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Bipolar spherical harmonics (BiPoSHs) provide a general formalism for quantifying departures in the

cosmic microwave background (CMB) from statistical isotropy and from Gaussianity. However, prior

work has focused only on BiPoSHs with even parity. Here we show that there is another set of BiPoSHs

with odd parity, and we explore their cosmological applications. We describe systematic artifacts in a

CMB map that could be sought by measurement of these odd-parity BiPoSH modes. These BiPoSH

modes may also be produced cosmologically through lensing by gravitational waves (GWs), among other

sources. We derive expressions for the BiPoSH modes induced by the weak lensing of both scalar and

tensor perturbations. We then investigate the possibility of detecting parity-breaking physics, such as

chiral GWs, by cross-correlating opposite-parity BiPoSH modes with multipole moments of the CMB

polarization. We find that the expected signal-to-noise of such a detection is modest.

DOI: 10.1103/PhysRevD.85.023010 PACS numbers: 98.70.Vc

I. INTRODUCTION

The detection of anisotropies in the cosmic microwave
background (CMB) [1] has revolutionized the precision
with which cosmological measurements can be made.
Most of the information that has been obtained from the
CMB so far has come from its power spectrum, the
two-point correlation function, under the assumptions of
isotropy and homogeneity. However, in recent years, at-
tention has been paid to effects that go beyond the power
spectrum, such as weak lensing [2], cosmic birefringence
[3,4], and departures from statistical isotropy (SI) [5–7]
and from Gaussianity [8–10].

Bipolar spherical harmonics (BiPoSHs) [11–13] provide
an elegant and general formalism for quantifying a number
of these physical effects. If the CMB map is Gaussian and
statistically isotropic, then its statistics are specified en-
tirely in terms of the power spectrum Cl, the expectation
value of the squared magnitude of the spherical-harmonic
coefficients alm for the map, and there are no correlations
between different alms. A wide variety of departures from
SI and Gaussianity induce correlations between different
alms. The point of the BiPoSH formalism is to parametrize
correlations between two different coefficients, alm and
al0m0 , that represent two different ‘‘angular-momentum’’
states, in terms of total angular momenta L and M.
Bipolar spherical harmonics have been used to search for
nonstandard cosmic topology [14], anisotropy in primor-
dial power [7,15], and model-independent departures from
SI [13,16–21]. They have also been used to test for asym-
metric beams [22] and/or other systematic artifacts in
WMAP [23]. BiPoSHs for polarization have been proposed
to search for position-dependent rotation of the CMB
polarization [24–26].

However, there is still more that can be donewith bipolar
spherical harmonics, and the purpose of this paper is to
enumerate some of these opportunities. First and foremost,
we point out here that almost all prior work on BiPoSHs
has considered only BiPoSHs with even parity (Sec. II).
There exists an entire other set of BiPoSHs that have the
opposite parity, and these can provide probes of both
cosmological effects and systematic artifacts that would
remain elusive with the even-parity BiPoSHs that have
been considered so far. We show, for example, that lensing
by gravitational waves (GWs) can excite odd-parity
BiPoSHs, and we describe a pointing error that could
also excite these modes. In the process, we also show
how gravitational lensing, by both density perturbations
as well as GWs, can be described in terms of even- and
odd-parity BiPoSHs (Sec. III). Finally, we discuss how
odd-parity BiPoSHs could be used as probes of parity
violation, and consider, in particular, the cross-correlation
of opposite parity CMB lensing and polarization com-
ponents (Sec. IV). We calculate the anticipated spectra
and errors for such correlations, and determine that a large
signal-to-noise is not expected for these cross-correlations,
given the current upper bounds on a GW background.

II. REVIEW OF BIPOLAR
SPHERICAL HARMONICS

A. Statistically isotropic and Gaussian maps

A CMB temperature map Tðn̂Þ, as a function of position
n̂ on the sky, can be decomposed into spherical-harmonic
coefficients

alm ¼
Z

d2n̂Tðn̂ÞY�
lmðn̂Þ:
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If the map is statistically isotropic and Gaussian, then the
statistics can be determined entirely in terms of the power
spectrum Cl, defined by

halma�l0m0 i ¼ Cl�ll0�mm0 ; (1)

where the angle brackets denote an average over all
realizations, and �ll0 and �mm0 are Kronecker deltas.
Equation (1) states that all of the alm are uncorrelated,
and Gaussianity further dictates that the probability distri-
bution function for any alm to take on a particular value is a
Gaussian distribution with variance Cl.

The spatial temperature autocorrelation function is de-
fined to be Cðn̂; n̂0Þ � hTðn̂ÞTðn̂0Þi. Most generally it is a
function of the two directions n̂ and n̂0. However, if the
map is statistically isotropic and Gaussian, then the spatial
correlation function depends only on the angle �, given by
cos� ¼ n̂ � n̂0, between the two directions. In this case,

Cðn̂; n̂0Þ ¼ X
l

ð2lþ 1Þ
4�

ClPlðn̂ � n̂0Þ;

where PlðxÞ are the Legendre polynomials.

B. Departures from Gaussianity/SI

Departures from Gaussianity and/or SI will induce cor-
relations between different alm. The most general correla-
tion between any two alm can be written,

halma�l0m0 i ¼ Cl�ll0�mm0

þ X
LM;L>0

ð�1Þm0 hlml0;�m0jLMiALM
ll0 ; (2)

where Cl is the (isotropic) power spectrum, hlml0m0jLMi
are Clebsch-Gordan coefficients, and the ALM

ll0 are BiPoSH

coefficients. The spatial two-point correlation function is
then

Cðn̂; n̂0Þ ¼ X
l

ð2lþ 1Þ
4�

ClPlðn̂ � n̂0Þ

þ X
ll0LM

ALM
ll0 fYlðn̂Þ � Yl0 ðn̂0ÞgLM; (3)

where

fYlðn̂Þ � Yl0 ðn̂0ÞgLM ¼ X
mm0

hlml0m0jLMiYlmðn̂ÞYl0m0 ðn̂0Þ (4)

are the bipolar spherical harmonics (BipoSHs). These
BiPoSHs constitute a complete orthonormal basis for func-
tions of n̂ and n̂0 in terms of total-angular-momentum states
labeled by quantum numbers L and M composed of
angular-momentum states with lm and l0m0; they are an
alternative to the outer product of the fl; mg and fl0; m0g
bases.

C. Odd-parity bipolar spherical harmonics

It is instructive to decompose ALM
ll0 into its odd and even

parity parts,

ALM
ll0 ¼ A�LM

ll0
½1þ ð�1Þlþl0þL�

2
þ A�LM

ll0
½1� ð�1Þlþl0þL�

2
;

(5)

where A�LM
ll0 (A�LM

ll0 ) are zero for the sum lþ l0 þ L being

odd (even). It follows from the symmetry Cðn̂; n̂0Þ ¼
Cðn̂0; n̂Þ that A�LM

ll0 (A�LM
ll0 ) are (anti) symmetric in l and

l0. We also infer that ½A�LM
ll0 �� ¼ ð�1ÞMA�L�M

ll0 and

½A�LM
ll0 �� ¼ ð�1ÞMþ1A�L�M

ll0 . Thus, odd-parity BiPoSHs

vanish for l ¼ l0. Prior literature has considered physical
effects (e.g., nontrivial topologies [27], SI violation
[13,28]) that produce only A�LM

ll0 , the even-parity

BiPoSHs, and measurements have been carried out with
WMAP data only for the A�LM

ll0 [16,29]. In this paper, we

consider also the odd-parity BiPoSHs A�LM
ll0 .

Estimators for the BiPoSH coefficients (both the � and
� modes) can be constructed from a map of the CMB
temperature field Tðn̂Þ, as follows:

dALM
ll0 ¼ X

mm0
W�1

l W�1
l0 a

map
lm a

�map
l0m0 ð�1Þm0 hlml0;�m0jLMi;

(6)

and this estimator has a variance, under the null hypothesis
(an SI Gaussian map),

hdALM
ll0

dAL0M0
�l�l0

�i ¼ �LL0�MM0 ½�l�l�l0 �l0 þ ð�1Þlþl0þL�l�l0��ll0 �
	 Cmap

l Cmap
l0 W�2

l W�2
l0 ; (7)

where amap
lm ¼ Wlalm þ anoiselm and Cmap

l ¼ W2
l Cl þ Nl are

the temperature spherical-harmonic coefficients and power
spectrum corrected for detector noise and finite resolution.
The Gaussian detector window function, which encapsu-
lates the effects of finite detector resolution, is given by
Wl � exp½�l2�2FWHM=ð16 ln2Þ�, where �FWHM is the full
width at half maximum of the detector. The instrumental
noise contribution to the temperature power spectrum is
given by

Nl ¼ 4�ðNETÞ2
tobs

ffiffiffiffiffiffiffiffi
fsky

p ;

where fsky is the fraction of the sky observed, NET is the

noise equivalent temperature of the detector, and tobs is the
length of time over which the CMB was observed by a
particular survey. We notice that the variance in Eq. (7)
vanishes for odd parity and l ¼ l0 ¼ �l ¼ �l0, which is ex-
pected given that odd-parity BiPoSHs with l ¼ l0 vanish.
The noise in any individual ALM

ll0 is large, and so a search

for a statistically significant departure from zero in one or a
handful of ALM

ll0 will probably not be too effective. It is

better to consider specific models and/or parameterizations
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for departures from SI/Gaussianity and then combine the
ALM
ll0 into a minimum-variance estimator for the SI/

Gaussianity-violating parameters of those models. For ex-
ample, [11,12] considered the bipolar power spectrum
�L � P

ll0MjALM
ll0 j2 as a parameterization for departures

from SI. As another example, [15] combined ALM
ll0 s with

L ¼ 2 and l0 ¼ l, l
 2 to derive minimum-variance esti-
mators for the amplitude of an inflation-induced
primordial-power quadrupole of the type considered
in [30].

III. GRAVITATIONAL LENSING

A. Gradient and curl-type deflections

Consider a statistically isotropic and homogeneous
Gaussian temperature map Tgðn̂Þ on the sphere, where n̂

is a position on the sky. Now suppose that each point on the

sky n̂ has been deflected from an original direction n̂þ
~�ðn̂Þ so that the observed temperature is Tðn̂Þ ¼ Tgðn̂þ
~�Þ ’ Tgðn̂Þ þ ~� � ~r ~�Tgðn̂Þ. This deflection might come

about cosmologically through weak gravitational lensing
or may arise as an instrumental/measurement artifact (for
example, if there are pointing errors).

The most general deflection field ~� can be written in
vector notation as

~� ¼ ~r ~��ðn̂Þ þ ~r ~� 	�ðn̂Þ; (8)

or in component notation, �i ¼ ðr ~�Þi�ðn̂Þþ
�ijðr ~�Þj�ðn̂Þ,1 in terms of two scalar functions �ðn̂Þ and
�ðn̂Þ on the sphere, where ~r ~� is the angular covariant

derivative on the unit sphere. In other words, the most
general vector field on a two-sphere can be written as the
gradient of some scalar field �ðn̂Þ plus the curl of some
other field �ðn̂Þ. Weak gravitational lensing by density
perturbations gives rise, at linear order in the lensing
potential, only to the gradient component. A curl compo-
nent can arise cosmologically from second-order terms in
the deflection field or from lensing by GWs. Systematic
measurement effects may conceivably give rise to both
types of deflections.

We now show that the A�LM
ll0 and A�LM

ll0 BiPoSH coef-

ficients are induced, respectively, by the gradient and curl
components of the deflection field. The change in the
temperature moments induced by lensing is (at first order
in � and �),

�alm ¼
Z

d2n̂Y�
lmðn̂Þf½ ~r ~��� � ½ ~r ~�Tðn̂Þ�

þ ½ ~r ~��ðn̂Þ� 	 ½ ~r ~�Tðn̂Þ�g
¼ X

LM;L>0

X
l0m0

al0m0
Z

d2n̂Y�
lmðn̂Þf�LM½ ~r ~�YLMðn̂Þ�

� ½ ~r ~�Yl0m0 ðn̂Þ� þ�LM½ ~r ~�YLMðn̂Þ� 	 ½ ~r ~�Yl0m0 ðn̂Þ�g;

where in the second line we have decomposed

�ðn̂Þ ¼ X1
L¼1

XL
M¼�L

YLMðn̂Þ�LM; (9)

and similarly for�ðn̂Þ. We do not consider L ¼ 0modes of
� and � since they would not cause a deflection. In the
notation of [31],

~r ~�Ylm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

2

s
½1Ylmm̂þ � �1Ylmm̂��;

where 1Ylm and �1Ylm are spin-weighted spherical harmon-

ics, the null coordinates m̂
 ¼ ðê� � iê�Þ=
ffiffiffi
2

p
, and the

only nontrivial products of the null coordinates are m̂þ �
m̂� ¼ 1, and m̂þ 	 m̂� ¼ i. Thus, it is obtained that

ð ~r ~�YLMÞ�ð ~r ~�Yl0m0 Þ

¼�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LðLþ1Þl0ðl0þ1Þp

2
½ð1YLMÞð�1Yl0m0 Þ

þð�1YLMÞð1Yl0m0 Þ�;ð ~r ~�YLMÞ	ð ~r ~�Yl0m0 Þ

¼�i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LðLþ1Þl0ðl0þ1Þp

2
½ð1YLMÞð�1Yl0m0 Þ�ð�1YLMÞð1Yl0m0 Þ�:

Using the triple integral [31] of spin-weighted spherical
harmonics, the �alm for the gradient and curl terms are
obtained as

�alm ¼ X
LM;L>0

X
l0m0

ð�1ÞMþmal0m0GL
ll0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2Lþ 1Þlðlþ 1Þp

	
�
�LM

½1þ ð�1Þlþl0þL�
2

� i�LM

½1� ð�1Þlþl0þL�
2

�
hlml0;�m0jLMi;

where

GL
ll0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LðLþ1Þlðlþ1Þl0ðl0 þ1Þð2lþ1Þð2l0 þ1Þ

4�

s
hl0l01jL1i:

Up to linear order in the deflection coefficients �LM and
�LM, the even- and odd-parity BiPoSH coefficients are
then,

1Here, the Levi-Civita symbol on the unit sphere can be
defined in terms of its three-dimensional equivalent as �ij ¼��ijkrk. The choice of sign here can be understood as the choice
to have the spherical polar coordinates (�, �) form a right-
handed coordinate system on the sky, since it will ensure that the
basis vectors satisfy ê� 	 ê� ¼ 1.
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A�LM
ll0 ¼ �LMffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Lþ 1
p

�
ClG

L
l0lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l0ðl0 þ 1Þp þ Cl0G
L
ll0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lðlþ 1Þp �
¼ Q�L

ll0 �LM;

(10)

A�LM
ll0 ¼ i�LMffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Lþ 1
p

�
ClG

L
l0lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l0ðl0 þ 1Þp � Cl0G
L
ll0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lðlþ 1Þp �
¼ Q�L

ll0 �LM;

(11)

where we have defined the quantities

Q�L
ll0 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Lþ 1
p

�
ClG

L
l0lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l0ðl0 þ 1Þp þ Cl0G
L
ll0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lðlþ 1Þp �
;

Q�L
ll0 ¼ iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Lþ 1
p

�
ClG

L
l0lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l0ðl0 þ 1Þp � Cl0G
L
ll0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lðlþ 1Þp �
:

Clearly, the gradient part contributes only to A�LM
ll0 and the

curl part only to A�LM
ll0 . Further, it is explicit that the

gradient and curl parts of the deflection correspond, re-
spectively, to the symmetric and antisymmetric (in fll0g)
parts of the total ALM

ll0 .

Suppose the ALM
ll0 have been measured using the estima-

tors in Eq. (6). If we then assume that lensing is the
dominant source of BiPoSHs we can use Eqs. (7), (10), and
(11) to construct maximum-likelihood estimators for the
gradient and curl components of the deflection field,

d�LM ¼
P
ll0
Q�L�

ll0
dA�LM
ll0 =ðW�2

l W�2
l0 C

map
l C

map
l0 ÞP

ll0
jQ�L

ll0 j2=ðW�2
l W�2

l0 Cmap
l Cmap

l0 Þ ; (12)

d�LM ¼
P
ll0
Q�L�

ll0
dA�LM
ll0 =ðW�2

l W�2
l0 C

map
l C

map
l0 ÞP

ll0
jQ�L

ll0 j2=ðW�2
l W�2

l0 C
map
l C

map
l0 Þ : (13)

The variance of these estimators, under the null hypothe-
sis of no lensing, is given by

h d�LM
d�L0M0

�i � �LL0�MM0 ð��
L Þ2

� 2�LL0�MM0

�X
ll0
jQ�L

ll0 j2=ðW�2
l W�2

l0 C
map
l C

map
l0 Þ

��1
; (14)

h d�LM
d�L0M0

�i � �LL0�MM0 ð��
L Þ2

� 2�LL0�MM0

�X
ll0
jQ�L

ll0 j2=ðW�2
l W�2

l0 C
map
l C

map
l0 Þ

��1
; (15)

where the sums in Eqs. (12) and (14) only include pairs of
l, l0 for which lþ l0 þ L is even, while those in Eqs. (13)
and (15) only include pairs for which this quantity is odd.

B. Deflection field from metric perturbations

Cosmic shear, weak gravitational lensing due to density
perturbations or GWs along the line of sight to the CMB,

will produce displacements like those in Eq. (8). Our goal
here will be to calculate the displacement spherical-
harmonic coefficients �LM and�LM that arise from gravi-
tational lensing due to density perturbations and GWs.
There is a vast literature on lensing by density perturba-
tions and also specifically on lensing of the CMB by
density perturbations [2]. Our density-perturbation results
follow most closely those of [31,32]. Lensing by GWs has
been considered in [33]. We follow primarily the approach
of [34,35], who calculated �LM due to GWs, but extend
their results to include �LM from GWs, reproducing the
results of [36]. We make use in this Section of relevant
work on lensing and/or differential analysis on the celestial
sphere in [31,32,37,38].
We write the metric for the perturbed spacetime as

ds2 ¼ a2ð�Þ½�d�2 þ ð�ij þ hijÞdxidxj�;

where hij is the metric perturbation in the synchronous

gauge, and� is the conformal time. Now consider a photon
that we observe to come from the direction n̂ on the sky. In
the absence of perturbations, this photon travels along a
path ~xð�Þ ¼ ð�0 � �Þn̂ as a function of conformal time �,
where �0 is the conformal time today. Metric perturbations
will induce perturbations in this trajectory, which we can
calculate by integrating the geodesic equation back over
the photon path to find the direction of propagation of the
photon when it was emitted at a conformal time �. To first
order in the metric perturbation h, we find the original
direction of propagation of the photon on the sky to be

n̂þ ~�, where [39]

�iðn̂Þ ¼ Pim

�0 � �

Z �

�0

d�0
�
hmjn̂j

� 1

2
ð�0 � �Þn̂kn̂l@mhkl

�
½�0;ð�0��0Þn̂�

: (16)

Here, we have ignored the observer terms hijð�0Þ, and
we have defined the projection tensor Pim ¼ �im � ninm
onto the space perpendicular to the unit vector n̂. The
subscript indicates that the quantities in the integral are
evaluated at time and space coordinates ð�; ~xÞ ¼
ð�0; ð�0 � �0Þn̂Þ; i.e. they are evaluated along the unper-
turbed path of the photon. In our case, the source is the
CMB, and � ¼ �lss is the conformal time at the surface of
last scatter. However, the calculation could also be applied
to the lensing of galaxies in which case the relevant con-
formal time would be that corresponding to redshifts z� 1.
The functions �ðn̂Þ and �ðn̂Þ in the decomposition in

Eq. (8) can be obtained from

r2
~�
�ðn̂Þ ¼ ~r ~� � ~�ðn̂Þ; r2

~�
�ðn̂Þ ¼ � ~r ~� 	 ~�ðn̂Þ; (17)

whereas before ~r ~� is the angular covariant derivative on

the unit sphere. As [25] notes, the standard lensing
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convergence is � ¼ �ð1=2Þr2
~�
� and the lensing rotation is

! ¼ ð1=2Þr2
~�
�.

The gradient component is obtained from

r2
~�
�ðn̂Þ ¼ ~r ~� � ~�

¼ � 1

�0 � �

�Z �0

�
d�0ð�0 � �0Þð�ik � n̂in̂kÞ

	
�
�@kðhijnjÞ þ 1

2
ð�0 � �Þ@i@kðhlmn̂ln̂mÞ

�
½�0;ð�0��0Þn̂�

þ
Z �0

�
d�0½3n̂in̂jhij � hii þ ð�0 � �Þ

	 ðn̂j@ihij � 2n̂in̂jn̂k@khijÞ�½�0;ð�0��0Þn̂�
�
; (18)

where we have used the fact that ~r ~�, which acts on the unit

vector n̂, behaves as ri
~�
¼ ð�0 � �0Þð�ik � n̂in̂kÞ@k inside

the integral due to the dependence of ~x on n̂ as defined in
the integrand subscript.

Let us now consider the curl component. For this calcu-

lation we must use r2
~�
� ¼ � ~r ~� 	 ~� and then note that,

as before, ri
~�
¼ ð�0 � �0Þð�ik � n̂in̂kÞ@k inside the inte-

grand. Applying this to Eq. (16), we have [34]

r2
~�
�ðn̂Þ ¼ �

Z �0

�
d�0ðninl�ijk@jhklÞ½�0;n̂ð�0��0Þ�: (19)

C. Lensing by density (scalar metric) perturbations

Let us first consider scalar perturbations. In the
conformal-Newtonian gauge in the absence of anisotropic
stresses, the metric is given by

ds2 ¼ a2ð�Þ½�ð1� 2�Þd�2 þ ð1þ 2�Þ�ijdx
idxj�:

Noting that a conformal transformation preserves null
geodesics, our calculations of the photon path will be
unaffected if we work in a synchronous metric obtained
from the conformal-Newtonian form through multiplica-
tion by ð1þ 2�Þ. Assuming that � is small and keeping
terms only to linear order, we find the conformally-related
metric,

ds2 ¼ a2ð�Þ½�d�2 þ ð1þ 4�Þ�ijdx
idxj�:

Using this metric perturbation hij ¼ 4��ij in Eq. (18)

above, we find that the first, third, and fourth terms vanish,
giving for the gradient-type lensing caused by scalar per-
turbations,

r2
~�
�scaðn̂Þ ¼ � 2

�0 � �

Z �0

�
d�0ð�0 � �Þ

	 ½ð�ij � n̂in̂jÞð�0 � �0Þ@i@j�� 2n̂i@i��:
For small-scale fluctuations, the second term will be

negligible compared with the first, so it can be dropped.

We can rewrite the spatial derivatives in terms of ~r ~� to find

r2
~�
�scaðn̂Þ¼� 2

�0��

Z �0

�
d�0 �

0 ��

�0��0r2
~�
�ð�0;ð�0��0Þn̂Þ;

and we can remove the angular derivatives to obtain the
usual expression for the projected potential

�scaðn̂Þ¼�2
Z �0

�
d�0 �0 ��

ð�0��Þð�0��0Þ�ð�0;ð�0��0Þn̂Þ:

We can once again decompose �ðn̂Þ in terms of its
spherical-harmonic coefficients as in Eq. (9). We then find

�sca
LM �

Z
d2n̂Y�

LMðn̂Þ�scaðn̂Þ

¼ �2
Z �0

�
d�0 �0 � �

ð�0 � �Þð�0 � �0Þ
	

Z
d2n̂Y�

LMðn̂Þ�ð�0; ð�0 � �0Þn̂Þ: (20)

Thus, lensing by density perturbations with a given
projected potential is characterized by nonzero even bipo-
lar spherical harmonics A�LM

ll0 given by Eq. (10) with �LM

given by �sca
LM above. Scalar perturbations cause no curl-

type lensing, which we can see in several ways. For scalar
perturbations, hij / ��ij, and so the left-hand side of

Eq. (19) vanishes. Then, by taking a Laplacian of the
mode expansion �LM ¼ R

d2n̂�ðn̂ÞY�
LMðn̂Þ, and noting

that the spherical harmonics are eigenfunctions of the
Laplacian with eigenvalue LðLþ 1Þ, we can write

�LM ¼ 1

LðLþ 1Þ
Z

d2n̂Y�
LMðn̂Þr2

~�
�ðn̂Þ: (21)

Thus, we find that all of the�sca
LM, except possibly for the

unphysical L ¼ 0mode, vanish. Equivalently, an argument
can be made that scalar perturbations have no preferred
direction, and so could not generate curl-modes, which do
have a preferred direction. Thus, scalar modes produce no
odd bipolar spherical harmonics A�LM

ll0 .

We can go on to find the autocorrelation power spectrum
of the �sca

LM. Starting from Eq. (20), we use the fact that the

potential perturbations �ð�; ~kÞ today are related to their

primordial values �Pð ~kÞ by

�ð�; ~kÞ ¼ 9

10
�Pð ~kÞTscaðkÞD1ð�Þ

að�Þ ;

where að�Þ is the scale factor, TscaðkÞ is the scalar transfer
function that describes the evolution of scalar modes
through the epochs of horizon crossing and matter-
radiation equality, and D1ð�Þ is the growth function that
captures the scale-independent evolution of scalar modes
at later times [40]. The transfer function can be approxi-
mated using the fitting form of [41],
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Tscaðx � k=keqÞ

¼ lnð1þ 0:17xÞ
0:171x

½1þ 0:284xþ ð1:18xÞ2

þ ð0:399xÞ3 þ ð0:490xÞ4��0:25;

where keq is the wavenumber of the mode that crossed the

horizon at matter-radiation equality, defined as keq �
aeqHðaeqÞ ¼

ffiffiffi
2

p
H0a

�1=2
eq . We can write the growth func-

tion, under the assumption of cosmological-constant dark
energy, as

D1ð�Þ ¼ 5�m

2

Hð�Þ
H0

Z að�Þ

o

da0

ða0Hða0Þ=H0Þ3
:

We also write the autocorrelation of the primordial

scalar fluctuations h�Pð ~kÞ��
Pð ~k0Þi¼ð2�Þ3�3ð ~k� ~k0ÞP�ðkÞ,

where the primordial power spectrum is given by

P�ðkÞ ¼ 50�2

9k3

�
k

H0

�
ns�1

�2
R

�
�m

D1ða ¼ 1Þ
�
2
:

With these ingredients, and after using the partial-wave
decomposition,

eikð�0��0Þcos�¼X1
L¼0

iLð2Lþ1ÞjLðkð�0��0ÞÞPLðcos�Þ; (22)

we find the autocorrelation power spectrum to be

C��sca
L ¼ 2

�

�
9

5ð�� �0Þ
�
2 Z

dkk2P�ðkÞTscaðkÞ2

	
�Z �0

�
d�0 ð�0 � �Þ

ð�0 � �0Þ
D1ð�0Þ
að�0Þ jL½ð�0 � �0Þk�

�
2
:

(23)

To calculate the magnitude and shape of this autocorre-
lation function, we employ the WMAP 7-year cosmologi-
cal parameters of [42]. We plot the result of our calculation
in green squares in Fig. 1.

D. Lensing by GWs (tensor metric perturbations)

If the metric perturbation hij is caused by GWs, we can

decompose it into plane waves,

hijð ~x; �Þ ¼
Z d3k

ð2�Þ3 e
i ~k� ~xTðk; �Þ X

	¼þ;	
h	ð ~kÞ�	ijð ~kÞ; (24)

where we sum over the two GW polarizationsþ and	, the

plane-wave amplitudes are h	ð ~kÞ, and �	ij are the polariza-

tion tensors, which are transverse, traceless matrices. Here,
Tðk; �Þ is the GW transfer function, which gives the
conformal-time evolution of the mode; [34] notes that it
is well approximated by Tðk; �Þ ¼ 3j1ðk�Þ=ðk�Þ.
Now consider a single GW mode propagating in the ẑ

direction with wavenumber k and þ polarization. In this
case the polarization tensor is

�þij ðkẑÞ ¼
1 0 0

0 �1 0

0 0 0

0BB@
1CCA:

The only nonzero metric-perturbation components are then

hxx ¼ �hyy ¼ hþð ~kÞeikzTðk; �Þ. The unit vector n̂ ¼
ðsin� cos’; sin� sin’; cos�Þ. The curl component of lens-
ing of the CMB by tensor perturbations is then

r2
~�
�tenðn̂Þ ¼ ikhþð ~kÞsin2� sin2’

	
Z �0

�
d�0Tðk; �0Þeikð�0��0Þ cos�: (25)

A GW with the 	 polarization is the same as that with the
þ polarization, but rotated by 45
 to the right. The�tenðn̂Þ
pattern is therefore the same, but with sin2’ replaced by
� cos2’. We thus see that lensing by GWs will give rise to
nonvanishing A�LM

ll0 .

The gradient component of cosmic shear due to tensor
perturbations is a bit more complicated; it is

FIG. 1 (color online). Here we plot the autocorrelation power

spectrum C��
L of the gradient-type � modes of cosmic shear. In

green squares we show the autocorrelation of the � modes from
lensing by scalar perturbations, and in blue circles that of the �
modes induced by tensor perturbations. We use the WMAP-7
cosmological parameters, and assume the maximum allowable
tensor-to-scalar ratio r ¼ 0:24 from the WMAP-7 data com-
bined with BAO and the H0 measurement [42], to calculate the
tensor contribution. The error with which these power spectra
could be measured using the parameters of the Planck satellite is
shown as red þs.
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r2
~�
�tenðn̂Þ¼� hþð ~kÞ

�0��
sin2�cos2’

Z �0

�
d�0Tðk;�0Þ

	
�
3�2ikð�0 ��Þcos�þð�0��0Þ

	
�
ikcos��k2

2
ð�0 ��Þsin2�

��
eikð�0��0Þcos�:

(26)

This can be further simplified by noting that

� ik cos�eikð�0��0Þ cos� ¼ @

@�0 e
ikð�0��0Þ cos�;

which then leads to

r2
~�
�tenðn̂Þ¼� hþð ~kÞ

�0��
sin2�cos2’

Z �0

�
d�0Tðk;�0Þ

	
�
3þ2ð�0 ��Þ @

@�0 �ð�0��0Þ
�

@

@�0

þð�0 ��Þ
2

�
k2þ @2

@�02

���
eikð�0��0Þcos�: (27)

For the 	 polarization, we replace cos2’ by sin2’.
Note that the expressions for r2

~�
�ten and r2

~�
�ten differ

only in two ways: (1) The curl mode has a sin2’ depen-
dence on the azimuthal angle ’, while the scalar mode has
a cos2’ dependence (for the þ polarization). (2) The �0
dependences of the two integrands differ.

We now find the spherical-harmonic coefficients�ten
LM ¼R

d2n̂�tenðn̂ÞY�
LMðn̂Þ and �ten

LM ¼ R
d2n̂�tenðn̂ÞY�

LMðn̂Þ.
Taking the angular derivatives of this decomposition of
the curl component, we find the result Eq. (21). We also
expand these coefficients in terms of their polarization and
~k modes,

�ten
LM ¼

Z d3k

ð2�Þ3
X

	¼þ;	
�ten	

LM ð ~kÞ: (28)

If we consider just one mode, with 	 ¼ þ and ~k ¼ kẑ, and
use Eq. (25), its amplitude simplifies into an angular and a
conformal-time integral:

�tenþ
LM ðkẑÞ ¼ � ikhþð ~kÞ

LðLþ 1Þ
Z �0

�
d�0Tðk; �0Þ

	
Z

d2n̂Y�
LMðn̂Þsin2� sinð2�Þeikð�0��0Þ cos�:

The azimuthal integral is easily taken once the spherical
harmonic is decomposed as

Y�
LMðn̂Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Lþ 1

4�

ðL�MÞ!
ðLþMÞ!

s
e�iM�PLMðcos�Þ;

and yields the result that onlyM ¼ 
2modes remain. The
polar integral can then be taken by using the partial-wave

decomposition Eq. (22) and by converting associated
Legendre polynomials into regular Legendre polynomials
and using their orthogonality. The final result that we
obtain for the spherical-harmonic coefficients of the curl
mode is

�tenþ
LM ðkẑÞ ¼ iLhþð ~kÞð�M;2 � �M;�2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Lþ 1

2

s
F�
L ðkÞ; (29)

where

F�
L ðkÞ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�ðLþ2Þ!
ðL�2Þ!

s
1

LðLþ1Þ
Z k�0

k�
dwTðwÞjLðk�0�wÞ

ðk�0�wÞ2
(30)

is a transfer function for �. Note that in writing Eq. (30)
we have assumed that Tðk; �Þ ¼ Tðk�Þ, and that for the 	
polarization the sin2’ dependence of �ðn̂Þ is replaced by
� cos2’, so that the factor ð�M;2 � �M;�2Þ is replaced by

�ið�M;2 þ �M;�2Þ.
Likewise, noting the similarities between Eqs. (25) and

(27), and decomposing �ten
LM into modes as in Eq. (28)

�ten
LM ¼

Z d3k

ð2�Þ3
X

	¼þ;	
�ten	

LM ð ~kÞ; (31)

the result for the amplitude of the gradient mode with 	 ¼
þ and ~k ¼ kẑ is

�tenþ
LM ðkẑÞ ¼ iLhþð ~kÞð�M;2 þ �M;�2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Lþ 1

2

s
F�
L ðkÞ; (32)

where

F�
L ðkÞ¼�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�ðLþ2Þ!
ðL�2Þ!

s
1

LðLþ1Þ
Z k�0

k�
dw

k�0�w

kð�0��ÞTðwÞ

	
�
@

@w
þ1

2
ðw�k�Þ

�
1þ @2

@w2

��
jLðk�0�wÞ
ðk�0�wÞ2 :

(33)

Again, the factor ð�M;2 þ �M;�2Þ is replaced by�ið�M;2 �
�M;�2Þ for the 	 polarization.

The contributions from this Fourier mode to the�ten and

�ten power spectra are C��ten
L ðkẑÞþ¼P

Mhj�ten
LMj2i=ð2Lþ

1Þ and C��ten
L ðkẑÞþ ¼ P

Mhj�ten
LMj2i=ð2Lþ 1Þ. Note that it

is only the M ¼ 
2 modes that contribute. By rotational
invariance, the contribution from the 	 polarization is the
same, as is the contribution from any other mode with the
same wavenumber k but pointing in a different direction.
If the gravitational waves have power spectrum PTðkÞ,
defined by

hhi~kðh
j
~k0
Þ�i ¼ ð2�Þ3�Dð ~k� ~k0Þ�ijPTðkÞ (34)

(with fi; jg ¼ f	;þg), then the � and� power spectra are
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CXXten
L ¼ 2

Z d3k

ð2�Þ3 PTðkÞ½FX
L ðkÞ�2 (35)

for X ¼ f�;�g. In this paper, we will assume a scale-
invariant power spectrum

PTðkÞ ¼ �2

2k3
�2

Rr; (36)

where we have neglected the spectral tilt and adopt the
parameters of WMAP7 [42].

We calculate the variance in the measurement of these
autocorrelation functions from an observed CMB tempera-
ture map, under the null hypothesis of no GWs, and obtain
an expression in terms of the variance of the � and �
estimators, Eqs. (14) and (15)

�C��
L ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

2Lþ 1

s
ð��2

L þ C��sca
L Þ; (37)

�C��
L ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

2Lþ 1

s
��2

L : (38)

Here, ��2
L and ��2

L are the variances of our estimators for
�LM and �LM as found in Eqs. (14) and (15). Note that
under the null hypothesis of no GWs, there is no expected
cosmological curl-type lensing signal, so this term is ab-
sent in Eq. (38).

To calculate these autocorrelation functions and their
variances, we use the WMAP seven-year cosmological
parameters of [42]. We plot the results of our calculations
in Figs. 1 and 2, where lensing from scalar perturbations is
plotted in green squares (absent for C��

L since there are no

scalar contributions to the curl modes), lensing from tensor
perturbations is plotted in blue circles, and the variance of
these measurements is shown in red þs. We use the pa-

rameters of the Planck satellite, NET ¼ 62
Ks1=2, tobs ¼
2 yr, �FWHM ¼ 2:0635	 10�3 rad, and fsky � 1. We can

see that the scalar � signal is several orders of magnitude
greater than the tensor signal, and that the variance with
which the �-� power spectrum could be measured with
Planck is higher than the scalar signal for low multipoles.
The corresponding variance with which the �-� power
spectrum could be measured is also significantly larger
than the signal. In both of these cases, therefore, the
signal-to-noise of measuring the lensing from tensors using
all multipoles with Planck is negligible, and remains neg-
ligible even in the case of the ideal CMB experiment with
zero noise.
Thus, a stochastic background of GWs with power

spectrum PTðkÞ predicts a spectrum of nonzero even and
odd BiPoSHs given by Eqs. (10) and (11), with values of
�LM and �LM selected from Gaussian distributions with

the variances C��ten
L and C��ten

L given by Eq. (35).

E. BiPoSHs from pointing errors

A telescope pointing error can be described as a process
that causes the positions of points on the sky to be mis-
labeled. This then causes an effective deflection of the

points on the sky n̂obs ¼ n̂þ ~�ðn̂Þ, where n̂obs is the di-
rection that the telescope believes it is pointed in and n̂ is
its actual pointing direction. As we saw in Sec. III A, we

can decompose this deflection field ~�ðn̂Þ into gradient and
curl components, which source even- and odd-parity
BiPoSHs, respectively. Thus, from Eq. (17) we can see
that any pointing error that has a nonzero curl component
~r ~� 	 ~�ðn̂Þ will excite odd-parity BiPoSHs.

Imagine, for example, that a satellite such as Planck
misestimates the rate with which it is precessing. Since it
is this precession that builds up observations of subsequent
rings of the sky, such a misestimation would cause a
shearing of each ring relative to its neighbors. This type
of a deflection has a nonzero curl component, and thus
would excite odd-parity BiPoSHs. Measurement of these
BiPoSHs, and, in particular, the odd-parity BiPoSHs, can
therefore provide a useful check for such pointing errors.

IV. BIPOSHS AS PROBES OF PARITY VIOLATION

A. Correlation of opposite-parity lensing components

Since the A�LM
ll0 and A�LM

ll0 have opposite parity for the

same L and M, a cross-correlation between the two can
arise only if there is some parity-breaking in the physics
responsible for producing the departures from SI/
Gaussianity. Here we mention, by way of example, chiral
GWs as a mechanism to produce such a parity-violating
correlation [43–45].

FIG. 2 (color online). Here we plot the autocorrelation power
spectrum C��

L of the curl-type � modes of the weak lensing of
the CMB temperature field. These modes can only be induced by
tensor perturbations. We show the signal in blue circles and the
error with which they could be measured using the parameters of
the Planck satellite as red þs.
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The contribution to the cross-correlation power spec-
trum from a single Fourier mode in the ẑ direction withþ
polarization is C��

L ðkẑÞ ¼ P
mh�LM�

�
LMi=ð2Lþ 1Þ ¼ 0;

it vanishes as the contribution from M ¼ 2 is canceled by
that from M ¼ �2. And if this is true, then by rotational
invariance it is true for any other linearly-polarized
GW. We thus conclude that a stochastic GW background

predicts C��
L ¼ 0. In other words, there is no cross-

correlation between� and�, and thus no cross-correlation
between the even and odd BiPoSHs, A�LM

ll0 and A�LM
ll0 .

Following [44], however, consider a right-circularly-
polarized GW: hR ¼ hþ þ ih	 (i.e., we sum aþ polariza-
tion wave with a	 polarization wave out of phase by 90
).
The azimuthal-angle dependence for the wave is then e2i’,
and �LM and �LM have contributions only from M ¼ 2.
There is thus a nonzero cross-correlation between � and
�. Similarly for a left-circularly-polarized GW hL ¼
hþ � ih	, the ’ dependence is e�2i’, and only M ¼ �2
modes are excited. There is again a cross-correlation be-
tween � and �, but this time with the opposite sign.

In the standard inflationary scenario, there are equal
numbers of right- and left-circularly-polarized GWs, and
the cross-correlation between � and � therefore vanishes.
But if for some reason there is an asymmetry between the
number of right- and left-circularly-polarized GWs
[43–46], a manifestation of parity breaking, then there
may be a parity-violating cross-correlation between �
and �, and thus between A�LM

ll0 and A�LM
ll0 .

The chirality of the GW background can be parame-
trized by an amplitude A which can take values between
�1 and 1, where A ¼ þ1 denotes that all of the GWs are
right-circularly-polarized, and A ¼ �1 denotes that they
are all left-circularly-polarized. But we have seen that a
right-handed GW contributes only toM ¼ 2 modes, while
a left-handed one contributes only to M ¼ �2. We can
denote this by weightingM ¼ 2 components by ðAþ 1Þ=2
and M ¼ �2 components by ðA� 1Þ=2, so that our ver-
sion of Eq. (29), for example, that is appropriate to the case
of a chiral GW background will be

�tenþ
LM ðkẑÞ ¼ iLhþð ~kÞ

�ð1þ AÞ
2

�M;2 � ð1� AÞ
2

�M;�2

�

	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Lþ 1

2

s
F�
L ðkÞ; (39)

and similarly for Eq. (32). In this way a fully right-circu-
larly-polarized GW background will have only contribu-
tions from M ¼ 2, a fully left-circularly-polarized
background will have only contributions from M ¼ �2,
and if the amount of left and right-circularly-polarized
waves is equal, that is if the GW background is nonchiral,
the contributions from M ¼ 2 and M ¼ �2 cancel. The
�-� cross-correlation power spectrum is given by

C��
L ¼ A

Z d3k

ð2�Þ3 PTðkÞF�
L ðkÞF�

L ðkÞ: (40)

References [34,36,47] have shown that the amplitude of
the stochastic gravitational-wave background is probably
too small, even with the most optimistic assumptions, to
produce a detectable gravitational-lensing signal in the
CMB. The example of a chiral gravitational-wave back-
ground as a possible source of a detectable parity-breaking
BiPoSH correlation is principally of academic interest.
Still, [35] has recently argued that weak-lensing of the
CMB by GWs may be detectable in its cross-correlation
with the CMB-polarization pattern induced by these GWs
[37,38,48–50]. We thus surmise that a chiral gravitational-
wave background may still be able produce a detectable
parity-breaking signal in BiPoSHs in cross-correlation
with the CMB polarization, an idea we explore in the
next section.

B. Large-angle CMB polarization spectra

We follow the work of [35], finding the multipole
moments of the CMB E- and B-type polarization spectra
for large angular scales by considering only those modes
that are produced after reionization. The spherical-
harmonic coefficients of B-type polarization modes can
be decomposed as

Blm ¼
Z d3k

ð2�Þ3
X

	¼þ;	
B	
lmð ~kÞ; (41)

where B	
lmð ~kÞ is the amplitude of polarization B modes

multipole moment lm in the direction ~k. The general form
of this amplitude is quite complicated, but we can simplify
it if, as in Sec. III D, we consider only a single,þ-polarized
GW traveling in the ẑ direction with wavenumber k. In this
case, the B-mode amplitude can be written

Bþ
lmðkẑÞ ¼ ilh	ð ~kÞð�m;2 � �m;�2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

2

s
FB
l ðkÞ; (42)

FB
l ðkÞ¼

1

2lþ1

ffiffiffiffiffiffiffi
9�

2

s Z �0

�re

d� _�ð�Þfðlþ2Þjl�1½kð�0��Þ�

�ðl�1Þjlþ1½kð�0��Þ�g
Z k�

k�lss

dx
�3j2ðxÞ

x

j2ðk��xÞ
ðk��xÞ2 ;

(43)

where the h	ð ~kÞ are the amplitudes of GW modes as
defined in Eq. (24), _�ð�Þ is the scattering rate _�ð�Þ ¼
neð�Þ�Tað�Þ, with ne the electron density, �T the
Thompson scattering cross-section, and a the scale factor,
and �re and �0 are the conformal times at reionization and
today, respectively. Since we are only interested in small
scales, we find the approximation �lss ¼ 0 is sufficient for
our purposes, making the last integral significantly faster to
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evaluate. The result above agrees with the results of [35],
whose method we followed in its derivation, up to a factor
of i.

We find that the corresponding E-type polarizationmulti-
poles from tensor perturbations take the same form as Blm

above, except for the opposite sign in front of �m;�2 and a

different factor in the curly brackets in Eq. (43). From [49]
we find this alternative form to be ð2lþ 1Þ=2f�jlðxÞ þ
j00l ðxÞ þ 2jlðxÞ=x2 þ 4j0lðxÞ=xg, where here x ¼ ½kð�0 �
�Þ�, and derivatives arewith respect to x. Employing spheri-
cal Bessel function identities, we can then write the E-type
polarization multipoles as

Elm ¼
Z d3k

ð2�Þ3
X

	¼þ;	
E	
lmð ~kÞ; (44)

Eþ
lmðkẑÞ ¼ ilh	ð ~kÞð�m;2 þ �m;�2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

2

s
FE
l ðkÞ; (45)

FE
l ðkÞ¼

1

2lþ1

ffiffiffiffiffiffiffi
9�

2

s Z �0

�re

d� _�ð�Þ
� ð2lþ1Þ
½kð�0��Þ�2 jl½kð�0��Þ�

�ð2lþ1Þð3l2þ3l�4Þ
ð2l�1Þð2lþ3Þ jl½kð�0��Þ�

þ lðlþ3Þ
2ð2l�1Þjl�2½kð�0��Þ�

þðlþ1Þðl�2Þ
2ð2lþ3Þ jlþ1½kð�0��Þ�

�
	
Z k�

k�lss

dx
�3j2ðxÞ

x

j2ðk��xÞ
ðk��xÞ2 ; (46)

where the terms are defined as they were above for the Blm

amplitudes.

C. Parity-violating correlations from chiral GWs

We now want to calculate the expected cross-correlation
between CMB-polarization multipole coefficients and
weak-lensing-induced BiPoSHs of opposite parity. Note
that these cross-correlations are directly related to the
parity-odd three-point correlations discussed in [51]. As
we mentioned above, if there is no parity-violating physics,
then in the cross-correlation of a parity-even and a parity-
odd observable, M ¼ 2 terms and M ¼ �2 terms will
cancel each other, giving a net zero cross-correlation.
However, if, for example, the GW background is chiral,
then parity is broken and we can get a nonzero cross-
correlation between opposite-parity observables. As we
saw in Sec. IVA, a right-handed GW contributes only to
M ¼ 2 modes, while a left-handed one contributes only to
M ¼ �2. If we carry out a similar procedure for Eqs. (42)
and (45) as we did in Eq. (39), weighting M ¼ 2 compo-
nents by ðAþ 1Þ=2 and M ¼ �2 components by ðA�
1Þ=2, we can calculate parity-violating correlations
between polarization and lensing components while

accounting for the amplitude and handedness of a chiral
GW background.
First considering the cross-correlation between B-modes

of the CMB polarization and gradient-type modes of cos-
mic shear, we write

C�B
L ¼ 1

2Lþ 1

X
M

h�LMB
�
LMi:

As before, by rotational invariance we know that both þ
and	 polarizations will contribute equally to C�B

L , as will

modes with any wavenumber ~k whose magnitude k is the
same. We can see that only �ten

LM will contribute to this
correlation, and not �sca

LM, as the scalar perturbation field is
not correlated, on average, with the tensor perturbation
field. Then using Eqs. (31), (32), (34), (41), and (42), we
can write this cross-correlation as

C�B
L ¼ A

Z d3k

ð2�Þ3 PTðkÞF�
L ðkÞFB

LðkÞ: (47)

Similarly, we can write the cross-correlation between
E-type polarization modes and curl-type modes of cosmic
shear, using Eqs. (28), (29), (34), (44), and (45), as

C�E
L ¼ A

Z d3k

ð2�Þ3 PTðkÞF�
L ðkÞFE

LðkÞ; (48)

where the GW power spectrum is given by

PTðkÞ ¼ �2r�2
Rðk0Þ

2k3
:

We want to calculate the magnitude and shape of such
correlations, to determine whether such a signal is observ-
able. We use the WMAP seven-year cosmological parame-
ters and assume the maximum allowable level of GWs
from early universe physics, with a tensor-to-scalar ratio
r ¼ 0:24, the limit from the WMAP-7 data combined with
BAO and the H0 measurement [42]. We also assume that
the GW background is entirely right-circularly-polarized.
As a first estimate, we calculate the level of such correla-
tions while making several assumptions. We use the
approximate form of the GW transfer function Tðk; �Þ ’
3j1ðk�Þ=ðk�Þ, assume that reionization happened instanta-
neously so that the electron density ne is equal to a step
function, and neglect contributions to the polarization
modes that came from last scattering. The two last assump-
tions affect mostly the higher-L multipoles, which in this
cross-correlation are suppressed since we see that�ten

LM and
�ten

LM fall off very fast with L.
With these assumptions, we have calculated the correla-

tion functions C�B
L and C�E

L , and show them as the blue
circles in Figs. 3 and 4. Note that the absolute value of the
correlation functions are plotted, and that the cusps in the
profiles result from sign changes. Note also that both corre-
lation functions are linearly proportional to the chirality
parameter A, so that they would flip in sign if the GW
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background were left instead of right-circularly-polarized.
We are only interested in low multipoles, since our assump-
tions breakdown for largerL, and suchmultipoles are strongly
suppressed in correlation with the weak-lensing modes.

D. Variance of �-B and �-E correlations

It is useful to know the variance with which we could
measure such parity-violating cross-correlations. From
[37] we see that the variance with which we could measure
the cross-correlation CXY

L of two distinct Gaussian random
variables X and Y is given by

ð�CXY
L Þ2 � hðdCXY

L � CXY
L Þ2i;

where dCXY
L ¼ 1=ð2Lþ 1ÞPMXLMY

�
LM is the estimator for

the cross-correlation, and CXY
L is its theoretical value under

the null hypothesis. Reference [37] then evaluates this
variance, assuming distinct X and Y, to be

ð�CXY
L Þ2 ¼ 1

2Lþ 1
½ðCXY

L Þ2 þ CXXmap
L CYYmap

L �; (49)

where, as before, C
XXmap
L ¼ W2

LCL þ NXX
L , with WL the

window function defined in Sec. II C, and NXX
L the noise in

the measurement of CXX
L .

In our case, the null hypothesis is that there is a GW
background with the maximal tensor-to-scalar ratio, but it
contains equal numbers of right- and left-circularly-
polarized GWs, i.e., it is not chiral. In this case, the
theoretical value of parity-violating cross-correlations is
zero, so that the first term in Eq. (49) vanishes. Then,

assuming that d�LM and d�LM are Gaussian random varia-
bles, a reasonable assumption since many uncorrelated
noise processes are likely to contribute to this measured
value, we find for the variances,

ð�C�B
L Þ2 ¼ 1

2Lþ 1
C
��map
L C

BBmap
L (50)

ð�C�E
L Þ2 ¼ 1

2Lþ 1
C��map
L CEEmap

L : (51)

To calculate these errors, we know that the instrumental
errors on the polarization power spectra are given by

NEE
L ¼ NBB

L ¼ 8�ðNETÞ2
tobs

ffiffiffiffiffiffiffiffi
fsky

p :

We use the Planck-satellite parameters, as in Sec. III D. We
also use the CMB anisotropy calculator CAMB to calcu-
late the temperature and polarization power spectra includ-
ing effects at the surface of last scatter [52]. The resulting
errors are shown as red þs in Figs. 3 and 4. This noise,
which combines instrumental and cosmic-variance
sources, is at least an order of magnitude above the corre-
sponding maximum signal level at low multipoles, and
drops less rapidly with l so that the low multipoles yield
the highest signal-to-noise.

E. Signal-to-noise ratio of
chiral GW background detection

We finally wish to calculate the achievable signal-to-noise
of a measurement of the magnitude of such cross-
correlations given our calculations of their shapes and var-
iances. Such a measurement would tell us about the presence
or absence of a chiral GW background, or of parity violation
in the processes that caused departures from Gaussianity/SI
in general. We can phrase the aim of this calculation as
finding the error with which we could measure the chirality
parameter A, which sets the amplitude of the cross-
correlations relative to their maximum values in the case of
a completely circularly-polarized GW background, as in
Eqs. (47) and (48). Let us calculate this for the case of the
�-B cross-correlation; the �-E case will be similar.

We define a new quantity C�B
Lmax, defined such that

C�B
L ¼ AC�B

Lmax:

If we assume that the instrumental noise on C�B
L is

Gaussian, so that
d
C�B
L � W�2

L C�B
L is a random variable

drawn from a Gaussian probability distribution with

FIG. 3 (color online). Here we plot the cross-correlation C�B
L

between the gradient � modes of the weak lensing of cosmic
shear with the curl-type B modes of the CMB-polarization in
blue circles, and the noise on this measurement due to cosmic
variance and Planck satellite instrumental noise in red þs. Since
these quantities are of opposite parity, in the absence of parity-
breaking physics we expect this cross-correlation to vanish.
However, if we assume, for example, that the entire allowable
GW background is right-circularly-polarized, such a cross-
correlation could occur. The cross-correlation is linearly propor-
tional to the chirality parameter A, defined such that A ¼ 1
denotes a completely right-circularly-polarized GW background,
A ¼ �1 denotes completely left-circularly-polarized, and A ¼ 0
denotes an unpolarized background. Here we assume the maxi-
mum allowable tensor-to-scalar ratio r ¼ 0:24, the limit from
WMAP-7 data combined with BAO and the H0 measurement
[42]. Cusps in the absolute value of the correlation function
correspond to sign changes of the correlation function.

ODD-PARITY BIPOLAR SPHERICAL HARMONICS PHYSICAL REVIEW D 85, 023010 (2012)

023010-11



variance ð�C�B
L Þ2 and mean AC�B

Lmax, we can find the
maximum-likelihood estimator for A to be

bA ¼
P
L

d
C�B
L C�B

Lmaxð�C�B
L Þ�2

P
L
ðC�B

LmaxÞ2ð�C�B
L Þ�2

:

Then, assuming that the instrumental noise is uncorrelated
between different multipoles, the variance of this estimator
is given by

hÂ2i ¼
�X

L

ðC�B
LmaxÞ2ð�C�B

L Þ�2

��1
:

The maximum signal-to-noise with which we can mea-
sure this amplitude is given by�

S

N

�
�B

max
¼ Âmaxffiffiffiffiffiffiffiffiffi

hÂ2i
q ¼

�X
L

ðC�B
LmaxÞ2ð�C�B

L Þ�2

�
1=2

: (52)

The same method can be used to calculate the obtainable
signal-to-noise from the �-E cross-correlation, giving�

S

N

�
�E

max
¼

�X
L

ðC�E
LmaxÞ2ð�C�E

L Þ�2

�
1=2

: (53)

Using the values of the cross-correlations and their errors
calculated above, we find that the obtainable signal-to-noise
from measurement of these cross-correlations is 0.002 for

C�E
L and 0.01 forC�B

L . These numbers are too small for us to
have any reasonable expectation of detection using the
Planck satellite. Recalculating the above errors assuming

an ideal CMB experiment, with no instrumental noise and
infinite resolution, the values of the signal-to-noise only
change by a factor of two, indicating that this method is not
likely to be a promising way to detect a chiral GW
background.

V. CONCLUSIONS

BiPoSHs are a formalism to describe correlations be-
tween two different spherical-harmonic coefficients of the
CMB temperature field, which can occur if the CMB
temperature field is not exactly Gaussian or statistically
isotropic. This paper introduces odd-parity BiPoSHs, a set
of BiPoSHs that has not yet been studied, and details how
they can be estimated from knowledge of the CMB tem-
perature fluctuations.
We calculate the even- and odd-parity BiPoSHs that are

sourced by gradient- and curl-type deflections of the CMB,
respectively, and from this we obtain estimators for these
deflections in terms of the BiPoSH coefficients. We show
that lensing by scalar metric perturbations causes only
gradient-type deflections, and thus only sources even-
parity BiPoSHs. However, lensing by GWs produces
both gradient- and curl-type deflections and thus sources
both even- and odd-parity BiPoSHs. We calculate the
expected power spectra of deflections due to scalar and
tensor perturbations and their errors, and conclude that a
reasonable signal-to-noise measurement of the amplitude
of the GW background cannot be obtained from these
autocorrelations even with the ideal CMB experiment,
and thus from autocorrelations of the BiPoSH coefficients.
Although lensing by GWs produces both even- and odd-

parity BiPoSHs, their opposite parity implies that they
could not be correlated. However, in the presence of
parity-violating physics, such as a chiral GW background,
this parity argument breaks down and we might expect a
correlation. We consider such a cross-correlation, and en-
courage its measurement even though the likelihood of
observing a cosmological signal is low.
A GW background also produces signals in the E- and

B-type CMB-polarization spectra, which are of even and
odd parity, respectively. We consider the possibility that a
chiral GW background would produce cross-correlations
between opposite-parity components of lensing and polar-
ization, and calculate the expected magnitude and errors of
such cross-correlations. Although we find that the like-
lihood of observing a cosmological signal is low, we
encourage the measurement of these cross-correlations
since such a detection would provide evidence of important
systematic errors or even new parity-breaking physics.
Here we have discussed BiPoSHs constructed from tem-

perature multipole moments only, but the formalism can be
generalized to include the polarization as well. It may also
be that inclusion of the polarization improves the sensitiv-
ity to these parity-breaking, and other, signals. We plan to
pursue this analysis in future work.

FIG. 4 (color online). Here we plot the cross-correlation C�E
L

between the curl-type � modes of cosmic shear with the
gradient-type E-modes of the CMB-polarization in blue circles,
and the noise on this measurement due to cosmic variance and
Planck-satellite instrumental noise in redþs. As with the �� B
correlation, we assume a completely right-circularly-polarized
GW background, with the maximum currently permitted tensor-
to-scalar ratio.
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Finally, we note that weak-lensing distortions of distant
galaxies can also be decomposed into curl and gradient
components [32,53]. Similar tests for parity violation can
thus also be carried out with weak lensing of galaxies.
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