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A PNJL model is built, in which the Polyakov-loop potential is explicitly ZNc
-symmetric in order to

mimic a Yang-Mills theory with gauge group SUðNcÞ. The physically expected large-Nc and large-T

behaviors of the thermodynamic observables computed from the Polyakov-loop potential are used to

constrain its free parameters. The effective potential is eventually U(1)-symmetric when Nc is infinite.

Light quark flavours are added by using a Nambu-Jona-Lasinio (NJL) model coupled to the Polyakov loop

(the PNJL model), and the different phases of the resulting PNJL model are discussed in ’t Hooft’s

large-Nc limit. Three phases are found, in agreement with previous studies resorting to effective

approaches of QCD. When the temperature T is larger than some deconfinement temperature Td, the

system is in a deconfined, chirally symmetric, phase for any quark chemical potential �. When T < Td

however, the system is in a confined phase in which chiral symmetry is either broken or not. The critical

line T�ð�Þ, signalling the restoration of chiral symmetry, has the same qualitative features than what can

be obtained within a standard Nc ¼ 3 PNJL model.
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I. INTRODUCTION

The structure of the QCD phase diagram is intimately
related to our understanding of fundamental features of
QCD, like, for example, confinement dynamics and chiral
symmetry breaking, and to their interplay with in-medium
effects like a nonzero temperature or quark density. This is
the reason why a lot of effort is devoted to study this field,
either on the theoretical side, to which the present work
belongs, or on the experimental side through heavy-ion-
collision experiments. Among the various effective frame-
works used to study the QCD phase diagram (see e.g. the
review [1]), we will mostly focus on two of them:
Polyakov-loop effective models for the pure gauge part
of QCD, and the Nambu-Jona-Lasinio (NJL) model for the
quark part.

The Polyakov loop is defined as

LðT; ~xÞ ¼ Peig
R

1=T

0
d�A0ð�; ~xÞ; (1)

in which P is the path-ordering, g the strong coupling
constant, A0 ¼ Aa

0Ta the temporal component of the

Yang-Mills field, Ta the generators of the gauge algebra,
and T the temperature. The integral runs on the compacti-
fied timelike dimension. The Polyakov loop is a precious
tool to study the phase structure of a given Yang-Mills

theory since hLðT; ~xÞi ¼ 0 ( � 0) when the theory is in a
(de)confined phase [2]. Moreover, gauge transformations
belonging to the center of the gauge algebra only cause
LðT; ~xÞ to be multiplied by an overall factor. That is why it
has been conjectured that the confinement/deconfinement
phase transition in a Yang-Mills theory with gauge algebra
g might be related to the spontaneous breaking of a global
symmetry related to the center of g [3]. In the particular
case of SUðNcÞ, deconfinement might thus be driven by the
breaking of a global ZNc

symmetry. The order parameter of

the deconfinement phase transition should then be the
traced Polyakov loop

� ¼ 1

Nc

TrcL; (2)

where the trace Trc is taken over the color indices. The
thermodynamic properties of pure gauge SU(3) QCD
can then be studied by resorting to an effective scalar field
theory where the potential energy density is Z3-symmetric,
with e.g. the form [4]

U ¼ T4�

�
� b2ðTÞ

2
j�j2 þ b4

4
j�j4 þ b6

6
ð�3 þ��3Þ

�
:

(3)

The real coefficients bi can be fitted on lattice data. Various
applications of this formalism can be found, for example,
in [5]. Note that, in the following, � and L will generally
be indifferently called Polyakov loop.
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The NJL model is based on the Lagrangian [6]

L NJL ¼ �qði��@� �mqÞqþG

2
½ð �qqÞ2 þ ð �qi�5 ~�qÞ2�;

(4)

where q is the quark field, mq the mass matrix, and ~� the

Pauli matrices when an SU(2) flavour symmetry is consid-
ered. The interaction terms are such that the Lagrangian is
chirally symmetric. The NJL model is designed to model
chiral symmetry breaking and study many related phe-
nomenological problems; the interested reader may consult
the review [7] for more information. In the original NJL
model, fermions are not coupled to the gauge field: As
shown in [8], the coupling of this model to the Polyakov
loop can be achieved by minimally coupling the quark field
to a gauge field of the form A� ¼ A0��0, that formally

appears as an imaginary quark chemical potential. The so-
called PNJL model resulting in this coupling has motivated
a lot of studies devoted to the QCD phase diagram [9,10],
including cases with a nonzero magnetic field [11] or
nonlocal extensions [12,13].

The phase structure of the PNJL model at arbitrary
Nc has been discussed in [14], as well as its large-Nc

limit. One of the ingredients of this last work is to set
� / ðN2

c � 1Þ in (3) so that the gluon potential has the
correct scaling in Nc. The phase diagram that has been
found at large-Nc is given in Fig. 1. The chirally symmetric
but confined phase that appears for quark chemical poten-
tials larger than about a third of the nucleon mass,
� * MN=3, can presumably be identified with the quar-
kyonic phase, that has been first proposed in [15] and
further studied in [16] in particular.

In the present work, we propose to rebuild a PNJL model
valid at large-Nc, but in which the Polyakov-loop potential
is explicitly ZNc

symmetric. A possible way to answer to

this requirement is to introduce a term in �Nc þ��Nc

instead of the standard Z3-symmetric term �3 þ��3.
Such a potential is proposed in Sec. II, and the correspond-
ing PNJL model is written in Sec. III. Then, the issue of
deconfinement and chiral symmetry restoration when vary-
ing T and � are discussed in Sec. IV in ’t Hooft’s large-Nc

limit. The obtained phase diagram and concluding com-
ments are given in Sec. V.

II. PURE GAUGE SECTOR

A. Explicit ZNc
-symmetry

The simplest effective potential energy density depend-
ing on �, defined in (2), and being explicitly ZNc

-invariant

has been proposed in [17] and reads

VgðT;Nc;�;��Þ ¼ AðT;NcÞj�j2 þ BðT;NcÞj�j4
þ CðT;NcÞð�Nc þ��NcÞ: (5)

It is formally valid for any value of �, but one may restrict
oneself to j�j 2 ½0; 1� in a mean-field approximation. The
above expression contains the basic blocks that could be
expected to build a nontrivial theory: A mass term (j�j2),
an interaction term (j�j4), and the term in �Nc þ��Nc

accounting for the explicit ZNc
-symmetry [18]. Terms scal-

ing like j�j6; j�j8; . . . ; j�jNc�2; etc. could be added, but
then the number of arbitrary functions would become too
large to be efficiently constrained. Moreover, such higher-
order terms would mostly be interaction terms that are
already present in their simplest form in the j�j4 term.
The expression (5) is thus particularly convenient since it
contains the minimal number of terms needed to perform
the present study. The real coefficients A, B, and C appear-
ing in (5) are functions of T and Nc, and their explicit form
will be specified in the following. Note that �, which
depends on T, Nc, and ~x a priori, is here assumed to be
independent of ~x. Beyond the polynomial form (5), loga-
rithmic shapes can actually be shown to emerge from a
Haar integration on the gauge group in a strong coupling
expansion. One can find such a form in [8], or, for example,
in [19], where a potential schematically given byU=T4 ¼
AðTÞj�j2 þ BðTÞ ln½1� 6j�j2 þ 4ð�3 þ��3Þ � 3j�j4� is
used for Nc ¼ 3 computations. Instead of computing a
similar potential at arbitrary Nc, we keep the ansatz (5)
in the following; it is indeed particularly convenient for the
calculations that are to be performed and still contains the
ZNc

symmetry we want to take into account.

Various parametrizations of Z3-symmetric potentials,
fitted on pure gauge lattice data, have been proposed so
far [8,9,20]. Here, we are rather interested in obtaining an
effective potential valid at large Nc, i.e. Nc > 4 at least. As
shown below, all these values of Nc will have in common
that, in our approach, the‘‘asymptotic’’ behavior of Vg (i.e.

values of j�j larger that the physical one minimizing the
potential) will be driven by the ZNc

-symmetric term. The

present formalism will thus not be valid for Nc ¼ 3 in

Deconfined , chiral symmetry

Confined , Confined ,
Broken chiral symmetry Chiral

symmetry

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.1

0.2

0.3

0.4

GeV

T
G

eV

FIG. 1. Phase diagram obtained by taking the large-Nc limit
(Nc ! 1) of the PNJL model used in [14]. The solid lines signal
first-order phase transitions.
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particular, where this asymptotic behavior is driven by the
interaction term. The following expected qualitative be-
haviors have to be imposed in order to constrain the shape
of the functions A, B, and C:

(i) The pressure pg ¼ �min�ðVgÞ is proportional to

N2
cT

4 at large Nc and T in order to recover asymp-
totically the Stefan-Boltzmann limit of a free gluon
gas.

(ii) The norm, j�0j, of the optimal value of the
Polyakov loop, �0 ¼ j�0jei�0 , is Nc-independent
at the dominant order, see the definition (2). The
first corrections, scaling as 1=N2

c , are neglected in
the present approach—more results on large-Nc

features of Wilson and Polyakov loops can be
found, for example, in [21]. j�0j ¼ 0 in the con-
fined phase, and >0 in the deconfined phase. Also,
j�0j tends toward unity at very large T.

(iii) There exists a critical temperature Td signalling a
first-order phase transition, i.e. the potential must
have two different minima whose depth changes
with the temperature in order to modify discontin-
uously the localization of the absolute minimum.
At the critical temperature, j�0j ¼ 0 and 1=2 are
two degenerate minima of Vg. This last value is

chosen so that it will ensure a good compatibility
between our model and existing lattice data but it
has only to be nonzero in order to lead to a decon-
fined phase. Td has to be seen as a typical value for
the deconfinement temperature in SUðNcÞ Yang-
Mills theory since the deconfinement temperature
appears to be Nc-independent up to corrections in
1=N2

c [22,23].

Obviously, the above constraint does not apply to Nc ¼ 2,
where the transition is of second-order. This is not prob-
lematic since we eventually look for a model valid at
large-Nc. Moreover, the value j�0j ¼ 1=2 may not be the
exact value of the Polyakov loop in Td: Recent lattice
results find it to be around 0.4 [24], while a more recent
renormalization-group-based approach leads to values
closer to 0.6 for the Polyakov loop at the deconfinement
temperature [23]. The value 1=2 then appears to be relevant
because it falls in the typical range of the existing results
and because it simplifies the calculations performed in the
following.

The above constraints are actually satisfied by the fol-
lowing Lagrangian

Vg ¼ N2
cT

4aðTÞ
�
j�j2 � 4j�j4

þ lðTÞ2�Nc

Nc

½8lðTÞ2 � 1�ð�Nc þ��NcÞ
�
; (6)

where

aðTÞ> 0; lðTÞ> 1ffiffiffi
8

p ; lðTdÞ ¼ 1

2
;

@TlðTÞ> 0; lð1Þ ¼ 1: (7)

Explicit forms of aðTÞ and lðTÞ will be given in the
next section. All these conditions are required in order
to have the existence of 2 degenerate minima and the
correct behavior of the Polyakov loop in the mean field
approximation. The potential (6) has the following abso-

lute minimum: �0ðT < TdÞ ¼ 0 and �0ðT � TdÞ ¼
j�0ðTÞje2i�k=Nc , where k ¼ 0; . . . ; Nc � 1 and where
j�0ðTÞj is a solution of

1� 8j�0ðTÞj2 þ lðTÞ2�Nc½8lðTÞ2 � 1�j�0ðTÞjNc�2 ¼ 0:

(8)

It is straightforwardly checked that

j�0ðTÞj ¼ lðTÞ (9)

actually solves (8).
A more compact expression for the optimal value of the

Polyakov loop is thus

�0 ¼ lðTÞe2i�k=Nc�ðT � TdÞ; (10)

where � is the Heaviside function. As seen from (8), j�0j
only depends on T as required.

Restricting ourselves to the values � ¼ j�je2i�k=Nc , we
get at the limit Nc ! 1 a quite simple shape for the
effective potential (6), namely

Vg

N2
cT

4 � !g

T4 ¼ aðTÞj�j2ð1� 4j�j2Þ j�j � lðTÞ;
! þ1 j�j> lðTÞ:

(11)

Hence, a U(1) invariance is recovered at infinite Nc as a
limiting case of the ZNc

-symmetry. The schematic evolu-

tion of the large-Nc limit of Vg with the temperature is

plotted in Fig. 2; the behavior (11) is readily observed, as
well as the change of global minimum in T ¼ Td. Finally,
the large-Nc limit of the pressure reads

T

Td

0 1 1.2

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.2

0.1

0.0

0.1

0.2

V
g

a
N

2 T
4

FIG. 2 (color online). Schematic evolution of the effective
potential (11) versus the temperature (solid lines).
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pgðT;NcÞ ¼ N2
cT

4aðTÞlðTÞ2½4lðTÞ2 � 1�: (12)

Provided that lð1Þ ¼ 1 according to the large-T behavior
of the Polyakov loop, pg would tend toward the Stefan-

Boltzmann limit for a free gluon gas if að1Þ ¼ �2=135.

B. Numerical data

The function lðTÞ is constrained by the relations (7) in
order for the structure of the potential and its evolution
with the temperature to have the required behavior.
Moreover, lðTÞ is equal to the norm of the Polyakov loop
as soon as T > Td. Those physical constraints are not
sufficient to write down an explicit expression for lðTÞ. A
possible way of proceeding, that we choose here, is to fit
lðTÞ on available lattice computations of the Polyakov loop
in pure Yang-Mills theory. To our knowledge, large-Nc

values have not been obtained so far, but accurate SU(3)
ones have been computed in [24]. Since the Polyakov loop
should not depend on Nc at the dominant order, it is
relevant to fit lðTÞ on SU(3) data; the ad hoc form

lðTÞ ¼ 0:74� 0:26 tanh

�
2:10

�
Td

T

�
3 � 0:60

T

Td

�
(13)

leads to a satisfactory parametrization of the results of [24]
as it can be seen in Fig. 3. It is also worth noting that Fig. 2
has been obtained using the form (13) for lðTÞ.

It is important to remark at this stage that the calcula-
tions we will perform are done in the mean-field approxi-
mation. In this scheme, the Polyakov loop is always lower
than 1: values larger than 1 are due to quantum fluctuations
and are de facto beyond the mean-field treatment. That is
why we have restricted our fit to lattice data lower than
unity (T < 2:4Td). We miss the overshoot due to quantum
fluctuations, but we stay coherent with the mean-field
approximation, and reach moreover lð1Þ ¼ 1. As a con-
sequence, our results should be mostly trusted below

T < 2:4Td but this is not a flaw since, in the following,
we will be concerned with the phase structure of the theory
and no phase transition will appear at energy scales above
this upper limit.
The positive-definite function aðTÞ is only present as an

overall factor in Vg, so it does not come into play in the

qualitative features of the effective potential. However, it is
relevant in view of reproducing the absolute value of the
pressure in pure gauge QCD, for which lattice data are
known atNc ¼ 3, 4, 5, 6, 8 and1 through an extrapolation
of these data [25]. The empirical choice

aðTÞ ¼ 1

lðTÞ4
�
�2

135
� 0:029

lnðT=Td þ 1:5Þ
�

(14)

leads to a good agreement between the lattice data of [25]
and formula (12), as shown in Fig. 4. Notice that the value
að1Þ is such that the Stefan-Boltzmann limit is reached at
large temperatures.
It is worth summarizing what has been done at this stage.

Starting from Lagrangian (5), we have shown that the three
arbitrary functions of T and Nc it contains can be strongly
constrained by demanding that the averaged Polyakov loop
and the pure gauge pressure have a relevant behavior in Td,
at large T, and in the large-Nc limit. Explicit forms for the
two remaining unconstrained functions of T can then be
found by asking the present model to be in agreement with
current pure gauge lattice data. One is finally left with a
fully determined Lagrangian with explicit ZNc

symmetry at

finite Nc and U(1) symmetry in the large-Nc limit. This
Lagrangian is obviously not predictive concerning the
thermodynamics of the pure gauge sector, just as previ-
ously used Lagrangians like (3). However, its knowledge is
a necessary step in view of making predictions concerning
the quark sector, whose inclusion is discussed in the next
section.

0 1 2 3 4
0.0
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0.4

0.6

0.8

1.0

1.2

FIG. 3. Norm of the Polyakov loop minimizing the potential
(6) versus the temperature in units of Td (solid line). The
function lðTÞ (dashed line) and the norm of the Polyakov loop
computed in pure gauge SU(3) lattice QCD (points) have been
added for comparison. Lattice data are given for temperatures
lower than 2:4Td; data are taken from [24].
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FIG. 4. Large-Nc pure gauge pressure computed from Eq. (12)
and normalized to N2

cT
4 (solid line). The corresponding lattice

data, taken from [25], are plotted for comparison in the case
Nc ¼ 3 (gray points) and Nc ! 1 (black points).
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III. PNJL MODEL

As shown in [8], a minimal coupling of the NJL
Lagrangian (4) to a gauge field of the form A� ¼ A0��0

makes eventually appear the Polyakov loop in the quark
grand potential. In the mean field approximation, one is led
indeed to the quark potential [8]

Vqð�; T; 	; L; LyÞ
NcNf

¼ 	2

2g
� 2

Z d3p

ð2�Þ3 �
�
Ep þ T

Nc

Trc ln½1þ Le�ðEp��Þ=T�

þ T

Nc

Trc ln½1þ Lye�ðEpþ�Þ=T�
�
; (15)

where the Polyakov loop L has been defined in (1). In the
above equality,

Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ ðmq � 	Þ2

q
(16)

is the quark dispersion relation, with mq the quark bare

mass and 	 related to the chiral condensate as follows

	 ¼ Gh �qqi: (17)

The coupling G has to scale as ðNcNfÞ�1 in order for the

potential (15) to scale as NcNf, so it is convenient to define

the coupling g as

g ¼ GNcNf: (18)

Although Nf is a priori arbitrary, our results are mostly

valid at Nf ¼ 2. For higher values of Nf indeed, the axial

anomaly (not present in this formalism) should be taken
into account in order to get a reliable model. In what
follows, Nf ¼ 2 will be implicitly understood, although

we keep the notation Nf so that the quark contributions

appear more clearly.
Since the pure gauge part of the potential only involves

the traced Polyakov loop �, it is interesting to express
Vq in terms of � rather than L. Terms of the form

Trc ln½1þ zL� can be expressed as functions of TrcL /
�, TrcL

2;TrcL
3; . . . through a Taylor expansion. A pos-

sible way of proceeding is to expand the quark potential at
the first order in L. This eventually leads to formulas in
which only � appears in Vq [14]. This scheme has the

advantage of being independent of the parametrization of
L. Here we adopt an inequivalent procedure. As a first step,
we notice that there exists in general a gauge in which the
Polyakov loop L is a diagonal element of SUðNcÞ:

L ¼ diagðei
1 ; ei
2 ; . . . ; ei
Nc�1 ; e
�i
P

Nc�1
j¼1


jÞ: (19)

The Nc � 1 parameters 
j are real so that LyL ¼ 1 and

detL ¼ 1 as demanded for an SUðNcÞ element. In the
special case of Nc ¼ 3, there is a one-to-one correspon-
dence between the parameters 
1, 
2 and the Polyakov
loop degrees of freedom�,��. This is not the case at large
Nc however, where the number of independent parameters
in the Polyakov loop goes to infinity. As a consequence, an
exact computation of the color traces appearing in (15) is
not possible unless simplifying assumptions are made. As a
second step to reach this goal, we propose the following
ansatz:

L ¼ diagðei
; . . . ; ei
|fflfflfflfflfflffl{zfflfflfflfflfflffl}
ðNc�1Þ=2

; 1; e�i
; . . . ; e�i
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
ðNc�1Þ=2

Þ odd� Nc

¼ diagðei
; . . . ; ei
|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Nc=2

; e�i
; . . . ; e�i
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Nc=2

Þ even� Nc: (20)

It reduces to the mean-field parametrization of [8] at Nc ¼
3, but the price to pay is that the number of degrees of
freedom in L is drastically reduced to a single real parame-
ter 
. It is then readily computed that

� ¼ 1

Nc

½1þ ðNc � 1Þ cos
� odd� Nc

¼ cos
 even� Nc (21)

by using of the ansatz (20) in (2). We thus have an asatz
that ‘‘looks like’’ the SU(3) case and that reduces to � ¼
cos
 at large-Nc.
Moreover, one can compute that

Trc ln½1þLe�ðEp��Þ=T�¼ lndetc½1þLe�ðEp��Þ=T�
¼Nc�1

2
ln

�
1þ2

Nc��1

Nc�1
e�ðEp��Þ=Tþe�2ðEp��Þ=T

�
þ ln½1þe�ðEp��Þ=T� odd�Nc;

¼Nc

2
ln½1þ2�e�ðEp��Þ=Tþe�2ðEp��Þ=T� even�Nc; (22)

and, taking into account a cutoff for the momentum integration of the vacuum term, one finally arrives at the quark
potential, whose large-Nc limit is given by
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!qð�; T; 	;�Þ ¼ Vqð�; T; 	;�Þ
NcNf

¼ 	2

2g
� 1

�2

Z �

0
dpp2Ep

� T

2�2

Z 1

0
dpp2fln½1þ 2�e�ðEp��Þ=T þ e�2ðEp��Þ=T� þ ð� ! ��Þg: (23)

This last potential formally reduces to the genuine NJL
potential once � ¼ 1, as observed in previous studies
[8,14]. The total potential of the large-Nc PNJL model
under study is finally given by

V ð�; T;	;�Þ ¼ N2
c!gðT;�Þ þ NcNf!qð�; T; 	;�Þ:

(24)

In the confined phase, where� ¼ 0, one observes a term

in ln½1þ e�2ðEp��Þ=T� in the potential (23), so it could
be tempting to associate such a term with diquark degrees
of freedom in the confined phase. However, in the limit
T ! 0, one exactly recovers the zero temperature NJL
potential, expressed in terms of the quark degrees of free-
dom. So the confined degrees of freedom are still quarks in
the present approach. Similarly, baryonic degrees of free-
dom (states with Nc quarks) are not included in the present
formalism; this would require further extensions of the
present approach that are beyond the scope of the present
study.

IV. PHASE DIAGRAM AT LARGE Nc

In ’t Hooft’s large-Nc limit, the number of quark fla-
vours stays finite and V is dominated by the gluonic
contribution. Consequently, when Nc becomes infinite,
the optimal value �0 can be found by minimizing !g

only. According to (10), the large-Nc solution (i.e when
Nc is infinite) reads

�0ðTÞ ¼ lðTÞ�ðT � TdÞ: (25)

The physical value of 	, denoted 	0 and depending on T
and �, is then such that it minimizes !qðT;�;	;�0ðTÞÞ.
!g does not depend on 	. Since 	 / h �qqi, chiral sym-

metry is present when 	0 ¼ 0 and broken when 	0 � 0.
As a consequence of (25), the deconfined phase appears
as soon as T > Td, independently of the value of �: As
pointed out in [15], quarks have no influence on the
deconfinement phase transition at large-Nc because of
the suppression of internal quark loops in this limit.

As a consequence of the large-Nc limit, the confined/
deconfined phases are straightforwardly identified in our
model. The situation is less simple as far as chiral symme-
try is concerned; numerical computations are needed. As a
first step, the parameters of the model have to be fixed. The
values

mq ¼ 5:5 MeV; g ¼ 60:48 GeV�2;

� ¼ 651 MeV; Td ¼ 270 MeV;
(26)

used in the PNJL study [9], will be taken in the following
also. The first three parameters have been fitted so that the
zero-temperature pion mass and decay constant are repro-
duced within the standard NJL model with Nc ¼ 3 and
Nf ¼ 2 [7,26]. Td is a typical value for the deconfinement

temperature in SUðNcÞ Yang-Mills theory.
Using the parameters (26), the optimal value 	0 can

now be computed for any couple ð�;TÞ, and can be
linked to the quark condensate thanks to (17)

h �qqið�;TÞ ¼ NcNf

g
	0ð�; TÞ: (27)

In the limit where T and � both tend toward zero, we get

lim
�;T!0

h �qqið�; TÞ ¼ �NcNf5:29 106 MeV3; (28)

corresponding to a quite common value of �ð317 MeVÞ3
for Nc ¼ 3 and Nf ¼ 2.

The large-Nc chiral condensate versus the temperature is
plotted in Fig. 5 for some values of the quark chemical
potential. The most salient feature of this plot is the simul-
taneity of the first-order deconfinement phase transition
and of the restoration of chiral symmetry through a first-
order phase transition occurring at T� ¼ Td. However,

when �=Td * 0:8 (� * 200 MeV), the quick decrease
of the chiral condensate suggests a progressive restoration
of chiral symmetry through a crossover at temperatures
smaller than Td. As shown in [8], the crossover temperature
can be computed thanks to the determination of the peak
position in the dimensionless quark susceptibility reading,
at large-Nc,

FIG. 5. Chiral condensate at large-Nc (Nc ! 1), normalized
to its zero temperature value, versus T in units of Td, and plotted
for �=Td ¼ , 1, and 1.11 (solid lines). The optimal value of the
Polyakov loop is also plotted (dotted line).
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�qqðT;�Þ ¼ �T

@2	!qj	¼	0

: (29)

We have chosen to follow the definition of [8] for the quark
susceptibility, although a more standard way of defining
the susceptibility is rather @2mq

!qðT;�Þ, see e.g. [13]. In

both cases, a peak in the quark susceptibility signals a
phase transition.

A plot of �qqðT;�Þ for some values of �=Td is given in

Fig. 6. Several observations can be made by observing this
figure together with Fig. 5. First, the peak of the quark
susceptibility is located in Td when �=Td � 0:79; this
corresponds to a first-order-type chiral symmetry restora-
tion in the deconfined phase. The point ð0:79; 1Þ � Td

actually corresponds to a triple point in the ð�; TÞ-plane:
At large� the peak of �qq is located below Td—a larger�

corresponds to a lower peak position –, leading to the
existence of a confined phase in which chiral symmetry
is progressively restored through a crossover. A careful
look at 	0 actually shows that the chiral phase transition
below Td becomes of first order when�=Td � 1:24: There
exists thus a critical-end-point that we find to be
ð1:23; 0:26Þ � Td in the ð�; TÞ-plane. Apart from the sus-
ceptibility, the position of the chiral phase transition could
have been alternatively determined by computing the zero
of @2T	0ðT;�Þ. We have checked that the chiral tempera-
tures computed using that method agree with those com-
puted with those computed from the peak in the
susceptibility up to 5%. For an exploratory study such as
the present one, this agreement is satisfactory.

Gathering all these observations, the phase diagram of
our model in the ð�; TÞ-plane can be established; it is
shown in Fig. 7. The three phases we find correspond to
those found in [14], see Fig. 1, but the structure of the
chiral phase transition is a bit more involved under Td: The
chemical potential at which chiral symmetry is restored
now depends on T, and there exists a critical-end-point at

large enough �. Although the deconfining phase transition
corresponds to what is expected in the large-Nc limit of
QCD from generic arguments [15], the critical line T�ð�Þ
we find under Td quite resembles to what can be observed
within previously known Nc ¼ 3 PNJL studies [8,9]. The
similarity between our way of including the Polyakov loop
in the NJL model and the way of [8]—our ansatz is a
straightforward generalization of the one used in this last
work—might actually be at the origin of the similarities
between the phase diagrams we find. The same reason,
combined to the fact that we chose for our parameters
values fitted on the SU(3) case, might explain why the
values we find for e.g. the chiral condensate are similar to
those of [8].
We notice that, at large but finite values of Nc, the full

potential (24) has to be minimized and quark contributions
(presumably in 1=Nc) will cause the Polyakov loop to be
different from lðTÞ. Hence, the chiral condensate will also
be modified, and the whole phase diagram will be affected.
We nevertheless choose here to focus on the large-Nc limit
of the model, since it has been designed to be relevant in
this limit mostly.

V. CONCLUSIONS

Effective ‘‘Polyakov-loop-based’’ approaches have
proven to be a relevant tool in view of modelling the
thermodynamic properties of pure gauge QCD. The traced
Polyakov loop is then the order parameter associated to
confinement, itself seen as correlated with a global center
symmetry, ZNc

when the gauge group is SUðNcÞ. Following
a suggestion made in [17], an explicitly ZNc

-symmetric

potential involving the traced Polyakov loop has been built
and leads to: A first-order phase transition at large-Nc, a
gluonic pressure scaling as N2

c , and an Nc-independent
optimal value for the Polyakov loop. The coupling of the
pure gauge sector to light quarks has then been performed
within a PNJL approach. Thanks to a particular ansatz for
the Polyakov loop, the quark potential is such that it only

Td 1.24 1.15 1.04 0.93 0.79

0.2 0.4 0.6 0.8 1.0
0

50

100

150

200

T Td

FIG. 6. Dimensionless quark susceptibility (29) versus the
temperature in units of Td (solid lines) with, from left to right,
�=Td ¼ 1:24, 1.15, 1.04, 0.93, 0.79. �qqðT; 0Þ is also plotted

for completeness (dashed line). Computations were done for
Nc ! 1.

Deconfined, chiral symmetry

Confined,

Confined,
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FIG. 7. Phase diagram of the large-Nc PNJL model (24) with
explicit ZNc

symmetry, obtained for Nc ! 1. The solid lines

denote first-order phase transitions while the dashed line denotes
a crossover. The triple point (0.212, 0.270) GeV and the critical
end-point (0.335, 0.063) GeV have been also plotted. The end of
the lower curve is reached at (0.343, 0) GeV.
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involves the traced Polyakov loop that appears in the pure
gauge potential. It has to be said that the resulting PNJL
model is designed to be relevant in the large-Nc limit only.
It is moreover inequivalent to the model proposed in [14]
since the color traces that have to be performed in the
derivation of the PNJL potential are carried differently.

The different assumptions that were made lead to a
large-Nc phase diagram that compares favorably with pre-
vious approaches. At any�, it shows a deconfined, chirally
symmetric, phase above the deconfinement temperature
(Td ¼ 270 MeV). The deconfinement phase transition
and the restoration of chiral symmetry are found to be
simultaneous first-order phase transitions, in agreement
with [14,15]. At temperatures lower than Td, thus in the
confined phase, there is a critical line T�ð�Þ separating a

phase with broken chiral symmetry at small � and a
chirally symmetric phase at large �. The phase transition
is found to be a crossover from the triple point (0.212,
0.270) GeV to the critical-end-point (0.335, 0.063) GeV. It
is then of first order until the boundary (0.343, 0) GeV is
reached, corresponding to the estimate � � MN=3 [15]. It
is worth saying that a confined, chirally symmetric, phase
has also been found by solving Schwinger-Dyson equa-
tions at nonzero � in [27], and that evidences for the
existence of such a phase has been found in Coulomb
gauge QCD calculations [28]. The present model’s predic-
tion of three different phases, among which a chirally
symmetric phase at baryonic chemical potentials around
the nucleon mass thus seems a reliable one. The structure
of the critical lines appears however to depend quite
strongly on the way the Polyakov loop L is handled: The
comparison of Figs. 1 and 7 shows how a different treat-
ment of the Polyakov loop within similar PNJL-based
approaches can affect the phase diagram. It is also worth
noting that an accurate description of the confined but
chirally symmetric—quarkyonic at largeNc—phase would
require a more detailed approach that the simple PNJL

model presented here. In particular, the explicit inclusion
of baryonic degrees of freedom should be performed, but
this is a task that we leave for subsequent studies. A first
interesting attempt has, for example, been made in [29],
where a constituent approach is used to model the baryonic
matter at large Nc.
Recently, an effective model has been proposed [30], in

which the Lagrangian involves a linear sigma model for the
quark part and a dilaton-like effective potential for the
gluon part. Such a dilaton-like potential is designed to
mimic the breaking of scale invariance through a nonzero
value of the gluon condensate (the dilaton field). The phase
diagram which is found is nearly identical to the one of
Fig. 7, excepted that the deconfinement phase transition is
replaced by a restoration of scale invariance. Both seem
then to be linked, as suggested in [30].
Finally, we remark that the large-Nc limit of the pro-

posed pure gauge effective potential has a U(1) symmetry,
which emerges as the limit of a ZNc

symmetry. This

large-Nc effective potential could be used in an approach
where the traced Polyakov loop is allowed to depend on the
position, typically via a Lagrangian of the type L �
@��@��� � Vg. Of particular interest would then be to

search for localized, solitonic, solutions of L: One could
then take advantage of the fact that finding solutions of a
complex scalar field theory with a U(1) invariance is a
topic that has attracted a considerable attention, mostly
since Coleman’s work on Q-balls [31], and for which
many results are already available. We hope to present
such a study in future works.
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