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Bouncing models have been proposed by many authors as a completion of, or even as an alternative to,

inflation for the description of the very early and dense Universe. However, most bouncing models contain

a contracting phase from a very large and rarefied state, where dark energy might have had an important

role as it has today in accelerating our large Universe. In that case, its presence can modify the initial

conditions and evolution of cosmological perturbations, changing the known results already obtained in

the literature concerning their amplitude and spectrum. In this paper, we assume the simplest and most

appealing candidate for dark energy, the cosmological constant, and evaluate its influence on the evolution

of cosmological perturbations during the contracting phase of a bouncing model, which also contains a

scalar field with a potential allowing background solutions with pressure and energy density satisfying

p ¼ w�, w being a constant. An initial adiabatic vacuum state can be set at the end of domination by the

cosmological constant, and an almost scale-invariant spectrum of perturbations is obtained for w � 0,

which is the usual result for bouncing models. However, the presence of the cosmological constant

induces oscillations and a running towards a tiny red-tilted spectrum for long-wavelength perturbations.

DOI: 10.1103/PhysRevD.85.023508 PACS numbers: 98.80.Cq, 04.60.Ds

I. INTRODUCTION

Bouncing models [1,2] have been widely investigated as
a solution of the singularity problem, and possibly as an
alternative to inflation as long as it can also solve, in its
own way, the horizon and flatness problems, and justify the
power spectrum of primordial cosmological perturbations
inferred by observations.

In the case where the contracting phase of a regular
bouncing model is dominated by some matter content
with a constant ratio between pressure and energy density,
p=� ¼ w ¼ const:, it was shown by many authors, in
different frameworks [3–8], that this matter content must
be dustlike, perhaps connected to cold dark matter, in order
to obtain a scale-invariant spectrum of scalar and tensor
cosmological perturbations.

On the other hand, since 1998 [9], cosmologists were
confronted with a highly unexpected observation: the
Universe is presently in a state of accelerated expansion.
This may be caused by the existence of some field violating
the strong energy condition, called dark energy, by a
modification of general relativity at large scales, by the
influence of some large scale inhomogeneities, or simply
by a well-suited cosmological constant. This last option is
by far the simplest explanation for the present acceleration
of the Universe, although it poses a problem to quantum
field theory on how to accommodate its observed value
with vacuum energy calculations. Anyway, the so called
�CDM standard model assumes that there exists a cosmo-
logical constant term in Einstein’s equations, which be-
comes dynamically important when the typical scale of the
Universe has the size of the present Hubble radius.

In bouncing models without a cosmological constant,
vacuum initial conditions for quantum cosmological

perturbations are set in the far past of the contracting phase,
when the Universe was very big and almost flat, justifying
the choice of an adiabatic Minkowski vacuum in that
phase. However, if a cosmological constant is present,
the asymptotic past of bouncing models will approach de
Sitter rather than Minkowski spacetime. Furthermore,
the large wavelengths today become comparable with the
Hubble radius in the contracting phase when the Universe
was still slightly influenced by the cosmological constant.
Hence, the existence of a cosmological constant can mod-
ify the spectrum and amplitude of cosmological perturba-
tions. Note that this is not a question for inflation because
initial conditions for quantum perturbations and the mo-
ment of Hubble radius crossing in such models take place
when the cosmological constant is completely irrelevant:
the Universe is fully dominated by the inflaton field.
The aim of this paper is to investigate this issue in detail

in the context of a Friedmann-Lemaı̂tre-Robertson-Walker
geometry with a cosmological constant, and a scalar field
with potential allowing a constant equation of state p ¼
w� for the background field, like the exponential potential
in the scenario without cosmological constant. Hence, this
paper can be considered as an extension of Ref. [4] through
the introduction of a cosmological constant in the model.
Here, as in Ref. [4], our background scenario is not in-
tended to be a fully realistic description of the contracting
phase of a bouncing model, but to yield a suitable frame-
work to calculate the spectrum of linear cosmological
perturbations in bouncing models, and to study how it
depends on the presence of a cosmological constant and
on the equation of state of the matter content. In our model,
the bounce itself takes place at very short-length scales,
where the cosmological constant has no role. Hence, its
presence does not modify the evolution of the background
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and perturbations in that period, and the descriptions pro-
vided in Refs. [3–7,10–12] can still be considered to be
valid at the bounce. The main difference is originated from
processes much before the bounce, when the initial con-
ditions are set and the cosmological constant is not irrele-
vant. In that case, a Minkowski adiabatic vacuum can only
be defined in a precise time domain, i.e., at the end of
cosmological constant domination, but when the Universe
was still very big and rarefied. However, even in this time
domain, as the length scale associated with the cosmologi-
cal constant, given by the present acceleration of the
Universe, is not much bigger than the long wavelengths
of physical interest today, the spectrum of these scales can
still be slightly affected by the cosmological constant. And
indeed we will show, analytically and numerically, that the
usual result for bouncing models, namely, that the fluid
should satisfy w � 0 in order to have an almost scale-
invariant spectrum of long-wavelength perturbations, still
holds, but the presence of the cosmological constant in-
duces small oscillations and a small running towards a red-
tilted spectrum for these scales.

In the next section, we will present the background
model and obtain the equations for the evolution of cos-
mological perturbations on this background. In Sec. III, we
will discuss the choice of the initial state of the cosmo-
logical perturbations on this background. In Sec. IV, we
will obtain analytically and numerically the power spec-
trum of perturbations for the model presented in Sec. III,
and discuss its physical consequences. We end up with the
conclusions.

II. THE BACKGROUND MODEL AND THE
EQUATIONS FOR SCALAR PERTURBATIONS

The gravitational action we shall begin with is that of
general relativity with a cosmological constant, i.e.,

S GR ¼ � 1

6‘2Pl

Z ffiffiffiffiffiffiffi�g
p ðRþ 2�Þd4x; (1)

where ‘Pl ¼ ð8�GN=3Þ1=2 is the Planck length in natural
units (ℏ ¼ c ¼ 1), and � is the cosmological constant.

The geometry of the background is given by the spatially
flat homogeneous and isotropic line element in conformal
time

d s2 ¼ a2ð�Þðd�2 � �ijdx
idxjÞ: (2)

The matter content of the model is described by a ca-
nonical minimally coupled scalar field ’ with Lagrangian

L ¼ 1

2
’;�’

;� �Uð’Þ; (3)

where the potential energy density of the scalar field is given
by

Uð’Þ ¼ U0sinh
2

�
’

F

�
; (4)

U0 ¼ 3ð1� wÞH2
0��

16�G
; F ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

6�Gð1þ wÞ

s
; (5)

and w is a constant. This potential was already studied in
Refs. [13,14] for the case w ¼ �1=3.
In the case of a homogeneous and isotropic background,

one can find the scalar field solution

’ðtÞ¼�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

6�Gð1þwÞ

s
ln

��������tanh
�
3ð1þwÞ

4

ffiffiffiffiffiffiffiffi
��

p
H0t

���������; (6)

and under these conditions the energy density and pressure
of the scalar field

� ¼ 1

2a2
’02 þUð’Þ; p ¼ 1

2a2
’02 �Uð’Þ (7)

satisfy p ¼ w� (a prime denotes derivative with respect to
conformal time).
The Friedmann equations in conformal time read

H 2 ¼ 8�G

3
a2�þ a2�; (8)

H 0 �H 2 ¼ �4�Ga2ð�þ pÞ; (9)

and � satisfies the conservation equation

�0 ¼ �3H ð�þ pÞ; (10)

where H � a0=a.
In the present situation, where the pressure and energy

density of the matter content satisfy p ¼ w�, with w
constant, the solution for the scale factor in terms of cosmic
time dt ¼ ad� reads

aðtÞ¼a0

�
�0!

��

�
1=3ð1þ!Þ

�
�
sinh

�
�3

ffiffiffiffiffiffiffiffi
��

p ð1þ!ÞH0

2
t

��
2=3ð1þ!Þ

; (11)

where H0 ¼ 72 km s�1 Mpc�1 is the present Hubble pa-
rameter, �0! � �0=�crit with �crit � 3H2

0=ð8�GÞ, and

�� � �=H2
0 . The subscript 0 indicates the present values

of the respective quantities.

Note from Eqs. (4) and (7) and p ¼ w� that _’ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ wÞU0=ð1� wÞp

sinh’=F, and the kinetic energy of
the scalar field grows exponentially with ’, as usually
expected for a scalar field in a contracting phase of a
Friedmann model. However, the potential increases in the
same way, and that is why p ¼ w� is maintained.
Nevertheless, there is the question about the instability
against initial conditions of this tracking between potential
and kinetic energies of the scalar field in order to keep p ¼
w� in the contracting phase, which is also an issue for
Ref. [4], but note that it is not necessary that this tracking
must be valid all the way to the bounce: here, as in Ref. [4],
we are interested in the spectrum of long-wavelength
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perturbations, which become comparable to the Hubble
radius in the contracting phase at scales not much smaller
than the Hubble radius today. Hence, our calculations for the
spectrum of long-wavelength perturbations should hold even
if the tracking p ¼ w� ceases to be valid at smaller scales.
This may affect the spectrum of small wavelength perturba-
tions, but it will not affect our forthcoming calculations for
long-wavelength perturbations if the tracking p ¼ w� holds
at scales of the order of the Hubble radius today, when the
contracting Universe is still very big. Hence, in the same
way that the conclusions of Ref. [4] proved to be valid for
more elaborate bouncing models, we expect that the results
we will present later on will also be valid in more elaborate
models containing a cosmological constant.

Note also that as 1=
ffiffiffiffi
�

p
is of the order of the Hubble

radius today, then all scales of physical interest had causal
contact in the contracting phase of the model because the

particle horizon in that phase is of the order of 1=
ffiffiffiffi
�

p
.

The evolution of linear scalar perturbations are de-
scribed by the metric

g�� ¼ gback�� þ h��; (12)

where gback�� represents the homogeneous and isotropic

cosmological background given in Eq. (2), and the pertur-
bations h�� can be decomposed into

h00 ¼ 2a2� h0i ¼ �a2B;i

hij ¼ 2a2ðc	ij � E;ijÞ: (13)

Because of the constraint equations present in Einstein’s
equations, the evolution of quantum perturbations in a
classical background is described by a single quantum
field, the gauge-invariant Mukhanov-Sasaki variable de-
fined by (see Ref. [15] for details)

v � a

�
�’þ ’0

back

H
c

�
; (14)

where �’ is the perturbed scalar field, and ’back is its
background solution.

The Mukhanov-Sasaki variable satisfies the equation

v00 � r2v� z00

z
v ¼ 0; (15)

where

z � a2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�GNð�þ pÞp

H
: (16)

The equations above are not altered by the presence of a
cosmological constant, essentially because Eqs. (9) and
(10) are not modified by its presence and because, of
course, �� ¼ 0.

In our choice of units a is dimensionless, hence we will
define the dimensionless conformal time ~� � �=RH,
where RH � 1=ða0H0Þ is the comoving Hubble radius.
From now on we will omit the tilda over �. We will also

work with the dimensionless comoving wave number
k � RH=
, where 
 is the comoving wavelength of the
perturbation modes. The region corresponding to long
wavelengths today is the interval 1< k< 103.
Taking the model with scalar field and scale factor given

by Eqs. (6) and (11), respectively, one obtains

zðtÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1þ wÞ

2

s
aðtÞ

coshð	tÞ ; (17)

and

VðtÞ � z00

z
¼ ��a

2

a20

�ð1� 3wÞ
2

�
1

sinh2ð	tÞ �
ð1þ 3!Þ

2

�

� 9ð1þ wÞ2
2cosh2ð	tÞ

�
; (18)

where

	 � 3
ffiffiffiffiffiffiffiffi
��

p ð1þ!ÞH0

2
; (19)

and a is given by Eq. (11).
Solution (11) is defined in two domains: �1< t < 0

and 0< t <1. The first one describes a universe contract-
ing from an asymptotic de Sitter spacetime in the far past to
a singularity at t ¼ 0. The second one describes a universe
expanding from a singularity at t ¼ 0 to an asymptotic de
Sitter expansion in the far future. Around t ¼ 0, the field
dominates the dynamics, and the cosmological constant is
unimportant. These behaviors can be viewed by taking the
limits e.g., in the contracting solution, t ! �1 and t !
0� in Eq. (11).

For t ! �1, Eq. (11) yields aðtÞ � expð� ffiffiffiffi
�

p
tÞ. In

conformal time

�þ �1 ¼
�

4

�0!

�
1=3ð1þ!Þ expð ffiffiffiffi

�
p

tÞ
�ð1þ3!Þ=3ð1þ!Þ

�

; (20)

where ��1 <� � 0, and �1 is a positive constant, the
scale factor behaves as

að�Þ ¼ a0ffiffiffiffiffiffiffiffi
��

p ð�þ �1Þ
: (21)

This is the usual de Sitter behavior. In this case, the
potential (18) reads

Vð�Þ � z00

z
� 9w2 � 1

4ð�þ �1Þ2
; (22)

yielding the equation

v00
k þ

�
k2 � ð9w2 � 1Þ

4ð�þ �1Þ2
�
vk ¼ 0: (23)

This equation is completely equivalent to an equation for
a massive scalar field in a de Sitter spacetime, with mass
given by
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m ¼ 3
ffiffiffiffi
�

p
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� w2

p
: (24)

Its general solution reads

vk ¼ ffiffiffiffi
�

p ½b1ðkÞHð1Þ
� ðkð�þ �1ÞÞ þ b2ðkÞHð2Þ

� ðkð�þ �1ÞÞ�;
(25)

where the Hð1;2Þ
� are Hankel functions of first and second

kind, � ¼ 3w=2. As kð�þ �1Þ � 1, we can write this
solution as

vk�c1ðkÞð�þ�1Þð1þ3wÞ=2þc2ðkÞð�þ�1Þð1�3wÞ=2: (26)

For t ! 0�, or � ! 0�, one obtains from Eq. (11) that

aðtÞ / t2=½3ð1þwÞ� or, in conformal time, að�Þ / �2=ð1þ3wÞ.
This is the usual Friedmann evolution for p ¼ w� without
a cosmological constant. In this regime, we obtain

Vð�Þ � z00

z
� 2ð1� 3wÞ

ð1þ 3wÞ2�2
: (27)

In this situation, z / a (see Eq. (17)) and z00=z ¼ a00=a.
Note that the potential VðtÞ diverges to �1 at the

infinity past for w> 1=3 and w< 1=3, respectively, and
diverges to �1 near the singularity at t / � � 0 for w<
1=3 andw> 1=3, respectively. Hence, it must cross zero in
the middle of the line�1< t < 0. In Fig. 1 we present the
behaviors of the potential VðtÞ for t < 0 in the cases w<
1=3, w ¼ 1=3 and w> 1=3.

Our idea is that the singularity at t ¼ 0 separating the
contracting and expanding solutions can be eliminated
through some new physics which produces a regular
bounce connecting these two phases. As in the region
around t ¼ 0 the cosmological constant is unimportant,
one can evoke the bounce descriptions provided, e.g., in
Refs. [3–7,10–12]. For instance, the quantum cosmological
bounces with a perfect fluid studied in Refs. [7,10–12]
present a regular scale factor given by

aðTÞ ¼ ab

�
1þ

�
T

Tb

�
2
�
1=ð3ð1�!ÞÞ

; (28)

where dT ¼ a1�3wd�, and ab and Tb are positive con-
stants. Note that for jTj � Tb, this solution approaches the
classical Friedmann solution for a perfect fluid given by

the limit t ! 0� of Eq. (11): að�Þ / �2=ð1þ3wÞ. Hence, the
scale factor (11) can be smoothly connected to the scale
factor (28).

It was shown in Ref. [12] that the potential present in the
equations for the perturbations around these quantum
bounces reads

VðTÞ � a00

a
¼ 2a3ð1�wÞ

b

3ð1� wÞT2
b

�
1

a1þ3w
� 2

3

�
T

Tb

�
2 a3ð1�wÞ

b

1� w
a�4

�
;

(29)

where Eq. (28) has been used. Their shapes are presented in
Fig. 2 for the cases w< 1=3, w ¼ 1=3, and w> 1=3, and
they tend to the potential VðtÞ of Eq. (27) for 	t � 1 in the
limit jTj � Tb, but they do not diverge in � ¼ 0. Hence,
when these quantum effects become important near � ¼ 0
inducing the bounce, the two disjoint parts of the classical
potentials presented in Fig. 1 corresponding to the con-
tracting and expanding classical universes separated by a
singularity can now be softly connected with the potentials
presented in Fig. 2. Then one can evolve smoothly the
perturbations from the contracting phase to the expanding
phase, and calculate their properties in the present era. For
other regular bouncing models, the situation must be simi-
lar, although somewhat more intricate in the case there is
an extra field which induces the bounce.
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V
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t
V

t

w 1 3

3.0 2.5 2.0 1.5 1.0 0.5 0.0
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t

V
t
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FIG. 1. Behavior of the potential VðtÞ given by Eq. (18) for
three different values of w.
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In order to accomplish this program, one must set the
initial conditions for the perturbations in the past contract-
ing phase. Without the cosmological constant, the Universe
tends, in the far past, to Minkowski spacetime, where the
potentials become null (see Fig. 2). Hence, an adiabatic
Minkowski vacuum can be prescribed there. In the pres-
ence of the cosmological constant, neither the Universe
tends to Minkowski spacetime in the far past (in fact, it
tends to de Sitter spacetime), nor the potential becomes
null there (see Fig. 1, except for w ¼ 1=3, which is not
physically interesting because it does not yield an almost
scale-invariant spectrum of perturbations). However, as we
have shown above, the potential crosses zero somewhere in
the middle of its evolution (which coincides with the mo-
ment when physically interesting long-wavelength pertur-
bation modes become smaller than the Hubble radius), and

perhaps one could define an adiabatic Minkowski vacuum
there. We will show in the next section that this is indeed
possible for the scalar field model presented above.

III. THE CHOICE OF INITIAL STATE FOR THE
QUANTUM PERTURBATIONS

In this section we will check whether an adiabatic
Minkowski vacuum can indeed be prescribed in the time
interval when the potential (18) is negligible and the
Universe is starting to be dominated by the field. In this

regime the scale factor is approaching the form að�Þ /
�2=ð1þ3wÞ. Taking �0! � 0:3 and �� � 0:7, the zero of
this potential occurs when y ¼ yV � 	tV [see Eq. (19) for
the definition of 	]. As yV depends on the! parameter, we
will consider the following values for !< 1=3:

yVð! � 0Þ � �0:34; yVð! � 1=8Þ � �0:23;

yVð! � 1=4Þ � �0:13:

Around these points, one can numerically approximate
Eq. (15), now expressed in terms of the modes vkð�Þ,
through

d2vk

dx2
þ ðk2 þ �xÞvk ¼ 0; (30)

where

� � � 3ð1þ wÞ ffiffiffiffiffiffiffiffi
��

p
2

�
a

a0

dV

dy

���������yV

; (31)

yielding

�ð! � 0Þ � �1:05; �ð! � 1=8Þ � �1:65;

�ð! � 1=4Þ � �2:31:

and x � �� �V , with �V being the dimensionless con-
formal time corresponding to yV defined above.
It is important to remark the dependence of � with ��

by looking at Eqs. (11) and (18). Noting that yV is inde-
pendent of ��, and as �0w þ�� ¼ 1, one gets

� ¼ �ð1þ3wÞ=½2ð1þwÞ�
� ð1���Þ1=ð1þwÞ

0:7ð1þ3wÞ=½2ð1þwÞ�0:31=ð1þwÞ �0:7; (32)

where �0:7 are the values of � for �� ¼ 0:7. One can see
that � ! 0 as �� ! 0.
Note also that, although yV is independent of ��, �V

depends on �� as

�V ¼ 0:7ð1þ3wÞ=½6ð1þwÞ�0:31=½3ð1þwÞ�

�ð1þ3wÞ=½6ð1þwÞ�
� ð1���Þ1=½3ð1þwÞ� �Vð0:7Þ; (33)

where, again, �Vð0:7Þ are the values of �V for �� ¼ 0:7.
One can see now that �V ! 1 as�� ! 0, as expected. In
this last calculation, we have assumed that the field domi-
nates at �V .
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FIG. 2. Behavior of the quantum bouncing potential given by
Eq. (28) for three different values of w.
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The adiabatic vacuum is defined by the solution

vkðxÞ ¼ 1

2½�kðxÞ�1=2
exp

�
�i

Z x
�kðx0Þdx0

�
; (34)

where �kðxÞ must satisfy the equation

�2
k ¼ f2k �

1

2�k

d2�k

dx2
þ 3

4�2
k

�
d�k

dx

�
2
; (35)

and f2k � k2 þ �x.
Order by order, one has

ð�ð0Þ
k Þ2 ¼ f2k; ð�ð2Þ

k Þ2 ¼ f2k

�
1þ 5

16

�2

f6k

�

ð�ð4Þ
k Þ2 ¼ f2k

�
1þ 5

16

�2

f6k
� 490

256

�
�2

f6k

�
2
�
; (36)

where the upper indices (n) denote the order of the ap-
proximation. Hence, an adiabatic Minkowski vacuum can
be obtained if the parameter expansion �2=f6k satisfies

�2=f6k � 1. In fact, as � is of order unity, x � 1, and
the long wavelengths of physical interest satisfy 1< k <
103, the condition �2=f6k � �2=k6 � 1 is satisfied. Note

that for the largest scales (k approaching 1), deviations
from the Minkowski vacuum become more significant, and
one should expect modifications against the standard
results.

This problem can be presented under another point of
view. A Minkowski vacuum can be defined for quantum
perturbations with wavelengths much smaller than the
Hubble radius, defined by RHðtÞ � 1=HðtÞ. From
Eq. (11), one obtains that

R HðtÞ ¼
ffiffiffiffi
1

�

s
tanhð�yÞ: (37)

One has to compare this quantity with the physical
wavelength 
phys ¼ a
 which, from Eq. (11), reads


phys ¼ 
now
phys

�
�0!

��

�
1=3ð1þ!Þ

sinh2=3ð1þ!Þð�yÞ: (38)

The maximum value of RH, at t ! �1, is Rmax
H ðtÞ ¼

��1=2, while 
phys diverges there. Eventually, they can be

comparable at some time in the contracting phase. As in
the case this is true one expects to obtain a similar spectrum
as the one obtained in bouncing models without a cosmo-
logical constant, we will concentrate on the case 0<w �
1, which yields an almost scale-invariant spectrum. The
quantities defined in Eqs. (37) and (38) are comparable
when

�1=3
0!�1=6

�


now
phys

Rnow
H

� sinh1=3ð�yÞ
coshð�yÞ ; (39)

where Rnow
H is the Hubble radius today. As

sinh1=3ð�yÞ= coshð�yÞ< 0:73, �1=3
0m�1=6

0� � 0:63, and

10�3 < 
now
phys=R

now
H < 1, this equality can be achieved

for some finite domain of y.
Note also from Eq. (39) that this domain interval of y

could be extended to large values of jyj if �� were much
smaller than our prescribed values. This can also be seen
from the analysis coming from the potential, where a
smaller �� would result in a smaller � in Eq. (36), and
an adiabatic vacuum could also be achieved for smaller
values of k.

IV. SPECTRUM OF QUANTUM
COSMOLOGICAL PERTURBATIONS

Let us now calculate the spectrum of quantum cosmo-
logical perturbations for this scenario. In Sec. III, we have
shown that an adiabatic Minkowski vacuum, for the case of
a canonical scalar field, could be prescribed in the time
interval where the potential becomes negligible and the
Universe is starting to be dominated by the field. Hence,

substituting the zero-order term (�ð0Þ
k ) given in Eq. (36) in

the solution (34) of Eq. (30), we obtain

vkðxÞ � 1

2ðk2 þ �xÞ1=4 exp

�
� 2ik3

3�

�
1þ �x

k2

�
3=2

�
; (40)

and the initial conditions are given by

vkð0Þ � 1

2
ffiffiffi
k

p exp

�
� 2ik3

3�

�
; (41)

dvk

dx

��������x¼0
� �vð0Þ

�
�

4k2
þ ik

�
: (42)

We have, therefore, to solve

v00
k þ

�
k2 � z00

z

�
vk ¼ 0; (43)

with initial conditions given by Eqs. (41) and (42).
We calculated numerically the solution of Eq. (43) by

changing the time variable from � to y, defining a new

function uk � a1=2vk, and setting the above initial condi-
tions at yini ¼ yV . Taking the potential (18), the trans-
formed equation reads

d2uk
dy2

þ
�

4k2

9ð1þwÞ2½�ð1þ3wÞ=2
� �0w�2=½3ð1þwÞ�sinh4=½3ð1þwÞ�ð�yÞ

� w2

ð1þwÞ2þ
w

ð1þwÞ2sinh2ðyÞþ
2

cosh2ðyÞ
�
uk¼0: (44)

The results are shown in Fig. 3.
The solutions of Eq. (43) can be expanded in powers of

k2 according to the formal solution [16]
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v

z
’ A1ðkÞ

�
1� k2

Z � d ��

z2ð ��Þ
Z ��

z2ð ���Þd ���þ 	 	 	
�

þ A2ðkÞ
�Z � d ��

z2ð ��Þ � k2
Z � d ��

z2ð ��Þ

�
Z ��

z2ð ���Þd ���
Z ��� d ����

z2ð ����Þ þ 	 	 	
�
; (45)

In Eq. (45), the coefficients A1ðkÞ and A2ðkÞ are two con-
stants depending only on the wave number k through the
initial conditions.

Since expansion (45) is valid at all times during con-
traction, the A1ðkÞ and A2ðkÞ dependencies coming from
the initial conditions hold when the Universe enters the
field-dominated phase just before performing the bounce.

From then on, the evolution is guided by the particular
physics of the bounce. For instance, in the quantum bounce
with potentials shown in Fig. 2, everything goes as de-
scribed in Ref. [7], with power spectrum in the expanding
phase given by

P / k3jA2ðkÞj2; (46)

and spectral index

ns ¼ 1þ d lnðP Þ
d lnðkÞ : (47)

This is a general feature of bouncing models: the spec-
trum A2ðkÞ of the growing mode of the contracting phase,
which will be the decaying mode of the expanding phase
after the bounce, is transferred to the growing mode of the
expanding phase and dominates over A1ðkÞ. Hence, to find
the spectrum after the bounce one has to obtain A2ðkÞ,
which, in the case without cosmological constant, reads

A2ðkÞ / k3ð!�1Þ=2ð3!þ1Þ (see, e.g., Ref. [7]), yielding the
spectral index

ns ¼ 1þ 12!

1þ 3!
; (48)

with w � 0 for an almost scale-invariant spectrum.
In order to analytically predict the behavior of the

coefficient A2ðkÞ for the case with a cosmological constant,
we have taken two approximate solutions of Eq. (43) close
to the point where the potential vanishes, where it has
the form given in Eq. (30), and matched them at a point
x
 ¼ ð�
 � �VÞ, where 0< x
 � 1.
The first approximate solution comes from Eq. (40), and

is given by

vkðx
Þ � 1

2
ffiffiffi
k

p
�
1� �x


4k2

�
exp

�
�i

�
2k3

3�
þ kx


��
; (49)

while its first derivative reads

dvk

dx

��������x¼x

� � 1

2
ffiffiffi
k

p
�
�

4k2
þ ik

�
1þ �x


4k2

��

� exp

�
�i

�
2k3

3�
þ kx


��
: (50)

The second approximate solution comes from the re-
mark that at �
 and afterwards, up to the bounce phase, the
evolution of the background is dominated by the scalar
field, where the potential approaches the form given in
Eq. (27), yielding the solution

vkð�Þ ¼ ffiffiffiffi
�

p ½C1ðkÞH1
�ðk�Þ þ C2ðkÞH2

�ðk�Þ�; (51)

where � � 3ð1� wÞ=2ð1þ 3wÞ. In the domain jk�
j � 1
this solution reads

vkð�
Þ � B1ðkÞ
2

ffiffiffi
k

p
�
1� �1

2ik�


�
þ B2ðkÞ

2
ffiffiffi
k

p
�
1þ �1

2ik�


�
; (52)

and
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FIG. 3. Numerical results of Eq. (44) for w ¼ 10�3, 1=8 and
1=4. Each curve shows ukðyÞ as a function of y for different
values of k, as indicated in the graphs.
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dvk

dx

���������¼�

� 1

2
ffiffiffi
k

p
�
B1ðkÞ

�
ik� �1

2�


�
�B2ðkÞ

�
ikþ �1

2�


��
;

(53)

where

B1ðkÞ � 2C1ðkÞ exp
�
i

�
k�
 � ��

2
� �

4

��
; (54)

B2ðkÞ � 2C2ðkÞ exp
�
�i

�
k�
 � ��

2
� �

4

��
; (55)

�1 � �ð�þ 3=2Þ
�ð�� 1=2Þ ¼

2ð1� 3wÞ
ð1þ 3wÞ2 : (56)

Performing the matching between Eqs. (49) and (50) and
Eqs. (52) and (53) at �
, one gets for C1ðkÞ and C2ðkÞ,

C1ðkÞ �
�
i�

16k3
� �x


8k2

�
exp

�
�i

�
2k3

3�
þ kx
 þ �2

��
(57)

and

C2ðkÞ � 1

2

�
1þ i�1

2k�

� i�

8k3

�
exp

�
�i

�
2k3

3�
þ kx
 � �2

��
;

(58)

where

�2 � k�
 � ��

2
� �

4
: (59)

In the limit k� ! 0�, just before the new physics which
generates the bounce, the solution vkð�Þ approximately
reads

vkð�Þ � A1ðkÞ�1=2þ� þ A2ðkÞ�1=2��

� ffiffiffiffi
�

p ��
k�

2

�
� 1

�ð�þ 1Þ ½C1ðkÞ þ C2ðkÞ þ i½C1ðkÞ

� C2ðkÞ� cotð��Þ� þ
�
k�

2

��� i½C2ðkÞ � C1ðkÞ�
�ð1� �Þ sinð��Þ

�
;

(60)

and the coefficient A2ðkÞ of the growing mode of the
contracting phase is given by

jA2ðkÞj2 � 1

4

�
k

2

��2� 1

½�ð1� �Þ sinð��Þ�2
�
1þ �x


2k2

� cosð2�2Þ þ �2
1

4k2�2

� �

4k3
sinð2�2Þ

�
: (61)

Caculating the spectral index as defined in Eq. (47), we
find

nS ¼ 1þ 12w

1þ 3w
� �x
�


k
sinð2�2Þ � 2

k2

�
�2
1

4�2


þ �
�
4

ð1þ 2x
Þ cosð2�2Þ þ �
�
4

cosð2�2Þ
�

þ 3�

4k3
sinð2�2Þ: (62)

Substituting the parameters w � 0, � � �1:05, j�
j �
j�V j � 2:19, x
 � 1, �1 � 2, �2 � k�
 � �, and 1<
k< 103 in Eq. (62), we obtain an almost scale-invariant
spectrum. Besides the usual 12w=ð1þ 3wÞ result, there are
additional terms in Eq. (62) inducing a running red-tilted
spectrum and oscillations, both decreasing with k. Note
that for a vanishing cosmological constant we have � � 0
and j�
j ! 1. In this case, the extra terms in Eq. (62)
disappear and nS ! 1 even for small values of k.
In order to check numerically this analytic calculation,

we took the following steps: from the numerical solutions

uk ¼ a1=2vk presented in Fig. 3, we obtained vk, eval-
uated it at very small y (y � �10�15), expressed the
result in conformal time (whose relation with y is trivial

10.05.02.0 20.03.01.5 15.07.0

1.008

1.010

1.012

1.014

1.016

1.018

k

n S

w 10 3

0.7

10 3

10 6.....

FIG. 5. Numerical results for nSðkÞ evaluated at y ¼ �10�15,
obtained using w ¼ 10�3. The solid line indicates the result
obtained using �� ¼ 0:7, the dashed line for �� ¼ 10�3 and
the dotted line for�� ¼ 10�6. Note that the oscillations become
smaller for smaller ��, showing that they are due to the
presence of the cosmological constant. This result is in agree-
ment with Eq. (62).

1 5 10 50 100 500 1000
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2

k

w 1 4

w 1 8
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FIG. 4. Numerical results for the behavior of jA2ðkÞj for w ¼
10�3, 1=8 and 1=4 evaluated at y ¼ �10�15. The solid lines
show the numerical results and the dotted ones show, for com-
parison, a curve proportional to k3ð!�1Þ=2ð3!þ1Þ.
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at field domination), multiplied the result by ����1=2 [see
Eq. (60)], and differentiated the final result with respect to
� in order to isolate A2ðkÞ. The results are shown in
Figs. 4 and 5.

It can be seen that A2ðkÞ and nS follow the predicted

behavior, A2ðkÞ / k3ðw�1Þ=2ð1þ3wÞ and nS � 1þ 12w
1þ3w , for

k * 1. We have also verified that small oscillations and a
red-tilted running with amplitudes decreasing with k are
superimposed to the power law overall behavior, as pre-
dicted in Eqs. (61) and (62). Note from Fig. 5 that the
oscillations do indeed become smaller for smaller ��,
showing that they are a consequence of the presence of
the cosmological constant.

V. CONCLUSION

In this paper we have investigated the effects of the
presence of a cosmological constant in the contracting
phase of a bouncing model. It turns out that the initial
vacuum state, usually determined in the contracting
phase when the Universe was very large and rarefied,
is affected by the presence of the cosmological constant.
In order to get an almost scale-invariant spectrum, one
still must have some phase with dustlike contraction, but
now the spectral index gets a red-tilted running and
oscillations directly caused by the cosmological constant.
It is interesting to realize that bouncing models allow
such an important role to the cosmological constant in
the physics of primordial cosmological perturbations,
which is not at all the case for always expanding models.
This opens a new area of research, which is to inves-
tigate the influence of other models of dark energy on the
primordial spectrum of bouncing models. In other words,
if the Universe had really bounced in the past, inves-
tigating its primordial spectrum can yield information
about dark energy.

There is also the question about the possibility of an
enormous growth of perturbation amplitudes in the defla-
tionary contraction in the far past of the model, as dis-
cussed in other contexts [17]. Note, however, that the
cosmological constant in our model is small and this
almost de Sitter deflation will take place when the
Universe was very large compared to the present Hubble
radius, and for a fixed time interval. In conformal time, this
time interval can be estimated using Eq. (20) by saying that
it should be smaller than �
 þ �1 given by this equation

when t � �1=
ffiffiffiffi
�

p
. Taking the usual values �� ¼ 0:7 and

�0w ¼ 0:3, one can see that �
 þ �1 < 1. Note that for a
cosmological-constant-dominated model (�0w � 0), one
would obtain �
 þ �1 � 1. Let us examine the behavior
of the Bardeen potential in this phase. From Eq. (26) we
obtain that

� / ð�þ pÞa2
k2H

�
v

z

�0 � c1ð�þ �1Þ3 þ c2
k2

ð�þ �1Þ (63)

for w ¼ 0. Hence, as this almost de Sitter deflationary
phase will not take long enough in conformal time, �
 þ
�1 < 1, because of the smallness of the cosmological
constant, perturbations will not grow alarmingly in this
epoch. Now, once the Universe leaves this deflationary
contraction to a nondeflationary contraction when it is still
very large, then it can be subjected to dissipation effects, as
the ones discussed in Ref. [7], which could dissipate the
existing inhomogeneities. Another approach to this prob-
lem should be to think in terms of the anthropic principle
and state that the Universe is composed fundamentally by a
small cosmological constant (dark energy) and some mat-
ter content as the one used in our model (dark matter?). In
many regions it will expand to de Sitter and it will freeze,
in some it will contract inhomogeneously, and in a few
homogeneous regions within one particle horizon size it
may contract to make a bounce, where new particles
(photons and baryons) will be created, and expand again
to a Universe with some galaxies and stars where intelli-
gent life can exist. The results of our paper can then be
applied to this last possibility, the only one which can
interest us. Of course these tentative answers to this basic
question must be worked out more precisely, but we think
that a final and complete answer to the issue on why the
primordial Universe was so homogeneous, in any cosmo-
logical scenario, demands a theory of initial conditions,
perhaps quantum cosmology. One interesting investigation
should be a quantum cosmological analysis of eternal
asymptotically (in time) de Sitter models.
Our approach here was concentrated on general fea-

tures of the spectrum of cosmological perturbations in
the presence of a cosmological constant in general
bouncing models, and because of that we were not able
to fix the amplitude of the perturbations. Our next step
will be to take a specific model in which the physics at
the bounce fixes the bounce scale, and hence the ampli-
tude of the perturbations, in order to determine the
influence of the new features of the spectrum of primor-
dial perturbations we obtained in this paper in the an-
isotropies of the microwave background radiation, and to
compare the results with observations. Another interest-
ing problem should be to investigate the situation where
the required dustlike contraction was not caused by a
scalar field but by a hydrodynamical fluid with c2s ¼ w.
In this case, the prescription of an adiabatic vacuum can
be much more involved because of the smallness of the
sound horizon.
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