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A master equation for the evolution of a two-dimensional universe is derived based on the simplicial

quantum gravity regarding the evolution as the Markov process of a space-time lattice. Three typical

phases, expanding, elongating, and collapsing phase, which have been found in the numerical simulation,

are studied together with their boundaries, analytically. Asymptotic solutions of the evolution equation for

statistical quantities, such as the averaged area, the boundary length, correlations of their fluctuations, are

obtained for each phase and boundary. After introducing a physical time, the cosmological significance of

each phase is discussed.
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I. INTRODUCTION

Recent observations and their analyses on anisotropies
of the cosmic microwave background [1,2] have revealed
the large-scale correlation between two points separated
far beyond the event horizon. It is considered as a relic of
quantum fluctuation produced during the period when the
Universe is a quantum mechanical size. The full-sky map
of the Universe tempts us to imagine that we are glancing
at the stage where the Universe begins to explode. In order
to describe this period on the scientific ground, it is inevi-
table to have a tool that is capable of handling the creation
of space, time, and matter all at the same time.

It is quantum gravity that is aimed to describe such a
circumstance. Quantum gravity is also expected to be the
theory for quantizing the gravitational field. However, in-
completeness of various theoretical attempts in the four-
dimensional space-time by standard quantization methods
made most of the investigations turn toward a totally new
direction, i.e., the superstring theory, except a few inves-
tigations [3,4]. On the other hand, as far as the creation of
space, time, and matter is concerned, there exist consistent
theories of quantum gravity in the two-dimensional space-
time, where no quantization of the gravitational field is
necessary. It is our aim in this article to give an insight
on birth and growth of the Universe through the two-
dimensional quantum gravity.

There are several standard methods of the two-
dimensional quantum gravity, for example, the Liouville
theory [5] based on the standard field theory, the matrix
model [6] representing the combinatorial geometry [7],
and the dynamical triangulation [8] as its numerical real-
ization. Recently, we have proposed a scenario of the initial
stage of the Universe in terms of the simplicial quantum
gravity [9,10]. With a few fundamental axioms, a
d-dimensional universe has been constructed as a set of
complexes of d simplices. Numerical simulations have
been performed in 2 and 4 dimensions by applying tech-
niques of the dynamical triangulation. They have indicated

that there are basically three types of universes, which have
been called the collapsing, the expanding, and the elongat-
ing phase. For the two-dimensional case, numerical results
have been compared to predictions of the boundary
Liouville theory [11], and shown to reproduce the expected
results.
However, those comparisons have been limited within

the collapsing phase, where the stable vacuum exists and
the standard field theory technique is applicable. In order to
analyze nonstatic phases, in which the spaces keep grow-
ing indefinitely, we need to find an appropriate method that
can handle a system without the stable vacuum. In this
article, we propose a method to treat such cases based on
techniques of the nonequilibrium statistical mechanics.
This study shows that the two-dimensional simplicial
quantum gravity enables one to describe most of the es-
sential features of the four-dimensional Universe, such as
the inflation and the big bang, even under the limited
condition of dimensionality.
There exist a few attempts for creation of a universe in

the similar standpoint as ours, expecting the underlying
discrete nature of space-time, such as the causal dynamical
triangulation [12] and the loop quantum gravity [13].
When one considers the very beginning of the Universe,
one inevitably gives the initial hypothesis that cannot be
proven. The main difference of those models comes from a
point where the model starts. Both the causal dynamical
triangulation and the loop quantum gravity assume the
existence of the Lorentzian space-time and quantum dy-
namics before the birth of the Universe, while we consider
all the physical laws appearing at or after the birth of the
Universe. Thus, our future task will be to derive the dy-
namical law and the Lorentzian invariance of dynamics.
In the next section, (Sec. II) the scenario of creation of

the Universe is reviewed within the two-dimensional quan-
tum gravity. I derive a master equation as the continuous
limit of the dynamical triangulation with a boundary. In
Sec. III, I study the statistical property of a static universe
through calculating the partition function as a generating
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function for the average of area, boundary length, and
correlation functions of fluctuations. Section IV is devoted
to overviewing possible nonstatic solutions of the master
equation. In Sec. V, I solve equations of motion for aver-
aged quantities derived from the master equation for the
expanding phase and its boundaries. Section VI describes
the elongating phase, where the boundary length stays
constant while the area keeps increasing. In Sec. VII, two
special states of a universe are discussed. One is a universe
with the minimum boundary length, which may be called
the polymer state, appearing for a specific value of the
parameter related to the matter central charge, and the
other is a boundary state along the line located between
the expanding and elongating phases. Section VIII is de-
voted to discussing evolution of the Universe in 1þ 1
dimension by introducing a physical time, and showing
that it is possible to interpret each phase as a state of an
actual universe at various stages of its evolution, such as
the inflation, the big bang, the stationary, and the crunch.
The last section (Sec. IX) summarizes my aim, accom-
plishments, and basic problems left to be solved. Three
Appendices are in order for the master equation in the
continuous limit and two basic equations of motion re-
ferred in the text.

II. MASTER EQUATION FOR THE EVOLUTION
OFA UNIVERSE

We define the two-dimensional Universe to be a set of all
the possible simplicial complexes of triangles with one
boundary. We shall call a complex a configuration, or
sometimes a world. It is possible to classify those simpli-
cial manifolds by the number of handles g. In this article,
we limit our worlds only to those manifolds of the simple
disk topology without handles, for simplicity. Each com-
plex has its neighbors, which can be obtained by attaching
or detaching one unit triangle. In two dimensions, there
are, in general, four directions of neighbors for each con-
figuration, either increasing or decreasing the area and
boundary length by one unit. These procedures are called
moves.

In practice, a series of configurations is generated by
selecting randomly one of those possible neighbors con-
nected by a move at each step. We start with any but
normally the simplest configuration made of one elemen-
tary triangle to create a Markov chain of the length N,

�1 ! �2 ! � � � ! �N:

A configuration is specified by a set of ‘‘quantum’’ num-
bers, � ¼ ðN2; ~N1; kÞ, namely, the total number of elemen-
tary triangles, N2, the number of edges on the boundary,
~N1, and the quantum number k identifying a specific
diagram with a fixed ðN2; ~N1Þ. A selected move is accepted
if the resultant configuration satisfies following manifold
conditions: (1) at most two triangles attach through one

edge, and (2) triangles sharing one vertex form a 2-disk, or
a semidisk, if the vertex is on the boundary.
Mathematically, the dynamical triangulation can be de-

scribed by a master equation for the probability p�½n� of a
configuration � at the nth step, which is expressed as

p�½nþ 1� ¼ p�½n� þ
X
�ð�Þ

fp�½n�w�!� � p�½n�w�!�g;

(2.1)

where the sum over �ð�Þ is understood to take all those
neighbors f�g connected by one of the four moves from a
configuration �. The transition probability w�!� is chosen

so that in the case when the equilibrium distribution
p�½equi� exists, it satisfies the equation,

p�½equi�w�!� ¼ p�½equi�w�!�; (2.2)

known as the detailed balance. From one of the axioms,
which states that all the possible worlds are equally prob-
able,1 p�½equi� should be equal for any distinct configura-
tion �.
The equal probability axiom results in the state indepen-

dence of the transition probability w�!� between two

neighboring configurations, and the master equation can
be rewritten within the reduced space of the first two
quantum numbers, a ¼ ðN2; ~N1Þ, as

~p a½nþ 1� ¼ ~pa½n� þ
X
b

f~pb½n� ~wb!a � ~pa½n� ~wa!bg;

(2.3)

where the sum over b runs from 1 to 4 corresponding to the
4 moves, which shift fN2; ~N1g to fN2 � 1; ~N1 � 1g. The
detailed balance condition in the reduced space is then
written as

~p a½equi� ~wa!b ¼ ~pb½equi� ~wb!a: (2.4)

As a consequence of the equal probability axiom, ~pa½equi�
should be proportional to the number of configurations,
�a. The detailed balance condition can be satisfied by
taking the transition probability ~wa!b as

~w a!b ¼ �b

�a þ�b

: (2.5)

It may be possible to choose another form for ~wa!b that
fulfills the detailed balance condition. Our specific choice
of ~wa!b will be justified when we take the continuous limit
of the master equation.
The master equation in the continuum space is obtained

by taking the limit that the scale parameters, fA0; l0; �0g,
introduced for the area A ¼ A0N2, the boundary length,
l ¼ l0 ~N1, and the Markov process time,2 � ¼ �0n, tend to

1We shall call it the equal probability axiom.
2We may call it simply time unless we need to distinguish it

from the physical time, which will be defined later.
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zero. Leaving details of the derivation in Appendix A, it is
written as

@

@�
p½A; l; �� ¼

��
@2

@A2
þ @

@A

@Sa
@A

�

þ
�
@2

@l2
þ @

@l

@Sa
@l

��
p½A; l; ��; (2.6)

where Sa � SðA; lÞ is defined by �a ¼ expð�SaÞ. Scale
parameters are tuned as

A2
0

�0
¼ l20

�0
:

Equation (2.6) clearly shows that the distribution �a is the
stationary solution, and it is the reason for our choice for
the transition probability, ~wa!b. The function �a was
computed numerically by the dynamical triangulation
with a boundary [14], and later the exponent was analyti-
cally given by the boundary Loiuville theory [11] and the
matrix theory [10] as

SðA; lÞ ¼ �� logA� � loglþ �
l2

A
þ�Aþ�Bl; (2.7)

where � ¼ �1� 1=b2, � ¼ �2þ 1=b2, and � ¼
1=ð4 sin�b2Þ. The parameter b is related to the Liouville
background charge Q through Q ¼ bþ 1=b. In order to
avoid the singular behavior of the master equation at those
b where � diverges, we rescale the area, the boundary
length, and the time by �, as A ¼ x=�, l ¼ y=�, and
� ¼ t=�2, respectively, which leads to

@

@t
p½x; y; t� ¼

�
@2

@x2
þ @

@x

@Sðx; yÞ
@x

þ @2

@y2

þ @

@y

@Sðx; yÞ
@y

�
p½x; y; t�; (2.8)

with

Sðx; yÞ ¼ �� logx� � logyþ y2

x
þ �xþ �Byþ 3 log�:

(2.9)

The cosmological constant, �, and the boundary cos-
mological constant, �B, are also rescaled accordingly as
� ¼ �� and �B ¼ ��B. The last term in Sðx; yÞ modi-
fies the overall normalization of the distribution, and we
shall put this term in the normalization constant.

In the two-dimensional parameter space ð�; �BÞ, the
numerical simulation for the pure gravity (1=b2 ¼ 3=2)
has revealed three critical lines separating into regions
corresponding to three distinguished phases of a universe.
We shall write each phase as P1, P2, and P3, and name
them as the collapsing, the expanding, and the elongating
phase, respectively. We also write the boundaries between
P1 and P2 as B1, P2 and P3 as B2, and P1 and P3 as B3.
The relative locations of phases and boundaries are

depicted in Fig. 1. The numerical simulation has shown
that the area tends to decrease toward a point universe
when the parameters ð�; �BÞ are in the region of the col-
lapsing phase, which locates most of the right half-plane of
the parameter space, while the area grows indefinitely with
the maximum rate when the parameters are outside of P1.
This nonstatic region is divided into two phases by the line
�B ¼ 0 in the � < 0 half-plain. Above the critical line, the
boundary length tends to a constant either like an elongat-
ing tube or string with the minimum radius. Below the
critical line both the area and the boundary length increase
with the maximum rates.
In the subsequent sections, we shall obtain possible

solutions for various phases, which are classified according
to the behavior of average area and boundary length in the
parameter space ð�; �B; �Þ.

III. THE COLLAPSING PHASE (P1)

We begin with studying the static solution ~pa½equi� �
expð�SaÞ of the master equation. Integrals in the generat-
ing function,

Z½�; �B� ¼
Z

expf�Sðx; yÞgdxdy; (3.1)

are in general diverging, and we need to regularize it. We
regard it as the continuum limit of the matrix model
partition function,

ZM½�;�B�¼ X
ðN2; ~N1Þ

expð��N2��B ~N1Þ ~ZM½N2; ~N1�; (3.2)

where the sums over ðN2; ~N1Þ are restricted by N2 �
~N1 � 2, ~N1 � 3, and N2 þ ~N1 ¼ even integer, due to
the manifold conditions we have employed.
The number of distinct configurations has been calcu-

lated either by the graph theory [7] or the matrix model [6],
which approaches in the large N2 limit [10] as

P1

P2

P3

B1

B2

B3

B

FIG. 1 (color online). Collapsing phase (P1). Expanding phase
(P2). Elongating phase (P3). The boundary state is on the bound-
ary B2, and the Polymer state is in the elongating phase P3.
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~ZM½N2; ~N1��N�M

2
~N�M

1 exp

�
��M

~N2
1

N2

�
expð�cN2þ�B

c
~N1Þ;
(3.3)

where the exponents are given for the pure gravity by
�M ¼ �5=2 and �M ¼ 1=2. The nonuniversal constants
�M, �c, and �B

c depend on the choice of manifold con-
ditions employed for the model according to the types of
graphs or diagrams included. The matrix model partition
function is then written as

ZM½�;�B� � X
N2�1

X
~N1�3

N�M

2
~N�M

1 exp

�
��M

~N2
1

N2

�

� expf�ð���cÞN2 � ð�B ��B
c Þ ~N1g:

(3.4)

Here, we note the constraints in the sums over ðN2; ~N1Þ are
slightly relaxed owing to the strong damping factor
expð��M

~N2
1=N2Þ. Sums in the partition function are ap-

proximated to integrals in the continuum limit by making
scale factors for the area and the boundary length, A0, and
l0, tend to zero:

Z½�;�B�!
Z x1

x0

dx
Z y1

y0

dyx�y�exp

�
�y2

x

�
expð��x��ByÞ;

(3.5)

where we keep the regions of integrals finite in order to
study behaviors toward the continuum limit, ðx0; y0Þ ! 0,
as well as the large-size limit, ðx1; y1Þ ! 1. The cosmo-
logical constants are shifted and rescaled accordingly as
� � ð���cÞ=ð�A0Þ, and �B � ð�B ��B

c Þ=ð�l0Þ.
We generalize the exponents ð�;�Þ through employing

values obtained by the boundary Liouville theory, � ¼
�1� 1=b2 and � ¼ �2þ 1=b2, in order to take into
account matter fields, which are assumed to couple con-
formally with the space-time. We should remark that the
difference in exponents �M ¼ 1=2 and � ¼ �1=2 for the
pure gravity is due to the way of counting distinct configu-
rations. The matrix model respects the point group multi-
plicity factor, ~N1, in the state number counting. On the
other hand, the boundary Liouville theory regards those
configurations that are members of the same point group
symmetry as identical, since the Universe stands by itself
and does not have any reference frame. We shall employ
the latter viewpoint in the following.

The integration over x converges, both in the limit
x0 ! 0 due to the factor expð�y2=xÞ for y � y0 > 0, and
in the limit x1 ! 1 because of expð��xÞ for � > 0, to

Z 1

0
dxx� exp

�
� y2

x

�
expð��xÞ ¼ 2�	=2y�	K	½2

ffiffiffiffi
�

p
y�;
(3.6)

where we define 	 � 1=b2 ¼ �ð1þ �Þ, and where K	½z�
is the modified Bessel function. We note that according to
the small z behavior of the Bessel function, K	½z� � z�	,
the integral converges even at � ¼ 0, if we recall 	 � 1.
On the other hand, the integration over y,Z y1

y0

dyy� expð��ByÞy�	K	½2
ffiffiffiffi
�

p
y�;

requires a uv cut-off, y0, while in large y regions it is

possible to take the limit y1 ! 1, if 2
ffiffiffiffi
�

p þ �B > 0, since
asymptotic form of the integrand contains the exponential

factor expf�ð2 ffiffiffiffi
�

p þ �BÞyg. The critical line separating
the static phase and nonstatic phases locates along

�B þ 2
ffiffiffiffi
�

p ¼ 0 in the lower half-plane of the parameter
space ð�; �BÞ, which we named B1, and along the line
� ¼ 0 in the upper half-plane B3.
Since all the statistical moments we are interested in are

obtained by making use of the relation

hxnymi ¼ ð�1Þnþm

Z½�; �B�
@n

@�n

@m

ð@�BÞm Z½�; �B�; (3.7)

where the statistical average is represented by brackets
h. . .i, we shall focus our attention on diverging parts of
the integral that dominate in the continuum limit, y0 ! 0.
Utilizing the power series expansion of the modified Bessel

function K	½2
ffiffiffiffi
�

p
y�, and expanding the exponential factor

expð��ByÞ, we obtain the diverging parts of the integral as

Z½�; �B� ¼ X
n;m

ð�1Þnþm

n!m!
�nð�BÞmZðn;mÞ; (3.8)

with

Zðn;mÞ �
�
�ð	� nÞ y2nþm�1�	

0

	þ1�ð2nþmÞ if 	 > 2nþm� 1

0 if 	 < 2nþm� 1;

(3.9)

for 	 > 1, and for 	 ¼ 1 we have

Z½�; �B� � 1

2y20
� �B

y0
� 1

2
fð�BÞ2 � 2�þ 4�E�

þ 2� log�þ 2� logy0g logy0; (3.10)

where �E represents the Euler gamma.
From the partition function, we can calculate statistical

averages hxi, hyi, and correlation functions h�n
x�

m
y i, of

fluctuations, �x � x� hxi and �y � y� hyi, for any pair

of non-negative integers ðn;mÞ. For example, hxi and hyi
are given by

hxi ¼ � @

@�
logZ��Zð10Þ

Zð00Þ
¼
� 	þ1
ð	�1Þ2 y

2
0; if 	 > 1

2ðy0 logy0Þ2 if 	 ¼ 1;

(3.11)
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hyi ¼ � @

@�B logZ��Zð01Þ
Zð00Þ

¼ 	þ 1

	
y0: (3.12)

They are independent of the parameters � and �B, and the
collapsing phase approaches smoothly toward the B1 and
B3 boundaries. Since the average values hAi ¼ hxi=� and
hli ¼ hyi=� vanish in the continuum limit y0 ! 0, it is the
reason we call this phase collapsing.

The second moment, h�2
xi, is given by

h�2
xi ¼ @2

@�2
logZ� Zð20Þ

Zð00Þ
�
�
Zð10Þ
Zð00Þ

�
2

¼

8>>>><
>>>>:

�
1

ð	�2Þð	�3Þ � 	þ1
ð	�1Þ3

�
	þ1
	�1 y

4
0 if 	 > 3

�2y40 logy0 if 	 ¼ 3

0 if 1 	 	 < 3;

(3.13)

where the dominant contribution of the last case will come
from the nondiverging integral. In the same manner, we
can obtain other second-order moments as,

h�x�yi ¼ @2

@�@�B logZ� Zð11Þ
Zð00Þ

� Zð10ÞZð01Þ
Z2
ð00Þ

¼

8>>>><
>>>>:

�
1

	�2 � 	þ1
	ð	�1Þ

�
	þ1
	�1 y

3
0 if 	 > 2

�3y30 logy0 if 	 ¼ 2

0 if 1 	 	 < 2;

(3.14)

h�2
yi ¼ @2

ð@�BÞ2 logZ� Zð02Þ
Zð00Þ

�
�
Zð01Þ
Zð00Þ

�
2

¼
8><
>:
�

1
	�1 � 	þ1

	2

�
ð	þ 1Þy20 if 	 > 1

�y20 logy0 if 	 ¼ 1:

(3.15)

In the continuum limit, all the correlation functions also
vanish as

h�n
x�

m
y i �

8>>><
>>>:
Oðy2nþm

0 Þ if 	 > 2nþm� 1

�y2nþm
0 logy0 if 	 ¼ 2nþm� 1

Oðy	þ1
0 Þ if 1 	 	 < 2nþm� 1:

(3.16)

IV. OVERVIEW OF NON-STATIONARY
SOLUTIONS OF THE MASTER EQUATION

In order to investigate solutions of the master equation
for nonstationary phases, we shall analyze time evolution
of statistical averages of moments hxnymi, instead of

solving the partial differential equation. The master equa-
tion provides equations of motion as

dhxnymi
dt

¼ nðn� 1Þhxn�2ymi þmðm� 1Þhxnym�2i

� n

�
xn�1ym

@S

@x

�
�m

�
xnym�1 @S

@y

�
; (4.1)

where S ¼ Sðx; yÞ has been given by Eq. (2.9). When the
parameters ð�; �B; �Þ are chosen outside the region where
the solution converges to the equilibrium distribution, it is
beyond the case where standard procedures of the statisti-
cal mechanics are applicable. We shall require the master
equation with the same function Sðx; yÞ to hold in the whole
parameter space because of the equal probability axiom.
Equations of motion for hxi and hyi are given by

dhxi
dt

¼ ��þ
�
y2

x2

�
þ �

�
1

x

�
; (4.2)

dhyi
dt

¼ ��B � 2

�
y

x

�
þ �

�
1

y

�
: (4.3)

Since x and y correspond to the rescaled area and the
boundary length, average values hy2=x2i and hy=xi should
be positive definite, even if hxi and hyi grow to infinity.
Assuming hy2=x2i ! c2 and hy=xi ! c1, Eq. (4.3) can be
written asymptotically as3

dhxi
dt

���þ c2 þ �

�
1

x

�
; (4.4)

dhyi
dt

���B � 2c1 þ �

�
1

y

�
: (4.5)

In these equations, h1=xi and h1=yi are expected to behave
like 1=hxi and 1=hyi, respectively, when hxi and hyi get
large. On the other hand, they will increase monotonically
as hxi and hyi move toward zeros. Recalling the parameter
� is negative, hxi increases indefinitely when ��þ c2 is
positive, while it goes to zero otherwise.4

Therefore, when hxi ! 0, hyi should also tend to zero,
which is the case we have already seen as the collapsing
phase. On the other hand, if hxi ! 1, the increasing rate
should be at most proportional to the Markov time. In fact,
Eq. (4.2) gives the asymptotic solution hxi � ð��þ c2Þt.
The evolution of hyi depends on the parameters �B and

�. When� is negative, dhyi=dt is negative and the solution

3In the following, ‘‘tilde’’ (� ) means asymptotically equal.
4Precisely speaking, because of the repulsive nature of the

fixed point located at ��þ c2 þ �h1=xi ¼ 0, the distribution
bifurcates into the collapsing phase and the expanding phase
with appropriate ratio, which tends to 100% collapsing as
��þ c2 approaches 0.
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becomes unstable except � ¼ �1, which will be discussed
in the later section as the polymer state. On the other hand,
when � is positive, hyi converges to an attractive fixed
point for ��B � 2c1 being negative, otherwise it expands
with the maximum rate, as far as the parameter � lies
outside the region of the collapsing phase.

In summary, when �B <�2c1 and � < c2, both hxi and
hyi increase linearly in time, which corresponds to the
expanding phase (P2). Asymptotically, c2 and c1 tend to
hyi2=hxi2 and hyi=hxi, respectively, and the critical line is

located along
ffiffiffiffi
�

p ¼ �2�B in the parameter space. The rest
of the lower half-plane of the parameter space is occupied
by the collapsing phase (P1). In the upper half-plane of the
parameter space, hyi converges to a fixed point, and c2 and
c1 go to zeros when � ! 0. This is the elongating phase
(P3), while the remaining region in the upper half-plane
corresponds to the collapsing phase.

These three phases are separated by three boundaries:
the boundary B1 between P1 and P2 is located along the

line
ffiffiffiffi
�

p ¼ �2�B in the fourth quadrant. Since dhxi=dt is
negative on this border, no physical solution exist, and the
transition between two phases is abrupt. The boundary B2,
which lies between P2 and P3, is specified by�� > 0 and
�B ¼ 0. Since dhxi=dt ¼ �� and dhyi=dt ¼ �h1=yi, there
exists a solution where the space expands as hxi �OðtÞ and
hyi �Oðt1=2Þ, which we call the boundary state. The
boundary B3 lies between P3 and P1, where � ¼ 0 and
�B > 0. Since dhxi=dt is also negative on this border, no
physical solution exist, and the transition between two
phases is suddenly similar to B1.

In the following sections, we shall show explicit forms
of asymptotic solutions for these phases and boundaries.

V. THE EXPANDING PHASE (P2)

When we choose the parameters � and �B negative,
configurations with more triangles and more boundary
edges become favorable, and the Universe expands with
its maximum growth rates proportional to the Markov
time. We have called this case the expanding phase after
the numerical simulation. In such a case, it is common to
separate fluctuations from their means as x ¼ hxi þ�x and
y ¼ hyi þ�y. Equations of motion are constructed for the

averages hxi, hyi, and various moments of fluctuations
h�n

x�
m
y i, which are summarized in Appendix B. Since the

mean values, hxi and hyi, increase with their maximum
rates, we can expand equations of motion in terms of the
relative fluctuations, 
 � �x=hxi and � � �y=hyi. As we
shall see in a moment, the mean square fluctuations, h�2

xi
and h�2

yi, also show linear increase in time, the order

parameters of expansions for x and y motions,
ffiffiffiffiffiffiffiffiffih
2ip

andffiffiffiffiffiffiffiffiffih�2ip
, are proportional to t�1=2. Therefore, solutions ob-

tained by keeping the leading orders of expansion become
exact asymptotically.

For example, asymptotic equations for hxi and hyi are
obtained from Eqs. (4.2) and (4.3) as

dhxi
dt

���þ hyi2
hxi2 ; (5.1)

dhyi
dt

���B � 2
hyi
hxi : (5.2)

Solutions of these equations are easily obtained by writing

hxi � vxt; hyi � vyt;

where we keep only the leading terms, and require that vx

and vy should satisfy

vx ¼ ��þ v2
y

v2
x

; (5.3)

vy ¼ ��B � 2
vy

vx

: (5.4)

The positivity of growth rates, vx and vy, defines two

boundaries of the expansion phase in the two-dimensional
parameter space. The conditions, vx ¼ 0 and vy ¼ 0, with

keeping the ratio vy=vxð� r0Þ finite, give the boundary B1
along 4� ¼ ð�BÞ2 with �B < 0. This boundary coincides
with that of the collapsing phase in the lower half-plane as
we have seen in Sec. III. There exists another boundary B2,
where vx ¼ �� and vy ¼ 0, which lies along �B ¼ 0 with

� < 0.
Asymptotic equations for the 2-point correlation func-

tions are written as

dh�2
xi

dt
� 2� 4

hyi2
hxi2

�h�2
xi

hxi � h�x�yi
hyi

�
; (5.5)

dh�x�yi
dt

��2
hyi2
hxi2

�h�2
yi

hyi � h�x�yi
hxi

�

þ 2
hyi
hxi

�h�2
xi

hxi � h�x�yi
hyi

�
; (5.6)

dh�2
yi

dt
� 2� 4

hyi
hxi

�h�2
yi

hyi � h�x�yi
hxi

�
: (5.7)

They also grow linearly in t. Writing

h�2
xi � cð2; 0Þt;

h�x�yi � cð1; 1Þt;
h�2

yi � cð0; 2Þt;
their coefficients are obtained to be
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cð2; 0Þ ¼ 2ð4þ vxÞ
4þ 4r20 þ vx

;

cð1; 1Þ ¼ 8r0
4þ 4r20 þ vx

;

cð0; 2Þ ¼ 2ð4r0 þ vxÞ
4þ 4r20 þ vx

:

(5.8)

The asymptotic equation for the ðn;mÞ moment is sepa-
rated into two branches, nþm ¼ even and nþm ¼ odd.
For nþm ¼ N with an even integer N, there are N þ 1
equations,

dh�n
x�

m
y i

dt
� nðn� 1Þh�n�2

x �m
y i þmðm� 1Þh�n

x�
m�2
y i

� 2n
hyi2
hxi2

�h�n
x�

m
y i

hxi � h�n�1
x �mþ1

y i
hyi

�

þ 2m
hyi
hxi

�h�nþ1
x �m�1

y i
hxi � h�n

x�
m
y i

hyi
�
: (5.9)

Inserting the asymptotic form of the solution,

h�n
x�

m
y i � cðn;mÞtðnþmÞ=2;

into Eq. (5.9), we obtain

�
nþm

2
þ 2nr20

vx

þ 2m

vx

�
cðn;mÞ

¼ nðn� 1Þcðn� 2; mÞ þmðm� 1Þcðn;m� 2Þ

þ 2nr0
vx

cðn� 1; mþ 1Þ þ 2mr0
vx

cðnþ 1; m� 1Þ;
(5.10)

which can be solved step by step starting with the
nþm ¼ 2 components with the initial input cð0; 0Þ ¼ 1.
For the nþm ¼ odd integer branch, the equation

has extra contributions from nþm ¼ even integer
components,

n
hyi2
hxi2

�
3
h�nþ1

x �m
y i � h�n�1

x �m
y ih�2

xi
hxi2 � 4

h�n
x�

mþ1
y i � h�n�1

x �m
y ih�x�yi

hxihyi þ h�n�1
x �mþ2

y i � h�n�1
x �m

y ih�2
yi

hyi2
�

� 2m
hyi
hxi

�h�nþ2
x �m�1

y i � h�n
x�

m�1
y ih�2

xi
hxi2 � h�nþ1

x �m
y i � h�n

x�
m�1
y ih�x�yi

hxihyi
�
; (5.11)

which should be added to Eq. (5.9). Inserting the expected asymptotic form,

h�n
x�

m
y i � cðn;mÞtðnþm�1Þ=2;

into Eq. (5.9) with Eq. (5.11), we obtain

�
nþm� 1

2
þ 2nr20

vx

þ 2m

vx

�
cðn;mÞ ¼ nðn� 1Þcðn� 2;mÞ þmðm� 1Þcðn;m� 2Þ þ 2nr0

vx

cðn� 1;mþ 1Þ

þ 2mr0
vx

cðnþ 1;m� 1Þ þ n

v2
x

½3r20fcðnþ 1;mÞ � cðn� 1;mÞcð2;0Þg

� 4r0fcðn;mþ 1Þ � cðn� 1;mÞcð1;1Þg þ cðn� 1;mþ 2Þ � cðn� 1;mÞcð0;2Þ�
� 2m

v2
x

½r0fcðnþ 2;m� 1Þ � cðn;m� 1Þcð2;0Þg � cðnþ 1;mÞ þ cðn;m� 1Þcð1;1Þ�:

(5.12)

This equation can also be solved iteratively starting from
nþm ¼ 3, with initial inputs cð1; 0Þ ¼ cð0; 1Þ ¼ 0,
together with nþm ¼ even solutions previously
obtained.

Near the boundary B1 of the expanding phase, there are
two cases of limiting procedures: (1) take the t ! 1 limit
before taking ðvx; vyÞ ! 0, or (2) search a new state just on

the boundary before taking the asymptotic limit. In the first
case, the expansion in terms of the relative fluctuations, 

and �, is considered to be valid. As the parameters get

close to the boundary values, the leading terms of expan-
sion rates for hxi and hyi tend to vanish as

vx �
ffiffiffiffi
�

p
1þ �

�; vy � �

1þ �
�;

for a small � � �ð�B þ 2
ffiffiffiffi
�

p Þ. On the other hand, the
growing rates for second moments stay finite toward
B1 seen in Eq. (5.8) for vx ! 0. Higher moments of corre-
lation are obtained by solving Eqs. (5.10) and (5.12), and
then taking the vx ! 0 limit.
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For the second limiting case, we search the following type of solutions on the boundary:

hxi � x1t
p þ . . . ; hyi � y1t

p þ . . . ;

where 0< p< 1. The correlation functions we look for are considered to have the form

h�n
x�

m
y i �

�
c1ðn;mÞt½ðnþmÞ=2�þq�1 if nþm ¼ even

c1ðn;mÞt½ðnþm�1Þ=2�þq�1 if nþm ¼ odd,
(5.13)

with 0< q 	 1. At this stage, we assume equations of motion can be expanded in terms of 
 and �, and we take up to the
second order, whose validity will be checked later. Inserting the asymptotic forms, equations for the averages hxi and hyi
are given by

px1t
p�1 � �

x1
t�p

�
1þ c1ð2; 0Þ

x21
tq�2p

�
þ y21

x21

�
1þ

�
3
c1ð2; 0Þ

x21
� 4

c1ð1; 1Þ
x1y1

þ c1ð0; 2Þ
y21

�
tq�2p

�
;

py1t
p�1 � �

y1
t�p

�
1þ c1ð0; 2Þ

y21
tq�2p

�
� 2

y1
x1

�
1þ

�
c1ð2; 0Þ

x21
� c1ð1; 1Þ

x1y1

�
tq�2p

�
;

and for the 2-point correlation functions,

qc1ð2; 0Þtq�1 � 2� 2�
c1ð2; 0Þ

x21
tq�2p � 4

y21
x1

�
c1ð2; 0Þ

x21
� c1ð1; 1Þ

x1y1

�
tq�p;

qc1ð1; 1Þtq�1 ��
�
�
y1
x1

þ �
x1
y1

�
c1ð1; 1Þ
x1y1

tq�2p þ 2y1

�
c1ð2; 0Þ

x21
� c1ð1; 1Þ

x1y1

�
tq�p þ 2

y31
x21

�
c1ð0; 2Þ

y21
� c1ð1; 1Þ

x1y1

�
tq�p;

qc1ð0; 2Þtq�1 � 2� 2�
c1ð0; 2Þ

y21
tq�2p � 4

y21
x1

�
c1ð0; 2Þ

y21
� c1ð1; 1Þ

x1y1

�
tq�p:

There are three possible pairs of exponents ðp; qÞ:
(1) ð2=3; 1Þ, (2) ð1=2; 1Þ, and (3) ð1=2; 1=2Þ. The cases (1)
and (3) give x1 ¼ y1 ¼ 0, and the case (2) does not have a
solution due to negativeness of the parameter �. In sum-
mary, when the parameter � approaches zero, the growing
rates vx, vy get smaller, but nonetheless hxi and hyi in-
crease indefinitely. On the other hand, as we have seen in
the last section all the expectation values in P1 tend to zero
in the continuous limit y0 ! 0, and we conclude the tran-
sition at the boundary B1 is sudden.

Let us turn our attention to the boundary B2, where the
expansion rate for hyi vanishes as vy � ð��BÞ=ð1þ 2vxÞ,
while vx ��� stays finite with a negative �. In this case,
the ratio r � hyi=hxi approaches 0, and coefficients of the
two-point functions tend to

cð2; 0Þ � 2; cð1; 1Þ � 0; cð0; 2Þ � 2
vx

4þ vx

:

In general, coefficients of the correlation function h�n
x�

m
y i

behave for a small �B as

cðeven; evenÞ � cðodd; evenÞ �Oð1Þ;
and

cðodd; oddÞ � cðeven; oddÞ �Oð�BÞ:
In the case when we set �B ¼ 0 before taking the asymp-

totic limit, we expect the following type of solutions:

hxi � vxtþ . . . ; hyi � y1t
p þ . . . ;

with 0< p< 1. Assuming that the expansion in terms of 

and � is possible, we have hxi � ��t, while from the
equation for hyi, we obtain p ¼ 1=2. Since the equation
for h�2

yi gives nonvanishing cð0; 2Þ ¼ 2vx=ð4þ vxÞ, the
order parameter along the y direction is

ffiffiffiffiffiffiffiffiffih�2ip �Oðt0Þ,
which implies that the expansion is perturbative. We shall
consider this case in the subsequent section.

VI. THE ELONGATING PHASE (P3)

When � < 0, �B > 0, and �> 0, the equation for hxi,
Eq. (4.2), gives hxi ! vxt with vx ¼ ��, assuming�

1

x

�
! 1

hxi ;
�
y2

x2

�
! hy2i

hxi2
as hxi increases. Then, the equation for hyi, Eq. (4.3), has a
stationary solution at the attractive fixed point, hyi ¼ y1,
satisfying

� �B þ �

�
1

y

�
¼ 0;

where y1 is regarded to be a parameter at this moment.
Since h�2

xi also shows a linear increase in t, equations of
motion for the x direction are expanded in terms of the
relative fluctuation 
, while equations for the y direction
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are treated without separating the fluctuation. The set of
equations of this type is named the �-y scheme, and it is
summarized in Appendix C.

In this section, we choose � positive, otherwise dhyi=dt
is always negative for �B � 0, and the motion along the y
direction becomes unstable except � ¼ �1, which will be
discussed in the next section. Keeping only the lowest-
order terms of expansion along the x direction, equations of
motion in the asymptotic region are given by

dh�n
xy

mi
dt

�nðn�1Þh�n�2
x ymiþmðm�1þ�Þh�n

xy
m�2i

�2m

hxi h�
n
xy

mi�m�Bh�n
xy

m�1iþ
�
2m

hxi2 h�
nþ1
x ymi

þ n

hxi2 fh�
n�1
x ymþ2i�h�n�1

x ymihy2ig

þ n�

hxi3 fh�
nþ1
x ymi�h�n�1

x ymih�2
xig
	
; (6.1)

where the last three terms in the bracket [...] are reserved
for the odd n case.

We start solving the n ¼ 0 component,

dhymi
dt

�mðm� 1þ �Þhym�2i � 2m
hymi
hxi �m�Bhym�1i:

(6.2)

The solution is formally expressed as,

hymiðtÞ �mt�2m=vx

Z t
z2m=vxf��Bhym�1iðzÞ

þ ðm� 1þ �Þhym�2iðzÞgdz; (6.3)

where we choose hxi ¼ vxt. Carrying out the integration
explicitly, the first two solutions are expressed as

hy2i � 2ð1þ �� �By1Þ t

1þ 4
vx

þ y2; (6.4)

hy3i � 3fð2þ �Þy1 � �By2g t

1þ 6
vx

þ �Bð1þ �� �By1Þ t2

ð1þ 3
vx
Þð1þ 4

vx
Þ þ y3; (6.5)

where y2 and y3 are initial values of hy2i and hy3i, respec-
tively. Since the expectation value hymi should be positive,
the solution hy2i is acceptable only when the parameters
satisfy 1þ �� �By1 � 0. On the other hand, for the
solution hy3i the positivity condition requires 1þ ��
�By1 	 0. Combining these conditions, y1 is fixed to be
ð1þ �Þ=�B. Continuing this procedure for larger m, we
will find that the allowed asymptotic solution, hymi ! ym,
is required to satisfy

ðm� 1þ �Þym�2 � �Bym�1 ¼ 0; (6.6)

which gives the asymptotic value of hymi to be

ym ¼ Ym
k¼1

�
kþ �

�B

�
: (6.7)

For an even integer n, the ðn; 0Þ-component equation,

dh�n
xi

dt
� nðn� 1Þh�n�2

x i; (6.8)

gives the solution

h�n
xi � dnt

n=2; dn ¼ 2n=2
Yn=2
k¼1

ð2k� 1Þ; (6.9)

for n � 2, and d0 ¼ 1. Since y�Oð1Þ and �x �Oðt1=2Þ,
inserting the asymptotic form,

h�n
xy

mi ¼ cðn;mÞtn=2;
into Eq. (6.1), the leading term follows

n

2
cðn;mÞtn=2�1�nðn�1Þcðn�2;mÞtn=2�1

þmðm�1þ�Þcðn;m�2Þtn=2

�2m

vx

cðn;mÞtn=2�1�m�Bcðn;m�1Þtn=2;

which requires cðn;mÞ to satisfy

0 ¼ ðm� 1þ �Þcðn;m� 2Þ � �Bcðn;m� 1Þ: (6.10)

It gives the solution to be

cðn;mÞ ¼ Ym
k¼1

�
kþ �

�B

�
cðn; 0Þ: (6.11)

From Eqs. (6.7) and (6.9), it is written as cðn;mÞ ¼ dnym,
which indicates the lack of correlation between motions
along x and y directions.
We now proceed to solve the n ¼ odd integer case.

Since a correlation function of odd moment is not neces-
sarily positive, we cannot utilize the positivity condition as
the n-even case, and it is desirable to know the bound on
exponents in order to select the acceptable solutions.
Making use of the Schwartz inequality,

h�n
xy

mi2 	 h�2n
x ihy2mi; (6.12)

together with the previous result for fh�2n
x ig and fhy2mig, we

have the bound,

jh�n
xy

mij 	 Oðtn=2Þ;
which is required asymptotically.
Equations of motion are given by Eq. (6.1) with the

additional terms reserved in [. . .]. Writing the asymptotic
form of solution for the even n case as

h�n
xy

mi ¼ dnymt
n=2;

the contribution from additional terms is
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2m

v2
x

dnþ1ymt
ðn�3Þ=2 þ n

v2
x

dn�1ðymþ2 � ymy2Þtðn�3Þ=2

þ n�

v3
x

ðdnþ1 � dn�1d2Þymtðn�5Þ=2: (6.13)

Since it has a different t dependence in the m ¼ 0 case
from other cases, we shall solve the equation for m ¼ 0
and m � 0 separately.

Firstly, we set m ¼ 0 in Eq. (6.1), and obtain

dh�n
xi

dt
� nðn� 1Þh�n�2

x i þ n�

hxi3 fh�
nþ1
x i � h�n�1

x ih�2
xig:

(6.14)

This equation can be solved iteratively starting from n ¼ 3
using the solutions for even n moments, resulting in

h�n
xi � ~dnt

ðn�3Þ=2 logt; ~dn ¼ 2nðn� 1Þ
ðn� 3Þ

~dn�2; (6.15)

for n � 5, with ~d3 ¼ ð24�=v3
xÞ. Next, we consider the

m � 0 cases, and we get the same relation as the previous
even n case:

ðm� 1þ �Þh�n
xy

m�2i � �Bh�n
xy

m�1i � 0: (6.16)

Solutions of this equation were already known to be

h�x
xy

mi � h�n
xi
Ym
k¼1

�
kþ �

�B

�
¼ ~dnymt

ðn�3Þ=2 logt; (6.17)

which also shows the lack of correlations between x and y
motions.

Approachingthe boundary B2 from above, �B ! 0þ, the
moments, h�n

xy
mi diverge asOðð�BÞ�mÞ. In order to under-

stand the nature of transition between the expanding phase
and the elongating phase, we need to know properties of
the boundary state along B2, which will be discussed in the
subsequent section. On the other hand, h�n

xy
mi does not

depend on � asymptotically, and the transition at the
boundary B3 is abrupt according to the limit in the neigh-
boring phase P1.

VII. THE POLYMER STATE AND THE
BOUNDARY STATE

There exist two special states for certain values of the
parameter set ð�; �B; �Þ. When � is zero or negative,
dhyi=dt is always negative for �B � 0, and hyi tends to
be unphysical. In the negative � region, there exists a
special case located at � ¼ �1, where not only y2 but
also all fymg are 0 according to Eq. (6.7). In this case, the
distribution function pðx; y; tÞ approaches

pðx; y; tÞ ! pðx; tÞ�ðyÞ:
We may call this case the polymer state. In this state, only
the motion along the x direction evolves as hxi ! vxt with
vx ¼ ��, and

h�n
xi �

�
dnt

n=2 if n ¼ even

~dnt
ðn�3Þ=2 logt if n ¼ odd

(7.1)

except the n ¼ 1 component, i.e., h�xi ¼ 0. The coeffi-

cients fdng and f~dng are the same as those of the elongating
phase given by Eqs. (6.9) and (6.16), respectively.
There is another special state that appears along the

boundary B2. For an even integer n, the equation of motion,

dh�n
xy

mi
dt

� nðn� 1Þh�n�2
x ymi þmðm� 1þ �Þh�n

xy
m�2i

� 2m

hxi h�
n
xy

mi; (7.2)

has the solution with the product form,

h�n
xy

mi � h�n
xihymi;

where each component obeys,

dh�n
xi

dt
� nðn� 1Þh�n�2

x i; (7.3)

dhymi
dt

�mðm� 1þ �Þhym�2i � 2m

hxi hy
mi: (7.4)

The first equation is the same as the elongating phase and

we already have the solution h�n
xi � dnt

n=2 with the same
dn given by Eq. (6.8). For the second equation, writing

hymi � �ymt
m=2, we obtain

�y m ¼ 2ðm� 1þ �Þ �ym�2 � 4

vx

�ym: (7.5)

For an even integerm, we solve it iteratively with the initial
value �y0 ¼ 1, and we get

�ym ¼
�

2

1þ 4
vx

�
m=2 Ym=2

k¼1

ð2k� 1þ �Þ; ðm: evenÞ: (7.6)

In order to obtain solutions for an odd integer m, we need
to give a value for �y1, which is regarded as a parameter at
this moment. Then, the solution is given by

�y m ¼
�

2

1þ 4
vx

�ðm�1Þ=2 Yðm�1Þ=2

k¼1

ð2kþ �Þ �y1; ðm: oddÞ:

(7.7)

For an odd integer n, we need to add extra terms coming
from the even n solutions in the equation of motion,
Eq. (6.1). Since contributions of these extra terms for
m ¼ 0 and m � 0 have different properties similar to
the previous case, we treat them separately. Form ¼ 0, the
equation is the same as the elongating phase and the solu-
tion is known to be

h�n
xi ¼ ~dnt

ðn�3Þ=2 logt; (7.8)

with the same coefficient ~dn as Eq. (6.16).
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For the m � 0 case, the additional terms are written by
using the n-even solutions, h�n

xy
mi�dn �ymexpf�ðnþ

mÞ=2g, to be
2m

v2
x

dnþ1 �ym þ n

v2
x

dn�1ð �ymþ2 � �ym �y2Þ;

where we keep terms having the order tðnþm�3Þ=2. We note
the additional contributions can be rewritten as

3þ 8
vx

1þ 4
vx

m

v2
x

dnþ1 �ym;

using the relationships for dn, Eq. (6.9). Writing the asymp-
totic solution as

h�n
xy

mi � d̂nŷmt
ðnþm�1Þ=2;

except the (1, 0) component, which is 0 by definition, the
equation of motion is expressed as

nþm� 1

2
d̂nŷm

¼ nðn� 1Þd̂n�2ŷm þmðm� 1þ �Þd̂nŷm�2

� 2m

vx

d̂nŷm þ 3þ 8
vx

1þ 4
vx

m

v2
x

dnþ1 �ym; (7.9)

except the equation for the ðn;mÞ ¼ ð1; 2Þ moment, which
involves the (1, 0) component,

d̂ 1ŷ2 ¼ � 4

vx

d̂1ŷ2 þ
3þ 8

vx

1þ 4
vx

2

v2
x

d2 �y2: (7.10)

Imposing

d̂ n ¼ 2nd̂n�2; ðn: oddÞ (7.11)

with d̂1 ¼ 1, Eq. (7.9) becomes

ŷm ¼ 2ðm� 1þ �Þŷm�2 � 4

vx

ŷm þ 3þ 8
vx

1þ 4
vx

4

v2
x

�ym; (7.12)

where we use the relation

dnþ1=d̂n ¼ dn�1=dn�2 ¼ d2=d̂1 ¼ 2:

We note Eq. (7.10) becomes the same as them ¼ 2 compo-
nent of Eq. (7.9) when we set ŷ0 ¼ 0.
The solution of Eq. (7.11) is given by

d̂ n ¼ 2ðn�1Þ=2 Yðn�1Þ=2

k¼1

ð2kþ 1Þðn: oddÞ; (7.13)

while Eq. (7.12) can be solved for even m and odd m
separately, using the solution �ym given by Eq. (7.6) for
the even m case and Eq. (7.7) for the odd m case. For an
even m, we solve it iteratively with the condition ŷ0 ¼ 0,
while for an odd m the solution has the same form as the
even case with the initial input value ŷ1, which we assume
to be a parameter at this moment. We give here the solu-
tions without giving details of derivations,

ŷm ¼

8>>><
>>>:

m
2 a

�
2

1þ 4
vx

�
m=2Qm=2

k¼1ð2k� 1þ �Þ if m ¼ even�
m�1
2 aŷ1 þ �y1

��
2

1þ 4
vx

�ðm�1Þ=2Qðm�1Þ=2
k¼1 ð2kþ �Þ �y1 if m ¼ odd;

(7.14)

where we write a � 4ð3þ 8
vx
Þ=v2

x=ð1þ 4
vx
Þ2.

Until this point, we obtain all quantities of our interest in
the asymptotic limit with two initial input parameters, �y1
and ŷ1, which correspond to hyi and h�xyi, respectively.
Since their equations of motion,

dhyi
dt

� �hy�1i � 2
hyi
hxi ; (7.15)

dh�xyi
dt

� �h�xy
�1i � 2

h�xyi
hxi þ hy3i � hyihy2i

hxi2 ; (7.16)

involve moments with the negative exponent, it seems we
are eventually forced to solve infinite towers of equations
with negative integer arguments.

In order to avoid these difficulties, we shall make use of
the following relation for hy�1i:

�
1

y

�
¼ 1

hyi
�

1

1þ �

�
¼ 1

hyi
X1
n¼0

Xn
m¼0

ð�1Þm n

m

 ! hymi
hyim

¼ 1

y1

X1
n¼0

Xn
m¼0

ð�1Þm n

m

 !
�ym
�ym1

t�1=2: (7.17)

Since �ym is written as Eqs. (7.6) and (7.7), Eq. (7.14)
indicates hy�1i is expressed by �y1. From this relation and
Eq. (7.12), we have the equation

1

2

�
1þ 4

vx

�
�y1 ¼ �

�y1

X1
n¼0

Xn
m¼0

ð�1Þm n
m

� �
�ym
�ym1

; (7.18)

which can, in principle, determine the parameter �y1.
Similar analysis can be applied for h�xy

�1i, giving
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1

2

�
1þ 4

vx

�
ŷ1 ¼ �

�y1

X1
n¼0

Xn
m¼0

ð�1Þm n
m

� �
ŷm
�ym1

þ �y3 � �y2 �y1
v2
x

:

(7.19)

Again, ŷm is known from Eq. (7.11) up to two parameters,
�y1 and ŷ1, and the remaining parameter ŷ1 should be
unambiguously determined.

This concludes analyses of solutions of the master equa-
tion obtained through equations of motion for all the
possible moments, and they show the asymptotic solutions
are exact and are determined without any ambiguous pa-
rameters other than ð�; �B; �Þ.

VIII. DISCUSSION: EVOLUTION
OF THE UNIVERSE

After studying statistical properties of the two-
dimensional triangulated manifold, we are ready to intro-
duce the space and the time as the frame of reference. It is
natural to choose space and time coordinates according to
the global property of the topology. The manifold we have
constructed has the two-dimensional disk topology.
Peripheral boundary of the disk fits to the space coordinate
from the symmetry of forward and backward direction. On
the other hand, the direction perpendicular to the boundary
is not symmetric, and we can easily recognize the inside as
past and the outside as future when it is regarded as time.

Among the solutions of the equation of motion, the
average area, Að�Þ, and the average boundary length,
lð�Þ, are the two fundamental quantities for the space and
time. Their evolution is described by the length of Markov
chain, which we write �, here. We consider these two
quantities to be related to each other through the time t,
which we may call the physical time, as

AðtÞ ¼ c
Z t

lðtÞdt; (8.1)

where c takes into account of adjusting scales of the
physical space and the physical time.

The time we defined in Eq. (8.1) is a function of �, which
is determined by

ct ¼
Z � 1

lð�Þ
dAð�Þ
d�

d�: (8.2)

From the solutions, hxi, and hyi, we have the area and
boundary length A ¼ hxi=�, and l ¼ hyi=�, and we can
calculate the relationship between t and �, for each phase
as the following:

P1: Að�Þ � y20=�, and lð�Þ � y0=� for 	 > 1,

ct ¼ 0 ðno running timeÞ:

We note that the crunch occurs as a result of collapsing.

P2: Að�Þ ¼ vx�=�, and lð�Þ ¼ vy�=�,

ct ¼ vx

vy

log�; and lðtÞ ¼ vy

�
exp

�
cvy

vx

t

�

ðinflationary expansionÞ:
P3: Að�Þ ¼ vx�=�, and lð�Þ ¼ y1=�,

ct ¼ vx

y1
�; and lðtÞ ¼ y1

�
ðstationary universeÞ:

Boundary state: Að�Þ ¼ vx�=�, and lð�Þ ¼ �y1�
1=2=�,

ct ¼ vx

�y1

ffiffiffi
�

p
; and lðtÞ ¼ c �y21

�vx

tðbig bang universeÞ:

We employ the name big bang as the power-law expansion
in comparison to the inflation as the exponential expansion.
Polymer state: Að�Þ ¼ vx�=�, and lð�Þ ¼ y1=�,

ct ¼ vx

y1
�; and lðtÞ ¼ 0ðstationary universeÞ:

The polymer universe appears when � ¼ �1, where
��1 ¼ 0.

IX. SUMMARY

We have started creating a two-dimensional universe
under the working hypothesis, There were no laws but
rules at the beginning of the universe. The rules we have
proposed consist of the three main axioms: (1) existence of
the elementary unit of the Universe, (2) existence of
neighbors of a world, and (3) equal probability of appear-
ance of worlds. Based on these axioms, we have obtained
the master equation, which describes the emergence and
evolution of a two-dimensional space-time. The equation
reveals three prominent phases, i.e., the expanding, the
elongating, and the collapsing phase, and two significant
states, named as the polymer and the boundary state. For
each phase and state, statistical averages of the area, the
boundary length, and correlations between those variables
and their fluctuations are obtained. Since these solutions
are expanded in terms of the order parameter, which is the
inverse square root of the Markov time, they are considered
to be asymptotically exact. Moreover, solutions contain no
ambiguous parameters in the asymptotic limit except three
basic inputs, i.e., the cosmological constant �, the bound-
ary cosmological constant �B, and the matter content �.
The physical time is introduced from the relation be-

tween the area and the boundary length, after assigning the
boundary as the physical space. In terms of the physical
time, solutions of each phase show the characteristic be-
havior of space evolution, (1) inflationary expansion in the
expanding phase, (2) stationary universe in the elongating
phase, (3) point universe in the collapsing phase, (4) stringy
universe in the polymer state, and (5) linear expansion in
the boundary state, which we have called the big bang
expansion. The variety of solutions indicates the ability
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of describing most of the essential features of the Universe
even in the two-dimensional space-time. We remark all the
possible types of time appearing in two dimensions seems
to be universal for any manifold with one boundary accord-
ing to the numerical simulation for the four-dimensional
case.

In order to investigate the space-time evolution in higher
dimensions, we need to achieve a method to enumerate
triangulations. Because of the lack of analytical means,
numerical efforts to obtain some hints for functional forms
of the distribution function are unavoidable. The dynami-
cal triangulation with boundaries has been performed some
time ago for searching continuous transition [15,16] in
space-time dimension 3 and 4. Although our purpose is
to enumerate triangulated graphs of open manifolds, those
investigations suggest possibilities to apply the dynamical
triangulation prepared for closed spaces even for open
cases.

To accomplish the creation of a universe, it is most
important to answer the following two questions among
many. First, how are the three parameters determined at the
very beginning? Part of this question will be answered by
moving up to higher dimensions. In a four-dimensional
universe, where the conformal symmetry is broken and the
cosmological constants are not constant anymore, the ef-
fective cosmological constants will be allowed to make
time evolution. In two dimensions, the cosmological con-
stants obtained by the matrix model are large, and the
Universe is in the expanding phase. If the conformal sym-
metry is broken, these two parameters are not constant
anymore, and they will converge to the small fixed point
in the parameter space. For the matter part of parameters�,
we may say that any combination of fields is possible. In
case we are asked to explain the raison d’etre of the matter
content of this Universe, we need to accept the anthropo-
logical principle at this moment.

The second problem is the birth of quantum dynamics,
which we think is the primordial dynamics of the Universe.
In contrast to the master equation, which is the same type
as the diffusion equation, the dynamical equation is non-
diffusive. It is the hardest part of the problem to answer
how the complex function becomes inevitable in the course
of evolution of space and time. Unfortunately, we do not
have any answer to this question.

In spite of the lack of quantum dynamics, we consider
the creation of space-time able to stand by itself. The same
kind of situation arises in evolution of metals: first, a metal
lattice is formed, which is dominantly the classical statis-
tical process. Later, conduction of electrons and the
electron-phonon interaction emerges in the metal, which
are described by quantum mechanics. After all, if the
evolution of the Universe at its beginning is inflational,
the quantum dynamical correlation cannot influence the
space-time dynamics beyond its limited event horizon, and
the evolution of space becomes inevitably statistical.

ACKNOWLEDGMENTS

I am in debt to professor A. Iso and K. Hamada of the
theory center (KEK) for their encouragements. I thank
Dr. Horata for his assists to complete the manuscript.

APPENDIX A: THE MASTER EQUATION
IN THE ASYMPTOTIC LIMIT

The Markov process in the simplicial space is described
in terms of the discrete variables ðN2; ~N1Þ and the discrete
time n:

~p a½nþ 1� � ~pa½n� ¼
X
bðaÞ

f~pb½n� ~wb!a � ~pa½n� ~wa!bg;

(A1)

where ~wa!b ¼ f1þ expðSb � SaÞg�1 with

Sa ¼ SðN2; ~N1Þ

¼ �� logN2 � � log ~N1 þ �
~N2
1

N2

þ�N2 þ�B ~N1:

(A2)

Here, the sum over bðaÞ is restricted within the four
neighbor points of a ¼ ðN2; ~N1Þ connected by the four
moves, M1: ðN2 þ 1; ~N1 þ 1Þ, M2: ðN2 � 1; ~N1 þ 1Þ,
M3: ðN2 þ 1; ~N1 � 1Þ, M4: ðN2 � 1; ~N1 � 1Þ.
Introducing the three scale parameters ðA0; l0; �0Þ for the
physical variables, the area A ¼ A0N2, the boundary length
l ¼ l0 ~N1, and the Markov time � ¼ �0n, the probability
distribution function is translated as

~p ðN2; ~N1Þ½n� � pðA; l; �Þ:
In the continuum limit, where ðA0; l0; �0Þ ! 0, the finite
shift of a variable of a function, like fðxþ x0Þ ¼
expðx0d=dxÞfðxÞ, is expanded as f1þ x0d=dxþ ð1=2Þ�
ðx0d=dxÞ2 þ � � �gfðxÞ. In the left-hand side of Eq. (A1), the
lowest-order surviving term is Oð�0Þ, while in the right-
hand side of Eq. (A1), the expansion starts with the second
order in A0 and l0. We shall keep only those leading terms
for the continuum limit assuming Oð�0Þ �OðA2

0Þ �Oðl20Þ
to obtain

�0
@

@�
p½A; l; �� ¼

�
A2
0

�
@2

@A2
þ @Sa

@A

@

@A
þ @2Sa

@A2

�

þ l20

�
@2

@l2
þ @Sa

@l

@

@l
þ @2Sa

@l2

��
p½A; l; ��:

(A3)

It is free to choose the scale parameters so that they satisfy
�0 ¼ A2

0 ¼ l20.

APPENDIX B: THE �-� SCHEME

When the two parameters � and �B are chosen in the
region of the expanding phase, which locates mostly in the
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third quadrant and partially in the fourth quadrant, the area
and the boundary length increase at their maximum rates in
time. Variables x and y are then separated to mean values
hxi, hyi and fluctuations �x ¼ x� hxi and �y ¼ y� hyi.
Since the second moments of fluctuations h�2

xi and h�2
yi

also increase proportional to time, the relative fluctuations


 � �x=hxi and � � �y=hyi are of the order Oðt�1=2Þ. The
equation of motion for averages of x, y are written as

dhxi
dt

¼ ��þ hyi2
hxi2

�ð1þ �Þ2
ð1þ 
Þ2

�
þ �

hxi
�

1

1þ 


�
; (B1)

dhyi
dt

¼ ��B � 2
hyi
hxi

�
1þ �

1þ 


�
þ �

hyi
�

1

1þ �

�
; (B2)

and moments of fluctuations h�n
x�

m
y i as

dh�n
x�

m
y i

dt
¼ nðn� 1Þh�n�2

x �m
y i þmðm� 1Þh�n

x�
m�2
y i þ n

�

hxi
�
�n�1

x �m
y

�
1

1þ 

�
�

1

1þ 


���

þ n
hyi2
hxi2

�
�n�1

x �m
y

�ð1þ �Þ2
ð1þ 
Þ2 �

�ð1þ �Þ2
ð1þ 
Þ2

���
þm

�

hyi
�
�n

x�
m�1
y

�
1

1þ �
�
�

1

1þ �

���

� 2m
hyi
hxi

�
�n

x�
m�1
y

�
1þ �

1þ 

�
�
1þ �

1þ 


���
: (B3)

APPENDIX C: THE �-y SCHEME

When the boundary cosmological constant changes its sign (i.e., �B > 0), the boundary length stops increasing and the
Universe elongates as time goes by. In this case, expanding the equation for fluctuations along the y direction cannot be
justified, while the motion along the x direction keeps expanding with its maximum rate. Then, we shall consider equations
of motion without splitting hyi and <�y, and we obtain the equation for the average hxi,

dhxi
dt

¼ ��þ 1

hxi2
�

y2

ð1þ 
Þ2
�
þ �

hxi
�

1

1þ 


�
; (C1)

and the correlation h�n
xy

mi,

dh�n
xy

mi
dt

¼ nðn� 1Þh�n�2
x ymi þmðm� 1þ �Þh�n

xy
m�2i þ n

�

hxi h�
n�1
x ym

�
1

1þ 

�
�

1

1þ 


���

þ n
1

hxi2
�
�n�1

x ym
�

y2

ð1þ 
Þ2 �
�

y2

ð1þ 
Þ2
���

� 2m
1

hxi
�
�n

xy
m 1

1þ 


�
�m�Bh�n

xy
m�1i: (C2)
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