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We revisit the effect of cosmological constant � on the light deflection and its role in the cosmological

lens equation. First, we reexamine the motion of photon in the Schwarzschild spacetime, and explicitly

describe the trajectory of photon and deflection angle � up to the second order inG. Then the discussion is

extended to the contribution of the cosmological constant � in the Schwarzschild-de Sitter or Kottler

spacetime. Contrary to the previous arguments, we emphasize the following points: (a) the cosmological

constant � does appear in the orbital equation of light, (b) nevertheless the bending angle of light � does

not change its form even if � � 0 since the contribution of � is thoroughly absorbed into the definition of

the impact parameter, and (c) the effect of � is completely involved in the angular diameter distance DA.
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I. INTRODUCTION

Nowadays, it is widely regarded that the cosmological
constant � or more generally dark energy is the most
responsible candidate which explains accelerating expan-
sion of Universe. Nonetheless, the details of cosmological
constant � or dark energy are still far from clear, then it is
preferable and worthy to clarify the validity of this hy-
pothesis by means of not only cosmological observations
but also another astronomical/astrophysical ones.

Among such attempts, it would be the most natural idea
to investigate the role of cosmological constant � in the
classical tests of general relativity, e.g. the perihelion
advance of the planetary orbit and the bending of the light
path. So far, it was shown that the cosmological constant�
causes the perihelion shift of planets at least in principle,
even though its contribution is too small to detect in the
current measurement technique (see [1–3] and the refer-
ences therein).

While it has been believed for a long time that � does
not contribute to the light deflection because there is no �
in the second-order ordinary differential equation (ODE)
of the photon. However, recently Rindler and Ishak [4]
pointed out that � does affect the bending angle by using
the Schwarzschild-de Sitter or Kottler metric and the in-
variant formula of cosine. Subsequently, many authors
argued its appearance in diverse ways and generality as-
sisted the fact that there appears � in the deflection angle
�, see [5] for review and the references therein and also
[6–12]. However, it seems that the conclusion has not
converged yet; for instance, whether the leading order
effect of � is coupled with the mass of central body M
or not and so on. In order to clear up the confusion, we will

revisit the effect of the cosmological constant on the light
deflection and its role in the cosmological lens equation.

II. PHOTON TRAJECTORY IN
SCHWARZSCHILD SPACETIME

Before discussing the influence of � on bending angle
�, we shall begin with reconsidering the solution of photon
trajectory in the Schwarzschild spacetime. From the
Schwarzschild metric in the Schwarzschild coordinates,

ds2¼�
�
1�rg

r

�
c2dt2þ

�
1�rg

r

��1
dr2þr2ðd�2þsin2�d�2Þ;

rg¼2GM

c2
; (1)

and the condition for null geodesic ds2 ¼ 0, we have the
geodesic equation for equatorial plane (� ¼ �=2),�

du

d�

�
2¼ 1

b2
�u2þrgu

3; u�1

r
;

1

b2
� E2

c2L2
; (2)

in which the two constants of motion, E and L are total
energy and angular momentum, respectively. Alternatively,
Eq. (2) can be expressed in the form of second-order ODE
as

d2u

d�2
¼ �uþ 3

2
rgu

2; (3)

nevertheless, hereinafter we use Eq. (2) instead of Eq. (3).
In order to obtain the photon trajectory up to the second-

order in G, let us put the solution of Eq. (2) u as

u ¼ 1

b
ðsin�þ rgu1 þ r2gu2Þ; (4)

where u1 and u2 are, respectively, first OðGÞ and
second OðG2Þ order correction to zeroth-order solution
u0 ¼ sin�=b (straight line). Hence, u1 and u2 satisfy the
following differential equations
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du1
d�

¼ � sin�

cos�
u1 þ 1

2b

sin3�

cos�
; (5)

du2
d�

¼ � sin�

cos�
u2 � 1

2 cos�

��
du1
d�

�
2 þ u21 �

3

b
u1sin

2�

�
:

(6)

Noting that the integration constants of Eqs. (5) and (6) are
chosen such that maximizing u (or minimizing r) for
� ¼ �=2, then we obtain the trajectory of the photon up
to the second order in G as

1

r
¼ 1

b
sin�þ rg

4b2
ð3þcos2�Þ

þ r2g

64b3
ð37sin�þ30ð��2�Þcos��3sin3�Þ; (7)

where b is the impact parameter which represents the mini-
mum value of r-coordinate for the undeflected light ray,
i.e., rg ¼ 0. The bending angle � is shortly derived from

Eq. (7) and it coincides with the famous formula by [13],

� ¼ 2
rg
b
þ 15�

16

�
rg
b

�
2 ¼ 4GM

c2b
þ 15�

4

ðGMÞ2
c4b2

þOðG3Þ:
(8)

A simple derivation of� is given inAppendixB. It should be
mentioned about the validity of the solution for light trajec-
tory. The appropriateness of our solution, Eq. (7), can be
verified readily by the direct substitution into Eq. (2). It is
found that the residual terms are order OðG3Þ, so it is
perfectly valid up to the order of G2. However, the photon
trajectory given in previous works, such as Eq. (18) of [14]
and Eq. (16) of [5], are incorrect; in fact, there appears
OðG2Þ order residual term in the solution of photon trajec-
tory in [5,14].

III. CONTRIBUTION OF THE
COSMOLOGICAL CONSTANT

Now, let us investigate the contribution of� on the light
ray. For this purpose, we adopt the Schwarzschild-de Sitter
or Kottler metric [15],

ds2 ¼ �
�
1� rg

r
��

3
r2
�
c2dt2 þ

�
1� rg

r
��

3
r2
��1

dr2

þ r2ðd�2 þ sin2�d�2Þ: (9)

In the same way as the Schwarzschild case, the differential
equation of light is given by

�
du

d�

�
2 ¼ 1

b2
� u2 þ rgu

3 þ�

3
: (10)

It should be emphasized here that the geodesic equation
of light, Eq. (10), does obviously include �. Therefore,
previous arguments such as ‘‘� does not appear in the
geodesic equation of light’’ would be overstated. Actually,

the second-order ODE derived from Eq. (10) reduces
to Eq. (3). Nevertheless, its solution of light trajectory
should be obtained in such a way that the integration con-
stants satisfy Eq. (10).
Furthermore, the impact parameter is the minimum

value of the coordinate r if the light ray were undeflected,
i.e., rg ¼ 0. It is obvious from Eq. (10) that the impact

parameter B in this case is defined by

1

B2
� 1

b2
þ�

3
: (11)

Then, the form of Eq. (10) completely coincides with
Eq. (2), except that the impact parameter b is replaced by
B. Therefore, the solution of Eq. (10) becomes

1

r
¼ 1

B
sin�þ rg

4B2
ð3þcos2�Þ

þ r2g

64B3
ð37sin�þ30ð��2�Þcos��3sin3�Þ; (12)

and deflection angle is

� ¼ 2
rg
B
þ 15�

16

�
rg
B

�
2 ¼ 4GM

c2B
þ 15�

4

ðGMÞ2
c4B2

þOðG3Þ:
(13)

It is worthy to note that the contribution of � is incorpo-
rated in Eqs. (12) and (13) through Eq. (11). As a conse-
quence, it is found that the cosmological constant � does
appears in both the geodesic equation and its solution, that
is the trajectory of photon. However, the effect of � is
completely absorbed into the definition of the impact pa-
rameter (see Eq. (11)). Hence, it is difficult to distinguish
the influence of � from the observed deflection angle.

When we expand Eq. (13) by using 1=B ¼ ð1=bÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ�b2=3

p ’ ð1=bÞð1þ�b2=6Þ and remain OðM;M�Þ
terms, it follows that

� ’ 4GM

c2b
þ 2GMb�

3c2
; (14)

in which second term coincides with the previous results,
e.g. Eq. (5) and below in [16] and the third term of Eq. (15)
in [10]. Hence, it is found that these results are included in
Eq. (13) as a limiting case.
It is clear that the trajectory of photon Eq. (12) strictly

satisfies Eq. (10) up to the second order in G based on the
result in previous section.

IV. COSMOLOGICAL LENS EQUATION

Finally, we consider the contribution of � in the cosmo-
logical lens equation. Under the assumption that the thin
lens approximation is valid, the lens equation relates the
observed image position angle � to the unlensed position
angle � of the source as
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� ¼ ��DAðzL; zSÞ
DAð0; zSÞ �; (15)

where DAðz1; z2Þ denotes the angular diameter distance
from the redshift z1 to z2, and the arguments zL and zS
are the redshift of the lens and the source, respectively. For
the distance formula DA in the unperturbed Friedmann-
Lemaı̂tre-Robertson-Walker (FLRW) universe with�, see,
e.g., [17].

Up to the first order in G, the bending angle � in the
present case is

� ¼ 4GM

c2B
: (16)

The impact parameter B is related to the image position
angle � by

B ¼ DAð0; zLÞ�: (17)

Then, from Eqs. (15)–(17), the lens equation is finally

� ¼ �� 4GMDAðzL; zSÞ
c2DAð0; zLÞDAð0; zSÞ

1

�
: (18)

Therefore, the contribution of � is completely involved in
the form of the angular diameter distance DA. No modifi-
cations due to � appear even if the term of OðG2Þ in � is
included. It should also be noted that Eq. (18) is exactly the
same form that appeared in [17,18], where the authors have
shown that the gravitational lensing effects are strongly
dependent on the value of the cosmological constant and
hence they provide us with useful means to test the cos-
mological constant.

Here, we mention that in paper [16] Sereno introduced
the relation b0 ¼ Dd# (see Eq. (8) below of [16]), where
b0 is the impact factor of ‘‘Schwarzschild lens’’ (see
Eq. (8) of [16]), Dd is the angular-diameter distance, and
# is the angular separation. Since in the case of cosmo-
logical lens, the cosmological distance, such as the angular
diameter distance, is defined with �, then b0 should be
replaced by B, instead.

V. SUMMARY

We briefly summarize our conclusions. Contrary to the
previous arguments, (a) the cosmological constant � does
appear in the orbital equation of light; (b) nevertheless, the
bending angle of light � does not change its form even if
� � 0 since the contribution of � is thoroughly absorbed
into the definition of the impact parameter; and (c) the
effect of � is completely involved in the angular diameter
distance DA. Then, no modifications due to � appear even
if the second-order terms in G are included.

It should be mentioned that the similar conclusions are
reached by other authors [6–9]. We hope that this paper
provides a simpler and clearer explanation of the role of �
in the bending of light and the cosmological lens equation
than the above-mentioned studies.

APPENDIX A: THE ANGLE BETWEEN
THE RADIAL DIRECTION AND THE

LIGHT TRAJECTORY

Rindler and Ishak [4] have derived the angle between
the radial direction and the light trajectory from the invari-
ant cosine formula. Just for a reference, here we give a
more intuitive derivation. Consider a spherically symmet-
ric space. The metric on the equatorial plane � ¼ �=2 is
given by

d‘2 ¼ dr2

fðrÞ þ r2d�2: (A1)

In this space, the infinitesimal proper lengths along the
radial direction and that perpendicular to the radial direc-

tion are given by fðrÞ�1=2jdrj and rjd�j, respectively.
Then the tangent of the angle c between the radial direc-
tion and the light trajectory is

tanc ¼ rjd�j
fðrÞ�1=2jdrj ¼

ffiffiffiffiffiffiffiffiffi
fðrÞ

q
r

��������
dr

d�

��������
�1

; (A2)

which is the same form as Eq. (16) in [4]. Once we obtain
the solution rð�Þ for the light trajectory, Eq. (A2) gives the
angle at any point ðrð�Þ; �ÞÞ on the trajectory.

APPENDIX B: THE BENDING ANGLE IN
SCHWARZSCHILD GEOMETRY

Using Eqs. (1), (7), and (A2), the angle c at the point
Pðrð0Þ; 0Þ is

c ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrð0ÞÞ

q
rð0Þ

��������
dr

d�

��������
�1

�¼0
’ rg

b
þ 15�

32

�
rg
b

�
2
: (B1)

Consider a flat space which is tangent to the asymptotically
flat region of the Schwarzschild geometry (see Fig. 1). It is
apparent from the property of an isosceles triangle in the
Euclidean geometry that the angle c at the point P is half
of the bending angle � (see Fig. 2). Then,

� ¼ 2c ’ 2
rg
b
þ 15�

16

�
rg
b

�
2
: (B2)

FIG. 1. Light trajectories on Schwarzschild geometry and on
the flat space which is tangent to the asymptotically flat region of
the Schwarzschild geometry. The coordinates of the point P is
ðrð�Þ; �ÞÞ ¼ ðrð0Þ; 0Þ.
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APPENDIX C: THE ANGLE ON
SCHWARZSCHILD-DE SITTER GEOMETRY

Using Eqs. (9), (12), and (A2), the angle c between the
radial direction and the light trajectory at the point
P0ðrð0Þ; 0Þ on the Schwarzschild-de Sitter geometry is
(see Fig. 3)

c ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��

3

�
b2

rg

�
2

vuut �
rg
b
þ 15�

32

�
rg
b

�
2
�
: (C1)

When linearized with respect to �,

c ’ rg
b
þ 15�

32

�
rg
b

�
2 ��

6

b3

rg
� 15�

192
�b2; (C2)

which is essentially half of Eq. (18) in [5], although
they drop the last term in Eq. (C2). It should be
emphasized since the Euclidean property does not hold
on the Schwarzschild-de Sitter geometry, the angle c in
Eq. (C2) is not half of the bending angle �.
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