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In this paper, we present a simulation method within the two-component spherical collapse model to

investigate dark energy perturbations associated with the formation of dark matter halos. The realistic

mass accretion history of a dark matter halo taking into account its fast and slow growth is considered by

imposing suitable initial conditions and isotropized virializations for the spherical collapse process. The

dark energy component is treated as a perfect fluid described by two important parameters, the equation of

state parameter w and the sound speed cs. Quintessence models with w>�1 are analyzed. We adopt the

Newtonian gauge to describe the spacetime which is perturbed mainly by the formation of a dark matter

halo. It is found that the dark energy (DE) density perturbation �DE depends on w and cs, and its behavior

follows closely the gravitational potential � of the dark matter halo with �DE � �ð1þ wÞ�=c2s . For

w>�1, the dark energy perturbation presents a clustering behavior with �DE > 0 during the entire

formation of the dark matter halo, from linear to nonlinear and virialized stages. The value of �DE

increases with the increase of the halo mass. For a cluster of mass M� 1015M�, �DE � 10�5 within the

virialized region for c2s 2 ½0:5; 1�, and it can reach �DE ¼ Oð1Þ with c2s ¼ 0:000 01. For a scalar-field dark

energy model, we find that with suitably modeled w and cs, its perturbation behavior associated with the

nonlinear formation of dark matter halos can well be analyzed using the fluid approach, demonstrating the

validity of the fluid description for dark energy even considering its perturbation in the stage of nonlinear

dark matter structure formation.

DOI: 10.1103/PhysRevD.85.023002 PACS numbers: 95.36.+x, 98.80.�k

I. INTRODUCTION

Since the discovery of the accelerating expansion of the
Universe, tremendous progress has been achieved in dark
energy studies [1–6]. Future generations of cosmological
observations are expected to be able to provide us tight
constraints on properties of dark energy [7–11]. The full
realization of their constraining power, however, depends
on our thorough understandings on how different dark
energy models affect the expansion of the Universe and
the formation and evolution of cosmic structures differ-
ently [12,13].

For dynamical dark energy models, apart from the back-
ground field that drives the accelerating expansion of the
Universe, dark energy perturbations exist intrinsically.
Their behaviors on large scales and the effects on the linear
power spectrum of the matter density perturbations and the
anisotropy of the CMB radiation have been extensively
investigated and taken into account in deriving cosmologi-
cal constraints from CMB observations [14–17]. On small
scales of the nonlinear structure formation, they should
also be considered. Therefore, a fully consistent simulation
to study the impacts of dark energy on the structure for-
mation should simulate the evolution of the dark energy
component explicitly together with the matter components
(dark matter and baryonic matter). The additional dark
energy component can, however, complicate the numerical
simulation significantly. Therefore, in many studies, the
dark energy is not included as an independent component
in simulations. Instead, approximations or simplifications

suitable to specific models are often adopted so that the
effects of dark energy perturbations on the structure for-
mation can be partially taken into account [18–23]. In a
very recent series of papers regarding coupled dark matter-
dark energy models, fðRÞ gravity models and scalar-tensor
theories, the corresponding scalar-field component has
been explicitly included in simulations [24–28]. Such
simulations not only can study the structure formation
self-consistently, but also can provide the detailed dynami-
cal evolution of the relevant scalar-field component, which
may contain additional information in differentiating dif-
ferent models.
To study the effects of dark energy and particularly the

behavior of dark energy perturbations along with the for-
mation of nonlinear structures, the analyses under the
spherical collapse model are extensively performed.
Although it is a simplified model comparing with the full
cosmological simulations, it allows us to isolate different
effects and to explore a broad parameter space efficiently.
Studies along this line have shown that the simple extrapo-
lation from the amplitude of the dark energy perturbation
obtained in the linear stage of structure formation can
grossly overestimate the level of the dark energy perturba-
tion in the nonlinear epoch of the structure formation
[29–31]. For minimally coupled quintessence dark energy
models with c2s � 1, the dark energy perturbation induced
by the formation of cluster-scale dark matter halos remains
at the level of <10�5, in contrast with the amplitude of
�10�2 obtained by extrapolating the linear analyses to late
stages of dark matter halo formation where nonlinear
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processes actually happen [29–40]. Such a large difference
indicates that the virialization of dark matter halos plays an
important role in determining the behavior of dark energy
perturbations in the halo region. Previous analyses take
into account the virialization process by adding in a simple
prescription into the analytical formulation to prevent the
halo material from collapsing all the way to the center (e.g.,
[30,31]). Although such a modeling can catch the basics of
the virialization process, it cannot describe it very realisti-
cally. Particularly, it cannot handle properly the shell cross-
ing that is important for the virialization process.

To overcome the shortcomings of the artificial treatment
of the virialization process, in this paper, we carry out
numerical simulations for a set of two-component spheri-
cal systems. Following Lu et al. [41], by specifying proper
initial conditions, the realistic mass assembling history for
a dark matter halo is considered in the spherical one-
dimensional (1D) simulations. The tangential velocity is
also taken into account, which can affect the final density
profile of a dark matter halo significantly. With these
implementations, the formation of dark matter halos can
be suitably simulated, and the corresponding dark energy
perturbations can be investigated. In our simulations, the
dark energy component is regarded as an ideal fluid speci-
fied by two important parameters, the equation of state
parameter w and the sound speed parameter cs. We inves-
tigate the dependence of dark energy perturbations on
various quantities, such as w, cs and the mass of the dark
matter halo. The validity of the fluid approach taking into
account the dark energy perturbations is also analyzed.

The rest of the paper is organized as follows. In Sec. II,
we present the formulations related to the two-component
spherical system. Section III describes the methodology of
simulations. The results and discussions are shown in
Sec. IV and V, respectively.

II. FORMULATIONS

In this study, we simulate a set of two-component
spherical systems, where the dark matter and dark energy
components are noncoupling except gravitational interac-
tions. Specifically, we follow the evolution of a spherically
overdense region of dark matter, and analyze the induced
dark energy perturbations. Because of the small ampli-
tudes, we assume that dark energy perturbations have no
effects on the formation of dark matter halos (e.g., [31]).
The detailed methodology for simulating the dark matter
halo formation will be described in next section. Here, we
present the formulations used in calculating dark energy
perturbations associated with the formation of dark matter
halos.

To consider simulations with shell crossing, it is conve-
nient to adopt the Newtonian gauge to describe the per-
turbed spacetime metric, which has been shown to be valid
even in the stage of nonlinear halo formation [42]. The
metric can be written as follows,

ds2 ¼ �ð1þ 2�Þdt2 þ a2ð1� 2�Þdxidxi; (1)

where a is the cosmic scale factor, and � and � are the
Newtonian potential and the spatial curvature, respectively.
The flat Universe is considered here. In the case of spheri-
cal symmetry, dxidx

i ¼ dr2 þ r2d�. In Fourier space, the
Einstein’s equations in terms of the comoving coordinates
then read

k2�þ 3a2H½ _�þH�� ¼ �4�Ga2
X
i

��i; (2)

k2½���� ¼ 12�Ga2
X
i

ð ��i þ �piÞ�i; (3)

where H ¼ _a=a is the Hubble parameter, and the dot
represents the derivative with respect to time t. The sum
is over different components with i ¼ DM for dark matter
and i ¼ DE for dark energy. The quantities ��i and �pi are
the background energy density and pressure for component
i, respectively, ��i � ð�i � ��iÞ, and �i is the anisotropic
stress perturbation for component i [43]. For the dark
energy component, it in general can have the anisotropic
stress perturbation which can be significant if it is a rela-
tivistic fluid (e.g., [44–46]). On the other hand, cosmologi-
cal observations can only put very weak constraints on it,
and thus it may be phenomenologically sufficient for broad
classes of dark energy models to regard the dark energy
component as a perfect fluid [44]. Furthermore, it has been
shown in [47] that for self-interacting scalar-field dark
energy models, the anisotropic stress perturbation vanishes
and thus they can be described as perfect fluids. The
equivalence between a scalar-field model and the perfect-
fluid description is also demonstrated by our simulation
studies shown here in Sec. IVD. Therefore, in our analy-
ses, we treat both the dark matter and the dark energy
components as perfect fluids with �i ¼ 0. We then have
� ¼ �. In the following, � will be substituted by �.
On scales of dark matter halos, we have k2��

Hð _�þH�Þ. Furthermore, ��DE � ��DM. Then, Eq. (2)
reduces to

k2� ¼ �4�Ga2��DM: (4)

Therefore, the potential is determined by the dark matter
distribution only. This simplifies the calculations
significantly.
For the dark energy component, we define �DE �

��DE= ��DE and �DE � i ~k 	 ~vDE with ~vDE being the velocity
of the dark energy fluid. Because of the smallness of their
amplitudes, we only analyze the linearized dynamical
equations for dark energy perturbations, which are given
by

_� DE þ 3Hðc2s � wÞ�DE þ ð1þ wÞ
�
�DE
a

� 3 _�

�
¼ 0;

(5)
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_�DE þ
�
Hð1� 3wÞ þ _w

1þ w

�
�DE

� k2

a

�
c2s

1þ w
�DE þ�

�
¼ 0; (6)

where w � �pDE= ��DE is the equation of state parameter of
the dark energy fluid and cs corresponds to the sound speed
parameter in the rest frame of the dark energy fluid and is
defined as c2s � �pDE=��DE. If the perturbation is pure
adiabatic, we have c2s < 0 for the dark energy fluid with
w< 0, then the perturbation is unstable (e.g., [47,48]).
Therefore, from physical considerations, the perturbation
of the dark energy fluid cannot be pure adiabatic. Here, we
regard c2s as a parameter [49–53], and analyze how the
behavior of dark energy perturbations depends on it.

The above equations form the bases for simulating dark
energy perturbations. Specifically, the formation of a
spherical dark matter halo is followed by numerical simu-
lations taking into account the effect of background dark
energy but without including dark energy perturbations.
We then calculate in Fourier space the potential by Eq. (4),
and further dark energy perturbations by Eq. (5) and (6).
Finally, dark energy perturbations in real space are com-
puted by inverse Fourier transformations.

In the context of scalar-field dark energy models, their
fluid description including the presence of perturbations
relies on finding suitable correspondences between w and
c2s and the scalar field [47]. For a scalar field � with
potential Vð�Þ, we have w ¼ �pDE= ��DE where

�� DE ¼ 1
2
_�2 þ Vð�Þ; �pDE ¼ 1

2
_�2 � Vð�Þ: (7)

The dynamical evolution of the field is given by

€�þ 3H _�þ V 0 ¼ 0; (8)

where V 0 ¼ dV=d�.
The linear perturbation equation is then

€��þ 3H _��þ k2

a2
��þ �V 0 ¼ 4 _� _� : (9)

The corresponding density and pressure perturbations in
the fluid description are given by [47]

��DE ¼ � _�2�þ _� _��þ �V; (10)

and

�pDE ¼ � _�2�þ _� _��� �V ¼ ��DE � 2�V

¼ ��DE � 2V0��: (11)

The divergence of the velocity �DE corresponds to [47]

�DE � k2

a _�
��: (12)

We then obtain the sound speed-related parameter c2s by
[14]

c2s ¼ �pDE=��DE ¼ 1þ a�DE
k2�DE

½3Hð1� w2Þ þ _w�:
(13)

It is noted that for a given scalar-field model, c2s and w are
related to each other. On the other hand, in the general fluid
description without concerning a particular underlying
scalar-field model, c2s and w can be regarded as two inde-
pendent parameters that are used to describe various
models.
To test the validity of the fluid description including dark

energy perturbations, for a specific scalar-field model with
a double-exponential potential given by

Vð�Þ ¼ V0ðe�
ffiffiffiffiffiffiffi
8�G

p
� þ e�

ffiffiffiffiffiffiffi
8�G

p
�Þ; (14)

where � ¼ 6 and � ¼ 0:1 (e.g., [31]), we simulate the
perturbations both for the scalar field explicitly by
Eq. (9) and with the fluid approach with the corresponding
w given by Eq. (7) and c2s given by Eq. (13). The results are
then compared.

III. SIMULATION ALGORITHM

As discussed in Sec. II, we ignore the feedback effects of
dark energy perturbations on the dynamical evolution of
the dark matter component. Therefore, in our studies, the
formation and evolution of a dark matter halo are simulated
independently of dark energy perturbations. Specifically,
the dark matter mass of the simulated halo is divided into
equal-mass shells. These shells are very much analogous to
mass particles in N-body simulations, and we refer them as
shell particles. Their dynamical motions are followed using
a one-dimensional code adapted from Lu et al. [41] taking
into account the effect of the background dark energy
component. To compute the dark energy perturbations
induced by the gravitational potential of the dark matter
halo, at each time step, from the positions of the shell
particles, we construct the spatial dark matter mass density
field on regular radial-mesh bins with equal width in the
radial coordinate r. This spherical dark matter density field
is then transformed into the Fourier space, and the corre-
sponding gravitational potential is obtained by Eq. (4). For
each Fourier mode, we calculate the dark energy perturba-
tion with Eq. (5) and (6). With the inverse Fourier trans-
formation, we then obtain the dark energy perturbation in
the configuration space.

A. Simulations for the formation of spherical
dark matter halos

Although highly simplified, the spherical collapse model
(SCM) catches the important aspects of halo formation,
such as giving rise to an important collapse threshold that
can be used to quantify statistically the formation for dark
matter halos. On the other hand, the simple top-hat SCM
cannot describe realistically the mass assembly of dark
matter halos, which involves the early-stage fast accretion
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and merging and late-stage slow growth (e.g., [54]).
Furthermore, the analytical treatment of SCM cannot
model the process of virialization of dark matter halos
naturally. Lu et al. [41] develop a one-dimensional numeri-
cal simulation method [55,56] to simulate the formation of
a spherical dark matter halo. By suitably choosing the
initial dark matter mass distribution, the fast and slow
accretions of the halo formation can be properly taken
into account. Here, we follow this strategy to simulate
the formation of dark matter halos with the important
modification to incorporate the effect of the background
dark energy.

In the 1D simulations, the mass of the dark matter
component is assigned to equal-mass shells, which are
analogous to particles in N-body simulations. The accel-
eration ar of a shell particle at position r depends on the
matter content within r. Specifically, we have

ar ¼ �H2

2
�DEðtÞð1þ 3wÞr� GMðrÞr

ðr2 þ �2
sÞ3=2

þ J2

r3
; (15)

where the first term represents the contribution from the
background dark energy with the equation of state parame-
ter w and the energy density parameter �DEðtÞ in unit of
the critical density of the Universe at time t. Note that in
general w can be time dependent. The second term is the
gravity from the dark matter component, and the third term
is the centrifugal force from the angular momentum J.
Both the Hubble parameter H and the dark energy density
parameter�DE are time evolving and are dependent on the
equation of state parameter w. In the second term,MðrÞ ¼P

r0<rmr0 is the total mass within r calculated by summing
over the mass of the shell particles inside r. The softening
parameter �s is taken to be �s ¼ 1 kpc, which is about
0:000 5Rvir for the virial radius Rvir � 2 Mpc for clusters of
galaxies [41]. The angular momentum J is added in by
hand to prevent an over-concentrated dark matter density
profile. Following Lu et al. [41], a tangential velocity for a
shell particle is added in when it falls back to one-half of its
turnaround radius Rt with the tangential and radial velocity
dispersions, �2

t and �2
r , satisfying the relation

�2
t

�2
r

¼ 2

1þ ðRt=raÞ�
; (16)

where � is taken to be � ¼ 2 following Lu et al. [41] who
show that the results are insensitive to the specific value of
�. The parameter ra is chosen to be the virial radius of the
halo at time ac, the transition time between the fast-
accretion and slow-accretion phases [see Eq. (17)] [41].
Specifically, the radial and tangential velocities are ran-
domly generated according to Gaussian distributions with
the dispersions of �r and �t, respectively. Then, the total
kinetic energy of the shell particle is partitioned into radial
and tangential components according to the square of the
ratio of the two random numbers. Note that we include the
tangential velocity merely in Eq. (15) to modify the radial

motion of a shell particle without really simulating its
tangential motion.
In our simulations, we use 105 dark matter shell parti-

cles. Further increasing the number does not change the
results significantly. The symplectic integrator is employed
[57]. The time step is chosen to be smaller than the
minimum of the dynamical time scales of the shell
particles.
For dark energy perturbations, we do not calculate them

at the positions of the moving dark matter shell particles.
Instead, they are done on a fixed regular radial mesh of
equal width along the radial coordinate r in accord with the
Newtonian-gauge metric shown in Eq. (1). At each time
step of the simulation, we construct the spherical dark
matter density field on that radial mesh from the positions
of dark matter shell particles. Then, the over-density field
��DM is obtained and transformed into the Fourier space.
The gravitational potential �ðkÞ is calculated and the dark
energy perturbation for each k mode is further solved with
Eq. (5) and (6). Finally, the dark energy perturbation at a
desired output time in the configuration space is obtained
by the inverse Fourier transformation.

B. Initial conditions and virialization

Apart from the necessity to introduce tangential mo-
tions, cosmological simulation studies have shown that
the universal density profile for dark matter halos also
depends sensitively on their mass assembling history,
which cannot be described well by the simple top-hat
spherical collapse model (e.g., [54]). However, as demon-
strated by Lu et al. [41], this can be remedied within the
spherical collapse framework by setting up properly the
initial mass distribution for the dark matter component
(instead of the simple top-hat density profile) according
to an approximate description about the realistic mass
accretion process.
Considering only the growth of the amount of mass for a

dark matter halo without concerning the detailed processes,
Wechsler et al. [58] present an approximate form for the
time dependence of its mass MðaÞ, which is given by

MðaÞ ¼ M0 exp

�
�acS

�
a0
a
� 1

��
; (17)

whereM0 is the halo mass at the observed epoch a0, and ac
is the characteristic scale factor to divide the fast and
slow accretions specified by ðd lnM=d lnaÞja¼ac ¼ a0S

and S ¼ 2. We can see that ac plays the critical role in
describing the mass growth for a halo, which in turn affects
the final density profile, such as the concentration parame-
ter of the Navarro-Frenk-White (NFW) halos [59,60]. In
other words, given a desired concentration parameter for
the final density profile of a dark matter halo, one can find a
suitable value of ac so that Eq. (17) can describe the mass
assembly of the halo properly [41].
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In lambda cold dark matter (�CDM) models, the em-
pirical relation between the concentration parameter and
the mass of a halo has been investigated extensively from
numerical simulations (e.g., [54,58,61–63]). For example,
[61] presents a simple mass-concentration relation given
by

c�CDM
vir ðM; zÞ ’ 9

1þ z

�
M0

M


��0:13
; (18)

where cvir ¼ Rvir=rs with rs being the characteristic scale
of an NFW halo, M0 is the halo mass at the observed
redshift z, and M
 ¼ 1:5� 1013M� derived from simula-
tions [61]. Thus, given a halo mass M0, we can calculate
the expected concentration parameter from Eq. (18). We
take a0 ¼ 1, i.e., z ¼ 0 as the final epoch. For M0¼
1015M�, 1014M�, and 1013M�, we have c�CDM

vir � 5:2,
7.0, and 9.5, respectively. For dynamical dark energy mod-
els, the formation and evolution of dark matter halos can be
different from those in �CDM models. Studies show that
the differences can largely be attributed to the differences
of the linear growth factor DðzÞ of the dark matter density
perturbations through its effect on the halo formation
epoch (e.g., [64,65]). It is found that the concentration
parameter cvir for a dynamical dark energy model can be
described well by the relation

cvir � c�CDM
vir Dðz ! þ1Þ=D�CDMðz ! þ1Þ; (19)

where Dðz ! þ1Þ and D�CDMðz ! þ1Þ are the linear
growth factor evaluated at very high redshift z ! 1 for the
concerned model and for the �CDM model, respectively,
([64,65]). Here, we adopt this relation to calculate the
concentration parameter for a particular dark energy model
with c�CDM

vir determined by Eq. (18). The linear growth

factor is calculated by (e.g., [66])

€Dþ 2H _D� 3
2H

2�DMðtÞD ¼ 0; (20)

where the initial conditions at very high redshift are taken
to be D ¼ C� a, and dD=dt ¼ C� da=dt with the con-
stant C determined by the normalization condition
Dðz ¼ 0Þ ¼ 1. With the obtained cvir, the corresponding
parameter ac=a0 is found from Fig. 4 of Lu et al. [41]. We
list them in Table I.

Based on Lu et al. [41], we use the following method-
ology to find the initial dark matter mass distribution that
can give rise to the mass accretion shown in Eq. (17). For a
halo with mass M0 at a0, we assume that MðaÞ in Eq. (17)
is the mass within M0 that is virialized at the epoch a.
According to the spherical collapse model, the linear ex-
trapolated density perturbation averaged over the scale
corresponding toMðaÞ should reach the collapse threshold
�c at time a. Then, the corresponding perturbation at the
initial epoch ai can be written as

�iðMÞ ¼ �c

DðaiÞ
D½aðMÞ� ; (21)

where aðMÞ is the inverse function of Eq. (17), represent-
ing the epoch when the amount of mass M within the halo
is virialized, and �iðMÞ is the initial value of the density
perturbation averaged over the scale within which the
contained mass isM. The subscript i denotes the quantities
at the initial epoch. The initial radius of the region with the
average density perturbation �iðMÞ is then given by

riðMÞ ¼
�

3M

4� ��DMðaiÞ½1þ �iðMÞ�
�
1=3

; (22)

where ��DMðaiÞ is the background dark matter density at ai.
The initial radial velocity is set by

viðMÞ ¼ Hiri � 1

3
Hi

�
d ln�

d lna

�
ai

�iri; (23)

where the second term is the peculiar velocity due to the
mass density perturbation [67,68].
We choose the initial redshift zi ¼ 30 (correspondingly

ai ¼ a0=31), and the initial dark energy perturbations are
set to be zero. The cosmological parameters are �DM0 ¼
0:3, �DE0 ¼ 0:7, and H0 ¼ 70 km=s=Mpc, where �DM0

and �DE0 are the current dark matter and dark energy
density parameters of the Universe in unit of the critical
density. The value of �c is set to be 1.686.
In Fig. 1, we show the density profiles from our 1D

simulations for three different halos. The virialized masses
at z ¼ 0 from the simulations are M0 ¼ 1:00� 1015M�,
1:04� 1014M�, and 0:82� 1013M�, respectively, in ex-
cellent accordance with M0 ¼ 1015M�,1014M�, and
1013M�, the chosen masses of the halos used to set the
values of the parameter ac. The symbols are the results
from the simulations, and the lines are the corresponding
best-fit NFW profiles with the fitted concentration parame-
ters listed in the plot. The virial radius Rvir is defined as the
radius within which the average mass density of the halo is
�vir ��DM. Here, we take �vir ¼ 337 obtained for the
�CDM model with �DM0 ¼ 0:3 [61]. Studies have shown

TABLE I. Parameters of simulations.

w c2s ac=a0

Mvir

ð1015M�Þ
Rvir

(Mpc)

cvir(
Rvir=rs)

F0 �0:9 0.5 0.8 1.00 2.6 5.7

F1 �0:8 0.5 0.7 1.06 2.6 5.1

F2 �0:7 0.5 0.67 1.08 2.7 5.6

F3 �0:9 0.000 01 0.8 1.10 2.7 4.9

F4 �0:9 0.05 0.8 1.10 2.7 5.2

F5 �0:9 1 0.8 1.09 2.7 5.3

F6 �0:9 0.5 0.5 0.104 1.2 7.2

F7 �0:9 0.5 0.38 0.0082 0.52 9.9

SQ 2exp 	 	 	 0.7 1.23 2.8 5.7

FQ 2exp 	 	 	 0.7 1.25 2.8 5.7
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that both �c and �vir are very insensitive to dark energy
models (e.g, [69]). It can be seen that the simulations with
the setting described in this section indeed give rise to dark
matter halos with desired properties.

To investigate the influence of different physical ingre-
dients on the behavior of dark energy perturbations, we run

simulations with different parameters as listed in Table I.
F0 to F7 are simulations with the dark energy component
described by an ideal fluid with the values of w and c2s
given in the second and third column. The Mvir, Rvir, and
cvir are the virial mass, virial radius, and the fitted NFW
concentration parameter measured from simulations. The
last two models are for the quintessence dark energy with
the double-exponential potential given by Eq. (14). The
‘‘SQ’’ run calculates the dark energy perturbations by
considering the scalar-field evolution shown in Eq. (9),
and the ‘‘FQ’’ run uses the fluid approach with the corre-
sponding w and c2s to that of the quintessence model [see
Eq. (7) and (13)].

IV. RESULTS

In this section, the results on dark energy perturbations
and their dependence on different physical parameters are
presented. The model F0 is taken to be the reference
model.

A. Reference model

We first show the temporal and spatial behaviors of dark
energy perturbations for F0.
The left panel of Fig. 2 shows the redshift evolution

of the dark matter density contrast �DM and the dark energy
perturbation �DE for the most inner radial-mesh bin
r ¼ 0:1 Mpc. It can be seen that for the central part, the
darkmatter virialization happens at z� 4. The value of�DM

reaches �105 at z ¼ 0. For �DE, it is always positive and
increases smoothly without a sharp change corresponding
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FIG. 1. Dark matter halo density profiles. The symbols are the
results from simulations for models of F0 (triangles), F6
(squares), and F7 (circles), respectively. The lines are the corre-
sponding fitted NFW profiles with the concentration parameters
shown in the plot.

10-10

10-8

10-6

10-4

10-2

100

102

104

106

 1  10

δ D
E
 

 δ
D

M

1+z

Dark Matter (F0)
Dark Energy (F0)

10-10

10-8

10-6

10-4

10-2

100

102

104

106

 1  10

δ D
E
 

 δ
D

M

r [Mpc]

z=0.0

z=1.2

z=5.4

z=0.0

z=1.2

z=5.4

Dark Matter (F0)
Dark Energy (F0)

FIG. 2. Left panel: The redshift evolution of the dark energy perturbation �DE (solid line) for the radial-mesh bin r ¼ 0:1 Mpc is
shown for reference model F0 (M ¼ 1015M�, w ¼ �0:9, c2s ¼ 0:5). The corresponding dark matter density perturbation �DM is also
shown (dotted line). Right panel: The spatial profiles of �DE (solid lines) and �DM (dotted lines) are shown for model F0 at z ¼ 0,
z ¼ 1:2, and z ¼ 5:4, respectively.

QIAO WANG AND ZUHUI FAN PHYSICAL REVIEW D 85, 023002 (2012)

023002-6



to the virialization of dark matter at z� 4. Note that for F0,
c2s ¼ 0:5, which gives rise to a resistance to the perturbation
growth for the dark energy component and explains its
different time evolution behavior in comparison with that
of the dark matter. At z ¼ 0, we have �DE � 10�5, which is
about 10 orders of magnitude smaller than �DM.

The right panel of Fig. 2 shows the spatial profiles for
�DM and �DE, respectively, at different z. At z > 5, the halo
is in its early formation stage, and no dark matter virializa-
tions occur. As the evolution proceeds, the virializations
start from the central region and continually extend to
larger regions. At z ¼ 1:2, the virialized part reaches
r� 0:8 Mpc as indicated by the change of the �DM profile.
At z ¼ 0, the virial region extends to r � 2:6 Mpc, fully
consistent with the virial radius defined by the average
density contrast �vir � 337 with respect to the average
matter density of the Universe for �DM0 ¼ 0:3. For the
dark energy perturbation �DE, its amplitude grows with the
decrease of the redshift, and the profile gets steeper. As
discussed above, unlike the behavior of �DM from which
the virialized and unvirialized regions can be easily iden-
tified, �DE is rather smooth and there is not an apparent
feature at the dark matter virialization boundary.
Furthermore, the profile of �DE is much shallower than
that of the dark matter. From r ¼ 0:2 Mpc to r ¼ 10 Mpc,
�DE decreases from 10�5 to 10�6, whereas for �DM, it
changes from �104 to Oð1Þ.

B. Dependences of �DE on w and c2s

In Fig. 3, we show the dependence of�DE on the equation
of state parameter w of the dark energy component. The

time evolution of �DE for the innermost radial-mesh bin is
presented for w ¼ �0:9 (F0), w ¼ �0:8 (F1), and w ¼
�0:7 (F2), respectively. The parameter c2s is fixed to be
c2s ¼ 0:5. The w dependence is clearly seen. For
w ¼ �0:7, the dark energy perturbation �DE is about 3
times as large as that with w ¼ �0:9.
Figure 4 shows the effects of c2s on dark energy pertur-

bations with c2s ¼ 1:0 (F5), 0.5 (F0), 0.05 (F4), and
0.000 01 (F3), respectively. A sensitive dependence of
�DE on c2s is apparent. For the three cases with c2s �
0:05, the dark energy perturbation amplitude increases
with time smoothly without characteristic features corre-
sponding to the virialization of the dark matter component.
This is because the large sound speed of the dark energy
can coordinate its behavior over a large range quickly in
comparison with that of the dark matter. As expected, the
amplitude of �DE is larger for smaller c2s . For c

2
s ¼ 0:05,

�DE is about an order of magnitude higher than that of
c2s ¼ 0:5. For a very small c2s ¼ 0:000 01, we can see that
at z� 4, there is a weak feature indicating the virialization
of the dark matter component. The amplitude of �DE in this
case reaches Oð1Þ at z ¼ 0 in the central region. In outer
parts of the halo and at high redshifts, we still have
�DE < 1. Thus, our linear analyses for dark energy pertur-
bations are still approximately valid for c2s ¼ 0:000 01. For
even lower c2s , we expect that the dark energy perturbation
would follow that of the dark matter more closely and can
reach an amplitude of �DE > 1. In such cases, our formu-
lation presented in Sec. II for linear dark energy perturba-
tions is not applicable, and nonlinear dark energy
perturbations must be considered carefully. Moreover,
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the feedback effects of dark energy perturbations on the
formation of the dark matter halo may also need to be taken
into account (e.g., [39]).

C. Dependence of �DE on properties of
dark matter halos

Here, we study the dark energy perturbations induced by
different dark matter halos. In the left panel of Fig. 5, the
time evolution of �DE for the innermost bin is shown for
M ¼ 1:00� 1015M� (F0), 1:04� 1014M� (F6), and
0:82� 1013M� (F7), respectively. It is seen that more
massive halos induce larger dark energy perturbations.
At z ¼ 0, �DE of F0 is about 20 times larger than that of
model F7.

The right panel of Fig. 5 shows the spatial profiles of �DE

for the three halos at z ¼ 5:4 and 0, respectively. It is noted
that for smaller halos, the dark matter density profile is
more concentrated, and occupies smaller regions.
Consequently, the profile for �DE is steeper and extends
less for less massive halos. On the other hand, in all the
three cases, the dark energy perturbations extend to regions
much larger than the virial radii of the halos. The some-
what different line shapes in the left panel of Fig. 5 are
related to the different virialization epochs for the central
region for different models. The less massive halo virial-
izes earlier.

We further analyze the approximate relation between
�DE and the halo properties. On halo scales, we have
k=a � H. From the dark energy perturbation equations
Eqs. (5) and (6), we thus have approximately

c2s
1þ w

�DE þ� � 0; �DE � � 1þ w

c2s
�: (24)

In Fig. 6, we show �DE=�
 at z ¼ 0 for a number of
models with different mass of dark matter halos, different
w and c2s for the dark energy component, where �
 �
�ð1þ wÞ�=c2s . It is seen that for all the models,
j�DE=�
 � 1j< 1% within the virial radius and
j�DE=�
 � 1j< 4% for r < 5Rvir. This demonstrates that
the dark energy perturbation traces the gravitational poten-
tial of dark matter halos very well over a broad range of
model parameters, which may provide us an efficient way
to estimate the power spectrum of dark energy perturba-
tions in the regime of nonlinear structure formation. A
similar tight correlation between �DE and � is also shown
in [25] for the extended quintessence model.
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D. Correspondence between the fluid approach
and the scalar-field model

As discussed in Sec. II, the correspondence between a
scalar-field dark energy model and its fluid description can
be found by specifying suitable w and c2s that depend on
the dynamical evolution of the scalar field. Such
correspondences have been applied extensively in analyz-
ing the effect of the background dark energy on the struc-
ture formation and the behavior of the dark energy
perturbation in the linear regime of the structure formation
(e.g., [14,70]). Here, we test their validity in studying dark
energy perturbations induced by the nonlinear structure
formation. We consider the scalar-field model with a

double-exponential potential given in Eq. (14) with � ¼
6 and � ¼ 0:1, in accord with our previous studies [31]. In
the simulation runs SQ and FQ, we calculate the dark
energy perturbation from the scalar-field perturbation
given in Eq. (9) and from the fluid approach with w and
c2s changing with time according the dynamical evolution
of the scalar field, respectively.
The time evolution of �DE for the innermost bin is shown

in the upper panel of Fig. 7 for SQ and FQ, respectively.
The ratio of the two r� ¼ �DEðSQÞ=�DEðFQÞ is shown in
the lower panel. The corresponding spatial behaviors at
z ¼ 5:3, 1.2, and z ¼ 0 are shown in Fig. 8. It can be seen
that the results from SQ and FQ match very well. The
relatively large scatter with r� � 20% at low redshift for
the innermost bin is due to the isotropized virialization that
induces random dispersions for the gravitational potential
somewhat differently in different model runs. These com-
parisons demonstrate that the fluid approach can be applied
to study the dark energy perturbation behavior in the whole
regime of structure formation, from linear to nonlinear
stages.

V. SUMMARYAND DISCUSSION

With two-component 1D numerical simulations taking
into account the fast and slow growth of dark matter halos,
we analyze the behavior of dark energy perturbations
induced by the formation of spherical dark matter halos.
By comparing the results calculated directly from the
scalar-field evolution and that from the fluid description
for a quintessence dark energy model with a double-
exponential potential, we show that the fluid approach
can be used to analyze the dark energy behavior very
well even in the nonlinear stage of structure formation.
In the fluid treatment for dark energy, the equation of state
w and the sound speed cs are the two important parameters
that affect the dark energy perturbations significantly. Our
studies find that in general, the dark energy perturbation
arising from the formation of a dark matter halo has a much
more extended profile than that of the dark matter halo
except for the case cs � 0 where the dark energy compo-
nent follows the dark matter closely. A relation of �DE �
½�ð1þ wÞ=c2s�� with an accuracy about 1–2% within the
virial radius of a halo is revealed, which provides us a
potential means to estimate the power spectrum of dark
energy perturbations from that of the dark matter potential
field. From w ¼ �0:9 to w ¼ �0:7, �DE increases about 3
times from �2:5� 10�5 to 7:5� 10�5 for c2s ¼ 0:5. On
the other hand, varying c2s from 0.5 to 0.05, the dark energy
perturbation increases by an order of magnitude from
�10�5 to �10�4. Our analyses show that our simulation
treatment and the linear evolution of dark energy perturba-
tions are valid for c2s down to c2s � 0:000 01. For even
smaller c2s , more accurate analyses taking into account
nonlinear dark energy perturbations and their feedback
effects on the formation of dark matter halos are needed
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(e.g., [39]). The dependence of the dark energy perturba-
tion on the mass of the halo is also analyzed. It is shown
that �DE increases by �20 times from M � 1013M� to
M � 1015M�.

The numerical analyses presented in this paper are done
for dark energy models with w>�1. Our simulations
show that for such models, the dark energy perturbation
induced by the formation of dark matter halos has a clus-
tering behavior with �DE > 0 during the entire evolution-
ary process. This can also be seen clearly from the
approximate relation �DE�½�ð1þwÞ=c2s�� (note �< 0
in dark matter halo regions). On the other hand, for
w<�1, dark energy voids are expected from this relation
although we do not study these cases explicitly in our
simulations. These results are in good agreement with
studies shown in, e.g., [34,35]. However, there are other
analyses that point to the existence of dark energy void
with �DE < 0 during the quasilinear stages of dark matter
halo formation even for models with w>�1 (e.g.,
[29–31]). It is noticed that all the latter studies are per-
formed using the Lemaitre-Tolman-Bondi (LTB) metric
that is in the synchronous gauge. On the other hand, our
simulation analyses presented here adopt the Newtonian
gauge. It is well known that cosmological energy density
perturbations are gauge dependent (e.g., [43,71,72]).
Concerning the dark energy density perturbation in the
LTB synchronous gauge �DEðSynÞ and in the Newtonian
gauge �DEðNewÞ, we have the relation [43,72]

�DEðSynÞ ¼ �DEðNewÞ � �
_��DE

��DE

; (25)

where �ðt; ~xÞ is related to the coordinate transformation for
the time component associated with the two gauges,
tðSynÞ ¼ tðNewÞ þ �, and @�=@t ¼ �. We have
_��DE= ��DE ¼ �3ð1þ wÞH. Further, with the approximate
relation between �DEðNewÞ and �, we then obtain

�DEðSynÞ � �DEðNewÞ � 3ð1þ wÞHc2s
Z �DEðNewÞ

1þ w
dt:

(26)

Thus, if the second term is larger than the first term, a dark
energy void with �DEðSynÞ< 0 can occur in the LTB
synchronous gauge even for w>�1 with �DEðNewÞ>
0. In other words, our results about the dark energy cluster-
ing for w>�1 presented in this paper do not conflict with
those showing the existence of dark energy voids for the
same models. Instead, the differences merely reflect the
differences of the specific gauge used in different analyses.
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