation relative to
this unperturbed ray in order to find the net magnification
and shear. We do not include deflection of the central ray
since the resulting corrections are relatively small; see
Appendix B and Ref. [2].

We denote by ~k ¼ d=dx ¼ �@� þ ni@i the past-

directed tangent vector to the ray. We also introduce a
pair of spatial basis vectors ~eA, A ¼ 1, 2, so that ~eA and
n are orthonormal with respect to d�s2. We define the
projected Riemann tensor

R AB ¼ �R����k
�k�e�Ae

�
B; (2.12)

for A, B ¼ 1, 2 where �R���� is the Riemann tensor of the

perturbed FRW metric without the aexðtÞ2 factor:
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ds2 ¼ �ð1þ 2�Þd�2 þ ð1� 2�Þdx2: (2.13)

Next we consider the differential equation along the ray

d2

dx2
AA

BðxÞ ¼ �RA
CðxÞAC

BðxÞ; (2.14)

where RA
CðxÞ means the projected Riemann tensor eval-

uated at x� ¼ x�ðxÞ, and capital Roman indices are raised
and lowered with �AB. We solve the differential Eq. (2.14)
subject to the initial conditions at the observer

A A
Bð0Þ ¼ 0;

dAA
B

dx
ð0Þ ¼ �A

B: (2.15)

Finally, the magnification along the ray, relative to the
background FRW metric, is2

	 ¼ x2s
j detAðxsÞj ; (2.16)

where the right-hand side is evaluated at the location x ¼
xs of the source. Note that this quantity, the ratio between
the perturbed and unperturbed angular diameter distances,
is a conformal invariant, as we show explicitly in
Appendix B.

The matrix AðxsÞ=xs can be expressed as a product of
an orthogonal matrix and a symmetric matrix with two real
eigenvalues 1� 
� �, where 
 is called the lensing con-
vergence and � the shear. The magnification is therefore

	 ¼ jð1� 
Þ2 � �2j�1: (2.17)

This computational procedure is essentially the same as
that used by Holz and Wald [2], except that Holz and Wald
work in the physical spacetime rather than the conformally
transformed spacetime, and at the end of the computation
they compute the ratio between the quantity x2s=ðdetAÞ
evaluated in the perturbed spacetime and in the background
spacetime. In our approach, we do not need to compute a
ratio, and furthermore the source term in the differential
Eq. (2.14) vanishes in FRW regions between the voids,
which simplifies the computation. See Appendix B for
more details on the relation between the two approaches.

We now turn to a discussion of the method we use to
compute approximate solutions to the differential
Eq. (2.14). Consider a small segment of ray, from x ¼ x1
to x ¼ x2 say. Since the differential equation is linear, we
have

AA
Bðx2Þ

_AA
Bðx2Þ

" #
¼ JACðx2;x1Þ KA

Cðx2;x1Þ
LA

Cðx2;x1Þ MA
Cðx2;x1Þ

" #
� AC

Bðx1Þ
_AC

Bðx1Þ

" #
:

(2.18)

for some 2� 2 matrices J, K, L, M which together form a
4� 4 matrix. To linear order inRAB we have3

JAC¼�A
C�

Z x2

x1

dxðx2�xÞRA
CðxÞ; (2.19a)

KA
C¼ðx2�x1Þ�A

C�
Z x2

x1

dx

�
Z x

x1

d �xð �x�x1ÞRA
Cð �xÞ; (2.19b)

LA
C¼�

Z x2

x1

dxRA
CðxÞ; (2.19c)

MA
C¼�A

C�
Z x2

x1

dxðx�x1ÞRA
CðxÞ: (2.19d)

We evaluate these matrices for a transition through a single
void, using the potential (2.6), the metric (2.13), and the
definition (2.12) of RAB. We neglect the time evolution of
the potential during passage through the void; the corre-
sponding corrections are suppressed by ðH0RÞ2. This gives

JAC ¼ �A
C þ c2P ðzÞ 1 4

4 1

 !
; (2.20a)

KA
C ¼ ðx2 � x1Þ�A

C þ 2

3
c3P ðzÞ 1 2

2 1

 !
; (2.20b)

LA
C ¼ 2cP ðzÞ 1� R2

3c2
4

4 1� R2

3c2

0
@

1
A; (2.20c)

MA
C ¼ �A

C þ 2c2P ðzÞ 1þ R2

3c2
2

2 1þ R2

3c2

0
@

1
A: (2.20d)

Here, b is the impact parameter, c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � b2

p
,

P ðzÞ ¼ 3

2
H2

0�M

xðxs � xÞ
xs

fðzÞ
aexðzÞ ; (2.21)

and fðzÞ is defined by Eq. (2.10). In these equations x and z
are evaluated at the center of the void.
Our computational procedure can now be summarized

as follows:
(1) Pick some source redshift zs, void radius R, and

fraction of void mass on the shell today f0.
(2) Choose void locations according to the prescription

described in Sec. II B.

2In our Monte Carlo simulations we discard all cases where
the determinant is negative, and so the absolute value sign in Eq.
(2.16) can be dropped. As explained in Ref. [2], this prescription
yields the distribution of magnifications of primary images; it is
not possible using the geodesic deviation equation method to
compute the distribution of total luminosity of all the images of a
source.

3Holz and Wald [2] drop all of the integrals over the projected
Riemann tensor in Eqs. (2.19) except the one in the formula for
LA

B. This is valid to leading order in ðH0RÞ2. We keep the extra
terms in Eqs. (2.19) even though our formalism neglects other
effects that also give fractional corrections of order ðH0RÞ2. The
extra terms change �m by a few percent.
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(3) For each void, compute the 4� 4 matrix that is
formed by the matrices J, K, L and M from
Eqs. (20).

(4) Perform a similarity transformation J ! U�1 	 J 	 U
on each of the matrices J, K, L, M for some
randomly chosen SOð2Þ matrix U, to randomize
the direction of the vectorial impact parameter.

(5) Multiply together all the 4� 4 matrices, and multi-
ply by the initial conditions (2.15), to evaluate
AA

BðxsÞ.
(6) Compute the magnification 	 relative to FRW from

Eq. (2.16), and then distance modulus shift�m from

�m ¼ �5
2log10ð	Þ (2.22a)

¼ 5

2 ln10
lnjð1� 
Þ2 � �2j: (2.22b)

(7) Repeat steps 2 through 6 a large number of times to
generate the distribution pð�m; zsÞ of distance
modulus shifts �m for sources at redshift zs, for a
randomly chosen direction from the observer.

(8) Finally, we correct this distribution to obtain the
observationally relevant quantity, the probability
distribution of magnitude shifts for a source chosen
randomly on a sphere at a distance corresponding to
redshift zs. The corrected distribution is [2]

P ð�m; zsÞ ¼ N pð�m; zsÞ=	
¼ N pð�m; zsÞ102�m=5; (2.23)

where N is a normalization constant.

D. Relation to weak-lensing theory

In weak-lensing theory the matrix AðxsÞ=xs that de-
scribes the deflections of the rays is presumed to be always
very close to the unit matrix, so the total integrated effect of
the inhomogeneities on a given ray can be treated linearly.
The solution to Eq. (2.14) in this approximation is given by
Eq. (2.19b) with x1 ¼ 0, x2 ¼ xs,

AA
BðxsÞ
xs

¼ �A
B �

Z xs

0
dx

xðxs � xÞ
xs

RA
BðxÞ: (2.24)

Taking the determinant and linearizing again, the contri-
bution from shear vanishes and the magnification is 	 ¼
1þ 2
 where the lensing convergence 
 is given by the
standard formula


 ¼ 3

2
H2

0�M

Z xs

0
dx

xðxs � xÞ
xsaexðzÞ �mðxÞ: (2.25)

Here, �mðxÞ is the fractional over density, x is the comov-
ing distance, xs is comoving distance to the source, and
aexðzÞ is the scale factor. Evaluating this for our void model
gives


 ¼ X
i


i; (2.26)

where the sum is over the voids and


i ¼ �3H2
0�M

xiðxs � xiÞ
xsaexðziÞ fðziÞci

�
1� R2

3c2i

�
(2.27)

is the lensing convergence from the ith void. Here, zi and xi
are the redshift and comoving distance to the center of the

ith void, ci ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � b2i

q
and bi is the ith impact parameter.

Our model goes beyond the weak-lensing result (2.26) as it
includes lens-lens couplings and shear.

III. APPROXIMATE ANALYTICAL
COMPUTATION OF MAGNIFICATION

DISPERSION

A. Overview

In the previous section, we described a Monte Carlo
procedure for computing the probability distribution
P ð�m; zsÞ of magnitude shifts �m for sources at redshift
zs, for our Swiss cheese model of voids. We will be
particularly interested in the mean

h�mi ¼
Z

d�m�mP ð�m; zsÞ (3.1)

and variance

�2
m ¼

Z
d�mð�m� h�miÞ2P ð�m; zsÞ (3.2)

of this distribution. In subsequent sections of the paper we
will describe the results of our Monte Carlo simulations
and their implications. In this section, however, we will
take a detour and describe a simple, approximate, analytic
computation of the variance. The approximation consists
of using the weak-lensing approximation to compute the
total lensing convergence 
 (accurate to a few percent, see
Sec. IVB), and then using an approximate cutoff procedure
to incorporate the effect of the nonlinear relation (2.22b)
between 
 and the magnitude shift �m. We will see in
Sec. IV below that this analytic approximation agrees with
our Monte Carlo simulations to within �30%.
Neglecting shear, the relation (2.22b) reduces to

�m ¼ 5

ln10
lnj1� 
j; (3.3)

where 
 is given by Eqs. (2.26) and (2.27). We will see
shortly that the variance of 
 diverges. This divergence is
an artifact of our use of a distributional density profile for
each void, with a �-function on the void’s surface, and can
be removed by endowing each shell with some small finite
thickness �r (see Sec. III D below). The variance of �m,
on the other hand, is finite, because of the nonlinear
relation (3.3). We shall proceed by using the linearized
version
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�m ¼ � 5

ln10
½
þOð
2Þ� (3.4)

of Eq. (3.3), and by simply cutting off the divergent inte-
grals that arise, at 
� 1, the regime where the nonlinearity
of the relation (3.3) becomes important.

B. Variance of magnitude shifts

From Eq. (3.4) we find for the mean and variance of the
magnitude shift

h�mi ¼ � 5

ln10
½h
i þOð
2Þ�;

�2
m ¼

�
5

ln10

�
2½h
2i � h
i2 þOð
3Þ�:

(3.5)

The averages are over the set of impact parameters fbi: i 2
½1; jðxsÞ�g in Eq. (2.27), where jðxsÞ is the number of voids
out to the source at xs. In computing the averages, it will
prove convenient to define

qi ¼ 1� b2i =R
2; (3.6)

so that each qi is distributed uniformly between zero and
one, since impact parameters arbitrarily close to the void
boundary are permitted. In fact, a shortcoming of our
model is the vanishing thickness of the void wall. We
therefore introduce lower cutoffs Ci for each void,4 that
is, we restrict qi to lie in the range Ci � qi � 1. We will
discuss below the origin and appropriate values of these
cutoffs.

With this assumption we obtain for the mean of the
lensing convergence (2.27) of the ith void

h
ii ¼ �H2
0�MxsRwi

Z 1

Ci

dqi

�
3

ffiffiffiffiffi
qi

p � 1ffiffiffiffiffi
qi

p
�

¼ �2H2
0�MxsRwi

ffiffiffiffiffi
Ci

p ð1� CiÞ; (3.7)

where

wi ¼ xiðxs � xiÞfðziÞð1þ ziÞ
x2s

: (3.8)

The mean lensing convergence (3.7) is always negative,
since Ci < 1; introducing the cutoff leads to a bias toward
demagnification. This is a shortcoming of the model, since
for any mass-compensated perturbation h
ii ¼ 0.5 Below,
we shall ignore small corrections that are powers of Ci, and
will take h
ii ¼ 0 for all i.

By contrast the second moment h
2
i i diverges logarith-

mically in the limit Ci ! 0:

h
2
i i ¼ ðH2

0�MxsRwiÞ2
Z 1

Ci

dqi

�
3

ffiffiffiffiffi
qi

p � 1ffiffiffiffiffi
qi

p
�
2

(3.9a)

¼ ðH2
0�MxsRwiÞ2½� lnCi � 3

2 þOðCiÞ�: (3.9b)

This divergence is caused by rays that just graze the �
function shell of the void.
Because 
 is a sum of 
i, its mean is the sum of the

individual means, but

h
2i ¼ X
i

h
2
i i �

X
i�j

h
iih
ji (3.10)

and therefore

�2

 ¼ h
2i � h
i2 ¼X

i

ðh
2
i i � h
ii2Þ: (3.11)

Combining this with Eqs. (3.4) and (3.9b) and dropping
terms linear in Ci gives for the variance in magnitude shift

�2
m ¼ �2

0

X
i

w2
i ð� lnCi � 3

2Þ; (3.12)

where we have defined

�0 ¼ 5H2
0�MxsR

ln10
: (3.13)

We choose the cutoffs Ci to correspond to 
i � 1, as
discussed above; from Eqs. (2.27) and (3.8) this gives

Ci ¼ ðH2
0�MRxswiÞ2: (3.14)

The approximate analytic result given by Eqs. (3.8) and
(3.12), (3.13), and (3.14) is plotted in Fig. 10 in Sec. IVB
(below. It agrees with our Monte Carlo simulations to
within �30%, which is reasonable given the crudeness of
our analytic cutoff procedure.

C. Finite sampling effects

In addition to computing the width�2
m of the distribution

of magnitude shifts �m, we now compute a different
quantity �2

m;medðNÞ which is, roughly speaking, the esti-

mate of the width that one would obtain with N samples
�m�, 1 � � � N, drawn from the distribution. More pre-
cisely, this quantity is defined as follows. From the N
samples we construct the estimator

�̂ 2
m 
 1

N � 1

XN
�¼1

�m2
� � 1

NðN � 1Þ
�XN
�¼1

�m�

�
2
:

(3.15)

This quantity is itself a random variable with expected
value h�̂2

mi ¼ �2
m. However, for finite N the median value

of the distribution of �̂2
m can be significantly different

from �2
m. We denote this median value by �2

m;medðNÞ. In
the limit N ! 1 we have �m;medðNÞ ! �m. We note that

realistic supernovae surveys will have no more than �104

supernovae.

4These cutoffs will be used only for construction of our
analytical model in this section; they are not used in
Monte Carlo simulations in the remainder of the paper.

5To restore this feature we could either scale the contribution
from the underdense core downward by a factor of Si ¼ 1þffiffiffiffiffi
Ci

p þ Ci or scale the contribution from the overdense shell
upward by the same factor Si.
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To estimate this median value, we use the fact that for
each void i, finite sampling imposes a minimum value on
qi of qi � 1=N on average, which acts like a statistical
cutoff in the integral (3.9b). This is in addition to the
physical cutoff (3.14) discussed above, which we will
denote by qi;c from now on. For N samples qi;�, 1 � � �
N, the probability that all N samples are larger than a value
Ci which is larger than qi;c is

P0ð<CiÞ ¼
�
1� Ci

1� qi;c

�
N
: (3.16)

Differentiating once we find that the probability distribu-
tion of Ci is

PðCiÞ ¼
��������dP0ð<CiÞ

dCi

��������¼ Nð1� CiÞN�1

ð1� qi;cÞN : (3.17)

For very large values of N and small qi;c an adequate

approximation is

PðCiÞ � N exp½�NðCi � qi;cÞ�; (3.18)

which is properly normalized for Ci � qi;c if we extend the
range ofCi to infinity, thereby incurring an error� expð�NÞ.

We now average the expression (3.12) for the width �2
m,

using the distribution (3.18) to average over the cutoffs Ci.
The result is

�2
m;med��2

0

X
i

w2
i �

�
lnN�3

2
�
Z 1

0
dxe�x lnðxþNqi;cÞ

�
:

(3.19)

If we define

Sðf0; zsÞ ¼
X
i

w2
i ;

�ðNqi;cÞ ¼ �
Z 1

0
dxe�x lnðxþ Nqi;cÞ;

(3.20)

then Eq. (3.19) becomes

�2
m;med��2

0½Sðf0;zsÞðlnN� 3
2Þþ

X
i

w2
i �ðNqi;cÞ�: (3.21)

The result (3.21) was obtained by averaging over the
cutoffs fCig using the probability distribution (3.18), and is
an estimate of the median of the distribution of �̂2

m. Of
course the actual value of �̂2

m computed from a
Monte Carlo realization of N lines of sight, or obtained
fromN observations of magnifications, may differ from the
result (3.21). We would like to also estimate the spread in
values of �̂2

m. From Eq. (3.12), and taking the variance with
respect to the distribution of cutoffs Ci, we find

�
��2

m;med

�2
m;med

�
2 ¼

P
i
w4

iVarðNqi;cÞ
½P
i
w2

i ðlnCi þ 3=2Þ�2 ; (3.22)

where

Var ðNqi;cÞ¼ðlnCiÞ2�ðlnCiÞ2

¼
Z 1

0
dxe�x½lnðxþNqi;cÞ�2�½�ðNqi;cÞ�2

(3.23)

Here the overbars denote an expectation value with respect
to the probability distribution (3.18). The quantity (3.22) is
a measure in the fractional spread in our estimate of the
median, and should give a lower bound on the fractional
spread in values of �̂2

m.
Two limits of Eqs. (3.21) and (3.22) are especially

simple. First, for Nqi;c � 1, we have �ðNqi;cÞ � �E ¼
0:5772 . . . , the Euler-Mascheroni constant, and also

VarðNqi;cÞ � 1:645 and �lnCi � lnN þ �E. This gives

�2
m;med � �2

0Sðf0; zsÞðlnN � 3
2 þ �EÞ; (3.24a)

��2
m;med

�2
m;med

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1:645

NvoidðlnN þ �E � 3=2Þ

s
; (3.24b)

where Nvoid ¼ xs=ð2RÞ is the number of voids and we have
used the crude approximation wi ¼ constant in the second
equation. Second, for Nqi;c � 1, we have �ðNqi;cÞ �
� lnNqi;c, VarðNqi;cÞ � 1=ðNqi;cÞ2, and lnCi � lnqi;c,
and so we obtain

�2
m;med � �2

0½�3
2Sðf0; zsÞ �

X
i

w2
i lnqi;c� (3.25a)

��2
m;med

�2
m;med

/ 1

N
: (3.25b)

The second case (3.25a) coincides with the N-independent
width (3.12), (3.13), and (3.14) computed earlier. We see
that the results are dictated by a competition between
statistical and physical cutoffs via the dimensionless pa-
rameter Nqi;c.
As discussed above, our simulations are effectively cut

off at 
i � 1; this implies a physical cutoff

qi;c � ðH2
0�MRxswiÞ2

� 2:2� 10�7

�
H0�Mxs
0:23

�
2
�

h0:7R

35 Mpc

�
2ð4wiÞ2: (3.26)

Herewe have scaled the factor�MH0xs to its value at�M ¼
0:3, zs ¼ 1:0, the quantity h0:7 is given by H0 ¼
70h0:7 km s�1 Mpc�1, and we note that 4wi � fðziÞ�
ð1þ ziÞ. From the estimate (3.26) we expect the Nqi;c � 1
limit to apply for N & 106. In this case, the cutoff is purely
statistical and the physical cutoff is unimportant. The pre-
diction (3.24a) for �m;med for N ¼ 104 and zs ¼ 1 is shown
in Fig. 1, together with results from our Monte Carlo simu-
lations, which are described in Sec. IV below. The plot shows
good agreement between the model and the simulations.
For this case, a lower bound on the fractional spread

in the values of �̂2
m around its median value is given by

Eq. (3.24b). That is, in any given simulation or observational
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survey with N light sources, the scatter of values about the
expected will be at least this large. For example, with N ¼
104, zs ¼ 1 and R ¼ 35 Mpc, the implied spread is * 6%.
In this regime where the cutoff is primarily statistical, the
range of likely values of �̂m is substantial, and only de-
creases logarithmically with increasing N.

When N * 106, we move into the Nqi;c � 1 regime

where Eqs. (3.25) apply. The results in this regime were
discussed in Sec. III B above, and are plotted in Fig. 10 in
Sec. IVB below. Equation (3.25b) indicates that the spread
scales as 1=N in this regime. However, this estimate is only
a lower bound for the spread in values of �̂2

m, as discussed
above. In fact, from Eq. (3.15) the standard deviation of �̂2

m

can be computed in terms ofN and of the second and fourth

moments of �m; it scales like 1=
ffiffiffiffi
N

p
as N ! 1. In any

case, the spread decreases more rapidly as N increases
after the transition to the large N regime. We will see in
Sec. IV below that this prediction agrees well with our
Monte Carlo simulations.

D. Extension of void model to incorporate
finite shell thickness

In this subsection we consider a modification of our void
model, in which the void wall is given a finite comoving
thickness �ri that acts as a physical cutoff in the divergent
integral (3.9a). The corresponding value of the cutoff pa-
rameter qi;c is qi;c ¼ 2�ri=R, from Eq. (3.6). The value of

wall thickness that corresponds to the cutoff (3.26) is thus
�ri � 3 pcðR=35 MpcÞ3, which is much smaller than the
expected void wall thicknesses�Mpc in large-scale struc-
tures. Thus, our thin-shell void model is somewhat unreal-
istic; the results are modified (albeit only logarithmically)
once the wall thickness exceeds�pc scales. This motivates
modifying the model to incorporate a finite wall thickness.

Consider next how the wall thickness evolves with red-
shift. At very early times, when the perturbation is in the
linear regime, it maintains its shape in comoving coordi-
nates, so the cutoff scale is some fixed fraction of R. Once
the perturbation becomes nonlinear, the shell thickness
should freeze out in physical extent, implying a comoving
size / 1=a. Thus, a suitable model for the redshift depen-
dence of the cutoff would be

qcðaÞ ¼ �0Wða=a0Þ; (3.27)

where WðxÞ is a function with WðxÞ ! 1 for x � 1 and
WðxÞ ! K0=x for x � 1. Here, a0ðf0Þ is the scale factor
when the perturbation ceases to be linear, and K and �0 are
constants that may also depend on f0. Very roughly, we
expect qcðaÞ � 0:1 soNqi;c � 1 as long asN * 10, so that
Eq. (3.25) will apply.
Suppose now that for a restricted range of source red-

shifts it suffices to take the fractional shell-wall thickness
�s ¼ �ri=R in comoving coordinates to be the same for all
shells. Then from Eq. (3.12) we get6

�2
m ¼ �2

0Sðf0; zsÞ½� ln�s þ lnð2Þ þOð�s ln�sÞ�: (3.29)

Equation (3.29) has the same form as Eq. (3.24a), but since
N�s � 1, the implied �m is smaller. For example,
evaluating this expression for f0 ¼ 0:9, zs ¼ 1:0 and
R ¼ 35 Mpc gives

�m � 0:013

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 0:23 ln

�
1 Mpc

�r

�s
; (3.30)

where �r ¼ �sR is the wall thickness.
The logarithmic divergence of �2

m will also be regulated
by treating the shell as composed of fragments that repre-
sent local density enhancements such as galaxy clusters
and superclusters for purposes of computing the magnifi-
cation of passing light beams. We shall examine this
further refinement of our model elsewhere.

IV. RESULTS OF MONTE CARLO SIMULATIONS
FOR MAGNIFICATION DISTRIBUTIONS

We now turn to describing the results of our Monte Carlo
simulations based on the algorithm described in Sec. II. In
the remainder of this paper, unless otherwise specified, we

0.10 1.000.500.20 0.300.15 0.70

5 10 4

0.001
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,m
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FIG. 1 (color online). The line (green) is our analytic model
(3.24a) of the median width of the distribution of magnitude
shifts �m, for N ¼ 104 samples, source redshift zs ¼ 1:0, and
void radius R ¼ 35 Mpc, as a function of the fraction of mass f0
on the void shells today. The data points are from our
Monte Carlo simulations with the same parameter values, de-
scribed in Sec. IV below.

6Equation (3.29) differs from Eq. (3.12) in that the �3=2 has
been replaced by ln2. This slightly more accurate version of the
equation is derived as follows. Instead of using the cutoff
procedure embodied in Eq. (3.9a), we use a regulated density
profile of the form �mðrÞ¼�f�ðR1�rÞþ��ðR�rÞ�ðr�R1Þ
where R1 ¼ Rð1� �sÞ and �¼f½ð1��sÞ�3�1��1. The variance
in the lensing convergence can then be computed from

h
2
i i¼9H4

0�
2
M

x2i ðxs�xiÞ2
x2saexðxiÞ2R2

Z R

0
dr
Z R

0
d �r�mðrÞ�mð�rÞ�r�rln

��������rþ �r

r� �r

��������;
(3.28)

from Eq. (2.25).
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will adopt the fiducial parameter values of matter fraction
�M ¼ 0:3, source redshift zs ¼ 1:0, void size R ¼
35 Mpc, and fraction of void mass on shell today f0 ¼
0:9. Our choice of void size is motivated by the fact
that observed void sizes [35–43] range from a typical
size of �10 Mpc to an upper limit of �100 Mpc. For
this fiducial case, we show in Fig. 2 the distance modulus
shift �m as a function of redshift zs for a single realization
of the void distribution. The values jump discontinuously
after each void, and illustrate the stochastic nature of the
lensing process.

Next, we repeat this computation some large number N
of times in order to generate the distribution of modulus
shifts �m. In the rest of the paper we will focus, in
particular, on the mean h�mi and standard deviation �m

of this distribution, and also on the estimator �̂mðNÞ of the
standard deviation that one obtains at finite N, given by
Eq. (3.15), which satisfies �̂mðNÞ ! �m as N ! 1.

The distribution for the fiducial case for N ¼ 2� 106 is
shown in Fig. 3. For this case, the standard deviation is

�m ¼ 0:031 35� 0:0003 and the mean is h�mi ¼
0:004� 0:001 (where the error is estimated based on
dividing the data into 200 groups of 10 000 runs). Our
result for the standard deviation agrees to within �30%
with that of a different Swiss cheese void model by
Brouzakis, Tetradis, and Tzavara [29]; see Fig. 5 of that
paper which applies to R ¼ 40 Mpc voids at zs ¼ 1. It also
agrees to within a factor �2 with the predictions of weak-
lensing theory using an approximate power spectrum for
our void model, as discussed in Appendix A.
Figure 4 shows how our estimated standard deviation

�̂mðNÞ varies with number of runs N. The quantity plotted
is log10j�̂m=�m � 1j, where �m ¼ 0:03135 is an estimate
of the N ! 1 limit, here taken from our largest run with
N ¼ 106. This plot exhibits several interesting features that
are in good agreement with the analytical model described
in Sec. III. First, in the low N regime at say N � 104, the
values of �̂mðNÞ differ systematically from the asymptotic
value by a few tens of percent, reflecting the difference
between �m;med and �m. Second, there is a somewhat

smaller scatter in this regime, of �5%, in agreement with
the prediction (3.24b). Third, there is a transition to a
different behavior at N � 3� 105, after which both the
scatter and systematic deviation from the asymptotic value
are much smaller.
In the rest of this paper, we will use the value N ¼ 106

unless otherwise specified. From Fig. 4 this corresponds to
an accuracy of �1 percent.
We show in Fig. 5 the mean h�mi of the distribution as a

function of source redshift zs, for R ¼ 35 Mpc and N ¼
2� 106. The errors shown are estimated by dividing the
data into 200 groups of 10 000 runs. The effect of the
nonzero mean on cosmological studies cannot be reduced
by using a large number of supernovae, unlike the effect
of the dispersion �m. However, the mean h�mi � 0:003

FIG. 2 (color online). The magnitude shift �m as a function of
source redshift zs for a single run, for voids of radius R ¼
35 Mpc, fraction of mass on the shell today f0 ¼ 0:9, in a
�CDM cosmology with �M ¼ 0:3.

FIG. 3 (color online). The probability distribution of magni-
tude shifts �m for a simulation in a �CDM cosmology with
�M ¼ 0:3, with sources at redshift zs ¼ 1, comoving voids
radius R ¼ 35 Mpc, and fraction of void mass on the shell today
f0 ¼ 0:9.
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FIG. 4 (color online). The estimator �̂m of the standard devia-
tion of the distribution of magnitude shifts �m, as a function of
number N of runs, for sources at redshift zs ¼ 1, comoving voids
radius R ¼ 35 Mpc, and fraction of void mass on the shell today
f0 ¼ 0:9. The plotted quantity is log10j�̂m=�m � 1j, where
�m ¼ 0:03135 is an estimate of the N ! 1 limit, here taken
from our largest run with N ¼ 106.
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magnitudes shown in Fig. 5 are too small to impact cos-
mological studies in the foreseeable future.

In Figs. 6–8, we show the probability distributions of
magnitude shifts�m for some other cases: source redshifts
of zs ¼ 1:1, 1.6 and 2.1, and void radii of R ¼ 35 Mpc,
100 Mpc, and 350 Mpc. We now turn to a discussion of the
dependence of our results on these parameters, as well as
on the fraction of mass in the shell today f0.

A. Dependence on void size

In Fig. 9, we show the standard deviation �m of the
magnitude shift as a function of void size R, for three
different redshifts, zs ¼ 1:1, 1.6, 2.1. To a good approxi-
mation the standard deviation grows as the square root of

the void size, �m / ffiffiffiffi
R

p
. We can understand this scaling by

making some order of magnitude estimates.
In making these estimates, we consider two different

classes of rays. Consider first rays that never come very
close to the shell of any of the voids, i.e. we exclude the case
b� R � R, where b is the impact parameter. The potential
perturbation �� for passage through a void is of order
��� fR2H2

0 , where f is the fraction of void mass in the

shell (or equivalently the fractional density perturbation in
the void interior). The contribution to the lensing conver-
gence from this void is then of order 
� ��=ðH0RÞ �
fH0R. Next, the trajectory of rays is a random walk, so the
net lensing convergence is the rms convergence for a single
void multiplied by the square root of the number�1=ðH0RÞ
of voids. Thus the contribution to the rms magnitude shift
from this class of rays is of order

�m � f
ffiffiffiffiffiffiffiffiffiffi
H0R

p
: (4.1)

Consider next rays which just graze the shell of at least
one of the voids. These grazing rays are subject to large
deflections, because of the �-function in density on the
surface of the void. The large deflections cause the second
moment h
2i of the lensing convergence to diverge, as
discussed in Sec. III B. However, the standard deviation
of the magnitude shift �m is still finite, because of the
logarithmic relation (3.3) between �m and 
.
For estimating the effect of these grazing rays, we

neglect shear. The convergence 
 of the grazed void will
be of order unity or larger if the impact parameter b is b ¼
Rð1� "Þ, where "� f2R2H2

0 , from Eq. (2.27). This will

occur with probability �". The contribution of these rays

FIG. 5 (color online). Top the mean h�mi of the distribution of
magnitude shifts�m as a function of source redshift zs, for voids of
radius R ¼ 35 Mpc with fraction of mass on the shell today f0 ¼
0:9, for N ¼ 106 samples. Bottom the same for R ¼ 100 Mpc.

FIG. 6 (color online). The probability distributions of magni-
tude shifts �m for simulations with sources at redshifts of zs ¼
1:1 (top), zs ¼ 1:6 (middle), and zs ¼ 2:1 (bottom), for comov-
ing voids of radius R ¼ 35 Mpc with 90% of the void mass on
the shell today.
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to hð�mÞ2i / h½lnð1� 
Þ�2i will be of order " times the
number�1=ðH0RÞ of voids, or �m � f

ffiffiffiffiffiffiffiffiffiffi
H0R

p
, the same as

the result (4.1) for the nongrazing rays.
These considerations show that both the underdense

void and the mass-compensating shell make substantial,
comparably large contributions to �m. This suggests that it
may be important to refine the shell model to include its
fragmentation into localized overdensities representing
galaxy clusters and galaxies, as discussed in Sec. III D
above.

B. Dependence on fraction of void mass on the shell

In this subsection we discuss the dependence of the
magnification distribution on the fraction f0 of void mass
on the shell today, or, equivalently, on the fractional over-
density ��=�, cf. Equation (2.4) above. Figure 10 shows

the results of our simulations for �m as a function of f0 for
N ¼ 106, together with a fit of the form (4.2)

�mðf0Þ ¼ �f0 þ �f20 (4.2)

for some constants � and �. We find that � ¼ 0:025�
0:006 and � ¼ 0:0085� 0:0064. Thus, the data show a
statistically significant deviation from linear behavior, of
the order of �30–40%.
We now discuss the various sources of nonlinearity that

arise in the computation. We will consider three different
types of effects.
First, in weak-lensing theory, the magnification is a

linear function of the density perturbation. Our computa-
tion includes some nonlinear effects that go beyond weak-
lensing theory, specifically lens-lens coupling (the fact that
the deflection due to one lens modifies the deflection

FIG. 7 (color online). The probability distributions of magni-
tude shifts �m, at source redshifts zs of 1.1 (top), 1.6 (middle),
and 2.1 (bottom), as in Fig. 6 except with comoving void radius
of R ¼ 100 Mpc.

FIG. 8 (color online). The probability distributions of magni-
tude shifts �m, at source redshifts zs of 1.1 (top), 1.6 (middle),
and 2.1 (bottom), as in Fig. 6 except with comoving void radius
of R ¼ 350 Mpc.
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caused by subsequent lenses) and shear (the effect of the
nontrace components of the matrices RA

B and AA
B). To

explore the magnitude of these effects, we performed
Monte Carlo simulations where we compute the lensing
convergence for each void and add these to obtain the total
lensing convergence (2.26), and then compute �m from 

using the exact nonlinear relation (2.22b) for zero shear.
The resulting value of �m for f0 ¼ 0:9, zs ¼ 1, R ¼
35 Mpc, N ¼ 106 is �m ¼ 0:0292, about 7% smaller
than the value �m ¼ 0:0314 obtained by multiplying the
4� 4 matrices. Thus, there is a �7% change from lens-
lens coupling and shear. For R ¼ 100 Mpc, the change due
to lens-lens coupling and shear is �10%. We also per-
formed simulations where we kept just the trace part of the
matrix RAB, in order to exclude the effects of shear, but
included lens-lens couplings by computing 4� 4 matrices
for each void and multiplying all these matrices. In this
case, the deviations of �m from the full simulations are
�3% for f0 ¼ 0:9, zs ¼ 1, R ¼ 35 Mpc and�6% for R ¼
100 Mpc. Thus, corrections due to shear are of this order.

These nonlinearities due to lens-lens coupling and shear
are significantly smaller than the nonlinearity shown in
Fig. 10. Thus other sources of nonlinearity must dominate.
For the remainder of this subsection we will neglect lens-
lens coupling and shear, to simplify the discussion.

A second type of nonlinearity present in our computa-
tions is the fact that the void mass fraction fðzÞ at some
redshift z depends nonlinearly on its value f0 ¼ fð0Þ to-
day, due to nonlinearity in the void evolution. Therefore,
even if we make the weak-lensing approximation of a
linear dependence of the magnification on the density
perturbation fðzÞ, the magnification will still be a nonlinear
function of f0. We can parameterize this nonlinear evolu-
tion effect by writing

fðz; f0Þ ¼ f0DþðzÞhðz; f0Þ; (4.3)

where DþðzÞ is the growth function of linear perturbation
theory, normalized so that Dþð0Þ ¼ 1, and the function
hðz; f0Þ incorporates the nonlinearity. This function satis-
fies hðz; f0Þ ! 1 as f0 ! 0 and also as z ! 0, and can be
computed using the results of Sec. II A above. Figure 11
plots this function for f0 ¼ 0:5 and f0 ¼ 0:9, and shows
that the nonlinearities in the evolution are significant.
This nonlinear evolution effect is the dominant source of

nonlinearity in our simulations. To illustrate this, we de-
fine, for a given source redshift zs, the parameter

fmid 
 fðzs=2; f0Þ: (4.4)

In other words, fmid is the fraction of void mass on the
shell for voids halfway to the source, the distance where
most of the lensing occurs. We can use fmid instead of
f0 as a parameter to describe our voids. With this choice
of parameterization, the nonlinear evolution effect is

FIG. 9 (color online). The standard deviation �m of the distri-
bution of distance modulus shifts �m as a function of void radius
R, computed using N ¼ 106 runs for each point. The bottom line
(stars) is for sources at zs ¼ 1:1, the middle line (squares) is zs ¼
1:6, and the top line (diamonds) is zs ¼ 2:1. Void radii range
from 35 to 350 Mpc and the fraction of void mass on the shell
today is f0 ¼ 0:9. The lines are fits of the form �m / ffiffiffiffi

R
p
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FIG. 10 (color online). The standard deviation �m as a func-
tion of the fraction f0 of the void mass on the shell today, for
void radii of R ¼ 35 Mpc and source redshift of zs ¼ 1, com-
puted using N ¼ 106 runs for each point. The dashed curve
(blue) is a fit of the form �m ¼ �f0 þ �f20. This plot shows that
there are nonlinearities present at the level of �30–40%.
The solid curve (green) is the analytic model (3.12), (3.13), and
(3.14), which is accurate to �30%.
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FIG. 11 (color online). The factor hðz; f0Þ by which nonlinear
evolution corrects the growth function DþðzÞ of linear perturba-
tion theory, for our void model. The upper curve is for f0 ¼ 0:9
and the lower curve is for f0 ¼ 0:5.
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significantly reduced. This is illustrated in Fig. 12, which
shows the same data as in Fig. 10, but as a function of fmid

rather than f0. The best-fit parameters in the quadratic fit
�m ¼ �fmid þ �f2mid are now � ¼ 0:032� 0:005, � ¼
0:0016� 0:0057, showing that there is no statistically
significant nonlinearity.

A third type of nonlinearity in our simulations arises
from the nonlinear relation between the lensing conver-
gence 
 and the magnitude shift �m. This effect should be
present in our data but is quite small. If we neglect lens-
lens coupling, shear, and the nonlinear evolution effect,
then we expect logarithmic terms in the relation between
�m and f0, of the form

�2
m � �f20 þ �f20 lnf0 þ . . . ; (4.5)

where � and � are constants which are independent of f0.
This follows from the analysis of Sec. III B above, where
the logarithmic divergence in the variance is cutoff at

� 1; see Eqs. (3.12) and (3.14). However, our data
show that the logarithmic terms in Eq. (4.5) are quite small.

Next, we discuss the effects of allowing a distribution of
values of void mass fraction on the shell f0 in our simula-
tions, rather than having a fixed value. We performed
simulations where we pick a value of f for each void
crossing according to the following prescription. We
choose a random values for 1=a0 from a Gaussian distri-
bution with a mean of 8 and a variance of 30, truncated to
lie in the range that corresponds to 0 � f � 1. Figure 13
compares the probability distributions for magnitude shifts
with and without variations in f. Treating f as a random
variable increases the standard deviation �m by �3%.

C. Dependence on source redshift

Figure 14 shows the standard deviation �m of the mag-
nitude shift distribution as a function of source redshift zs,
for three different void sizes. The standard deviation

increases with redshift faster than zs. This increase is due
in part to the increasing number of voids but there are
additional factors.
To understand the redshift dependence analytically we

use the expression for the dispersion in lensing conver-
gence from weak-lensing theory, given by Eq. (A2) in
Appendix A. The matter power spectrum �ðk; zÞ2 for our
void model is proportional to fðzÞ2, so we obtain that

h
2i /
Z xs

0
dxwðx; xsÞ2fðzÞ2; (4.6)

where wðx; xsÞ ¼ ð1þ zÞH0xðxs � xÞ=xs and fðzÞ is de-
fined by Eq. (2.10). In the range of redshifts 0:5 � zs �
1:5 this redshift dependence is approximately a power law,
proportional to z1:35s , to within�5% percent.7 This redshift
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FIG. 12 (color online). The standard deviation �m as a func-
tion of the fraction fmid of the void mass on the shell for voids
halfway to the source, for void radii of R ¼ 35 Mpc and source
redshift of zs ¼ 1. The solid line is a fit of the form �m ¼
�fmid þ �f2mid. For this choice of parameterization there is no

statistically significant nonlinearity detectable in the data.

FIG. 13 (color online). A comparison of the probability dis-
tributions of magnitude shifts �m in two different cases: fraction
of mass on the shell today fixed at f0 ¼ 0:9 (circles), and f0
drawn from a distribution as described in the text (stars). In both
cases void radius is R ¼ 35 and source redshift is zs ¼ 1:0. The
spread in the shell surface densities gives rise to a wider
distribution of magnitude shifts, by about �3%.

FIG. 14 (color online). The standard deviation �m as a func-
tion of source redshift zs, computed using N ¼ 106 runs, for
voids of radii R ¼ 35 Mpc (red, crossed circles), 70 Mpc (green,
squares), and 105 Mpc (blue, circles). The lines are fits propor-
tional to the analytic estimate (4.6).

7The asymptotic behavior at large zs is that the expression
(4.6) increases linearly in zs.
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dependence agrees with the results of our simulations
shown in Fig. 14 to within �10%.

D. Numerical fit to parameter dependence

We complete this part of the analysis by giving a three-
parameter fit for the standard deviation �m as a function of
void radius R, fraction of void mass on the shell today f0,
and source redshift zs. The result is

�m � ð0:027� 0:0007Þ
�

R

35 Mpc

�
�
�
f0
0:9

�
�
�
zs
1:0

�
�
; (4.7)

where the parameters are � ¼ 0:51� 0:03, � ¼ 1:07�
0:04, � ¼ 1:34� 0:05. This fit is accurate to �20% for
35 Mpc � R � 350 Mpc, 0:01 � f0 � 0:9, 0:5 � zs �
2:1.

V. BIAS DUE TO SOURCES OCCURRING
PREFERENTIALLY IN HIGH DENSITY REGIONS

For sources which are randomly distributed in space, it is
known that the total expected apparent luminosity of a
source, including all primary and secondary images, must
agree with that of the background FRW model [2]. Hence,
in situations where the probability of caustics can be
neglected, the probability distribution (2.23) of magnifica-
tions	must be unbiased. Biases arise in our computations
because of caustic effects, and also because we study the
probability distribution of the magnitude shift �m, which
is a nonlinear function of 	, cf. Equation (2.22a).

However, there is an additional fundamental source of
bias which arises from the fact that sources are not ran-
domly distributed in space, and instead preferentially occur
in high-density regions, where they are more likely to be
close to a lens. This is the source-lens clustering effect
[27]. In this section, we make an analytical estimate of the
bias �m of the distribution of magnitude shifts that is due
to source-lens clustering in our void model.

In our computations so far in this paper, we have placed
the source outside the voids, in the FRW regions. However,
in reality most matter is concentrated on the edges of voids,
and so sources are more likely to be on the void edges. If
we demand that sources always be located on void edges,
then the mean of the distribution is shifted by an amount
(see derivation below)

�m ¼ 1

3 lnð10Þ ð1þ zsÞH2
0R

2�Mfs: (5.1)

Here, zs is the redshift of the source and fs ¼ fðzsÞ is
the fraction of mass on the shell for voids at the source
redshift. Evaluating this estimate for �M ¼ 0:3, zs ¼ 1:0,
R ¼ 35 Mpc, f0 ¼ 0:9 gives �m� 5� 10�6, and �m�
5� 10�4 for R ¼ 350 Mpc. These biases are below the
accuracy of upcoming cosmology surveys.

Turn now to the derivation of the formula (5.1). We start
from the standard formula (2.25) for the lensing convergence

in weak-lensing theory. We consider just the contribution to

 from the last void. In the integral, over this void, we
approximate the factors x and 1=aexðzÞ as constants.
Writing � ¼ xs � x we obtain


lost void ¼ 3

2
H2

0ð1þ zsÞ�M

Z
lost void

��mðx; tÞd�: (5.2)

We also neglect the time dependence of �mðx; tÞ for inte-
grating over the last void.
We now consider two different models for randomizing

the relative displacement between the center of the last
void and the source. We denote by b the transverse dis-
placement of the void center from the line of sight, as
before, and denote by �v the distance from the void center
to the plane through the source perpendicular to the line of
sight.
In our first model, we assume b and �v are randomly

distributed, proportional to bd�vdb, with 0 � �v � R and
0 � b � R. Computing the integral (5.2) for our void
model (2.4) gives


lost void ¼ 3

2
H2

0�Mð1þ zsÞ

�
8<
:�2fs�v�þ 2fR2�v

3� �v > �

� 1
2 fð�v þ �Þ2 þ fR2

3� ð�v þ �Þ �v < �
;

(5.3)

where � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � b2

p
. Now averaging over b and �v gives

the expected value of h
lost voidi ¼ ð1þ zsÞH2
0R

2�Mfs=15.
In the second model, we assume that b and �v are

correlated so that the source is always on the surface of
the void. The average of 
lost voidðb;�vÞ in this model is

h
lostvoidi ¼
Z �=2

0
sin
ðR sin; R cosÞd; (5.4)

which using the formula (5.3) gives zero. Subtracting the
means of the two models gives an estimate of the bias, and
multiplying the result by 5= ln10 to convert from �
 to �m
gives the formula (5.1).

VI. CONCLUSIONS

In this paper, we presented a simple model to study the
effects of voids on distance modulus shifts due to gravita-
tional lensing. A number of future surveys will gather data
on luminosity distances to various different astronomical
sources, to use them to constrain properties of the source of
cosmic acceleration. The accuracy of the resulting con-
straints will be degraded somewhat by lensing due to non-
linear large-scale structures. We studied this effect by
considering a �CDM Swiss cheese cosmology with
mass-compensating, randomly located voids with uniform
interiors surrounded by thin shells.
We used an algorithm to compute the probability distri-

butions of distance modulus shifts similar to that of Holz
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and Wald [2]. The rms magnitude shift due to gravitational
lensing of voids is fairly small; the dispersion �m due to
35 Mpc voids for sources at zs ¼ 1 is �m ¼ 0:031, which
is�2–3 times smaller than that due to galaxy clusters (see
Appendix A below). Also, the mean magnitude shift due to
voids is of order �m� 0:003� 0:001. We also studied the
bias that arises from the source-lens clustering effect, and
estimated that the contribution from voids to this bias is
quite small, of order �m� 5� 10�6. Refining our model
by giving each void shell a finite thickness of �1 Mpc
reduces the dispersion �m by a factor �2.

We used our model to estimate the sizes of various
nonlinear effects that go beyond linear, weak-lensing the-
ory. We estimate that for R ¼ 35 Mpc the dispersion �m is
altered by �4% by lens-lens coupling, by �3% by shear.
For 100 Mpc voids, these numbers become 3% and 6%,
respectively.

Our simple and easily tunable model for void lensing
can be used as a starting point to study more complicated
effects. For example, one can use various algorithms to
generate realizations of distributions of nonoverlapping
spheres in three-dimensional space. Given such a realiza-
tion one could use the algorithm of this paper to study
correlations between magnifications along rays with
small angular separations, which would be relevant to
future pencil-beam surveys [44]. Finally, our model is
complementary to other simplified lensing models in
the literature that focus on lensing due to halos but
neglect larger-scale structures, for example, the model of
Refs. [18,19].

ACKNOWLEDGMENTS

This research was supported at Cornell by NSF Grant
Nos. PHY-0757735, PHY-0555216, and PHY-0968820,
and by NASA Grant No. NNX 08AH27G. R.A. V. ac-
knowledges support from the Kavli Institute for
Cosmological Physics at the University of Chicago through
Grant Nos. NSF PHY-0114422 and NSF PHY-0551142
and an endowment from the Kavli Foundation and its
founder Fred Kavli.

APPENDIX A: COMPARISON WITH
WEAK-LENSING THEORY

In this appendix we show that our results agree moder-
ately well with the predictions of weak-lensing theory, by
computing an approximate matter power spectrum for our
void model. We also obtain an independent estimate of the
lensing due to voids by using the power spectrum of the
Millennium simulation [15].

It is somewhat complicated to compute an exact power
spectrum for our distribution of voids.As a simplemodel, we
choose a two-void probability distribution function forwhich
the locations of the two voids are independently and uni-
formly distributed inside some large finite volume, except

that the probability is set to zero when the distance between
the void centers is less than 2R. For thismodel, using the void
density profile (2.4), we find for the power spectrum8

�ðk;zÞ2¼ 2�

3�
fðzÞ2k3R3j2ðkRÞ2

�
1�12�

j1ð2kRÞ
kR

�
: (A1)

Here, � is the void-packing fraction, which is �=6 in
our model, k is wave number, j1 and j2 are spherical
Bessel functions of the first kind, and fðzÞ is the fraction of
the void mass in the shell, which can be computed as a
function of redshift using the results of Sec. II A. We note
that this power spectrum is not an exact representation of our
void model, because in our procedure we first choose a
direction to the source and then generate a density perturba-
tion field that depends on this direction. Thus, our procedure
does not correspond exactly to choosing a direction
randomly in a preexisting homogeneous, isotropic random
process,9 i.e. h��ðxÞ��ðyÞi is not just a function of jx� yj.
Homogeneity is necessary in order to represent the two-point
function in terms of a power spectrum.
The power spectrum (A1) is shown in Fig. 15, both with

and without the correction factor in square brackets that
arises from the correlation between void locations. For
comparison, we also show in Fig. 15 an estimate of the
nonlinear power spectrum10 obtained from the Millennium
simulation [15]. The figure shows that our assumed void
model is in rough agreement with the simulation: the two
power spectra agree to within a factor�2–3 at large scales,
for 3 Mpc & k�1 & 30 Mpc, but disagree at small scales
k�1 � 1 Mpc, where the Millennium spectrum contains
more power. This is as expected because our model does
not attempt to model structure on these small scales.
We now turn to computing the effects of lensing using

these power spectra. From the formula (2.25) for lensing
convergence 
 in weak-lensing theory, it follows that for
subhorizon modes the variance in 
 is [14,45]

h
2i¼
Z
dlnk

�
9�

4
H2

0�
2
M

Z xs

0
dxwðx;xsÞ2�ðk;zÞ

2

k

�
; (A2)

8This model is not completely consistent, since the power
spectrum can become negative for large packing fractions. The
inconsistency is presumably a signal that our assumed 2-void
probability distribution cannot be obtained starting from any
symmetric non-overlapping n-void probability distribution. We
ignore this inconsistency here since the correlation effects that
give rise to the correction factor in square brackets in Eq. (A1)
give only a small (< 1%) correction to h
2i in any case.

9If the model were exactly homogeneous there would be a
nonzero probability for the observer to be located inside a void.
10We use the following fit to the Millennium power spectrum,
obtained from Fig. 9 of Ref. [15]: �ðk; zÞ2 ¼ �ðkÞð1þ zÞ�ðkÞ,
where the functions � and � are chosen so that �ðkÞ2 ¼
1:408 89þ 1:671 05x� 0:118 16x2 � 0:035 604 9x3 �
0:036 759 6x4 at z ¼ 0 and �ðkÞ2 ¼ 0:875 58þ 1:561 32x�
0:117 482x2 � 0:029 921 4x3 � 0:038 398 8x4 at z ¼ 0:98,
where x ¼ log10ðkMpc=hÞ. This fit is accurate to �30%.
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where x is comoving coordinate, xs is the position of the
source and w ¼ ð1þ zÞH0xðxs � xÞ=xs is the lensing effi-
ciency factor. The corresponding standard deviation

in magnitude shift �m is �m ¼ 5
ffiffiffiffiffiffiffiffiffih
2ip

= ln10, from
Eq. (3.4). We compute the integrand of the lnk integral by
numerically integrating over redshift, for a source redshift
of zs ¼ 1. The result is shown in Fig. 16.

Consider first the result for our void distribution.
Figure 16 shows that the envelope of dh
2i=d lnk asymp-
totes to a constant at large k, indicating a logarithmic
divergence in the variance h
2i. As discussed in the body
of the paper, this divergence is an artifact of our use
of a distributional density profile for each void, with a
�-function on the void’s surface. The divergence can be
regulated by endowing each shell with some small finite
thickness �r, which is approximately equivalent to truncat-
ing the integral over k in Eq. (A2) at k� 1=�r. Integrating
Eq. (A2) between 10�2 Mpc�1 and 102 Mpc�1 gives the
result �m ¼ 0:011, which is substantially smaller than the
result �m ¼ 0:031 obtained from our nonlinear method in
Sec. IV above. The agreement is improved if we integrate
up to 105 Mpc�1, corresponding the effective cutoff length
scale in our simulations estimated in Sec. III (even though
this shell thickness length scale is unrealistic). In this case,
�m ¼ 0:016, a factor of �2 smaller than our simulations.
The factor �2 disagreement is not too surprising, since as
mentioned above the derivation of Eq. (A2) requires the
assumption that the density perturbation is a homogeneous
isotropic random process, which is violated to some extent
by our void model.

It is also of interest to compute the standard deviation
�m for the Millennium simulation spectrum. Figure 16
shows that the variance of the lensing convergence
per unit logarithmic wave number dh
2i=d lnk peaks at

k� 100 kpc (in agreement with Sec. 10.5 of Ref. [5]). This
indicates that lensing is dominated by galactic scale struc-
tures, as claimed by Holz and Wald [2]. The total standard
deviation11 from all scales 10�2 Mpc � k�1 � 103 Mpc is
�m ¼ 0:044. The standard deviation from integrating only
over the scales of voids 3 Mpc � k�1 � 103 Mpc is �m ¼
0:010, a factor �4 smaller; this standard deviation agrees
well with our estimate (1.2) for the thick-wall void model.

APPENDIX B: DERIVATION OF PROCEDURE FOR
COMPUTING MAGNIFICATION DISTRIBUTION

In this appendix we describe in more detail the deriva-
tion of our prescription for computing magnifications
along a ray given by Eqs. (2.12), (2.13), (2.14), (2.15), and
(2.16).
Consider an observer O and a source S. The angular

diameter distance DAðO;SÞ is defined by

D2
A ¼ �A=��; (B1)

where �A is the proper area of the source, orthogonal to the
direction to the observer, and �� is the observed solid
angle at the observer subtended by the source. Under a
conformal transformation of the metric, �� is invariant
while �A transforms by a factor of the conformal factor
evaluated at the source. It follows that if we define �DA to be
the angular diameter distance computed in the conformally
transformed spacetime (2.13), then we have DA ¼
aðSÞ �DA, where a is the scale factor. We now define the
magnification relative to FRW to be12
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FIG. 15 (color online). The estimate (A1) of the matter power
spectrum �ðk; zÞ2 for our void distribution, as a function of
comoving wave number k, evaluated today at z ¼ 0. The lower
curve includes the correlation correction factor in square brack-
ets in Eq. (A1), and the middle curve omits it. The upper curve is
an approximate version of the nonlinear matter power spectrum
at z ¼ 0 obtained from the Millennium �CDM N-body simula-
tion [15], shown for comparison. The parameter values chosen
wereH0 ¼ 73 km s�1 Mpc�1,�M ¼ 0:3, f0 ¼ fð0Þ ¼ 0:9, R ¼
35 Mpc.
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FIG. 16 (color online). The variance of the lensing conver-
gence per unit logarithmic wave number, dh
2i=d lnk, for a
source at redshift zs ¼ 1, computed from the spectra shown in
Fig. 15. The upper curve is the Millennium simulation, the lower
curve is our void model.

11This total standard deviation due to lensing computed using
weak-lensing theory and the Millennium simulation agrees well
with that computed using other methods. For example, the
corresponding standard deviation for zs ¼ 1:5 is �m ¼ 0:066,
which agrees within �20% with the standard deviation of the
distribution shown in Fig. 1 of Ref. [4].
12This definition could equivalently be expressed in terms of
luminosity distances DL, since DL ¼ ð1þ zÞ2DA for any
spacetime.
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	 ¼ D2
A;0

D2
A

; (B2)

where DA;0 is the angular diameter distance computed in

the unperturbed FRW model. Expressing the two angular
diameter distances in Eq. (B2) in terms of the conformally
transformed versions, the factors of aðSÞ cancel,13 and we
obtain that

	 ¼ �D2
A;0= �D2

A ¼ x2s= �D2
A; (B3)

where xs is the comoving coordinate of the source.
To compute the angular diameter distance �DAðO;SÞ in

the conformally transformed spacetime (2.13), we use the
same method that Holz and Wald [2] used in the physical
spacetime, whose derivation we now outline in the context

of an arbitrary spacetime. Let ~k ¼ d=dx be the past-
directed tangent vector to the null geodesic joining O
and S, where x is affine parameter with x ¼ 0 at O. We

choose vectors ~l, ~e1, ~e2 at O so that ~e�̂ ¼ ð ~k; ~l; ~eAÞ, A ¼ 1,

2 form an orthonormal basis, i.e., satisfy ~k2 ¼ ~l2 ¼
~k 	 ~eA ¼ ~l 	 ~eA ¼ 0, ~k 	 ~l ¼ �1, ~eA 	 ~eB ¼ �AB. This ortho-
normal basis is extended along the geodesic by parallel
transport.

Now let ~�ðxÞ be an infinitesimal connecting vector that
joins the geodesic to some nearby geodesic. The compo-
nents of ~� on the orthonormal basis satisfy the geodesic

deviation equation d2��̂=dx2 ¼ �R�̂ �̂ �̂ �̂k�̂k�̂��̂. More

explicitly, expanding ~� ¼ 	 ~kþ �~lþ �A ~eA, the geodesic
deviation equation becomes

€� ¼ 0; (B4a)

€	 ¼ �R� �CRC; (B4b)

€�A ¼ �RA � �CRAC: (B4c)

Here, dots denote derivatives with respect to x, R ¼
Rabcdk

albkcld, RA ¼ �Rabcdk
albkcedA, and RAB ¼

Rabcdk
aebAk

cedB.
We are interested in a set B of rays all of which pass

through O and which define an element of solid angle ��
at O. The corresponding deviation vectors ~�ð0Þ must van-
ish at O, and the initial derivatives d ~�=dxð0Þ are orthogo-
nal both to ~k and to the four-velocity of the observer, ~uO. If
we specialize the choice of orthonormal basis so that ~uO 	
~eA ¼ 0, then it follows that � ¼ _� ¼ 0 at O, and from
Eq. (B4a) we obtain that �ðxÞ ¼ 0 everywhere. By the
linearity of the geodesic deviation equation it now
follows that

�AðxÞ ¼ AA
BðxÞ _�Bð0Þ (B5)

for some 2� 2 matrix AA
B. This matrix satisfies the

differential Eq. (2.14) and initial conditions (2.15) given
in Sec. II C above, from Eq. (B4c) with � ¼ 0. We define
the quantity

�ðO;SÞ ¼ x2s
detAðxsÞ ; (B6)

which is the so-called van Vleck determinant [48]. One can
show that this is invariant under rescaling of affine parame-

ter, under changes of the orthonormal basis that preserve ~k,
and under interchange of O and S.
We now define a set of angular coordinates � ¼ A that

parameterize the solid angle measured by the observer, by

A ¼ A0 þ _�Að0Þ=ð ~k 	 ~uOÞ, where �0 is the direction to the

source. The element of solid angle is then

�� ¼
Z
B
d2 ¼ 1

ð ~k 	 ~uOÞ2
Z
B
d2 _�Að0Þ

¼ 1

ð ~k 	 ~uOÞ2j detAðxsÞj
Z
B
d2�AðxsÞ; (B7)

where we have rewritten the integral using the Jacobian of
the transformation (B5).
Now consider the element of area �A measured at the

source S. This is defined to be the area in the rest frame of
the source, orthogonal to the direction to the observer. We

choose an orthonormal basis ~k, ~l0, ~e0A at S so that the four-

velocity is ð ~kþ ~l0Þ=2, and decompose the connecting vec-

tor as ~� ¼ 	0 ~kþ �0 ~l0 þ �0A ~e0A. Then the area is just �A ¼R
B d2�0A. Now the two orthonormal bases ð ~k; ~l; ~eAÞ and

ð ~k; ~l0; ~e0AÞ at S are related by some fixed Lorentz trans-
formation, so we obtain

� ¼ �0; 	 ¼ 	0 þ 1
2�

0D2 þHAB�
0ADB;

�B ¼ HA
B�0A þ �0DB;

(B8)

for some SOð2Þ matrix HAB and vector DA. Since � ¼ 0
everywhere it follows that �A and �0A are related by an
SOð2Þ transformation, which preserves area, and so �A ¼R
B d2�AðxsÞ. Combining this with Eqs. (B1), (B6), and

(B7), now gives for the angular diameter distance

DAðO;SÞ2 ¼ x2sð ~k 	 ~uOÞ2
j�ðO;SÞj : (B9)

This is independent of the normalization of the affine
parameter and of the four-velocity of the source, but does
depend on the four-velocity of the observer.
We now apply the formula (B9) to a stationary observer

in the perturbed Minkowski spacetime (2.13), to obtain the
angular diameter distance �DA of Eq. (B3) above.
Specializing the affine parameter x to be the comoving

coordinate gives ~k	 ~uO¼1, and then combining Eqs. (B3),
(B6), and (B7), gives the magnification formula (2.16).

13We neglect the contribution to 	 caused by the perturbation
in the observed redshift of the source, which enters when we
express the magnification in terms of the observed redshift. This
effect gives a subdominant contribution to 	 for subhorizon
modes [46,47].
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Finally, we note that in computing the matrix AðxsÞ, we
follow Holz and Wald [2] in neglecting the influence of the
metric perturbation on the background geodesic, and on the
parallel transport of the orthonormal basis. The corre-
sponding corrections to the angular diameter distance
have been computed in the weak-lensing limit in
Refs. [46,47] and are subdominant for subhorizon modes,
that is, are suppressed by a factor of ðH0RÞ2.

APPENDIX C: COMPARISON WITH OTHER
STUDIES OF LENSING DUE TO VOIDS

Luminosity distance in the context of Swiss Cheese
cosmology has been studied by Clifton and Zuntz [28],
Brouzakis, Tetradis and Tzavara [23,29], Szybka [30],
Valkenburg [49,50] and Biswas and Notari [31]. Other
studies in perturbed FRW cosmologies have been done
by Holz and Wald [2] and Hui and Greene [51]. In this
appendix, we summarize the relevant results from this
literature and compare with our results.

In Clifton and Zuntz [28], the mean and standard devia-
tion of apparent magnitude shifts are studied for redshifts
up to zs � 1 in�CDM cosmology. One difference between
their study and ours is that they model voids using a fully
relativistic Lemaitre-Tolman-Bondi model with a smooth
choice of density profile, whereas we use a simpler
Newtonian model where each void consists of a central
uniformly underdense region surrounded by a zero-
thickness shell. Fractional corrections to the Newtonian
approximation scale as ðH0RÞ2 � 0:0001 for 35 Mpc voids,
so a fully relativistic void model is not really necessary; our
model is substantially simpler than theirs. A second differ-
ence between the two studies is that they choose a con-
figuration of voids where the void centers lie along the line
of sight. Because of this choice, the lensing contributions
from successive voids add coherently instead of random
walking, which significantly changes the magnification
probability distribution. Specifically, for zs ¼ 1 and deep
voids, Clifton and Zuntz obtain a standard deviation in
modulus shift of �m � 0:01 (their Fig. 16), similar to our
value, but they obtain a mean shift of h�mi � 0:02, a factor
�10 larger than ours. This difference arises from their lack
of randomization of impact parameters.

Other similar studies are those of Brouzakis, Tetradis,
and Tzavara [29] and Biswas and Notari [31]. Brouzakis
et al. also use a fully relativistic Lemaitre-Tolman-Bondi
void model with a smooth choice of density profile. They
find values of standard deviation �m which agree to within
�30% with our model; see their Fig. 5 which applies to
R ¼ 40 Mpc voids at zs ¼ 1. Brouzakis et al. [29] and also
Biswas and Notari [31] studied the dependence of the
magnification distribution on void sizes, source redshift,
and fractional underdensity in the void interior, and found
results which agree qualitatively with ours. The effects of
randomizing void impact parameters was also studied by
Szybka [30], who found as did we that the dimming effect
due to voids is not enough to mimic the effect of dark
energy. The effect of shear is also studied by Szybka, who
found its effects to be very small, in agreement with our
results discussed in Sec. IVB above. The main advantage
of our model compared to these studies is simplicity: our
model allows us to explore and understand the effects of a
wide range of parameter values.
Kainulainen and Marra [18,19] introduce a different

technique to study lensing. While we compute the proba-
bility distribution of magnifications by doing Monte Carlo
simulations of ray tracing, Kainulainen and Marra [18]
develop a method that allows them to rapidly compute an
approximate form of the entire probability distribution
through a combination of numerical and analytical tech-
niques. However, their application of this method focuses
on the lensing due to galaxies and halos, not on the larger-
scale structures of sheets and voids, so our study is not
directly comparable to theirs. We note however that it
should be possible to apply their techniques to compute
the lensing due to voids.
Finally, a recent paper by Lavallaz and Fairbairn [52]

performs a similar study modeling voids as 30 Mpc
Lemaitre-Tolman-Bondi spheres with Kostov parameteri-
zation [53]. They assume that the supernovae number
density is proportional to the mass density inside voids
and they study the redshift range 0:01< z < 2:0. They find
that if there is essentially no cut off in the lower range of z,
the scatter in the inferred equation of state parameter w is
about 10%, while imposing a cutoff in the lower range of z
decreases the scatter.
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