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We present a method for cleanly extracting the CP phase � from the Dalitz plots of Bþ ! Kþ�þ��,
B0
d ! Kþ�0��, B0

d ! K0�þ��, B0
d ! KþK0K�, and B0

d ! K0K0 �K0. The B ! K�� and B ! KK �K

decays are related by flavor SU(3) symmetry, but SU(3) breaking is taken into account. Most of the

experimental measurements have already been made—what remains is a Dalitz-plot analysis of B0
d !

K0K0 �K0 (or B0
d ! KSKSKS). We (very) roughly estimate the error on � to be �25%. This is somewhat

larger than the error in two-body decays, but it would be the first clean measurement of � in three-body

decays. Furthermore, at the super-B factory, it is possible that � could be measured more precisely in

three-body decays than in two-body decays.
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In the past, most of the theoretical work looking at clean
methods for extracting weak-phase information in the B
system focused on two-body decays. This is essentially
because (i) final states such as cKS, �

þ��, etc. are CP
eigenstates, and (ii) if there is a second decay amplitude,
with a different weak phase, it has been possible to find
methods to remove this ‘‘pollution,’’ and cleanly get at the
weak phases. On the other hand, in three-body B decays,
final states such as KS�

þ�� are not CP eigenstates—the
value of its CP depends on whether the relative �þ��
angular momentum is even (CPþ ) or odd (CP� ).
Furthermore, even if the CP of the final state were deter-
mined in some way, one still has the problem of removing
the pollution due to additional decay amplitudes. For these
reasons, it has generally been thought that it is not possible
to obtain clean weak-phase information from three-body
decays [1].

Recently, it was shown that this is not true. By doing a
diagrammatic analysis of the three-body amplitudes, one
can resolve these two problems [2]. First, a Dalitz-plot
analysis can be used to experimentally separate the
CPþ and � components of the three-particle final state.
Second, one can often remove the pollution of additional
diagrams and cleanly measure the CP phases. In fact, in
Ref. [3], it was shown how to extract the weak phase �
from B ! K�� decays. We briefly describe this method
below.

In B ! K�� decays, the isospin state of the �� pair
must be symmetric (antisymmetric) if the relative angular
momentum is even (odd). As we will see below, it is the
symmetric case which is most interesting. Here there are
six possible decays: Bþ ! Kþ�þ��, Bþ ! Kþ�0�0,
Bþ ! K0�þ�0, B0

d ! Kþ���0, B0
d ! K0�þ��, and

B0
d ! K0�0�0. The first step is to express the amplitudes

for these processes in terms of diagrams. The diagrams are

as in two-body B decays [4]: the color-favored and color-
suppressed tree amplitudes T and C, the gluonic-penguin
amplitudes Ptc and Puc, and the color-favored and color-
suppressed electroweak-penguin (EWP) amplitudes PEW

and PC
EW . (We neglect annihilation- and exchange-type

diagrams.) Furthermore, for three-body decays, it is neces-
sary to ‘‘pop’’ a quark pair from the vacuum. The diagrams
are written with subscripts, indicating that the popped
quark pair is between two (nonspectator) final-state quarks
(subscript ‘‘1’’), or between two final-state quarks includ-
ing the spectator (subscript ‘‘2’’). (For B ! K�� decays,
the popped quark pair is u �u or d �d. Under isospin, these
amplitudes are equal.)
In addition, some time ago it was shown that, under

flavor SU(3) symmetry, there are relations between the
EWP and tree diagrams in B ! K� decays [5,6]. In
Ref. [3], it was shown that similar EWP-tree relations
hold for B ! K�� decays. Taking c1=c2 ¼ c9=c10 for
the Wilson coefficients (which holds to about 5%), these
take the simple form

P0
EW1 ¼ �T0

1; P0
EW2 ¼ �T0

2;

P0C
EW1 ¼ �C0

1; P0C
EW2 ¼ �C0

2;
(1)

where

� � � 3

2

j�ðsÞ
t j

j�ðsÞ
u j

c9 þ c10
c1 þ c2

; (2)

with �ðsÞ
p ¼ V�

pbVps.

Now, the EWP-tree relations assume SU(3) symmetry
(and the approximate ratio of Wilson coefficients). The
expected error due to SU(3)-breaking effects is Oð30%Þ.
However, the dominant diagram in �b ! �s decays is P0

tc, so
that EWPs and trees are subleading effects. Thus SU(3)
breaking is subdominant—the net theoretical error due to
the use of the EWP-tree relations is only Oð5%Þ. This is
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consistent with the error estimates given in Ref. [5]
(for EWP-tree relations in B ! K�).

In addition, there is an important caveat. Under SU(3),
the final state in B ! K�� involves three identical
particles, so that the six permutations of these particles
(the group S3) must be taken into account. That is, the
three particles are in a totally symmetric state, a totally
antisymmetric state, or one of four mixed states.
However, the EWP-tree relations hold only for the totally
symmetric state. Thus, the analysis must be carried out
for this state. Now, the expressions for the B !
Kð��Þsym amplitudes in terms of diagrams hold even

under full SU(3) symmetry [3]. It is therefore only
necessary to produce observables for the totally symmet-
ric states. This is doable, and below we present the
details of how this is carried out.

With the above EWP-tree relations, the six B !
Kð��Þsym amplitudes can be written in terms of 5 effective

diagrams (i.e. linear combinations of the diagrams) [3].
There are therefore 10 theoretical parameters in the
amplitudes1: 5 magnitudes of effective diagrams, 4 relative
(strong) phases, and �. On the other hand, there are 11
experimental observables. Given that Bþ ! K0�þ�0 is
not independent (its amplitude is proportional to that of
B0
d ! Kþ�0��), these are the branching ratios and direct

CP asymmetries of Bþ ! Kþ�þ��, Bþ ! Kþ�0�0,
B0
d ! Kþ�0��, B0

d ! K0�þ��, and B0
d ! K0�0�0,

and the indirect CP asymmetry of B0
d ! K0�þ�� (the

indirect CP asymmetry of B0
d ! K0�0�0 will essentially

be impossible to measure). Since there are more observ-
ables than theoretical parameters, � can be extracted by
doing a fit.2

The disadvantage of this method is that it involves the
decays Bþ ! Kþ�0�0 and B0

d ! K0�0�0. With two �0

mesons in the final state, both of these decays will be
extremely difficult to measure. We are therefore moti-
vated to see if the B ! K�� method can be modified,
avoiding these two decays. As we show below, this can
indeed be done—things can be considerably improved by
using B ! KK �K decays. The use of these decays is
quite natural since they, like B ! K��, are also �b ! �s
transitions.

First, consider B ! K�� decays with the �� pair in a
symmetric isospin state. We leave aside Bþ ! Kþ�0�0,
B0
d ! K0�0�0 and Bþ ! K0�þ�0 (since, as mentioned

above, its amplitude is not independent). The amplitudes of
the remaining three processes are

2AðB0
d!Kþ�0��Þsym¼T0

1e
i�þC0

2e
i��P0

EW2�P0C
EW1;ffiffiffi

2
p

AðB0
d!K0�þ��Þsym¼�T0

1e
i��C0

1e
i�� ~P0

uce
i�þ ~P0

tc

þ1

3
P0
EW1þ

2

3
P0C
EW1�

1

3
P0C
EW2;ffiffiffi

2
p

AðBþ!Kþ�þ��Þsym¼�T0
2e

i��C0
1e

i�� ~P0
uce

i�þ ~P0
tc

þ1

3
P0
EW1�

1

3
P0C
EW1þ

2

3
P0C
EW2:

(3)

In the above, ~P0 � P0
1 þ P0

2. (As B ! K�� is a �b ! �s
transition, the diagrams are written with primes.)
Here we have explicitly written the weak-phase depen-
dence (this includes � and the minus sign from V�

tbVts

[ ~P0
tc and EWPs]), while the diagrams contain strong

phases.
Second, consider B ! KK �K decays. For the case in

which the final KK pair is in a symmetric isospin
state, there are four such processes: Bþ ! KþKþK�,
Bþ ! KþK0 �K0, B0

d ! KþK0K�, and B0
d ! K0K0 �K0.

Here, Bþ ! KþKþK� and Bþ ! KþK0 �K0 are not
independent—their amplitudes are proportional to those
of B0

d ! KþK0K� and B0
d ! K0K0 �K0, respectively.

These are

ffiffiffi
2

p
AðB0

d!KþK0K�Þsym
¼�T0

2;se
i��C0

1;se
i�� P̂0

uce
i�þ P̂0

tcþ2

3
P0
EW1;s�

1

3
P0
EW1

þ2

3
P0C
EW2;s�

1

3
P0C
EW1;

AðB0
d!K0K0 �K0Þsym
¼ P̂0

uce
i�� P̂0

tcþ1

3
P0
EW1;sþ

1

3
P0
EW1þ

1

3
P0C
EW2;sþ

1

3
P0C
EW1;

(4)

where P̂0 � P0
2;s þ P0

1. In the above, certain diagrams are

written with the subscript ‘‘s.’’ This indicates that the
popped quark pair is s�s. When the diagram has no subscript
s (the penguin or EWP diagrams), this means that the
popped quark pair is u �u or d �d, but the virtual particle
decays to s�s.
We now assume flavor SU(3) symmetry. This has two

consequences. First, the amplitude with a popped s�s quark
pair is equal to that with a popped u �u or d �d. That is, we no
longer need the subscript s on diagrams. This means that
the diagrams in B ! KK �K decays are the same as those in
B ! K�� decays. Second, the EWP-tree relations of
Eq. (1) hold.
Thus, under SU(3) the amplitudes of Eqs. (3) and (4)

take the form

1In fact, the expression for any indirect CP asymmetry con-
tains another theoretical parameter—the phase of B0

d-
�B0
d mixing,

�. However, its value can be taken from the indirect CP
asymmetry in B0

d ! J=cKS [7].
2There is a complication in that the diagrams are momentum

dependent, as are the observables. In obtaining the best-fit
‘‘values’’ of the diagrams, one will determine the momentum
dependence of their magnitudes and relative strong phases. On
the other hand, � is independent of the particles’ momenta. Later
in the paper, we detail how such a fit is done.
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2AðB0
d ! Kþ�0��Þsym ¼ T0

1e
i� þ C0

2e
i� � �ðT0

2 þ C0
1Þ;ffiffiffi

2
p

AðB0
d ! K0�þ��Þsym ¼ �T0

1e
i� � C0

1e
i� � ~P0

uce
i� þ ~P0

tc þ �

�
1

3
T0
1 þ

2

3
C0
1 �

1

3
C0
2

�
;

ffiffiffi
2

p
AðBþ ! Kþ�þ��Þsym ¼ �T0

2e
i� � C0

1e
i� � ~P0

uce
i� þ ~P0

tc þ �

�
1

3
T0
1 �

1

3
C0
1 þ

2

3
C0
2

�
;

ffiffiffi
2

p
AðB0

d ! KþK0K�Þsym ¼ �T0
2e

i� � C0
1e

i� � ~P0
uce

i� þ ~P0
tc þ �

�
1

3
T0
1 �

1

3
C0
1 þ

2

3
C0
2

�
;

AðB0
d ! K0K0 �K0Þsym ¼ ~P0

uce
i� � ~P0

tc þ �

�
2

3
T0
1 þ

1

3
C0
1 þ

1

3
C0
2

�
:

(5)

Note that this implies that AðBþ ! Kþ�þ��Þsym ¼
AðB0

d ! KþK0K�Þsym. Further, we reiterate that the
above expressions for the amplitudes hold also for the
totally symmetric final state, to which the EWP-tree rela-
tions apply.

We now define the following five effective diagrams:

T0
a�T0

1�T0
2;

T0
b�C0

2þT0
2;

P0
a� ~P0

ucþT0
2þC0

1;

P0
b� ~P0

tcþ�

�
1

3
T0
1þ

2

3
C0
1�

1

3
C0
2

�
;

C0
a��ðC0

1�C0
2Þ:

(6)

The amplitudes can be written in terms of these five
diagrams:

2AðB0
d!Kþ�0��Þsym¼T0

ae
i�þT0

be
i��C0

a��T0
b;ffiffiffi

2
p

AðB0
d!K0�þ��Þsym¼�T0

ae
i��P0

ae
i�þP0

b;ffiffiffi
2

p
AðBþ!Kþ�þ��Þsym¼�P0

ae
i�þP0

b�C0
a;ffiffiffi

2
p

AðB0
d!KþK0K�Þsym¼�P0

ae
i�þP0

b�C0
a;

AðB0
d!K0K0 �K0Þsym¼P0

ae
i��T0

be
i�� 1

�
C0
ae

i��P0
b

þ�T0
aþ�T0

bþC0
a: (7)

As with the B ! K�� method, five effective diagrams
corresponds to 10 theoretical parameters: 5 magnitudes of
diagrams, 4 relative phases, and �. But there are 11
(momentum-dependent) experimental observables: the
decay rates and direct asymmetries for the four decays
B0
d ! Kþ�0��, B0

d ! K0�þ��, B0
d ! KþK0K�, and

B0
d ! K0K0 �K0 (we ignore Bþ ! Kþ�þ�� since its am-

plitude is not independent), and the indirect asymmetries of
B0
d ! K0�þ��, B0

d ! KþK0K�, and B0
d ! K0K0 �K0.

With more observables than theoretical parameters, � can
be extracted from a fit.

We now present the details of how the fit is carried out.
Consider the decay B ! P1P2P3, in which the three pseu-
doscalar mesons Pi (i ¼ 1� 3) have momenta pi. From
these, we can construct the three Mandelstam variables:

s12�ðp1þp2Þ2; s13�ðp1þp3Þ2; s23�ðp2þp3Þ2: (8)

These are not independent, but obey

s12 þ s13 þ s23 ¼ m2
B þm2

1 þm2
2 þm2

3: (9)

Experimentally, the Dalitz plot of this decay is measured.
Its events are given in terms of two Mandelstam variables,
say s12 and s13. Now, the great advantage of a Dalitz-plot
analysis is that it allows one to extract the full amplitude of
the decay. We write

M ðB ! P1P2P3Þ ¼
X
j

cje
i�jFjðs12; s13Þ; (10)

where the sum is over all decay modes (resonant and
nonresonant). cj and �j are the magnitude and phase of

the j contribution, respectively, measured relative to one of
the contributing channels. The distributions Fj, which

depend on s12 and s13, describe the dynamics of the indi-
vidual decay amplitudes, and take different (known) forms
for the various contributions. The key point is that a
maximum likelihood fit over the entire Dalitz plot gives
the best values of the cj and �j. Thus, the decay amplitude

can be obtained, up to an overall normalization. This
normalization is fixed by the constraint of the measured
partial rate [7]:

� ¼ 1

ð2�Þ3
1

32m3
B

Z
jMj2ds12ds13: (11)

With this, the decay amplitude Mðs12; s13Þ is known.
As will be seen below, we rely heavily on Mðs12; s13Þ.

In particular, we use it to obtain the observables for the
B ! P1P2P3 decay. As such, the errors on these observ-
ables come entirely from the uncertainty in Mðs12; s13Þ.
While, as noted above, it is possible to obtain the best-fit
values of the Dalitz-plot variables cj and �j, there are

errors associated with these values. This is due to two
sources. First, one has the statistical error in the experi-
mental Dalitz plot. Second, there is a systematic uncer-
tainty related to the choice of the Fj in Eq. (10). In

addition, there is a statistical error in the overall normal-
ization [coming from Eq. (11)]. All of these must be care-
fully taken into account in order to obtain conservative
errors on the Dalitz-plot variables.
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As noted earlier, the EWP-tree relations hold only for
the totally symmetric SU(3) decay amplitude. But this can
be found from the above:

M fully sym¼ 1ffiffiffi
6

p ½Mðs12;s13ÞþMðs13;s12ÞþMðs12;s23Þ

þMðs23;s12ÞþMðs23;s13ÞþMðs13;s23Þ�:
(12)

Using this, it is possible to compute the B ! P1P2P3

observables. However, recall that the method involves a
fit using the observables from several different decays
(B0

d ! Kþ�0��, B0
d ! K0�þ��, B0

d ! KþK0K�, and

B0
d ! K0K0 �K0). All observables must involve the same

Mandelstam variables. On the other hand, the numbering
of final-state particles is arbitrary, so that s12 for one decay
might equal s13 for a different decay. All of this makes it
somewhat confusing to ensure that observables in different
decays have the same Mandelstam variables. For this
reason, it is useful at this stage to change notation (but
the physics is unchanged). In any decay there are three
Mandelstam variables. We define sþþ, sþ and s� to be the
largest, second-largest, and smallest of these, respectively.
The identities of the particles which are associated with
sþþ, sþ, and s� are irrelevant (e.g. sþþ can correspond to
s12, s13, or s23). This is consistent with the assumption of
SU(3) and the fully symmetric decay amplitude. With
these Mandelstam variables, we have

Mfully sym¼ 1ffiffiffi
6

p ½Mðsþþ;sþÞþMðsþ;sþþÞþMðsþþ;s�Þ

þMðs�;sþþÞþMðs�;sþÞþMðsþ;s�Þ�:
(13)

Since sþþ, sþ, and s� are not independent, this gives the
fully symmetric amplitude as a function of two
Mandelstam variables, say sþþ and sþ.

The observables are obtained as follows. First, one
forms the totally symmetric SU(3) decay amplitudes as
in Eq. (13) for each B ! P1P2P3 decay (Mfully sym) and its

CP conjugate ( �Mfully sym). Second, using these, for specific

values of sþþ and sþ, one computes the partial rates:

�sþþ;sþ ¼ 1

ð2�Þ3
1

32m3
B

jMfully symðsþþ; sþÞj2;

��sþþ;sþ ¼ 1

ð2�Þ3
1

32m3
B

j �Mfully symðsþþ; sþÞj2:
(14)

These allow the computation of the CP-averaged branch-
ing ratio and direct CP asymmetry:

BRsþþ;sþ ¼ 1

�B

ð�sþþ;sþ þ ��sþþ;sþÞ;

Asþþ;sþ ¼ �sþþ;sþ � ��sþþ;sþ

�sþþ;sþ þ ��sþþ;sþ
:

(15)

Third, for those decays in which the final state is accessible
to both B0

d and �B0
d mesons, one has an indirect (mixing-

induced) CP asymmetry. It is given by

Ssþþ;sþ ¼ Im

�
e�2i�

�Mfully symðsþþ; sþÞ
Mfully symðsþþ; sþÞ

�
: (16)

As discussed earlier, in all cases, the error on the observ-
ables is found by propagating the errors on the Dalitz-plot
variables. These include both statistical and systematic
effects.
Now, given that the method assumes flavor SU(3)

symmetry, one would like to know how SU(3) breaking
affects the analysis, and what is its size. Leaving aside the
EWP-tree relations, in which SU(3)-breaking effects are
subdominant, there are two areas where the breaking
may be significant. First, under SU(3), the diagrams in
B ! KK �K and B ! K�� are the same. Since both decays
are �b ! �s transitions, the difference between them is that
B ! KK �K decays have an s�s quark pair in the final state,
hadronizing to K �K, while B ! K�� decays have u �u or
d �d, hadronizing to ��. This is essentially the same for
each diagram. (The SU(3)-breaking effect associated with
an s�s pair being popped from the vacuum may not be
exactly equal to that when s�s is produced in the decay of
a virtual particle, but the difference is small.) Thus, includ-
ing SU(3) breaking, the amplitudes of Eq. (7) can be
written

2AðB0
d!Kþ�0��Þsym¼T0

ae
i�þT0

be
i��C0

a��T0
b;ffiffiffi

2
p

AðB0
d!K0�þ��Þsym¼�T0

ae
i��P0

ae
i�þP0

b;ffiffiffi
2

p
AðBþ!Kþ�þ��Þsym¼�P0

ae
i�þP0

b�C0
a;ffiffiffi

2
p

AðB0
d!KþK0K�Þsym¼ð1þfSUð3ÞÞ½�P0

ae
i�þP0

b�C0
a�;

AðB0
d!K0K0 �K0Þsym¼ð1þfSUð3ÞÞ

�
P0
ae

i��T0
be

i�

�1

�
C0
ae

i��P0
bþ�T0

aþ�T0
bþC0

a

�
;

(17)

where fSUð3Þ is the SU(3)-breaking factor. Second, under

SU(3),�’s andK’s are identical particles, so that there is no
difference between the Mandelstam variables for the
processes B ! KK �K and B ! K��. There is therefore
an SU(3)-breaking effect between the fully symmetric
decay amplitudes for the two types of decay. However, it
can be included in fSUð3Þ.
The addition of fSUð3Þ brings the number of unknown

theoretical parameters to 11. In principle, these can all be
determined from a fit to the 11 experimental observables,
albeit with discrete ambiguities. However, we can do
better. Above it was noted that, in the limit of perfect
SU(3), AðBþ ! Kþ�þ��Þsym ¼ AðB0

d ! KþK0K�Þsym.
This means that fSUð3Þ can be determined by a comparison

of these two decays. In particular,
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�þ
�0

BðB0
d ! KþK0K�Þsym

BðBþ ! Kþ�þ��Þsym ¼ ð1þ fSUð3ÞÞ2: (18)

In fact, this comparison can be performed now since the
decays have been measured: Bþ ! Kþ�þ�� in Ref. [8],
B0
d ! KþK0K� in Ref. [9]. Now, since the EWP-tree

relations Eq. (1) have been used to derive the expressions
for the amplitudes, Eq. (18) holds only for totally symmet-
ric states. Using the technique described above,
one can obtain AðBþ ! Kþ�þ��Þfully sym and AðB0

d !
KþK0K�Þfully sym. In order to get the branching ratios, we

compute the integral of the square of the fully symmetric
amplitudes over the Dalitz plot (taking care to avoid sex-
tuple counting). Doing this gives

BðBþ ! Kþ�þ��Þfully sym ¼ 0:19BðBþ ! Kþ�þ��Þ;
BðB0

d ! KþK0K�Þfully sym ¼ 0:50BðB0
d ! KþK0K�Þ:

(19)

FromRef. [10], we have �0=�þ¼0:93,BðBþ!Kþ�þ��Þ¼
ð51:0�2:9Þ�10�6 and BðB0

d!KþK0K�Þ¼ð24:7�2:3Þ�
10�6. Equation (18) then gives

fSUð3Þ ¼ 0:17� 0:06: (20)

(This error does not include the errors in the parameters
obtained from the Dalitz-plot analyses of the two decays.)

We can now put all the pieces together to describe how
the fit is to be performed. The fully symmetric amplitudes
for the decays B0

d ! Kþ�0��, B0
d ! K0�þ��, B0

d !
KþK0K�, and B0

d ! K0K0 �K0 are given in

Eq. (17). They are a function of 10 unknown parameters,
including �. The value of fSUð3Þ is taken from Eq. (20). The

11 observables and their errors are computed as described
above—the (fully symmetric) branching ratios and direct
CP asymmetries are given in Eq. (15), and the indirect CP
asymmetries in Eq. (16). Note that these are for specific
values of sþþ and sþ. One has a different set of observ-
ables for each ðsþþ; sþÞ pair. With 10 unknowns and 11
constraints, one can now perform the fit. This will deter-
mine the magnitudes and relative strong phases of the five
effective diagrams, as well as �, all for the chosen values of
ðsþþ; sþÞ. This is to be repeated for each independent
ðsþþ; sþÞ pair.3 This has two effects. First, one will be
able to fix the momentum dependence of the diagrams.
Second, and more importantly, since � is momentum in-
dependent, one can average over all the ðsþþ; sþÞ fits. This
will reduce its error, perhaps considerably.

Now, we already have experimental information about
most of the required B ! K�� and B ! KK �K decays. In

particular, the measurements of the Dalitz plots of
B0
d ! Kþ�0��, B0

d ! K0�þ�� and B0
d ! KþK0K�

are described in Refs. [9,11,12], respectively. On the other
hand, we do not yet have the Dalitz plot of B0

d ! K0K0 �K0.

The branching ratio and CP asymmetries of B0
d !

KSKSKS are given in Ref. [13]. While the use of the final
state KSKSKS is excellent—it is proportional to the fully
symmetric state of K0K0 �K0—the observables are momen-
tum independent. That is, an integration over the Dalitz
plot has been performed. However, the method described
in this paper requires the momentum-dependent observ-
ables. Once the Dalitz plot for B0

d ! KSKSKS is known,

this method for extracting � can be carried out.
Even though all the experimental data is not yet available,

we can still attempt to estimate the precision with which �
can be obtained. Consider first B0

d ! KþK0K�. According
to the BaBar measurement in Ref. [9], the largest contribu-
tions to this decay come from the�K0 andf0K

0 resonances,
and the ðKþK�ÞNRK0, ðKþK0ÞNRK� and ðK�K0ÞNRKþ
nonresonant pieces. They find

�K0: cj ¼ 0:0085� 0:0010;

f0K
0: cj ¼ 0:622� 0:046;

ðKþK�ÞNRK0: cj ¼ 1 ðfixedÞ;
ðKþK0ÞNRK�: cj ¼ 0:33� 0:07;

ðK�K0ÞNRKþ: cj ¼ 0:31� 0:08;

(21)

where cj is defined in Eq. (10). The errors, which are

statistical only, range from 7% to 25%. The above method
describes how to obtain Mfully symðB0

d ! KþK0K�Þ from
the amplitude given in Ref. [9], and from this the B0

d !
KþK0K� observables. A full numerical analysis is needed
to do this, properly taking into account the errors on the cj
above, as well as the errors on the �j andFj of Eq. (10), and

the other resonances. However, a rough guess is that the
errors on the observables will be about 20%. Similarly, we
(guess)timate that the errors on the observables of the other
decays, including those ofB0

d ! K0K0 �K0, will be�20%. In

order to obtain�, a fit to the observablesmust be performed,
taking into account the SU(3)-breaking factor of Eq. (20)
(the error onfSUð3Þwill increase once the errors in theDalitz-
plot parameters are included), and onemust average over the
independent ðsþþ; sþÞ pairs. It is impossible to predict with
any accuracy what the error on � will be, but an error of
Oð25%Þ does not seem unreasonable.
How does this compare with the precision on � mea-

sured in two-body decays? The answer is: not that badly.
The standard way of directly measuring � uses B !
D0= �D0K decays within the GLW [14] or ADS [15] meth-
ods. The latest measurement yields � ¼ ð68þ10

�11Þ� [16], i.e.

the error is �15%. To be sure, our estimated error of
Oð25%Þ on the value of � as extracted from three-body
decays is worse than 15%. However, it is still roughly the

3The two pairs ðsþþ; sþÞ1 and ðsþþ; sþÞ2 are considered
as independent if jMfully symððsþþ; sþÞ1Þj and
jMfully symððsþþ; sþÞ2Þj do not overlap when one takes into
account the errors on the Dalitz-plot parameters of Eq. (10).
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same size, and if a full analysis were done, the real error
might turn out to be smaller than our estimate. More to the
point, when the Dalitz-plot measurements are done at the
super-B factory, the Dalitz-plot parameters will be ob-
tained with a smaller statistical error. This will have two
effects. First, the error on � will be reduced for each
ðsþþ; sþÞ pair. Second, one will have more independent
ðsþþ; sþÞ pairs, so the error will be further reduced when
one averages over all the ðsþþ; sþÞ fits. [See the discussion
following Eq. (20).] Thus, the extraction of � from three-
body B decays may turn out to be more precise than that
from two-body decays.

Compared to its original version, this paper has been
considerably modified with the addition of the detailed
discussion of how the fit is done, and the guesstimate of
the error on the extracted value of �. We are grateful to Jim
Smith for asking the key question which led to this revi-
sion. This work was financially supported by NSERC of
Canada.
Note added.After this paper was submitted, the Dalitz-

plot analysis of B0
d ! KSKSKS was submitted to the arXiv,

see Ref. [17].
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