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Several recent studies have shown how to properly calculate the observed clustering of galaxies in a

relativistic context, and uncovered corrections to the Newtonian calculation that become significant on

scales near the horizon. Here, we retrace these calculations and show that, on scales approaching the

horizon, the observed galaxy power spectrum depends strongly on which gauge is assumed to relate the

intrinsic fluctuations in galaxy density to matter perturbations through a linear bias relation. Starting from

simple physical assumptions, we derive a gauge-invariant expression relating galaxy density perturbations

to matter density perturbations on large scales, and show that it reduces to a linear bias relation in a

synchronous-comoving gauge, corroborating an assumption made in several recent papers. We evaluate

the resulting observed galaxy power spectrum, and show that it leads to corrections similar to an effective

non-Gaussian bias corresponding to a local fNL;eff & 0:5. This number can serve as a guideline as to which

surveys need to take into account relativistic effects. We also discuss the scale-dependent bias induced by

primordial non-Gaussianity in the relativistic context, which again is simplest in a synchronous-comoving

gauge.

DOI: 10.1103/PhysRevD.85.023504 PACS numbers: 98.65.Dx, 98.80.Jk

I. INTRODUCTION

The clustering of galaxies and other large-scale structure
(LSS) tracers on the largest scales has recently received
great interest as a probe of inflation and its alternatives. In
the presence of primordial non-Gaussianity, biased tracers
can exhibit a significant scale-dependent bias with respect
to the matter distribution which increases strongly towards
large scales [1]. This can be used as a sensitive probe of
primordial non-Gaussianity [2]. Furthermore, ongoing,
future, and proposed surveys such as the Baryon
Oscillation Spectroscopic Survey [3], the Hobby Eberly
Telescope Dark Energy Experiment [4], Hyper Suprime-
Cam, the Dark Energy Survey [5], the Subaru Prime Focus
Spectrograph, BigBOSS [6], the Large Synoptic Survey
Telescope [7], the Wide-Field Infrared Survey Telescope
[8], Euclid [9], and the Square Kilometer Array [10] will
probe modes that approach the comoving horizon. All of
this is strong motivation to go beyond the Newtonian
picture of galaxy clustering widely adopted so far, and to
embed this observable into a proper relativistic context.
This is analogous to what has been done for the cosmic
microwave background (CMB), and several aspects have
long been worked out [11–13]. However, galaxy clustering
involves a few additional complications: first, it is intrinsi-
cally three- rather than two-dimensional; second, one has
to take into account selection effects such as cuts on
observed flux and redshift; and third, the relation between
intrinsic fluctuations in the galaxy density and the fluctua-
tions in the matter density is nontrivial.

In order to use the clustering of LSS tracers on scales
approaching the horizon c=HðzÞ, we thus need to under-
stand the connection between the theoretical predictions

for cosmological perturbations and the observationally
inferred overdensities of galaxies. In particular, the pertur-
bations in the metric, matter density, velocity, etc., are
always defined with respect to a particular choice of coor-
dinates (gauge), whereas observables should be indepen-
dent of this gauge choice.
Recently, Yoo, Fitzpatrick, and Zaldarriaga [14] have

shown how to calculate the observed galaxy overdensity in
a generally covariant, relativistic context. In this paper, we
perform a similar derivation, generalizing their results in
one important aspect. On sufficiently large scales so that
perturbations are linear (and assuming Gaussian initial
conditions), one commonly assumes a linear relation be-
tween galaxy overdensities and perturbations in the matter
density. As we show here however, the observed galaxy
power spectrum depends on which gauge these overden-
sities are referred to. For example, the linear bias assumed
in [14,15] is equivalent to a linear bias relation in the
constant-observed-redshift gauge; on the other hand,
[16,17] adopted a linear bias in a synchronous-comoving
gauge.
Clearly, this situation is not satisfactory, since the gauge

choice should not impact any observable quantity.
However, we can make progress using simple physical
arguments. In a universe with Gaussian adiabatic perturba-
tions, a galaxy knows about two properties of its large-
scale environment: the average, ‘‘background’’ density of
matter, and the local age (growth history) of its environ-
ment. Thus, a general bias expansion should involve both
density and age (or local growth factor). In this context, the
simplest gauge choice is the synchronous-comoving (sc)
gauge, where constant-time hypersurfaces are equivalent
to constant-age hypersurfaces. Then, the bias with respect
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to age becomes irrelevant, and we recover the well-known

linear bias relation: �ðscÞ
g ¼ b�ðscÞ

m . Further advantages of a
synchronous-comoving gauge are that the density field in
the N-body as well as the output of commonly used
Boltzmann codes are given in this gauge. We shall thus
express most of our results in a synchronous-comoving
gauge. The transition to other gauges can be performed
easily using expressions given in the appendixes. Note that
when properly transformed, the results derived in different
gauges should agree.

Recent papers by Challinor and Lewis [16] and Bonvin
and Durrer [18] provide a further reason to reinvestigate
relativistic corrections to the observed galaxy correlation,
as they were not able to reach agreement with the expres-
sions given in Ref. [14].

The outline of the paper is as follows. We begin by
deriving the observed galaxy density in terms of perturba-
tions in the synchronous-comoving gauge in Sec. II. In
Sec. III, we discuss how galaxy biasing can be imple-
mented in a gauge-invariant way. Section IV discusses
the observed galaxy power spectrum. We conclude in
Sec. V. In the appendixes, we present useful results on
the conversion between different gauges and metric con-
ventions (Appendix A), more details on the derivations
(Appendix B), and various analytical test cases for
the expression for the observed galaxy overdensity
(Appendix C). We also make the connection with the
work of other recent papers [14–16,18] in Appendix D.

II. THE OBSERVED GALAXY DENSITY IN
SYNCHRONOUS GAUGE

In this section, we compute the perturbations to the
number density of LSS tracers in observed coordinates to
linear order.

A. Notation

Throughout, unless otherwise noted, we adopt the
synchronous-comoving gauge and assume a flat back-
ground. Specifically, we write

ds2 ¼ a2ð�Þf�d�2 þ ½ð1þ 2DÞ�ij þ 2Eij�dxidxjg; (1)

where � is the conformal time, D is a scalar metric pertur-
bation, while Eij is transverse and traceless, and related to

the scalar perturbation E by

Eij ¼ ð@i@j � 1
3�ijr2ÞE: (2)

Latin letters denote spatial indices while Greek letters
stand for space-time indices.

In galaxy surveys, we observe the angular position of
galaxies as well as their redshift ~z. Hereafter, we shall
denote observed (or inferred) coordinates with a tilde.
We can assign the galaxy a position ~x in three-dimensional
Cartesian coordinates via

~x ¼ ~� ~̂n; (3)

where ~� ¼ ��ð~zÞ and ��ðzÞ is the distance-redshift relation

in the background universe,1 and ~̂n is the unit vector in the
direction of the observed position of the galaxy. In an
unperturbed universe, where both the observer and the
galaxy are comoving with the background matter, this
position in fact corresponds to the true position (in comov-
ing coordinates). This is because the photon geodesic in an
unperturbed universe can be written as

�x �ð�Þ ¼ ð�0 � �; ~̂n�Þ; (4)

where �0 is the conformal time at observation, and we have
chosen the affine parameter to be the comoving distance
(along the light ray). Thus, the space-time point of emis-
sion of the photon is given by �x�ð~�Þ.
One convenient feature of this parametrization is that the

geodesic equation with respect to � coincides with that of
conformally transformed coordinates with metric ĝ�� ¼
g��=a

2; in the case of a spatially flat Friedmann-

Robertson-Walker (FRW) universe, it is simply a straight
line as in Eq. (4). The corresponding affine parameter � in
the physical FRW metric g�� is determined through

d�=d� / a2.
In a perturbed universe, the true location of the galaxy is

defined by the unique starting point of the geodesic which
ends at the observer’s location [~xo ¼ ð0; 0; 0Þ], arrives out
of the direction ~̂n, and corresponds to a photon redshift ~z
(see Fig. 1); in other words, the photon frequency at arrival
at ~xo is

~� ¼ �0

1þ ~z
: (5)

Here we assumewe have some frequency standard �0 (e.g.,
spectral line) to compare the photon frequency to.
In the following, it is useful to define projection opera-

tors, so that for any spatial vector Xi and tensor Eij,

Xk � ~̂niX
i; Ek � ~̂ni ~̂njE

ij;

Xi
? � ð�i

j � ~̂ni ~̂njÞXj; and E? � ð�ij � ~̂ni ~̂njÞEij:
(6)

Note that for a traceless tensor Eij, E? ¼ �Ek.
Correspondingly, we define projected derivative operators

@ik � ~̂ni ~̂nj@j; @k � ~̂ni@i; and

@i? � ð�ij � ~̂ni ~̂njÞ@j ¼ @i � ~̂ni@k: (7)

Further, we find

@j ~̂n
i ¼ ~��1ð�i

j � ~̂ni ~̂njÞ; (8)

1Throughout, we assume that we have perfect knowledge of
the background expansion history, and hence neglect Alcock-
Paczyński-type distortions. These can be taken into account
straightforwardly.
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from which we derive a number of commutation relations.
These include the commutators of the partial derivatives

with ~̂n:

½@i; ~̂nj� ¼ @i ~̂nj ¼ ~��1ð�ij � ~̂ni ~̂njÞ (9)

and

½@k; ~̂ni� ¼ ½~̂nj@j; ~̂ni� ¼ ~̂nj½@j; ~̂ni� þ ½~̂nj; ~̂ni�@j ¼ 0: (10)

We may also find the commutators of the derivative opera-
tors with each other. Those involving the parallel deriva-
tives are

½@i; @k� ¼ ½@i; ~̂nj@j� ¼ ½@i; ~̂nj�@j þ ½@i; @j�~̂nj
¼ ~��1ð�ij � ~̂ni ~̂njÞ@j þ 0 ¼ ~��1@?i (11)

and, since Eq. (10) shows that all components of ~̂n com-
mute with @k,

½@k; @kj� ¼ ½@ki; @kj� ¼ 0: (12)

The perpendicular derivative satisfies

½@?i; @k� ¼ ½@i � @ki; @k� ¼ ½@i; @k� ¼ ~��1@?i: (13)

In these expressions, ~� is the norm of the position vector so

that ~̂ni ¼ xi=~�. These relations are the analogue of the
Christoffel symbols of spherical polar coordinates.

We also define the projection of the Laplacian operator
(r2 ¼ @i@

i) as

@2k � @ki@ik ¼ @k@k and

r2
? � @?i@

i
? ¼ r2 � @2k �

2

~�
@k: (14)

Finally, we make use of

@iX
i ¼ @kXk þ @?iX

i
? þ Xk@i ~̂ni (15)

and

@k ~̂ni ¼ ~̂ni@?i ¼ 0: (16)

B. Photon geodesics

We can write the perturbed photon geodesic as

x�ð�Þ ¼ �x�ð�Þ þ �x�ð�Þ; (17)

here �x� is the perturbation to the photon path (note that
the value of the affine parameter at emission is no longer
given by ~�; see Fig. 1). For our choice of affine parameter
�, we have in the unperturbed universe [Eq. (4)]

d �x�

d�
¼ ð�1; ~̂nÞ; (18)

while for the perturbed case [Eq. (17)] we define

dx�

d�
¼ ð�1þ ��; ~̂nþ �eÞ: (19)

In terms of our affine parameter �, the first-order geodesic
equations for the fractional frequency perturbation �� �
d�x0=d�, and the fractional perturbations to the photon
momentum �ei � d�xi=d�, are then given by

d

d�
�� ¼ �ðD0 þ E0

kÞ (20)

and

d

d�
�ei þ 2

d

d�
ðD~̂ni þ Ei

j ~̂n
jÞ

¼ D;i þ E;i
jk ~̂n

j ~̂nk ¼ D;i þ ðEkÞ;i � 2

�
ðEi

k ~̂n
k � Ek ~̂niÞ:

(21)

Note that the projection onto ~̂n and the spatial derivative do

not commute. In the following, we denote E;i
k � ðEkÞ;i; i.e.,

in case of apparently ambiguous notation, the projection is
taken before the derivative. Here, primes denote deriva-
tives with respect to �, and d=d� ¼ @k � @�. These equa-
tions are to be compared with Eqs. (9) and (12) in [14],
respectively; note that �there ¼ ��here and ��there ¼
���here.
Before integrating Eqs. (20) and (21), we need to deter-

mine the correct boundary conditions at the observer’s
position � ¼ 0. The observer’s frame of reference is de-
scribed by an orthonormal tetrad ea�. In terms of this basis,

FIG. 1 (color online). Sketch of perturbed photon geodesics
illustrating our notation. The observer is located at the bottom.
The solid line indicates the actual photon geodesic tracing back
to the source indicated by a star. The dashed line shows the
apparent background photon geodesic tracing back to an inferred
source position indicated by a circle.
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the components of the unit vector ~̂n of the observed photon
are given by

~̂n ¼ ea�p
�

p
; (22)

where p� is the observed photon momentum and p ¼
pip

i. Using the metric Eq. (1) together with the orthonor-
mality condition

g��ea�e
b
� ¼ �ab; (23)

we obtain

e0�¼ð�1;0;0;0Þ and ei�¼ð0;ð1þDoÞ�i
jþEi

ojÞ; (24)

where a subscript o indicates a quantity evaluated at the
observer’s position. Inserting this into Eq. (22), and requir-

ing that ~̂na match the observed direction of the photon, we
obtain the following perturbations to the photon momen-
tum at the observer’s position (� ¼ 0):

��o ¼ 0 and �eio ¼ �Do ~̂n
i � Ei

oj ~̂n
j: (25)

We now integrate the spatial component Eq. (21), enforc-
ing Eq. (25) as boundary condition at � ¼ 0:

�eið�Þ ¼ �2ðD~̂ni þ Ei
j ~̂n

jÞ� þ
Z �

0
d�0

�
D;i þ E;i

k

� 2

�0 ðEi
k ~̂n

k � Ekk~̂niÞ
�
þ ðD ~̂ni þ Ei

j ~̂n
jÞo: (26)

Integrating again up to ~� yields the displacements �xi:

�xið~�Þ ¼
Z ~�

0
d��ei

¼ ~�ðD ~̂ni þ Ei
j ~̂n

jÞo þ
Z ~�

0
d�

�
�2ðD~̂ni þ Ei

j ~̂n
jÞ

þ ð~�� �Þ
�
D;i þ E;i

k �
2

�
ðEi

k ~̂n
k � Ekk~̂niÞ

��
:

Integrating the time component Eq. (20) of the geodesic
equation yields

��ð~�Þ ¼ �
Z ~�

0
d�ðD0 þ E;i

kÞ: (27)

This frequency shift contains the Doppler, Sachs-Wolfe,
and integrated Sachs-Wolfe effects [11], as shown in
Appendix B 1. Noting that dx0=d� ¼ �1þ ��, we then
obtain the time delay:

�x0ð~�Þ ¼
Z ~�

0
d��� ¼ �

Z ~�

0
d�ð~�� �ÞðD0 þ E0

kÞ: (28)

In order to obtain the perturbations to the source position,
we need to relate the affine parameter at emission to
the observed redshift. Recall that in the synchronous-
comoving gauge, the comoving observers’ four-velocity
is given by u� ¼ ða; 0; 0; 0Þ. Then, the redshift along the

perturbed geodesic at affine parameter � is given by

1þ zð�Þ ¼ ða�2u�dx
�=d�Þ�

ða�2u�dx
�=d�Þo

¼ ½�1þ ��ð�Þ�=aðx0ð�ÞÞ
�1

¼ 1þ �z

aðx0ð�ÞÞ : (29)

In the second line, we have set ao ¼ 1 and defined

�zð~�Þ � ���ð~�Þ ¼
Z ~�

0
d�ðD0 þ E0

kÞ: (30)

For a given source observed at redshift ~z, Eq. (29) is an
implicit relation for the affine parameter �e at emission,

1þ zð�eÞ ¼ 1þ ~z; (31)

which defines the space-time location of the source
through x�source ¼ x�ð�eÞ. Note that since the conformal
time of emission is � ¼ x0ð�eÞ, the redshift �zð�eÞ that
would have been observed for the same source without
any perturbations along the line of sight is given by 1=½1þ
�zð�eÞ� ¼ aðx0ð�eÞÞ. Hence, Eq. (29) at � ¼ �e can also be
written as

1þ ~z ¼ ð1þ �zÞð1þ �zð�eÞÞ: (32)

To zeroth order (in the background), zð�Þ ¼ �zð�Þ, and
hence �e ¼ ~�. We can then expand �e ¼ ~�þ ��, and
Eq. (29) at first order yields

1þ ~z ¼ ð1þ ~zÞ½1� ðaHÞ~zð�x0 � ��Þ þ �z�: (33)

Solving this for the perturbation to the affine parameter, we
obtain

�� ¼ �x0 � 1þ ~z

Hð~zÞ �z: (34)

Finally, given Eq. (17), we can relate the observed
position ~x, inferred assuming unperturbed geodesics �x�,
and the true position x through (see Fig. 1)

x ¼ ~xþ�x ¼ ~xþ ~��~̂nþ d �x

d�
d�: (35)

Separating into longitudinal and perpendicular parts, we
obtain

�xk ¼ �xið~�Þ~̂ni þ �� ¼ �xk þ �x0 � 1þ ~z

H
�z (36)

and

�xi? ¼ �xi � ~̂ni�xk: (37)

Equations (36) and (37) can be further simplified to obtain

�xk ¼ �
Z ~�

0
d�ðDþ EkÞ � 1þ ~z

Hð~zÞ
Z ~�

0
d�ðD0 þ E0

kÞ;
(38)

and
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�xi? ¼ ~�ðEi
j ~̂n

j � Ek ~̂niÞo þ
Z ~�

0
d�

�
�2

~�

�
ðEi

j ~̂n
j � Ek ~̂niÞ

þ ð~�� �Þ@i?ðDþ EkÞ
�
: (39)

Note that the terms involving perturbations at the observ-
er’s location have dropped out of Eq. (38). This equation
does not quite agree with Eq. (16) in [14], where Ek has the
opposite sign in the first term. This difference also carries
through to the authors’ Eq. (36). All these terms come from

the metric perturbation �gij ~̂n
i ~̂nj however; hence they

should always involve the combination Dþ Ek. For the
numerical results reported in [14,15], this difference is of
no relevance as they evaluate the power spectrum in the
conformal-Newtonian gauge where E ¼ 0.

C. Observed galaxy number density

The observed number of galaxies contained within a
volume ~V defined in terms of the observed coordinates is
given by a (gauge-invariant) integral over a three-form

N ¼
Z

~V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðx�Þ

q
ngðx�Þ"��	
u

�ðx�Þ@x
�

@~x1
@x	

@~x2
@x


@~x3
d3~x

¼
Z

~V

ffiffiffiffiffiffiffi�g
p

ngðx�Þ 1

aðx0Þ"ijk
@xi

@~x1
@xj

@~x2
@xk

@~x3
d3~x

¼
Z

~V

ffiffiffiffiffiffiffi�g
p

ngðx�Þ 1

aðx0Þ
��������
@xi

@~xj

��������d3~x: (40)

Here, x is given in terms of ~x by Eq. (35), "��	
 is the

Levi-Civita tensor, and ng is the physical number density

of galaxies as a function of ‘‘true’’ comoving locations (in
the synchronous-comoving gauge). In the second line, we
have adopted the synchronous-comoving gauge, where the
oberver velocities reduce to u� ¼ ð1=a; 0; 0; 0Þ. In this
case, not surprisingly, the volume element reduces to the
purely spatial Jacobian j@xi=@~xjj. Note that perturbations
enter Eq. (40) in three places: through the determinantffiffiffiffiffiffiffi�g
p

, through the position- and redshift-dependence

of the galaxy density ng, and through the Jacobian

j@xi=@~xjj. This Jacobian is��������
@xi

@~xj

��������¼
���������i

j þ
@�xi

@~xj

��������¼ 1þ @�xi

@~xi
; (41)

where we have worked to first order in the displacements
�x. Furthermore, noting that

ffiffiffiffiffiffiffi� �g
p ¼ a4, where �g�� is the

background metric, we haveffiffiffiffiffiffiffi�g
p ¼ a4ð1þ 1

2�g
�
�Þ: (42)

Finally, the galaxy density perturbations are usually mea-
sured with respect to the average density of galaxies at
fixed observed redshift, �ngð~zÞ. We assume that when

averaged over the whole survey, h�zi ¼ 0 so that h~zi ¼ �z
[Eq. (32)]. Also, in this paper, we follow common con-
vention and define the galaxy density perturbations �g with

respect to the comoving galaxy density. We thus have for
the intrinsic comoving galaxy density

a3ð�zÞngðx; �zÞ ¼ a3ð�zÞ �ngð�zÞ½1þ �gðx; �zÞ�; (43)

where �z again denotes the redshift that would have been
observed in an unperturbed universe, and �g denotes the

intrinsic fluctuations in the comoving galaxy density.
Using Eq. (32) and expanding to first order, we obtain

a3ðzÞngðx; �zÞ ¼ a3ð~zÞ �ngð~zÞ½1þ �gð~xÞ�

� ð1þ ~zÞ dða
3 �ngÞ
dz

��������z¼~z
�z: (44)

Note that the distinction between �gð~xÞ and �gðxÞ is sec-
ond order (this effect, analogous to CMB lensing, can
however become important for rapidly varying correlation
functions [19]).
We can now expand Eq. (40). We define the observed

galaxy density ~ng via

Z
~V
a3ð~zÞ~ngð~x; ~zÞd3~x ¼ N; (45)

so that

a3ð~zÞ~ngð~x; ~zÞ ¼ ffiffiffiffiffiffiffi�g
p 1

að �zÞngðx; �zÞ
��������
@xi

@~xj

��������
¼

�
1þ 1

2
�g��

�
a3ð�zÞngðx; �zÞ

�
1þ @�xi

@~xi

�
:

(46)

For the Jacobian, we use Eq. (15) to obtain

@�xi

@~xi
¼ @k�xk þ �xk@i ~̂ni þ @?i�x

i
?

¼ @k�xk þ 2�xk
~�

� 2�̂; (47)

where we have defined the coordinate convergence as

�̂ � �1
2@?i�x

i
?: (48)

Note that the coordinate along ~̂n is defined through the
observed redshift ~z. Hence, @k ¼ ðd ��=dzÞ@=@~z. Since the

derivative is applied to first-order displacements, it suffices
to use the zeroth-order expression @k ¼ @=@�j�¼~�.

Using Eq. (38) for �xk, we obtain the first two terms in

the Jacobian:

�xk ¼ �
Z ~�

0
d�ðDþ EkÞ � 1þ ~z

Hð~zÞ �z (49)

and

@k�xk¼�ðDþEkÞj~��Hð~zÞ�z d
d~z

�
1þ~z

Hð~zÞ
�
�1þ~z

Hð~zÞðD
0þE0

kÞ:
(50)

Using Eq. (39) we find for the convergence
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�̂ ¼ �þ 1

2
r2

?Eþ 1

~�
E;iðoÞn̂i � n̂iE0

;iðoÞ; (51)

where

� ¼ � 1

2

Z ~�

0
d�ð~�� �Þ�

~�
r2

?

�
D� 1

3
r2Eþ E00

�
(52)

is the usual definition of the convergence in the
synchronous-comoving gauge and the derivatives of E
with (o) are evaluated at the observer. The details of the
derivation of �̂ can be found in Appendix B 2.

Finally, we can expand Eq. (46) to linear order in the
perturbations:

~ngð~x; ~zÞ
�ngð~zÞ ¼ 1þ 3Dþ �g þ be�zþ 2�xk

~�
þ @k�xk � 2�̂

¼ 1þ 2D� Ek þ �g þ be�zþ 2�xk
~�

� 2�̂

�
�
1� 1þ ~z

H

dHð~zÞ
d~z

�
�z� 1þ ~z

Hð~zÞ ðD
0 þ E0

kÞj~�:
(53)

Here, �� is given by Eq. (34), and �z is given by Eq. (30).
Further, we have defined

be �
d lnða3 �ngÞ

d lna

��������~z
¼ �ð1þ ~zÞ d lnða

3 �ngÞ
dz

��������~z
: (54)

Throughout this section, we have neglected the magnifica-
tion bias contribution. This will be discussed in Sec. II E.

D. Observed galaxy density contrast

In galaxy surveys, we calculate the galaxy density per-

turbations ~�gð~xÞ ¼ ~ngð~xÞ=h~ngi � 1 by referring to the av-

erage number density h~ngi at fixed observed redshift. In

this sense, we measure the galaxy density contrast in the
uniform-redshift gauge, where the constant-time hypersur-
face is defined by �z ¼ 0. In the following, we assume that
all fluctuations in ng are due to large-scale structure, and

ignore any contributions from, e.g., varying survey depth
and extinction. Using the result Eq. (53), we obtain

~�gð~xÞ¼�gþbe�z�1þ~z

Hð~zÞ@
2
kE

0

�
�
1�1þ~z

H

dHð~zÞ
d~z

þ 2

~�

1þ~z

Hð~zÞ
�
�zþ2�

� 2

~�
½E0 �E0ðoÞ�� 2

~�

Z ~�

0
d�ð�þE00Þ�2�

�1þ~z

Hð~zÞ�
0 þ2@kE0ðoÞ; (55)

where � � D�r2E=3 (see Appendix B 3 for more de-
tails). In Appendix C, we apply Eq. (55) to analytical test
cases where the exact result is known; these results serve as
a cross-check of our result as well as to elucidate the

significance of the various contributions. The terms in the
first line contain the gauge-invariant intrinsic galaxy den-
sity perturbation (Sec. III) and the standard redshift-
distortion contribution. The terms on the second line
contain the change in volume entailed by the redshift
perturbation. Finally, the last two lines contain further
volume distortions from the metric at the source position,
Doppler effect, time delay, and lensing convergence.
The observer terms in Eq. (55), 2~��1E0ðoÞ and 2@kE0ðoÞ,

contribute only to the monopole and dipole of the galaxy
distribution, respectively. Therefore for most analyses that
use the ‘ � 2 multipoles of the galaxy distribution, or the
small angle approximation, they can be neglected. The
monopole term is not even measurable since we do not
know the true mean galaxy density. (The dipole of a galaxy
distribution is measurable in principle; indeed it has been
used to search for, e.g., inhomogeneous initial conditions
[20].)
In Appendix D we connect this expression with the

result for �obs of [14]. Besides notational differences we
clarify there, the most critical difference is that we obtain a
term

�g þ be�z; (56)

which takes into account the difference in the mean galaxy
number density [Eq. (44)] between the synchronous-
comoving gauge and the uniform-redshift slicing, on which
we measure the mean number density [the combination
Eq. (56) is manifestly gauge-invariant, as we shall show in
the next section]. This term is not considered by Yoo et al.
in [14], as they relate the galaxy overdensity to the matter
overdensity �m through the gauge-invariant relation

�g ¼ bð�m � 3�zÞ; (57)

where �mðxÞ ¼ 	mðxÞ= �	m � 1 is the fractional matter
overdensity defined in whichever gauge is adopted.
Clearly, Eq. (57) is equivalent to assuming a linear bias
relation in terms of density, �g ¼ b�m, in the uniform-

redshift gauge. We will discuss these issues in the next
section.
On the other hand, by transforming Eq. (55) into the

conformal-Newtonian gauge, we are able to confirm that
our result matches Eq. (30) in the recent paper by Challinor
and Lewis [16]. This comparison is detailed in Appendix D
as well.

E. Magnification bias

Equation (55) applies to the clustering of objects se-
lected according to their intrinsic physical properties, their
redshift, and their observed position on the sky. While one
could in principle construct such a sample—e.g., a
temperature-limited sample of x-ray clusters—most real
samples in observational cosmology also depend on the
apparent flux from the source. That is, they have a selection
probability that depends on how the luminosity distance
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DL differs from the mean luminosity distance �DLðzÞ. The
sample selection may also depend on the angular size of
the source, but this is not independent since the conserva-
tion of photon phase space density relates the angular
diameter and luminosity distances2

DL ¼ ð1þ ~zÞ2DA: (58)

This section evaluates the additional terms that appear in
Eq. (55) in the presence of a dependence on magnification.
The key parameter that we need to measure is the magni-
fication

M � D�2
A

�D�2
A ð~zÞ ¼

D�2
L

�D�2
L ð~zÞ ; (59)

which has mean value 1 and represents the perturbation to
the solid angle or flux of a source, relative to a source at the
same observed redshift ~z in the unperturbed universe. We
may also write �M � M� 1. The galaxy overdensity is
then

~� g ¼ ~�gðno magÞ þQ�M; (60)

where ~�gðno magÞ is the overdensity computed from

Eq. (55) and

Q ¼ @ ln~ng
@ lnM

��������~z
(61)

is the dependence of the observed number counts on
magnification. For a magnitude-limited sample with cumu-
lative luminosity function �nð>LÞ we have Q ¼
�d ln �nð>LÞ=d lnL. A more general criterion, e.g., one
that includes a ‘‘size’’ cut to reject stellar contamination
[21], would haveQ that must be determined by simulating
the observations.

From Eq. (60) we see that we need only determine how
�M depends on the metric perturbations in order to have a
complete description of the magnification bias.

Fortunately, we have already constructed the key ingre-
dients in evaluatingM. If we consider a right-handed three-

dimensional orthonormal basis f~̂ni; �̂i; 
̂ig where ~̂ni is the
direction of observation, then the angular diameter distance
can be inferred from the area perpendicular to the line of

sight spanned by the rays along the past light cone near ~̂ni,

D2
A ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðx�Þ

q
"��	
u

�‘̂�
@x	

@~̂ni
@x


@~̂nj
�̂i
̂j; (62)

where the partial derivatives are taken at fixed ~� and ‘̂� is a

unit purely spatial vector (u�‘̂
� ¼ 0) pointed away from

the observer (in the sense that a photon emitted from
the source with 4-velocity parallel to the null direction

u� � ‘� reaches the observer). Using the chain rule to
replace the derivatives with those involving ~xi gives

M�1 ¼ D2
A

½ �að~�Þ�2 ~�2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�gðx�Þp
½ �að~�Þ�2 "��	
u

�‘̂�
@x	

@~xi
@x


@~xj
�̂i
̂j: (63)

Nextwe observe that ‘̂� is parallel to the spatial part ofL� ¼
@x�=@~�jn̂, since it is the spatial part of the tangent vector to
the past light cone. Since ‘̂� is a unit vector andL� is a past-
directed null vector, it follows that

‘̂ � ¼ L�

L
u

þ u�; (64)

using u
 ¼ ð�a; 0; 0; 0Þ and uk ¼ 0 we find

‘̂ k ¼ Lk

aðx0ÞL0
¼ 1

aðx0Þ
@xk=@~�

�@x0=@~�
: (65)

Using this and collapsing the Levi-Cevita symbol to three
dimensions, we find

M�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�gðx�Þp

�½ �að~�Þaðx0Þ�2@x0=@~�"abc
@xa

@~xh
@xb

@~xi
@xc

@~xj
~̂nh�̂i
̂j:

(66)

Since f~̂ni; �̂i; 
̂ig form an orthonormal basis, we simplify
this to

M�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�gðx�Þp

�½ �að~�Þaðx0Þ�2@x0=@~�
��������
@xi

@~xj

��������: (67)

Now we are in a position to compute the pieces of Eq. (67).

We already know that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�gðx�Þp ¼ a4ð1þ 3DÞ and

j@xi=@~xjj ¼ 1þ @�xi=@~xi [the latter is given by Eq. (47)].
Finally the null condition gives

� dx0

d~�
¼ ð1þDþ EkÞ dxkd~�

¼ 1þDþ Ek þ @k�xk:

(68)

We thus find

M�1 ¼
�
aðx0Þ
�að~�Þ

�
2
�
1þ 2D� Ek þ 2

�xk
~�

� 2�̂

�
; (69)

or

�M ¼ �2�z� 2Dþ Ek � 2
�xk
~�

þ 2�̂: (70)

This makes sense—the perturbation to the magnification
contains the obvious coordinate convergence term 2�̂, but it
also has three other pieces: a contribution�2�xk=~� associ-

ated with bringing the source closer to or farther from the
observer, a contribution 2ð��z�DÞ associated with the
isotropic conversion from coordinate distances to physical

2In the presence of opacity of intergalactic medium, e.g., due
to Thomson scattering, this is not necessarily true. However,
intergalactic medium opacity is a very small effect and we do not
consider it in this paper.
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distances (itself having a part from both the change in scale
factor at the source and themetric perturbation), and a partEk
associatedwith the anisotropy of the coordinate system (Eij is

traceless and magnification depends only on the perturbation
to transverse distances).

Expanding �xk using Eq. (49) and �̂ using Eq. (51)

gives an alternate expression:

�M¼�2�z�2�� 2

~�
½@kE�@kEðoÞ�þ2��2@kE0ðoÞ

þ 2

~�

�Z ~�

0
ðDþEkÞd�þ1þ~z

Hð~zÞ�z
�
: (71)

The integral may be simplified by replacing Dþ Ek !
�þ @2kE and then doing a double integration by parts

using Eq. (B26),

�M ¼ �2�þ 2

~�
½E0 � E0ðoÞ� þ 2�� 2@kE0ðoÞ

þ 2

~�

Z ~�

0
ð�þ E00Þd�þ

�
�2þ 2

~�

1þ ~z

Hð~zÞ
�
�z: (72)

III. GALAXY BIAS IN A RELATIVISTIC CONTEXT

In order to make progress from Eq. (55), we need to
relate the intrinsic galaxy overdensity �g (here written in

the synchronous-comoving gauge) to the matter and metric
perturbations. Fortunately, since we are interested in large
scales, we only need to consider terms linear in perturba-
tions. What are the relevant quantities on which the physi-
cal galaxy density might depend?

The most important characteristics of the large-scale
environment of a given galaxy are its mean density, and
the evolutionary stage (proper time since the big bang, or
linear growth factor). In fact, on sufficiently large scales,
these are the only quantities of relevance to the galaxy two-
point correlations [22].3

We can formalize this statement by considering some
large spatial volume within the universe centered around
the space-time point x�p , on a constant-age hypersurface,
tU ¼ constant, where tU denotes the proper time of comov-
ing observers since the big bang. Then, the number of
galaxies (or, more generally, tracers) within that volume
can only depend on the enclosed massM, and the age of the
universe in that volume tU which is being kept fixed:

Ng ¼ FðM; tU; x
�
p Þ: (73)

Here, the explicit dependence on x�p indicates any stochas-
ticity in the relation between Ng and the local density and

age. We now assume that the volume V is large enough so
that linear perturbation theory applies. Then, in a given
coordinate system ð�;xÞ, the enclosed mass is given by

M ¼
Z
V
	 ¼ �	mð�Þ½1þ � ln	�V

¼ �	mð�Þ½1þ �m � 3aH���V: (74)

Here, �	mð�Þ is the average (physical) matter density in the
background (equivalent to 	 averaged over the entire
constant-coordinate-time hypersurface), while �m is the
matter density perturbation on a constant-coordinate-time
hypersurface. The second line follows from � ln	 �
	= �	m � 1 and d ln �	m=d� ¼ �3aH, and we have defined
���ðxÞ to be the displacement in coordinate time corre-
sponding to a tU ¼ constant hypersurface:

að�Þ½�� ��ðxÞ� ¼ tU ¼ constant: (75)

Thus, the term �3aH�� in Eq. (74) comes in from going
from a constant-age hypersurface to a constant-coordinate-
time hypersurface. Note that in Eq. (74) the perturbations
are to be considered averaged over the volume V.
In exactly the same way, we can define the average

(physical) galaxy number density �ng on constant-

coordinate-time hypersurfaces. The same reasoning leading
to Eq. (74) yields

Ng ¼
Z
V
ng ¼ �ngð�Þ½1þ � lnng�V

¼ �ngð�Þ½1þ �g þ bepaH���V; (76)

where bep ¼ d ln �ng=d lna. We can now equate this to our

general ansatz Eq. (73),

Ng ¼ FðM; tU; x
�
p Þ

¼ �Fð �	mV; tUÞ½1þ bð�m � 3aH��Þ þ "�
¼ �ngð�Þ½1þ �g þ bepaH���V: (77)

Here, we have defined �FðM; tUÞ � hFðM; tU; x
�
p ÞitU , and

introduced the bias

b � @ ln �FðM; tUÞ
@ lnM

�������� �	mV
¼ @ ln �Fð	VV; tUÞ

@ ln	V

�������� �	m

(78)

and the stochastic contribution to galaxy density

"ðx�Þ ¼ FðM; tU; x
�Þ

�FðM; tUÞ
� 1: (79)

Also 	V denotes the average matter density (on the tU ¼
const slice) within the volume V.
At first order, the bias b defined in this way is only a

function of �. The stochastic contribution " to galaxy
clustering is only a function of the space-time point (" is
here considered to be first order as well). In the background
(�m ! 0, �� ! 0), Eq. (77) implies, not surprisingly,
�ngð�ÞV ¼ �Fð �	mV; a�Þ. To first order in the perturbations,

recall that Eq. (77) must hold in any coordinate system.
Thus, we conclude that the galaxy density perturbation is
given in general by

3This assumes that there is no orientation-dependent selection
of galaxies. Such a selection will introduce a dependence on the
large-scale tidal field as well [23].
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�gðx�Þ ¼ bð�Þ½�mðx�Þ � 3aHð�Þ��ðx�Þ�
� bepð�ÞaHð�Þ��ðx�Þ þ "ðx�Þ: (80)

On subhorizon scales, aH�� becomes negligible compared
to �m (for standard choices of gauge). Equation (80) shows
that in this limit we recover the usual bias relation �g ¼
b�m þ ". Furthermore, if we choose a synchronous gauge
where all comoving observers are synchronized so that
tU ¼ a� everywhere and thus �� ¼ 0, the linear bias rela-
tion holds on all scales. Note that the definition Eq. (78) is
precisely what is commonly called a peak-background split
bias parameter [24,25].

This derivation was phrased in terms of the physical galaxy
density. The reasoning and Eq. (80) trivially hold for the
comoving galaxy density a3ng as well, the only difference

being that �g is now the fractional perturbation in comoving

number density, and bep is replaced with Eq. (54),

be ¼
d lnða3 �ngÞ

d lna
:

From now on, we shall exclusively consider comoving num-
ber densities, as we did in Sec. II.

The bias relation Eq. (80) holds in all gauges, and the
bias parameters b and be do not depend on the gauge
choice. This is not very surprising, since these parameters
are in principle observable: b [Eq. (78)] quantifies the
response of the galaxy number in a given volume at fixed
age of the universe to a change in the average mass density
(or enclosed mass) within this volume; be [Eq. (54)] quan-
tifies the dependence of the average (background) number
density of galaxies on the age of the universe. To see the
gauge-invariance of these bias parameters explicitly, con-
sider the effect of a change in the time coordinate,

� ! �� ¼ �þ T; (81)

where T can in general be a function of � and x (spatial
gauge transformations do not affect the density perturba-
tions at linear order). By using Eq. (A3) in Appendix A, we
find that �m and �g transform as

��m ¼ �m þ 3aHT and

��g ¼ �g �
d lnða3 �ngÞ

d�
T ¼ �g � beaHT: (82)

On the other hand, " is gauge-invariant. Note that a change
in time coordinate (slicing) implies a change in the redshift
perturbation �z [Eq. (32)] through

ð1þ �zÞ��z ¼ ð1þ zÞ�zþHT; (83)

with d�z=d� ¼ �H.
The previous two equations clearly show that the com-

bination �g þ be�z appearing in Eq. (55) is gauge-

invariant, independent of any bias relation. On the other
hand, under the same gauge transformation with fixed b
and be, Eq. (80) changes as

��g ¼ bð�m � 3aH��Þ � beaHð��þ TÞ þ "

¼ �g � beaHT; (84)

where we have used Eq. (54) in the second line. That is, we
recover the gauge transformation of �g with fixed bias

parameters, and in this sense, the bias parameters defined
through Eqs. (78) and (54) are gauge-invariant.
We now see that a gauge-invariant expression for the

galaxy number density [Eq. (55)], and a gauge-invariant
definition of the galaxy bias are separate issues. In
Refs. [14,15,18], the second issue was not addressed ex-
plicitly, and in Refs. [14,15] be was implicitly set to zero.

A. Bias parameters from universal
mass function approach

In this section, we show how both b and be can be
estimated in the universal mass function approach. We
adopt the synchronous-comoving gauge, which is implicit
in the reasoning of this approach. The universal mass
function approach is expected to be valid for objects se-
lected via a proxy for halo mass; however, if the selection
criteria are sensitive to merger history (e.g., one selects
active galactic nuclei), then the universal mass function
may not be valid. This is analogous to the merger bias
effect in models with primordial non-Gaussianity [2,26].
In this picture, one assumes that galaxies form inside

density peaks in Lagrangian space whose height ex-
ceeds some critical matter density contrast �c [i.e., 	 >
ð1þ �cÞ �	m]. In regions with large-scale overdensity �l,
this threshold is effectively lowered to �c � �l. If we
denote the average abundance of tracers of mass M as
�nðM;�c), the galaxy density contrast on large scales is
then linearly related to the matter density contrast via

�gðM;�lÞ ¼
�
1� @ ln �nðM;�c; �Þ

@�c

�
�l ¼ b�l; (85)

if we truncate the Taylor expansion at linear order. The first
term comes from mass conservation when transforming
from Lagrangian to Eulerian space. As shown in the pre-
vious section, this argument is not in general correct in the
context of general relativity. Note that if we were to choose
a nonsynchronous gauge (such as conformal-Newtonian or
uniform-redshift gauge), the density field in different re-
gions would be at different evolutionary stages, so that the
collapse threshold �c is not simply a constant on a
constant-coordinate-time hypersurface. Therefore, the gal-
axy density contrast must also depend on the evolutionary
stage, or age of the universe, in the region considered.
However, in a synchronized gauge where �� ¼ 0, the
argument leading to Eq. (85) is applicable. Thus,
Eq. (85) is a valid bias parameter which can be used in
the correct, gauge-invariant bias expansion Eq. (80).
We can also obtain a useful analytical estimate for be,

assuming that the abundance of galaxies follows a univer-
sal mass function,
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�nðMÞ ¼ �	m

M2
fð�Þ

��������
d ln


d lnM

��������: (86)

First, the linear density bias is given by [Eq. (85)]

b ¼ 1� @ ln �n

@�c

¼ 1� d lnfð�Þ
d�

1



: (87)

On the other hand, be is given by

be ¼ @ lnða3 �nÞ
@ lna

¼ @ lnfð�Þ
@ lna

¼ d lnfð�Þ
d�

d�

d


d


d lna

¼ ð1� bÞ

�
� �




�


d ln


d lna
: (88)

The logarithmic derivative of 
 can be further simplified
via linear perturbation theory as

d ln


d lna
¼ d lnD

d lna
� f: (89)

Here f � �0:6
m is the usual logarithmic growth rate familiar

from redshift-space distortion theory [27]. In summary, we
obtain

be ¼ ðb� 1Þ
�f ¼ �cfðb� 1Þ: (90)

Note that the abundance of rarer, more strongly biased
halos evolves faster (larger be), and that the overall rate
is set by the growth rate f. Equation (90) is useful for
estimating the magnitude of the corrections to the galaxy
power spectrum. Note however that the universal mass
function prescription might not be a good description of
actual tracers whose redshift evolution is influenced by
nongravitational physics (such as star formation, feedback,
reionization, etc.). The key point however is that for any
given survey, be is in fact observable, if the redshift-
dependence of the source selection function is known.

B. Bias in synchronous-comoving gauge

In the synchronous-comoving gauge assumed in our
derivation in Sec. II, there is no perturbation to the 00
component of the metric. Moreover, the constant-time
hypersurfaces are orthogonal to the velocities of comoving
observers (in other words, v ¼ 0). In this gauge, every
comoving observers’ proper time is synchronized, and all
observers on a given � ¼ constant hypersurface are at the
same evolutionary stage, which implies �� ¼ 0. The den-
sity field in standard N-body simulations is also defined
precisely in this gauge [28].

We now see that the gauge-invariant bias relation
Eq. (80) is equivalent to the well-known linear bias relation
between �g and �m in the synchronous gauge,

�ðscÞ
g ¼ b�ðscÞ

m ; (91)

where the superscripts denote that the variables are defined
in the synchronous-comoving gauge. Inserting this into
Eq. (55) then yields the observed galaxy overdensity,

completely described by the metric and matter perturba-
tions and two numbers specific to the tracer population: the
linear bias b and the count slope be. Note that the latter
parameter is observable in galaxy surveys, while the bias b
is a parameter that needs to be fitted for.

C. Primordial non-Gaussianity

In the picture outlined in this section, it is also straight-
forward to understand the effect of primordial non-
Gaussianity. Consider a constant-age hypersurface as
defined earlier in this section, at some early time long before
the tracers of interest formed. Since the linear growth factor
is the same everywhere on this slice, the variance of the
small-scale density field 
2

R smoothed on some scale R is
also the same everywhere, in the case of Gaussian initial
conditions. In the presence of non-Gaussianity of the local
type, mode-coupling induces a modulation of 
2

R by long-
wavelength (Bardeen) potential perturbations �L, so that,
within a region on a tU ¼ const hypersurfacewhere�L can
be considered constant, it is given by


̂ 2
R ¼ 
2

Rð1þ 4fNL�LÞ: (92)

Here, 
2
R is the variance derived from the Gaussian part of

�. We see that this is closely related to perturbing the local
age of the universe, which leads to a change in the local

2

R as well. The relation between � and �m in the
synchronous-comoving gauge is given by (e.g., [29])

�ðscÞ
m ðk; zÞ ¼ Mðk; zÞ�ðk; z�Þ

¼ 3�mH
2
0k

2ð1þ zÞ
2TðkÞDðzÞ �ðk; z�Þ; (93)

where z� is some reference redshift where the non-Gaussian
parameter fNL is defined (for example, that of the last-
scattering surface). Using the universal mass function pre-
scription (Sec. III A), we then see that the bias relation
Eq. (80) in the synchronous-comoving gauge is modified to

�ðscÞ
g ¼ ½bþ 2fNLðb� 1Þ�cM�1ðkÞ��ðscÞ

m ; (94)

in agreementwith [1]. It is straightforward to generalize this
derivation to more general types of non-Gaussianity
[29,30]. Note, in particular, that (for the local case) the

scale-dependent correction to �ðscÞ
g is proportional to k�2

out to arbitrarily large scales (see also [17,31]).

IV. THE LARGE-SCALE
GALAXY POWER SPECTRUM

We now calculate the observed galaxy power spectrum
including the bias relation and the volume effect we have
calculated in the previous sections. Throughout this sec-
tion, we use the cosmological parameters from Table 1
(‘‘WMAPþ BAOþH0ML’’) of Komatsu et al. [32] as
our reference cosmology. As explained in Appendix B 3,
we neglect the lensing contribution �, as it is not simply
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incorporated into a three-dimensional power spectrum.
Further, we neglect two very small contributions, the inte-
grated Sachs-Wolfe (ISW) contribution to �z, and the time-
delay contribution / R

d�ð�þ E00Þ=~�. We also neglect

the stochastic contribution " to �g in the following, and

assume that the primordial density perturbation follows
Gaussian statistics.

Neglecting the ISW contribution, we have (Appendix B 1)

�zð~�Þ ¼ @kE0ð~�Þ þ E00ð~�Þ; (95)

where we have dropped the unobservable, constant contribu-
tion from the perturbations evaluated at o. Using Eqs. (55)
and (72), and the results from Sec. III, the observed galaxy
density contrast written in terms of perturbations in the
synchronous-comoving gauge is then given by (see
Appendix B for the derivation)

~�g ¼ b�ðscÞ
m þ beð@kE0 þ E00Þ þ 2ð1�QÞ�� @2kE

0

aH

� 2

~�
ð1�QÞE0 þ ðC� 1Þð@kE0 þ E00Þ; (96)

where

C ¼ 1þ z

H

dH

dz
� 1þ z

H

2

~�
ð1�QÞ � 2Q: (97)

In a �CDM universe, the first term in C can be simplified to
yield

C ¼ 3

2
�mðzÞ � 1þ z

H

2

~�
ð1�QÞ � 2Q: (98)

where�mðzÞ is the matter density parameter at redshift z. In
Fourier space, Eq. (96) reads

~�gðkÞ¼ b�ðscÞ
m þbeðik�E0 þE00Þþ2ð1�QÞ�

þ�2 k
2E0

aH
�ð1�QÞ2E

0

~�
þðC�1Þðik�E0 þE00Þ;

(99)

where � is the cosine of the wave vector k with the line-
of-sight direction.

Finally, by relating the synchronous-comoving gauge
metric perturbations to the density contrast �m

(Appendix A 3), we can further simplify ~�g as

~�g

�m

¼ bþ f�2 þA
x2

þ i�

x
B; (100)

where x � k=aH is the wave number in units of the
comoving horizon, and we have defined the coefficients

A ¼ 3

2
�m

�
be

�
1� 2f

3�m

�
þ 1þ 2f

�m

þ C� f� 2Q
�

(101)

and

B ¼ f½be þ C� 1�: (102)

For a given value of be andQ,A andB are only functions
of redshift, and incorporate the relativistic bias as well as
the volume distortion and magnification effects. On small
scales, when x � 1, we recover the usual Fourier-space
galaxy overdensity in ‘‘Newtonian theory,’’

~� g ¼x�1ðbþ f�2Þ�m: (103)

In principle, be can be measured from the survey itself
provided one has good knowledge of the redshift-
dependence of the selection function. In the following,
we will use

be ¼ �cfðb� 1Þ (104)

as predicted by the universal mass function ansatz
(Sec. III A) for our illustrations. Figure 2 shows A and B
as functions of redshift when we only include relativistic
volume and bias effect, i.e.,Q ¼ 0. Note that bothA and
B diverge to �1 as z ! 0, because of the 1=~� factor in C
[Eq. (97)] which is a result of the volume distortion by
velocities and gravitational redshifts. Figure 3 shows A
and B for fixed bias (b ¼ 2), and varying magnification
coefficient (Q ¼ �1, 0.5, 1, and 2). For Q ¼ 1, which is
the case for diffuse backgrounds, magnification effect can-
cels volume distortion, and both A and B are small.
For sufficiently high redshift when the universe is approxi-
mately matter dominated, C ! 3�m=2� 2Q ’ 1:5� 2Q
and f ! 1, so that be ! �cðb� 1Þ andwe can approximate
the coefficients as A ! 5:2� 6Qþ �cðb� 1Þ=2, B !
0:5� 2Qþ �cðb� 1Þ.
From Eq. (100) we can calculate the observed galaxy

power spectrum in terms of the linear matter power spec-

trum PðscÞðkÞ in the synchronous-comoving gauge, yielding

FIG. 2. Coefficients of new terms in observed galaxy over-
density in the synchronous-comoving gauge Eq. (100) intro-
duced by relativistic volume effect and bias. Here, we plot for
b ¼ 1:5 (solid), b ¼ 2 (dotted), b ¼ 3 (dashed), and b ¼ 4
(dash-dotted) cases, and be is calculated assuming the universal-
ity of the mass function [Eq. (90)]. We ignore the magnification
effect by setting Q ¼ 0.
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Pgðk;�Þ
PðscÞðkÞ ¼ ðbþ f�2Þ2 þ 2ðbþ f�2ÞA

x2
þA2

x4
þ�2B2

x2
:

(105)

Note again that we have neglected all projected quantities
here, most importantly the magnification contribution
�2�. Furthermore, the flat-sky calculation employed
here is likely not applicable to the very largest scales in
actual galaxy surveys. Here we are mainly interested in the
issue of galaxy biasing however, and defer the calculation
of the full angular galaxy power spectrum to future work.

Figure 4 shows the galaxy power spectrum in three
different calculations, each for � ¼ 0 and � ¼ 1. The
dotted lines show the linear small-scale limit given by
the Kaiser formula. The solid lines show the relativistic
calculation Eq. (105) using the galaxy bias prescription
derived in Sec. III, i.e., a linear bias relation in the
synchronous-comoving gauge. Clearly, the prediction de-
parts from the Kaiser formula on scales k & 10�3h=Mpc.
The dashed lines in Fig. 4 show the result of [14] for
comparison. As we have seen in Sec. III, this result is
equivalent to linear biasing in the uniform-redshift gauge.
We see that the departures from the small-scale limit are
much more significant in this latter calculation, showing
that the precise choice of bias relation is important on very
large scales.

Figure 5 shows the two-dimensional galaxy power spec-
trum from Eq. (105), illustrating the evolution of the
angular dependence of Pgðk;�Þ with scale. Also shown

for comparison is the prediction of the Kaiser formula [27].
Again, deviations appear for k & 10�3h=Mpc and become
more significant for transverse separations.

Effective primordial non-Gaussianity

Our results show that the observed power spectrum
departs from the small-scale calculation on sufficiently

large scales, with terms proportional to ðk=aHÞ�2 and
ðk=aHÞ�4. This is reminiscent of the scale-dependent
bias induced by primordial non-Gaussianity [1] (see
Sec. III C). It is thus natural to compare the two effects.
Neglecting all relativistic effects, and non-Gaussian

redshift-distortion terms that are unimportant on large
scales [33], the observed galaxy power spectrum for local
primordial non-Gaussianity is given by

PðNGÞ
g ðkÞ
PðscÞðkÞ ¼ ðbþ �bðkÞ þ f�2Þ2

¼ ðbþ f�2Þ2 þ 2�bðkÞðbþ f�2Þ þ �b2ðkÞ:
(106)

Here we have defined the bias correction

�bðkÞ ¼ 2fNLðb� 1Þ�c3�m0H
2
0

2DðzÞk2TðkÞ

¼ fNL�cðb� 1Þ 3�mðzÞH2a3

DðzÞk2TðkÞ
’ 3

2x2
�mðzÞ�cðb� 1ÞfNL 2a

DðzÞ ; (107)

where in the last line we have assumed that k &
0:01h=Mpc so that TðkÞ ¼ 1. We can define an effective
nonlinearity parameter feffNL such that the scale-dependent
non-Gaussian bias inserted into the small-scale expression
Eq. (106) leads to a power spectrum matching the actual
observed power spectrum in the Gaussian case including
the relativistic effects. However, the relativistic corrections

FIG. 4. Three different theoretical predictions of the observed
galaxy power spectrum on large scales for galaxies with linear
bias b ¼ 2 at redshift z ¼ 0:5, and assumingQ ¼ 0: Newtonian
linear theory [27] (dotted line), relativistic linear theory with
linear bias in the uniform-redshift gauge [14] (dashed line), and
relativistic linear theory with linear bias in the synchronous-
comoving gauge (this work, solid line). We show both line-
of-sight directional power spectrum (� ¼ 1, thick lines) and
perpendicular directional power spectrum (� ¼ 0, thin lines).
The vertical solid line indicates k ¼ aH at z ¼ 0:5.

FIG. 3. Same as Fig. 2, but for fixed bias (b ¼ 2) and varying
magnification with Q ¼ �1 (solid), 0.5 (dotted), 1 (dashed), 2
(dash-dotted). For diffuse backgrounds, Q ¼ 1, and the magni-
fication effect cancels almost all volume distortions.
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affect modes perpendicular and parallel to the line of sight
differently, while the non-Gaussian scale-dependent bias is
isotropic. [Note, in particular, the B term in Eq. (105).]
Therefore, we can, in principle, distinguish the relativistic
effect from the non-Gaussian scale-dependent bias through
the angular dependence of the two-dimensional power
spectrum. Given the limited number of modes on scales
k & 10�3h=Mpc, it is more realistic to consider the effect
on the angle-averaged power spectrum monopole

Pð‘¼0Þ
g ðkÞ ¼ 1

2

Z 1

�1
d�Pgðk;�Þ: (108)

From Eq. (105), we find for the relativistic corrections to
the monopole power spectrum

Pð‘¼0Þ
g ðkÞ � PðKaiser;‘¼0Þ

g ðkÞ
PðscÞðkÞ

¼
�
2

�
bþ f

3

�
AþB2

3

�
1

x2
þA2

x4
; (109)

and from Eq. (106), we find that the non-Gaussian correc-
tions only are given by

PðNG;‘¼0Þ
g ðkÞ � PðKaiser;‘¼0Þ

g ðkÞ
PðscÞðkÞ

¼ 3

x2
�m�cðb� 1ÞfNL 2a

DðzÞ
�
bþ f

3

�
þ �b2ðkÞ; (110)

where

PðKaiser;‘¼0Þ
g ðkÞ ¼

�
b2 þ 2

3bfþ 1
5f

2

�
PðscÞ
m ðkÞ (111)

is the monopole galaxy power spectrum given by the
Kaiser formula. By equating the term proportional to x�2

in Eqs. (109) and (110), we find the effective amplitude of
non-Gaussianity as

feffNL¼
DðaÞ
a

1

6�m�cðb�1Þ
�
2Aþ B2

3bþf

�

¼1

2

DðaÞ
a

�
f

�
1� 2f

3�m

�
þ1þ2f=�mþC�f�2Q

�cðb�1Þ
þ �cðb�1Þ
3�mð3bþfÞ

�
f2þf

C�1

�cðb�1Þ
�
2
�
: (112)

Figure 6 shows the monopole of the galaxy power spec-
trum, using the full expression Eqs. (105) and (106) with
Eq. (112). They generally agree very well, apart from the
lowest-redshift case.

FIG. 5 (color online). Observed galaxy power spectrum [Eq. (105)] as a function of kk and k?. The color contours and dashed lines
show the Newtonian result from Kaiser [27], while the solid lines show the result including relativistic corrections. Here we have set
Q ¼ 0. For reference, we also show the real space power spectrum contours as white dotted lines.
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The effective fNL given by Eq. (112) can serve as a
useful tool to forecast for a given survey whether relativ-
istic effects become important: if a survey achieves a
forecasted precision on the local fNL of order feffNL, then
relativistic effects are relevant. Figure 7 shows feffNL for
differently biased tracers as a function of redshift when
Q ¼ 0. Typical values are around 0.2, and generally lower
than 0.5. Note that we have assumed the universal mass
function approach to estimate feffNL; if for some reason the
tracer number density evolves very rapidly with redshift so

that be becomes large, feffNL would increase correspond-
ingly. In general however, we expect that number to remain
less than 1. feffNL rises sharply for z ! 0, because of the 1=~�
factor in C [Eq. (97)]. Figure 8 shows feffNL for galaxies of
bias b ¼ 2 with different luminosity function with slope of
(Q ¼ �1, 0.5, 1, 2). This figure indicates that feffNL varies
with Q, but does not exceed 2 except for low redshifts
where, again, feffNL diverges due to 1=~�. This divergence,
however, is removed completely for diffuse backgrounds
where Q ¼ 1 (dashed line).

FIG. 6. Monopole galaxy power spectrum [Eq. (108)] from the full expression Eq. (105), and using the effective fNL approximation,
Eq. (106). We use the same set of bias and redshift as in Fig. 5 (and Q ¼ 0). The effective fNL approximation is valid within the
horizon (k & 1=aH), marked by a vertical line, while it breaks down on large scales where the x�4 term in Eq. (109) is important. The
breakdown is more apparent when B is large (upper two panels).

FIG. 7. Effective fNL [Eq. (112)] as a function of redshift for
different galaxy biases when Q ¼ 0.

FIG. 8. Same as Fig. 7, but for galaxy bias (b ¼ 2) with
different magnification Q ¼ �1, 0.5, 1, and 2.

JEONG, SCHMIDT, AND HIRATA PHYSICAL REVIEW D 85, 023504 (2012)

023504-14



V. CONCLUSIONS

Future galaxy surveys will measure the clustering of
galaxies on scales approaching the horizon. Thus, it is
necessary to embed the observed galaxy density in a rela-
tivistic context. This problem has received considerable
attention recently. In this paper, we have derived the ob-

served galaxy density contrast ~�g in terms of the intrinsic

galaxy overdensity �g and metric perturbations in the

synchronous-comoving gauge (Sec. II). By transforming
to the conformal-Newtonian gauge, we reach agreement
with the results of Refs. [16,18]. On the other hand, we
find some minor disagreement with the expression of
Ref. [14], which can be traced back to a sign issue. In

Appendix C, we also show that our formula for ~�g repro-

duces the correct analytic result for the following six test
cases: (1) a pure spatial gauge mode, (2) a zero-wave-
number gauge mode, (3) a perturbation to the expansion
history, (4) a small spatial curvature, (5) an anisotropic
expansion history (Bianchi I cosmology), and (6) a
potential-only mode in E that has no metric perturbations
but leads to boundary terms at the observer. These tests use
all of the terms in Eq. (55), and attaining agreement with the
analytical results often involves delicate cancellations or
combinations of various terms; thus they lend credibility to
Eq. (55) and suggest that it is free of sign errors or similar
issues.

One necessary, further ingredient for a description of
galaxy clustering on large scales is a physical, gauge-
invariant definition of galaxy bias. We present a straight-
forward physically motivated definition in Sec. III. This
bias relation is easily seen to reduce to the standard linear
bias relation in synchronous coordinates, where constant-
time hypersurfaces coincide with constant-age hypersurfa-
ces. The bias relation Eq. (80) can be seen as a proper
generalization of the peak-background split bias. Using
this result, we arrive at a simple expression for the ob-
served galaxy density perturbations in the synchronous-
comoving gauge [Eq. (96)], described by the (gauge-
invariant) bias parameter b, and the redshift evolution of
the tracer population [through be, Eq. (54)].

The recent study of Baldauf et al. [34] has also reached
the same conclusion by constructing locally flat space-time
coordinates around a freely falling observer, where long-
wavelength modes locally act as curvature. In that coor-
dinate system, the galaxy number density is modulated not
only by the local curvature but also the time difference
between global time and local time whose effect exactly
coincides with our be in Eq. (80). In contrast, Ref. [14]
adopted a bias relation in the constant-observed-redshift
gauge, which leads to considerably different predictions
for the large-scale galaxy power spectrum. However, this
does not seem to be a physical description of galaxy bias,
since the age of the universe is not constant on constant-
observed-redshift slices.

We believe these results, together with other recent work
[16,18,34], allow us to unambiguously predict the two-
point statistics of large-scale structure tracers on large
scales.
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APPENDIX A: METRIC VARIABLES
AND GAUGE TRANSFORMATIONS

Let us consider a general scalar coordinate transforma-
tion (T, L)

x� ! �x� ¼ x� þ ðTðx�Þ; @iLðx�ÞÞ: (A1)

While true scalar quantities are invariant under such a
coordinate change, perturbations around the background
do change because the background is time-dependent.
For example, consider a scalar function �ð�;xÞ whose

background value only depends on time ��ð�Þ. This is the
case for all scalar functions in the homogeneous universe.
As a scalar, the function � does not change under the
coordinate transformation in Eq. (A1), and it is only
the background time �, thus ��ð�Þ, that is changed. From
the relation

� ¼ ��ð�Þ þ ��ð�;xÞ ¼ ��ð ��Þ þ ���ð ��; �xÞ; (A2)

we calculate the scalar perturbation ��� in the transformed
coordinate in terms of the variables in the old coordinate
as

��� ¼ �� þ ��ð�Þ � ��ð�þ TÞ ¼ �� � d ��ð�Þ
d�

T (A3)

up to linear order in perturbations. By applying Eq. (A3),
we find that the matter density contrast and redshift per-
turbation transform as

��m ¼ �m � d ln	m

d�
T ¼ �m þ 3aHT;

��z ¼ �zþ aHT; and

��g ¼ �g � beaHT; (A4)

where in the second line we have used that d�z=d� ¼ �aH.
Hence, the quantity �m � 3�z remains invariant under
gauge transformations. The scalar component of the pecu-
liar velocity, @iv � adxi=dt, transforms as

�v ¼ vþ L0: (A5)
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We can calculate the gauge transformation of higher rank
vectors/tensors in a similar way, by applying the appropri-
ate transformation law of the object.

1. General scalar metric perturbations

Consider a general FRW metric with scalar perturba-
tions defined through

ds2 ¼ �a2ð1þ 2AÞd�2 � 2a2B;id�dx
i

þ a2½ð1þ 2DÞ�ij þ 2Eij�dxidxj; (A6)

where

Eij ¼ ð@i@j � 1
3�ijr2ÞE: (A7)

Then the metric perturbations transform as follows:

�A ¼ A� aHT � T0; �B ¼ Bþ L0 � T;

�D� 1
3r2 �E ¼ D� 1

3r2E� aHT; and �E ¼ E� L:

(A8)

Similarly, when the perturbed metric is defined through

ds2 ¼ �a2ð1þ 2�Þd�2 � 2a2
;id�dx
i

þ a2½ð1þ 2’Þ�ij þ 2�;ij�dxidxj; (A9)

perturbations transform as follows:

�� ¼ �� aHT � T0; �
 ¼ 
þ L0 � T;

�’ ¼ ’� aHT; and �� ¼ �� L: (A10)

Note that the spatial metric components in Eqs. (A6) and
(A9) are related through

� ¼ A and ’ ¼ D� 1
3r2E: (A11)

2. From synchronous-comoving
to conformal-Newtonian gauge

The two most commonly considered gauges in cosmol-
ogy are the conformal-Newtonian gauge, which is defined
through

B ¼ E ¼ 0 , 
 ¼ � ¼ 0; (A12)

using the convention Eqs. (A6) and (A9), respectively, and
the synchronous-comoving gauge, defined through

A ¼ B ¼ v ¼ 0 , � ¼ 
 ¼ v ¼ 0; (A13)

in the same conventions. Here we explicitly give the trans-
formation between these two gauges, using the general
expressions of the previous section. We find that

0 ¼ �� aHT � T0; 0 ¼ L0 � T;

D� 1
3r2E ¼ ’� aHT;

E ¼ �L; and 0 ¼ vþ L0: (A14)

Solving these equations leads to the transformation
from the conformal-Newtonian to synchronous-comoving
gauge,

D ¼ ’þ 1
3r2

Z
d�vþ aHv and E ¼

Z
d�v; (A15)

and the corresponding inverse transformation,

� ¼ �aHE0 � E00; ’ ¼ D� 1
3r2E� aHE0;

and v ¼ E0: (A16)

Note that in Eq. (A15), we have the freedom to add an
integration constant, which reflects the fact thatD and E in
the synchronous gauge contain a spatial gauge mode. Such
a gauge mode can be removed by introducing � � D�
r2E=3 and/or taking time derivatives of E. For example,
Eq. (A16) contains only � and E0, because the conformal-
Newtonian gauge has no residual gauge freedom.

3. Metric variables in synchronous gauge

In this appendix, we show the relation among three
common parametrizations of the synchronous-comoving
gauge, and how to relate all metric perturbations to the
matter density perturbation in the adiabatic case.
The convention used in this paper is

�gijð�;xÞ ¼ a2ð�Þ½2Dð�;xÞ�ij þ 2Eijð�;xÞ�; (A17)

where Eij is traceless and given in Eq. (A7). In Yoo [15],

the spatial metric perturbation is defined as

�gijð�;xÞ ¼ a2ð�Þ½2�ð�;xÞ�ij þ 2@i@j�ð�;xÞ�: (A18)

Comparing Eqs. (A17) and (A18), we find the relations

�ð�;xÞ ¼ Dð�;xÞ � 1
3r2Eð�;xÞ and

�ð�;xÞ ¼ Eð�;xÞ: (A19)

In Fourier space, the metric in Eq. (A17) becomes

�gijð�;kÞ¼ a2ð�Þ½2Dð�;kÞ�ij�2ðkikj� 1
3k

2�ijÞEð�;kÞ�;
(A20)

which can be compared with the spatial metric perturba-
tions defined in Ma and Bertschinger [35]:

�gijðk;�Þ¼a2ð�Þ
�
kikj

k2
hðk;�Þþ6

�
kikj

k2
�1

3
�ij

�
�ðk;�Þ

�
:

(A21)

Comparing Eqs. (A20) and (A21) leads to

Dð�;kÞ ¼ hð�;kÞ
6

and

Eð�;kÞ ¼ �hð�;kÞ þ 6�ð�;kÞ
2k2

; (A22)

and combining the above results yields
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�ð�;kÞ ¼ ��ð�;kÞ and

�ð�;kÞ ¼ �hð�;kÞ þ 6�ð�;kÞ
2k2

: (A23)

We now relate the metric variables to the matter density
contrast in the synchronous gauge. These relations assume
general relativity, Gaussianity, and adiabaticity, and are
only used for the equations and numerical results in
Sec. IV. First, let us consider the time derivative of E.
The continuity equation in the synchronous-comoving
gauge is given by [35]

�0
mð�;kÞ ¼ �1

2h
0ð�;kÞ; (A24)

and from the Einstein equations we have [e.g., Eq. (22) of
[35]]

k2�0ð�;kÞ ¼ 4i�Ga2kj�T0
j / v ¼ 0: (A25)

Therefore, we calculate the time derivative of E as

E0ð�;kÞ¼�h0ð�;kÞ
2k2

¼�0
mð�;kÞ
k2

¼aHf

k2
�mð�;kÞ; (A26)

where f ¼ d lnD=d lna. From here, we can also calculate
the second derivative of E as

E00ð�;kÞ ¼ 1

k2
@½aHf�mð�;kÞ�

@�

¼ 1

k2
a2H2

�
3

2
�m � f

�
�mð�;kÞ; (A27)

where the second equality comes from the time evolution
of the linear density contrast (continuity and Euler equa-
tions). Finally, from the Einstein equation [Eq. (21a) in
Ref. [35]], we calculate �ð�;kÞ ¼ ��ð�;kÞ as

�ð�;kÞ ¼ � 1

2k2
½aHh0ð�;kÞ þ 8�Ga2�T0

0�

¼ ða2H2fþ 4�G �	ma
2Þ�mð�;kÞ

k2

¼ a2H2

�
fþ 3

2
�m

�
�mð�;kÞ

k2
: (A28)

Note that while D contains a spatial gauge mode, � �
D�r2E=3 does not contain any. Also, from Eq. (A25), it
is obvious that � is constant in time. The physical inter-
pretation is that for a plane wave perturbation, two neigh-
boring test particles separated by an infinitesimal distance
perpendicular to k have a separation that is proportional to
the background aðtÞ; only the component of separation
parallel to k is perturbed.

APPENDIX B: DERIVATION OF EQ. (96)

This section outlines the derivation of Eq. (96) from the

expression for ~�g [Eq. (55)]. We begin by deriving a

compact expression for �z, before moving on to the con-
vergence �̂ and the derivation of Eq. (96).

1. Integrated Sachs-Wolfe term in
synchronous-comoving gauge

Here we identify the ISW term in the synchronous-
comoving gauge and derive a simplified expression for
�z. In the conformal-Newtonian gauge, the ISW term is
given by

�zISW ¼ �
Z ~�

0
d�ð�þ�Þ0; (B1)

where � and � are the Bardeen potentials and prime
denotes a derivative with respect to the conformal time �
[36]. In the synchronous-comoving gauge, they are

�¼�aHE0 �E00 and �¼�Dþ 1
3r2EþaHE0; (B2)

and the ISW term becomes

�zISW ¼
Z ~�

0
d�

�
D0 � 1

3
r2E0 þ E000

�
: (B3)

Using Eq. (30) and the definition of E, we find that the
redshift perturbation in the same gauge is given by

�z ¼
Z ~�

0
d�

�
D� 1

3
r2Eþ @2kE

�0
: (B4)

Now, we use that @� ¼ @k � @�, and rewrite the redshift

perturbation by successively applying integration by parts:

�z ¼
Z ~�

0
d�

�
D0 � 1

3
r2E0 þ ð@� þ @�Þ@kE0

�

¼ ½@kE0�so þ
Z ~�

0
d�

�
D0 � 1

3
r2E0 þ ð@� þ @�ÞE00

�

¼ ½@kE0 þ E00�so þ
Z ~�

0
d�

�
D0 � 1

3
r2E0 þ E000

�
: (B5)

The second, integral term is clearly equal to the
ISW contribution, and neglecting it we obtain �z ¼
½@kE0 þ E00�so, which in Fourier space becomes

�z ¼ ik�E0 þ E00: (B6)

Here, we have ignored the contribution from the origin,
and � denotes the directional cosine between the wave
vector and the line-of-sight direction.

2. Convergence in synchronous-comoving gauge

In this section, we calculate the coordinate convergence
in the synchronous-comoving gauge defined in Eq. (48).
By applying the perpendicular derivative @?i to the per-
pendicular directional displacement �xi? in Eq. (39), we

find
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�̂ ¼ � 1

2
r2

?
Z ~�

0
d�ð~�� �Þ ~�

�
ðDþ EkÞ

þ @?i

Z ~�

0
d�

~�

�
ðEi

j ~̂n
j � Ek ~̂niÞ

� 1

2
@?if~�½EijðoÞ~̂nj � EjkðoÞ~̂ni ~̂nj ~̂nk�g

� �̂ð1Þ þ �̂ð2Þ þ �̂ð3Þ; (B7)

where we have labeled the three terms and used ‘‘(o)’’ to
denote metric shear evaluated at the observer. In the first
term, we have pulled out the perpendicular derivative in-
side the integral over the unperturbed geodesic. Hence the
additional factor of ~�=� in the integrand.

We begin with the �̂ð1Þ term:

�̂ð1Þ ¼ � 1

2
r2

?
Z ~�

0
d�ð~�� �Þ ~�

�

�
D� 1

3
r2Eþ @2kE

�

¼ �� 1

2
r2

?
Z ~�

0
d�ð~�� �Þ ~�

�
ð@2kE� E00Þ: (B8)

This allows us to relate �̂ to � with the introduction of
some new terms. We can combine these terms with terms

in �̂ð2Þ if we simplify the latter: using the commutation
relations Eqs. (9)–(13), we have

~̂njEi
j � ~̂niEk ¼ ~̂nj

�
@j@

i � 1

3
�i
jr2

�
E� ~̂ni

�
@2k �

1

3
r2

�
E

¼ ð~̂nj@j@i � ~̂ni@2kÞE ¼ ð@k@i � @k ~̂ni@kÞE

¼ @k@i?E ¼ @i?@kE� 1

�
@i?E; (B9)

and so

�̂ð2Þ ¼ r2
?
Z ~�

0
d�

�
~�2

�2
@kE� ~�2

�3
E

�
: (B10)

(Note again the additional factor of ~�=� that arises since
when we move @i? outside the integral it acts at radius ~�
rather than �.) Combining these gives

�̂ð1Þ þ �̂ð2Þ ¼ �þ 1

2
r2

?
Z ~�

0
d�

��
� ~�2

�
þ ~�

�
ð@2kE� E00Þ

þ 2
~�2

�2
@kE� 2

~�2

�3
E

�

¼ �þ 1

2
r2

?
Z ~�

0
d�

�
��

� ~�2

�
þ ~�

�
d

d�

�
2@kE� dE

d�

�

þ 2
~�2

�2
@kE� 2

~�2

�3
E

�
; (B11)

where in the second line we have used 0 ¼ @k � d=d�. The
@kE terms form a total derivative, which may be separately

evaluated:

�̂ð1Þ þ �̂ð2Þ ¼ �þ 1

2
r2

?
Z ~�

�
d�

��
~�2

�
� ~�

�
d2E

d�2
� 2

~�2

�3
E

�

þr2
?

��
� ~�2

�
þ ~�

�
@kEj~��

�
: (152)

The quantity in braces vanishes at ~�, whereas at � ! 0 it
blows up. For this reason, we will evaluate this expression
only for � > 0 and then take the limit after all divergences
are cancelled. If we Taylor expand @kE to order �, we find

@kEð�Þ ¼ ~̂niE;iðoÞ þ ~̂ni ~̂nj�E;ijðoÞ � ~̂niE0
;iðoÞ�þOð�2Þ:

(B13)

The quantity in braces is then (keeping terms that are
nonvanishing as � ! 0þ)

�
�
� ~�2

�
þ ~�

�
E;iðoÞ~̂ni þ ~�2 ~̂ni ~̂njE;ijðoÞ � ~�2 ~̂niE0

;iðoÞ:
(B14)

The r2
? operator pulls down a factor of 0 for monopoles,

�2=~�2 for dipoles, and�6=~�2 for quadrupoles. It follows
that

�̂ð1Þþ �̂ð2Þ ¼�þ1

2
r2

?
Z ~�

�
d�

��
~�2

�
� ~�

�
d2E

d�2
�2

~�2

�3
E

�

þ
�
�2

�
þ 2

~�

�
E;iðoÞ~̂ni�6EijðoÞ~̂ni ~̂njþ2~̂niE0

;iðoÞ:
(B15)

The remaining integral is also a total derivative, although
in this case two integrations by parts are necessary. Both
terms can be integrated by parts to obtain a single deriva-
tive dE=d�; the integrals cancel leaving only the boundary
terms:

�̂ð1Þþ�̂ð2Þ¼�þ1

2
r2

?

��
~�2

�
� ~�

�
dE

d�

��������
~�

�
þ ~�2

�2
E

��������
~�

�

�

þ
�
�2

�
þ 2

~�

�
E;iðoÞ~̂ni�6EijðoÞ~̂ni ~̂njþ2~̂niE0

;iðoÞ:
(B16)

This simplifies to

�̂ð1Þ þ �̂ð2Þ ¼ �þ 1

2
r2

?

�
�
�
~�2

�
� ~�

�
dE

d�
ð�Þ � ~�2

�2
Eð�Þ

�

þ 1

2
r2

?Eþ
�
� 2

�
þ 2

~�

�
E;iðoÞ~̂ni

� 6EijðoÞ~̂ni ~̂nj þ 2~̂niE0
;iðoÞ; (B17)

where r2
? is evaluated at radius ~�.

Further simplification requires the limiting forms of the
terms in Eq. (B17). A lowest-order expansion gives the
quantity in brackets as
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�
�
~�2

�
� ~�

�
½~̂niEiðoÞ � E0ðoÞ þ � ~̂ni ~̂njEijðoÞ � 2� ~̂niE0

;iðoÞ

þ �E00ðoÞ� � ~�2

�2

�
EðoÞ þ �~̂niE;iðoÞ � �E0ðoÞ

þ 1

2
�2 ~̂ni ~̂njE;ijðoÞ � �2 ~̂niE0

;iðoÞ þ
1

2
�2E00ðoÞ

�
: (B18)

Again using that the r2
? operator pulls down a factor of 0

for monopoles,�2=~�2 for dipoles, and�6=~�2 for quadru-
poles, we find that Eq. (B17) simplifies to

�̂ð1Þ þ �̂ð2Þ ¼ �þ 1

2
r2

?Eþ 1

~�
E;iðoÞ~̂ni

� 3

2
EijðoÞ~̂ni ~̂nj � ~̂niE0

;iðoÞ: (B19)

The third term, �̂ð3Þ, is independent of ~� since it is a
derivative of a quantity that depends linearly on ~�; hence
we may evaluate it on the unit sphere ~� ¼ 1. We find

�̂ð3Þ ¼ �1
2EijðoÞð�ij � ~̂ni ~̂njÞ þ 1

2EjkðoÞ
� ½2~̂nj ~̂nk þ ð�ij � ~̂ni ~̂njÞ~̂ni ~̂nk þ ð�ik � ~̂ni ~̂nkÞ~̂ni ~̂nj�

¼ 3
2EijðoÞ~̂ni ~̂nj: (B20)

Combining with Eq. (B19) gives

�̂ ¼ �þ 1

2
r2

?Eþ 1

~�
E;iðoÞ~̂ni � ~̂niE0

;iðoÞ: (B21)

This is Eq. (51).

3. From Eq. (53) to Eqs. (55) and (96)

Let us start from Eq. (53),

~�gð~xÞ¼�gþbe�zþ2D�Ekþ2
�xk
~�

�2�̂

�
�
1�1þ~z

H

dHð~zÞ
d~z

�
�z�1þ~z

Hð~zÞ ðD
0 þE0

kÞ
��������~�

;

(B22)

where

�xk ¼ �
Z ~�

0
d�ðDþ EkÞ � 1þ ~z

Hð~zÞ �z (B23)

and we use Eq. (B21) for �̂. Also, in the previous section,
we found that the redshift perturbation, ignoring the ISW
term, is given by

�z ¼ @kE0 þ E00: (B24)

As shown in Appendix B 2, D and E contain spatial
gauge modes, while � � D�r2E=3 and E0 remove such
gauge modes. We now collect the four terms in Eq. (B22)
which contain gauge modes:

2D� Ek þ 2
�xk
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� 2�̂

¼ 2�þ 2
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r2E�

�
@2k �
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E� 2
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1þ ~z

Hð~zÞ �z� 2��r2
?E� 2

~�
~̂niE;iðoÞ þ 2~̂nE0

;iðoÞ

¼ 2�þ 2

~�
½@kE� @kEðoÞ� � 2

~�

Z ~�

0
d�ð�þ @2kEÞ

� 2

~�

1þ ~z

Hð~zÞ �z� 2�þ 2@kE0ðoÞ: (B25)

The third term can be further simplified by double integra-
tion by parts to yield

Z ~�

0
d�ð�þ @2kEÞ ¼

Z ~�

0
d�ð�þ E00Þ þ E0 þ @kE

� E0ðoÞ � @kEðoÞ; (B26)

Then we find for the observed galaxy density contrast

~�gð~xÞ ¼ �g þ be�z� 1þ ~z

Hð~zÞ @
2
kE

0

�
�
1� 1þ ~z

H

dHð~zÞ
d~z

þ 2

~�

1þ ~z

Hð~zÞ
�
�zþ 2�

� 2

~�
½E0 � E0ðoÞ� � 1þ ~z

Hð~zÞ �
0

� 2

~�

Z ~�

0
d�ð�þ E00Þ � 2�þ 2@kE0ðoÞ: (B27)

This is Eq. (55). Note that the magnification bias contri-
bution Q�M does not contain gauge modes [Eq. (72)].
To proceed to Eq. (96), we drop several terms:
(i) The observer terms (which contribute only to the

monopole and dipole).
(ii) The �0 term, since the 0i component of the Einstein

equation ensures that in a �CDM universe �0 ¼ 0
[see Eq. (A25) and note that � ¼ ��].

(iii) The terms � 2
~�

R~�
0 d�ð�þ E00Þ in Eqs. (55) and

(72), corresponding to the time delay which is
very small [19,37].

(iv) The terms involving the convergence �, which is
generally not small but is a projected quantity, and
in the flat-sky limit contributes only to transverse
modes.

Substituting in Eq. (B24) for �z and using Eq. (72) then
yields Eq. (96). Conversion to Fourier space in the flat-sky
limit—i.e., where we make the replacement @k ! ik�—

then gives Eq. (99).

APPENDIX C: TEST CASES FOR THE
OBSERVED GALAXY OVERDENSITY

This appendix considers several analytical test cases that
serve as a cross-check of Eq. (55). The first two cases are

LARGE-SCALE CLUSTERING OF GALAXIES IN GENERAL . . . PHYSICAL REVIEW D 85, 023504 (2012)

023504-19



pure gauge modes, with the expected result that ~�g does not

receive any contributions from such perturbations. We then
consider a perturbed expansion history, spatial curvature,
and a Bianchi type I cosmology with anisotropic expan-
sion. Finally we consider a model with a time-dependent
linear gradient in E, which has no metric perturbation but
leads to a delicate cancellation of terms in the galaxy
density. In all cases, the linearized version of the exact
result can be derived straightforwardly, and we show that it
agrees with the prediction of Eq. (55) in all cases. We
further evaluate the magnification M using Eq. (72) and
show that it matches the expected results.

1. Pure spatial gauge mode

The residual gauge freedom of the synchronous gauge
allows us to reparametrize the spatial coordinates accord-
ing to xi ! xi þ �i, where �i depends only on the spatial
coordinates and not x0. This leads to a spatial metric
perturbation hij ¼ �a2ð�i

;j þ �j
;iÞ. Since here we con-

sider scalar perturbations only, �i should be derived from
a potential �i ¼ �;i. If we start from an unperturbed uni-

verse, the resulting metric perturbation is

D ¼ �1
3r2� and E ¼ ��: (C1)

Equation (C1) corresponds to a pure gauge mode.
For this mode, we proceed to evaluate �z, �, and �.

SinceD and E are time-independent, it is trivially seen that
�z ¼ 0, and Eq. (C1) immediately implies � ¼ 0. Finally,
since D ¼ 1

3r2E and E00 ¼ 0 we can also see that � ¼ 0.

Then Eq. (55) reduces to

~� gð~xÞ ¼ �g; (C2)

which is the expected answer. That is, in this case we do not
have any contributions to the galaxy density aside from the
intrinsic contribution.

We may also evaluate the magnification using Eq. (72).
With E0 ¼ 0 everywhere and �z ¼ � ¼ � ¼ 0, it is trivi-
ally seen that �M ¼ 0.

2. Zero-wave-number gauge mode

There is another spatial gauge mode that does not fall
into the rubric of Eq. (C1): the zero-wave-number mode
given by

D ¼ �þ gix
i and E ¼ 0; (C3)

where� is a constant scalar and g is a constant vector field.
This is generated by the gauge perturbation

�i ¼ ��xi þ 1
2g

ijxj2 � gjx
jxi: (C4)

Again we trivially have �z ¼ 0, but this time � ¼ �þ
�g 	 n̂. Also we have

r2
?D ¼ r2

?ð�g 	 n̂Þ ¼ �2

�
g 	 n̂; (C5)

since g 	 n̂ is a dipole (‘ ¼ 1) and for a pure multipole of
order ‘ the operator r2

? yields a factor of �‘ð‘þ 1Þ=�2.

Thus we find

� ¼ � 1

2

Z ~�

0
d�ð~�� �Þ�

~�

�2

�
g 	 n̂ ¼ 1

2
~�g 	 n̂: (C6)

The galaxy density perturbation obtained via Eq. (55)
has only four nontrivial terms:

~�g ¼ �g þ 2ð�þ ~�g 	 n̂Þ
� 2

~�

Z ~�

0
ð�þ �g 	 n̂Þd�� ~�g 	 n̂: (C7)

Here the second term comes from theþ2� term in Eq. (55),
the third term is the line-of-sight integral of �þ E00 ¼ �,
and the last term comes from the�2�. It is easily seen that

these three terms cancel, leaving ~�g ¼ �g, which is the

expected answer.
Unlike the previous case, here the magnification con-

tains nontrivial terms: substituting the nonzero values of �
and � into Eq. (72), we find

�M ¼ �2ð�þ ~�g 	 n̂Þ þ ~�g 	 n̂
þ 2

~�

Z ~�

0
ð�þ �g 	 n̂Þd� ¼ 0; (C8)

as expected.

3. Perturbation to the expansion history

A less trivial type of perturbation is one in which we
alter the cosmic expansion rate. This can be done by setting

D ¼ Dð�Þ and E ¼ 0: (C9)

The universe so described is still a FRW model since it is
homogeneous and isotropic. (It may no longer be a solution
to the Friedmann equation with only matterþ�; however,
this does not concern us since we are testing an equation
derived only using kinematics.) However, it has a ‘‘true’’
scale factor atrue that is related to the unperturbed scale
factor via

atrueð�Þ ¼ að�Þ½1þDð�Þ �Dð�0Þ�; (C10)

where we fix atrue to be unity today. The true time coor-
dinate (proper time in the case of FRW) remains equal to
the coordinate time,

ttrue ¼ t ¼
Z

að�Þd�: (C11)

The true conformal time is then

�true¼
Z dttrue

atrue
¼
Z ad�

atrue
¼
Z
½1�Dð�ÞþDð�0Þ�d�: (C12)

(The integration constant is chosen to set �true ¼ 0 at the
big bang, but we do not need to make use of this fact.)
Integrating gives
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�true;0 � �true ¼ ½1þDð�0Þ�ð�0 � �Þ �
Z �0

�
Dð�1Þd�1:

(C13)

We care, in particular, about the behavior as a function
of the observed redshift z, which is related to atrue ¼ ð1þ
~zÞ�1. It follows from Eq. (C10) that the comoving distance
relation is now

að�Þ ¼ atrueð�Þ½1�Dð�Þ þDð�0Þ� (C14)

and so we may write the perturbation to the conformal
time,

�ðatrueÞ ¼ �bgðatrueÞ þDð�0Þ �Dð�Þ
atrueHðatrueÞ : (C15)

Here �bg is the background conformal time-scale factor

relation. Finally using Eq. (C13) yields

�true;0 � �true ¼ ½1þDð�0Þ�½�bgð1Þ � �bgðatrueÞ�

�Dð�0Þ �Dð�Þ
atrueHðatrueÞ �

Z �0

�
Dð�1Þd�1: (C16)

This is the true comoving radial distance �true to redshift
a�1
true � 1. That is,

�true ¼ ½1þDð�0Þ��bgðatrueÞ �Dð�0Þ �Dð�Þ
atrueHðatrueÞ

�
Z �0

�
Dð�1Þd�1: (C17)

The true Hubble rate at this time is

Htrue ¼ d lnatrue
dt

¼ Hð�Þ þD0ð�Þ
a

¼ HbgðatrueÞ þ dH

d�
½�ðatrueÞ � �bgðatrueÞ� þD0ð�Þ

a

¼ HbgðatrueÞ þ dH

d�

Dð�0Þ �Dð�Þ
atrueHðatrueÞ þD0ð�Þ

a

¼ HbgðatrueÞ þ a
dH

da
½Dð�0Þ �Dð�Þ� þD0ð�Þ

a
:

(C18)

We expect the perturbation in the observed galaxy den-
sity to have several parts: there is a perturbation in the
physical galaxy density, a part associated with the different
epoch in cosmic history at which the galaxy density is
measured (different t; one wants the different physical
density here so we include both the be evolution and the
�3 associated with the dilution of comoving volume), and
a part associated with the different physical volume.
Specifically,

~� g ¼ �g þ ðbe � 3Þ½Dð�0Þ �Dð�Þ�

þ ln
dVtrue=datrued�

dV=dad�
: (C19)

The comoving volume effect is computable fromEq. (C17).
We see that

dVtrue

datrued�
¼ a2true�

2
true

Htrue

¼ a2true½�bgðatrueÞ�2
HbgðatrueÞ

�
1þ 2Dð�0Þ

� 2
R
�0
� Dð�1Þd�1
�ðatrueÞ � 2½Dð�0Þ �Dð�Þ�

atrueHðatrueÞ�ðatrueÞ
�

�
�
1� a

H

dH

da
½Dð�0Þ �Dð�Þ� �D0ð�Þ

aH

�
:

(C20)

This leads to

~�g ¼ �g þ ðbe � 3Þ½Dð�0Þ �Dð�Þ� þ 2Dð�0Þ
þ

�
� d lnH

d lna
� 2

aH�

�
½Dð�0Þ �Dð�Þ�

� 2
R
�0
� Dð�1Þd�1
�ðatrueÞ �D0ð�Þ

aH
: (C21)

The expected ‘‘magnification’’ �M is twice the perturba-
tion to the angular diameter distance at fixed observed
redshift; in a flat universe this is equivalent to the perturba-
tion to �true. Using Eq. (C17),

�M ¼ �2
�true � �bg

�bg

¼ �2Dð�0Þ þ 2½Dð�0Þ �Dð�Þ�
aH�bg

þ 2

�bg

Z �0

�
Dð�1Þd�1: (C22)

In comparison, if we use Eq. (55) to find ~�g, then we find

that the perturbation in Eq. (C9) yields � ¼ Dð�Þ, � ¼ 0,
and �z ¼ Dð�0Þ �Dð�Þ. Therefore,

~�g ¼ �g þ
�
be � 1� d lnH

d lna
� 2

aH�

�
½Dð�0Þ �Dð�Þ�

þ 2Dð�Þ � 2
R
�0
� Dð�1Þd�1

�
�D0ð�Þ

aH
: (C23)

A simple comparison shows this to be equivalent to
Eq. (C21). Similarly, evaluation of Eq. (72) gives

�M ¼ �2Dð�Þ þ 2

~�

Z �0

�
Dð�1Þd�1

þ
�
�2þ 2

aH�

�
½Dð�0Þ �Dð�Þ�; (C24)

in agreement with Eq. (C22).
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4. Spatial curvature

A fourth example of a perturbation we consider is spatial
curvature. Under stereographic projection, a 3-sphere of

curvatureK (radius of curvatureK�1=2) can be written with
3-metric

ds23 ¼ ð1þ 1
4Kjxj2Þ�2dxidxi; (C25)

or to first order in K,

D ¼ �1
4Kjxj2 and E ¼ 0: (C26)

The expected result is that in the perturbed universe the
radial comoving distance-redshift relation remains the
same. However, there is a change in the volume element
associated with the change in the comoving angular di-
ameter distance,

dVnew

dVold

¼ sin2K ~�

~�2
¼ 1� 1

3
K ~�2 þOðK2Þ; (C27)

where sinK is the sinelike function:

sinK� ¼

8>>>><
>>>>:

� K ¼ 0

K�1=2 sinðK1=2�Þ K > 0

ð�KÞ�1=2 sinh½ð�KÞ1=2�� K < 0:

(C28)

Thus we expect to obtain

~� g ¼ �g � 1
3K ~�2: (C29)

The magnification �M is �2 times the fractional pertur-
bation to the angular diameter distance coming from spa-
tial curvature, which is

�M ¼ �2
sinK ~�� ~�

~�
¼ 1

3
K ~�2: (C30)

If we instead use Eq. (55), we find that � ¼ � 1
4K�

2,

� ¼ 0 (sinceD is a pure monopole,r2
?D ¼ 0 even though

r2D � 0), and �z ¼ 0. Then

~� g ¼ �g � 1

2
K ~�2 � 2

~�

Z ~�

0

�
� 1

4
K�2

�
d�: (C31)

Evaluation of the integral trivially recovers Eq. (C29).
We can also compute the magnification from Eq. (72);

we get

�M ¼ 1

2
K ~�2 þ 2

~�

Z ~�

0

�
� 1

4
K�2

�
d� ¼ 1

3
K ~�2; (C32)

in agreement with Eq. (C30).

5. Bianchi I cosmology

The previous test cases have not tested the terms involv-
ing E0. One case that does is the Bianchi I cosmology, in
which the three spatial axes (usually taken to be the coor-
dinate axes) have different scale factors but the universe is

still homogeneous. We will focus here on the case where
the observer looks in the x3 direction and the metric
perturbations are

Dðx; �Þ ¼ �s3ð�Þ and

Eðx; �Þ ¼ s1ð�Þðx1Þ2 þ s2ð�Þðx2Þ2 þ s3ð�Þðx3Þ2
2

; (C33)

with s1ð�Þ þ s2ð�Þ þ s3ð�Þ ¼ 0 and sið�0Þ ¼ 0. This is
equivalent to a case where the expansion along the 3-axis
is unperturbed, but the other two axes are perturbed: the
scale factors are

a1ðtÞ ¼ aðtÞ½1þ s1ðtÞ � s3ðtÞ�;
a2ðtÞ ¼ aðtÞ½1þ s2ðtÞ � s3ðtÞ�; and

a3ðtÞ ¼ aðtÞ: (C34)

Note that we have already considered in Eq. (C9) the case
where the global isotropic expansion Dð�Þ is perturbed, so
no new independent tests of our results are possible by
using a different function forD in Eq. (C33). Also we have
considered in Eq. (C1) the case where E is a time-
independent function with zero Laplacian, so there is no
independent test of our result that can be obtained by
allowing siðt0Þ � 0.
It is straightforward to determine the expected change in

observed galaxy density for this model. The metric com-
ponents fg00; g03; g33g are not perturbed, so for the n̂ ¼
ð0; 0; 1Þ direction the past light cone is unperturbed and a
given redshift z corresponds to the usual distance �bgðzÞ
and �bgðzÞ. The only nontrivial effect is in the transverse

dimensions and in the volume element—the angular di-
ameter distance is modified by the perturbed expansion
rates in the 1 and 2 directions. We may determine the true
angular diameter distance along the 1-axis by considering a
ray projected backward from the observer with a physical
angular separation & from the 3-axis, i.e., in direction
n̂ ¼ ð&; 0; 1Þ. (We work to order & so that sin& ¼ & and
cos& ¼ 1.) Then the 4-momentum of such a ray with unit
energy is

p� ¼ ð�1;�&; 0;�1Þ: (C35)

Since the metric coefficients do not depend on spatial
position in this model, the spatial covariant components
pi of the momentum are conserved. Then we find that the
spatial position is given by

x1 ¼
Z �

�0

dx1=d�

dx0=d�
d�1 ¼

Z �

�0

½a1ð�1Þ��2p1

�½að�1Þ��2p0

d�1

¼ �&
Z �

�0

½1� 2s1ð�1Þ þ 2s3ð�1Þ�d�1: (C36)

The physical angular diameter distance is the physical
transverse distance divided by the angle subtended, i.e.,
a1ð�Þx1=&. That is,
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DA;phys;1¼�að�Þ½1þs1ð�Þ�s3ð�Þ�
�
Z �

�0

½1�2s1ð�1Þþ2s3ð�1Þ�d�1

¼að�Þ
�
1þs1ð�Þ�s3ð�Þþ2

R
�0
� ½s3ð�1Þ�s1ð�1Þ�d�1

�0��

�
:

(C37)

The observed galaxy overdensity then deviates from the
true galaxy overdensity only by the transverse area element
(since the time of observation and the longitudinal
distance-redshift relation are unaffected). That is,

~� g ¼ �g þ ln
DA;phys;1DA;phys;2

D2
A;unpert

: (C38)

Using that
P

3
i¼1 sið�Þ ¼ 0, we may simplify this to

~� g ¼ �g � 3s3ð�Þ þ 6

R
�0
� s3ð�1Þd�1
�0 � �

: (C39)

The magnification should also be given by the change in
the transverse area element:

�M ¼ 3s3ð�Þ � 6

R
�0
� s3ð�1Þd�1
�0 � �

: (C40)

We now wish to compare our result to Eq. (55). By
construction we have on our chosen sight line Dþ Ek ¼
0, so �z ¼ 0, and since r2E ¼ 0 we have � ¼ �s3. The
convergence � is more complicated: D is spatially con-
stant, r2E ¼ 0, and E is a pure quadrupole (‘ ¼ 2) and
hence r2

? pulls down a factor of�‘ð‘þ 1Þ=�2 ¼ �6=�2,

so we find

r2
?

�
D� 1

3
r2E� E00

�
¼ � 6E00

�2
¼ � 6ðs003�2=2Þ

�2
¼ �3s003 ;

(C41)

where the second equality is valid only on the 3-axis line of
sight. Consequently the convergence is

� ¼ 3

2

Z ~�

0
d�ð~�� �Þ�

~�
s003 ð�Þ: (C42)

Finally we have @2kE
0 ¼ s03, and the observer terms E0ðoÞ

and @kE0ðoÞ both vanish. Plugging these results into

Eq. (55) gives

~�g¼�g�1þz

H
s03ð~�Þ�2s3ð~�Þ� 2

~�

�
1

2
~�2s03ð~�Þ

�

� 2

~�

Z ~�

0
d�

�
�s3ð�Þþ1

2
�2s003 ð�Þ

�

�3
Z ~�

0
d�ð~���Þ�

~�
s003 ð�Þ�

1þz

H
½�s03ð~�Þ�: (C43)

The terms containing s03ð~�Þ=H cancel and the two integrals

can be combined, yielding

~�g ¼ �g � 2s3ð~�Þ � ~�s03ð~�Þ þ
Z ~�

0
d�

�
2

~�
s3ð�Þ

þ
�
2
�2

~�
� 3�

�
s003 ð�Þ

�
: (C44)

This does not quite resemble Eq. (C39), but we can cast it
in a similar form by applying repeated integration by parts
to the second derivative term. For a general function f,

Z ~�

0
fð�Þs003 ð�Þd� ¼ �fð~�Þs03ð~�Þ þ fð0Þs03ð0Þ

þ f0ð~�Þs3ð~�Þ � f0ð0Þs3ð0Þ
þ

Z ~�

0
f00ð�Þs3ð�Þd�; (C45)

where the unusual signs result from the fact that 0 denotes a
derivative with respect to � instead of � (the relation is
simply a minus sign). Then, recalling that s3ð� ¼ 0Þ ¼ 0,
Eq. (C44) simplifies to

~� g ¼ �g � 3s3ð~�Þ þ
Z ~�

0
d�

6

~�
s3ð�Þ: (C46)

Inspection shows that this is equivalent to Eq. (C39) via a
change of variable, � ¼ �0 � ~�.
For the magnification, Eq. (72) predicts

�M ¼ 2s3ð~�Þ þ ~�s03ð~�Þ þ 3
Z ~�

0
ð~�� �Þ�

~�
s003 ð�Þd�

þ 2

~�

Z ~�

0

�
�s3ð�Þ þ 1

2
�2s003 ð�Þ

�
d�; (C47)

repeated integration by parts again reduces this to a form
equivalent to Eq. (C40).

6. Potential-only mode

The only terms left in Eq. (55) that we have not tested
are the observer terms, E0ðoÞ and @kE0ðoÞ. These can be

tested using a potential-only mode

Dðx; �Þ ¼ 0 and Eðx; �Þ ¼ 	ð�Þ þ wið�Þxi: (C48)

This mode has no metric perturbation, D ¼ Eij ¼ 0, and

so we expect to get ~�g ¼ �g. However, it does have non-

zero observer terms.
Trivial evaluation shows that for the ‘‘perturbation’’

Eq. (C48) we have �z ¼ � ¼ 0. However, the conver-
gence � is not zero despite the vanishing metric perturba-
tions. Instead we have

� ¼ � 1

2

Z ~�

0
d�ð~�� �Þ�

~�
r2

?ð	00 þ w00
i n̂

i�Þ

¼
Z ~�

0
d�

�
1� �

~�

�
w00

i n̂
i; (C49)

where in the second line the action ofr2
? is to eliminate the

monopole and extract a factor of �2��2 from the dipole.
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Now since wi is a function only of � we have w00
i ¼

d2wi=d�
2. Double integration by parts then gives

� ¼ n̂iw0
ið�0Þ � n̂i

wið�0Þ � wið�0 � ~�Þ
~�

: (C50)

Similarly we find

Z ~�

0
d�E00 ¼

Z ~�

0
d�ð	00 þ n̂iw00

i �Þ
¼ 	0ð�0Þ �	0ð�0 � ~�Þ � ~�n̂iw0

ið�0 � ~�Þ
þ n̂iwið�0Þ � n̂iwið�0 � ~�Þ: (C51)

Finally the remaining terms are

E0 � E0ðoÞ ¼ 	0ð�0 � ~�Þ þ ~�n̂iw0
ið�0 � ~�Þ �	0ð�0Þ

(C52)

and

@kE0ðoÞ ¼ n̂iw0
ið�0Þ: (C53)

Assembling these pieces of Eq. (55) then leads to a mass

cancellation that recovers ~�g ¼ �g, as expected.

The magnification equation, Eq. (72), has the same non-
zero pieces and a similar mass cancellation occurs, leaving
the correct result �M ¼ 0.

APPENDIX D: CONNECTION WITH
RESULTS IN THE LITERATURE

1. Yoo et al.

In this section, we compare our result, Eq. (53),

~�gð~xÞ ¼ �g � ð1þ ~zÞd lnða
3 �ngÞ

dz

��������~z
�zþ 2D� Ek

�
�
1� 1þ ~z

H

dH

d~z

�
�z� 1þ ~z

Hð~zÞ ðD
0 þ E0

kÞ
��������~�

þ 2
�xk
~�

� 2�̂ (D1)

to Eq. (36) of Yoo et al. [14], restricted to the synchronous-
comoving gauge:

�obs ¼ bð�m � 3�zÞ þ 2Dþ Eij ~̂n
i ~̂nj � ð1þ ~zÞ @

@~z
�z

� 2
1þ ~z

Hr
�z� �z� 5p�DL � 2�̂

þ 1þ ~z

H

dH

dz
�zþ 2

�r

r
: (D2)

We can convert their result to our notation by noting that
r ¼ ~� and

�xk ¼ �r� 1þ ~z

Hð~zÞ �z: (D3)

Note that the �r defined in Eq. (16) of Yoo et al. [14] has a
different sign of Ek compared to ours, as discussed in

Sec. II. Further, @�z=@z ¼ 1=H@�z=@~�, and using
Eqs. (30) and (D2) becomes

�obs¼bð�m�3�zÞþ2DþEk�
�
1�1þ~z

H

dH

dz

�
�z

�1þ~z

Hð~zÞ ðD
0 þE0

kÞ
��������~�

þ2
�xk
~�

�5p�DL�2�̂: (D4)

Comparing the two expressions, we find two differences:
first, our result involves the time-dependence of the num-
ber density of tracers, d ln �ng=dz, while this quantity does

not enter Eq. (D4) since the bias is defined in the uniform-
redshift gauge (see Sec. III). The second difference is the
sign of the Ek� term, which goes back to the difference in

sign in �r [our Eq. (38), and Eq. (16) in Yoo et al. [14]].
This was discussed in Sec. II.

2. Challinor and Lewis, Bonvin and Durrer

We now transform our Eq. (55) into variables in the
conformal-Newtonian gauge in order to compare our re-
sults with [16,18]. By using Eqs. (A4), (A5), and (A10), we
first find the transformation law from the synchronous-
comoving gauge to the conformal-Newtonian gauge as

� ¼ c ðCLÞ ¼ �� ¼ �E00 �HE0;

� ¼ �ðCLÞ ¼ � �’ ¼ ��þHE0;

�v ¼ E0; ��z ¼ �zþHE0;
��m ¼ �m þ 3HE0; and ��g ¼ �g � beHE0; (D5)

where the�symbol denotes the quantities in the conformal-
Newtonian gauge [Eq. (D9)], and the superscript (CL)
denotes the metric perturbation variable defined in [16].
Bonvin and Durrer [18] use the Bardeen potentials�,� as
defined in the above equations. Note that we useH � aH
in order to facilitate the comparison. We now transform the
terms in Eq. (55) as follows:

�gþbe�z¼ ��gþbe ��z
1þz

HðzÞ@
2
kE

0

¼ 1

H
@2k �v

�
1�1þz

H

dH

dz
þ 2

~�

1þz

HðzÞ
�
�z

¼
� _H
H 2

þ 2

~�H

�
ð ��z�H �vÞ2�

¼2ð �’þH �vÞ 2
~�
E0 ¼ 2

~�
�v�þE00 ¼�ð ��� �’Þ:

(D6)

By using Einstein’s equations, i.e., �0 ¼ 0 [Eq. (A25)],
and the definition of ��

�� ¼ � 1

2

Z ~�

0
d�ð~�� �Þ�

~�
r2

?ð ��� �’Þ ¼ �; (D7)
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which is the same as the convergence in the conformal-
Newtonian gauge (� defined in Appendix B 2), Eq. (55)
becomes

~�gð~xÞ¼ ��gþbe ��z� 1

H
@2kv̂�

� _H
H 2

þ 2

~�H

�
½ ��z�H �v�

þ2½ �’þH �v�� 2

~�
�v� 2

~�

Z ~�

0
d�ð ��� �’Þ�2 ��

¼ ��gþbe ��z� 1

H
@2kv̂�

� _H
H 2

þ 2

~�H

�
��zþ2 �’

þ3H �vþ ���
_�’

H
� 2

~�

Z ~�

0
d�ð ��� �’Þ�2 ��;

(D8)

where in the second equality we used the identity

_H
H

�v ¼ ��þH �v�
_�’

H
; (D9)

and we drop quantities at the observer’s position as is done
in [16].

The redshift perturbation ��z in the conformal-
Newtonian gauge can be calculated from Eq. (B5) and
the gauge transformation Eq. (D5) as

��z ¼ @k �v� ���
Z ~�

0
d�ð ��� �’Þ0: (D10)

Rewriting the equation in terms of the variables in [16]
( �� ¼ c , �’ ¼ ��, and @k �v ¼ v 	 n̂), we find the redshift

perturbation as

��z ¼ v 	 n̂� c ðCLÞ �
Z ~�

0
d�ðc ðCLÞ þ�ðCLÞÞ0: (D11)

A similar change of variables can be made for the observed
galaxy density contrast in Eq. (D8), which yields

~� gð~xÞ ¼ �nðn̂; zÞ þ 3H �v; (D12)

where �nðn̂; zÞ is defined in Eq. (30) of Challinor and
Lewis:[16]. The additional term of 3H �v is due to the

fact that the overdensity �n is defined with respect to the
physical rather than comoving galaxy density. In perform-
ing the gauge transformation t ! �t ¼ tþ T, we thus
obtain an additional term from ln �a3 ¼ lna3 þ 3aHT ¼
lna3 þ 3H �v.
To compare the magnification terms, we transform

Eq. (72) to the conformal-Newtonian gauge, yielding

�M ¼ �2ð �’þH �vÞ þ 2

~�
�vþ 2 ��� 2

~�

Z ~�

0
d�ð ��� �’Þ

� 2

�
1� 1

H ~�

�
ð ��z�H �vÞ

¼ 2�þ 2�ðCLÞ � 2

~�

Z ~�

0
d�ð�ðCLÞ þ c ðCLÞÞ

þ 2

�
1

H ~�
� 1

�
��z; (D13)

which has to be compared to all terms / 5s in Eq. (37) of
[16]:

�� 1

~�

Z
d�ð�þ c Þ þ�þ

�
1

H ~�
� 1

�

�
�
�c �

Z
d�ð�0 þ c 0Þ þ n̂ 	 v

�
: (D14)

As 5s is the same as 2Q in our notation, our formula for
�M is also in agreement with [16].
We can also write Eq. (D8) in terms of the variables in

Bonvin and Durrer [18],

��g þ be ��z ¼ Ds; �� ¼ �; �’ ¼ ��;

@k �v ¼ �V 	 n̂; and @2k �v ¼ @rðV 	 n̂Þ; (D15)

to arrive at the same relation Eq. (D12), after identifying

� ¼ 1

2rS

Z rS

0
dr

�
rS � r

r
��

�
ð�þ�Þ (D16)

and �n ¼ � as defined in Ref. [18].
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