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In supersymmetric theories with a strong conformal sector, soft supersymmetry breaking naturally gives

rise to confinement and chiral symmetry breaking in the strong sector at the TeV scale. We construct and

analyze models where such a sector dynamically breaks electroweak symmetry, and take the first steps in

studying their phenomenology. We consider two scenarios, one where the strong dynamics induces

vacuum expectation values for elementary Higgs fields, and another where the strong dynamics is solely

responsible for electroweak symmetry breaking. In both cases there is no fine-tuning required to explain

the absence of a Higgs boson below the LEP bound, solving the supersymmetry naturalness problem.

Quark and lepton masses arise from conventional Yukawa couplings to elementary Higgs bosons, so there

are no additional flavor-changing effects associated with the strong dynamics. A good precision

electroweak fit can be obtained because the strong sector is an SUð2Þ gauge theory with one weak

doublet, and has adjustable parameters that control the violation of custodial symmetry. In addition to

the standard supersymmetry signals, these models predict production of multiple heavy standard

model particles (t, W, Z, and b) from decays of resonances in the strong sector. The strong sector has

no approximate parity symmetry, so WW scattering is unitarized by states that can decay to WWW as

well as WW.
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I. INTRODUCTION

Supersymmetry (SUSY) gives a compelling solution to
the electroweak hierarchy problem, and provides a sensible
framework for speculations about physics above the TeV
scale. It is for this reason that so much of the theoretical
and experimental effort in physics beyond the standard
model is devoted to SUSY. However, if SUSY is the
solution of the hierarchy problem it generically predicts a
standard-model-like Higgs boson with mass below mZ,
which is ruled out. In the minimal supersymmetric stan-
dard model (MSSM), this can be avoided only by radiative
corrections that introduce fine-tuning at the percent level. It
is possible to avoid this tuning by extending the MSSM,
either to raise the Higgs mass [1] or to give it new decays
that are less constrained by experiment [2], but the models
must be carefully constructed to have these features.

Technicolor also gives a compelling solution to the
hierarchy problem, but it is generally considered less plau-
sible than SUSY mainly because of problems with flavor
and precision electroweak tests. The traditional approach
to incorporating flavor into technicolor theories involves
extending the gauge group of technicolor to include the
flavor symmetries, which are then broken above the TeV
scale [3]. There are daunting obstacles to constructing
realistic models of this kind, and there is no realistic
example in the literature. Furthermore, any such model
must have large numbers of technicolors and/or technifla-
vors, and therefore is expected to give large corrections to
the precision electroweak parameters S and T that are
incompatible with data. The prospects are much better if

the couplings responsible for quark and lepton masses arise
from the exchange of heavy scalars [4]. This is potentially
natural in supersymmetric models, where SUSY is broken
above the TeV scale. In this case, the higher-dimension
operators that generate quark and lepton masses can be
generated from exchange of Higgs scalars, which can
incorporate minimal flavor violation and do not require
extending the technicolor gauge sector. The pioneering
attempts in this direction [5] cannot accommodate the large
observed value of the top quark mass, but realistic models
have recently been constructed [6] in the context of con-
formal technicolor [7]. These are explicit UV complete
models with a minimal technicolor sector at a TeV, that
do not conflict with precision electroweak and flavor
constraints.
In this paper, we combine SUSY and conformal techni-

color in a more direct way in an attempt to address the
shortcomings of both. (For recent closely related work, see
Ref. [8].) A companion paper [9] describes the main ideas
and results in a succinct fashion, while this paper gives a
full discussion. This paper is written to be self-contained,
and can be read on its own.
We assume that the visible sector consists of the

MSSM plus a strong sector. SUSY is assumed to be broken
at the TeV scale in both the MSSM and the strong sector,
as is natural in many theories of SUSY breaking (e.g.
gravity mediation). The idea (already used in Refs. [6,10])
is that in the strong sector, conformal invariance is broken
softly by SUSY breaking mass terms, giving rise to strong
nonsupersymmetric dynamics at the TeV scale. Since all
scalars get massive from SUSY breaking while fermions
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have chiral symmetries that forbid their masses, it is very
plausible that the strongly interacting fermions confine and
break chiral symmetries, as in QCD. This dynamics can
play a role in electroweak symmetry breaking. This is the
conformal technicolor mechanism [7] in the context of
SUSY, so we refer to it as ‘‘superconformal technicolor.’’1

The presence of both SUSY and strong dynamics at the
TeV scale opens up many interesting phenomenological
possibilities, and this paper only initiates the exploration of
these ideas. We will construct an explicit model of the
strong sector that realizes this idea, which we argue can
dynamically break electroweak symmetry. We then inves-
tigate two different limiting regimes of the same model that
illustrate two phenomenologically distinct scenarios for
electroweak symmetry breaking. The model has a strong
conformal sector based on an SUð2Þ gauge group with 4
flavors, which has a strongly interacting conformal fixed
point [12]. Additional fields and interactions are required
to stabilize runaway directions in the presence of SUSY
breaking. The additional interactions and the SUSY break-
ing terms explicitly break the SUð8Þ global symmetry of
the theory down to SUð2ÞL � SUð2ÞR, which is weakly
gauged in the usual way so that chiral symmetry breaking
in the strong sector breaks electroweak symmetry, as in
technicolor.

The MSSM Higgs fields couple to the strong sector via
superpotential couplings of the form

W ¼ �uHuOd þ �dHdOu; (1.1)

whereOu;d are operators in the strong sector with the same

electroweak quantum numbers as Hu;d. The two different

regimes of the model referred to above correspond to
different choices of �u;d.

In the model we construct the operators Ou;d have scal-

ing dimension 3=2, so the couplings �u;d are relevant

couplings that get strong at some scale. This scale cannot
be too far from the TeV scale, otherwise they are not
important for electroweak symmetry breaking. This
amounts to a coincidence of scales, and the problem of
explaining this coincidence is similar to the ‘‘� problem’’
of the MSSM. In both cases we must explain why a
relevant supersymmetric coupling is important near the
scale of SUSY breaking. Perhaps the simplest and most
elegant solution to the � problem is the Giudice-Masiero
mechanism [13], and we review an extension of this
mechanism [6] that explains why the couplings Eq. (1.1)
are important at the TeV scale.

A. Induced electroweak symmetry breaking

We first consider the case where the couplings Eq. (1.1)
are perturbative at the TeV scale. In this case, the Higgs

fields Hu;d are ordinary perturbative degrees of freedom

below the TeV scale. The strong sector dynamically breaks
electroweak symmetry with an order parameter f that we
assume is somewhat below the value required to explain
theW and Zmasses, e.g. f ’ 100 GeV. The heavy hadrons
of the strong sector are expected to have masses of
order 4�f� TeV [14], and the SUð2ÞL � SUð2ÞR chiral
symmetry of this theory is nonlinearly realized below this
scale. The couplings Eq. (1.1) then generate a tadpole for
Hu;d in the effective potential. This induces a vacuum

expectation value (VEV) for Hu;d even if m2
Hu;d

> 0, which

we assume to be the case. (In standard SUSY scenarios
m2

Hu;d
> 0 at high scales and renormalization group running

results in m2
Hu

< 0 at the TeV scale, but more general

boundary conditions at high scales can lead to m2
Hu;d

> 0

at the TeV scale.) If we neglect the quartic terms in the
potential for Hu;d, the masses of the physical Higgs

bosons are simply eigenvalues of the quadratic terms in
the effective potential, while the size of the VEV is deter-
mined by the coefficient of the tadpole. The Higgs mass
therefore depends directly on the SUSY breaking masses,
similar to a slepton or squark mass. The Higgs masses
can easily be larger than the LEP bound with no tuning
in this scenario, giving a simple and robust solution to the
SUSY Higgs mass problem.
In this scenario electroweak symmetry breaking is

shared by the elementary Higgs bosons and the strong
sector:

v2 ¼ v2
u þ v2

d þ f2; (1.2)

where v ¼ 246 GeV. For example, for f ’ 100 GeV we

have
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
u þ v2

d

q
¼ 225 GeV. Because the electroweak

symmetry breaking VEV is dominantly in the elementary
Higgs fields, quark and lepton masses can arise through
conventional perturbative Yukawa couplings. This means
that there is no additional flavor problem associated with
the strong dynamics. Of course we still have the SUSY
flavor problem, namely, the squark and slepton masses and
A terms can be flavor dependent. We assume that this is
addressed by one of the many possible mechanisms in the
literature.
A good precision electroweak fit can be obtained in this

model. The strong sector is based on a SUð2Þ gauge theory
with a single technidoublet, so the corrections are not
enhanced by large N factors. The UV contribution to the
S parameter is very uncertain because this theory is very
different from QCD. The fact that the longitudinal modes
of the W and Z are dominantly perturbative excitations
reduces the IR contribution from the strong sector to the S
parameter. The custodial symmetry breaking from �u �
�d gives a positive contribution to the T parameter that also
helps with the fit. The conclusion is that we can get a good
precision electroweak fit even if we assume that the UV

1This name has also been used in Ref. [11] for models that do
not use the conformal technicolor mechanism to break electro-
weak symmetry.
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contribution to the S parameter is large and given by the
value extrapolated from QCD.

The collider phenomenology for this model includes all
of the usual SUSY signals, together with additional signals
arising from the strong sector. The strong sector has a
relatively low scale 4�f & TeV, which may make it
more accessible than conventional technicolor.2 The theory
below the TeV scale has 3 additional CP odd states A0

2 and

H�
2 that are heavier than the other Higgs fields and are

dominantly pseudo-Nambu-Goldstone bosons (PNGBs)
from the strong sector. These can be either singly pro-
duced, or pair produced from decays of heavy resonances
in the strong sector. There are many possible signals, and
we will only outline some of the possibilities in this paper.

B. Strong electroweak symmetry breaking

We next consider another possibility where there is no
light Higgs below the TeV scale. SUSY breaking in the
strong sector triggers electroweak symmetry breaking, as
in conformal technicolor. The quark and lepton masses
arise from couplings to the strong sector of the form

�W � ðyuÞijQiu
c
jOu þ ðydÞijQid

c
jOd þ � � � : (1.3)

This can arise in the same model we construct for the
previous scenario for a different choice of parameters.
The couplings �u;d in Eq. (1.1) are relevant operators

that get strong at some scale ��. If �� is above the
SUSY breaking scale, the elementary Higgs fields become
part of the strong sector, and there is a dual description
where the Yukawa couplings become couplings of the
form Eq. (1.3). Below the scale ��, the operators Ou;d

have dimension 3=2, so these operators behave like
flavor-dependent interactions in ‘‘walking’’ technicolor.3

Alternatively, the scale �� may be naturally near the TeV
scale, as discussed above. In this case we do not require
large Yukawa couplings at high scales. In either case, the
couplings Eq. (1.3) inherit the minimal flavor violating
structure of the Yukawa couplings, so there is no flavor
problem associated with the strong dynamics. Of course,
the SUSY flavor problem must still be addressed by some
mechanism.

The precision electroweak fit does not pose a problem
for this model. There is a contribution to the T parameter
from �u � �d. If this contribution is positive (as suggested
by perturbation theory) we can get a good fit provided that
the UV contribution to the S parameter from the strong
sector is somewhat smaller (e.g. by a factor of 2) than the
QCD estimate. We conclude that given our present state of

knowledge precision electroweak data does not strongly
constrain this model.
The collider signals include the standard missing energy

SUSY signals, but not the SUSY Higgs signals. There are
technicolor-like signals associated with the strong sector.
One difference from conventional technicolor is that the
strong sector generally has no approximate parity symme-
try, so the resonances that unitarize WW scattering can
decay to WWW as well as WW.

II. THE STRONG SUPERCONFORMAL SECTOR

In this section we describe the requirements for a suc-
cessful model of the strong sector, and construct an explicit
model as an existence proof. The main issue is preventing
runaway directions due to soft SUSY breaking mass terms.

A. SUSY breaking in SUSY QCD

The main new feature of our framework is a strongly
coupled superconformal sector. The simplest nontrivial 4D
superconformal theory is SUðNcÞ SUSY QCD with Nf

flavors in the conformal window 3
2Nc < Nf < 3Nc [12].

There is a dual description of these theories in terms of
an SUð ~NcÞ gauge theory with ~Nc ¼ Nf � Nc. The

theories with Nf ’ 3Nc are weakly coupled, while the

models with Nf ’ 3
2Nc have a weakly coupled dual de-

scription. The models with Nf ’ 2Nc are have no weakly

coupled description, and these are the simplest candidates
for the strong sector of our model.
Conformal symmetry is broken softly by SUSY break-

ing terms in the strong sector. We begin by reviewing
what is known about soft SUSY breaking for SUSY
QCD at a conformal fixed point [17]. The effects of soft
SUSY breaking terms are most readily understood if
we view them as F and D components of superfield cou-
plings and flavor gauge fields. We write the Lagrangian in
superspace as

L ¼
Z

d2�� trðW�W�Þ þ H:c:

þ
Z

d4�Z½Qy
i e

VðeXÞijeYQj

þ ~Qy
i e

�VT ðe ~XÞije�Y ~Q�: (2.1)

Here V and W� are the SUðNcÞ gauge field and field

strength, Q and ~Q are the fundamental and antifundamen-
tal ‘‘quark’’ fields; � is the holomorphic gauge coupling,
Z is a real superfield wave function renormalization factor;
X, ~X, and Y are background gauge superfields for the
anomaly-free SUðNfÞ � SUðNfÞ �Uð1Þ flavor symmetry.

A flavor-universal mass-squared term can be parame-
trized by a D term for Z, and a gaugino mass can be
parametrized by an F term for �. The physical gauge
coupling is the lowest component of a real superfield R
that is a function of � and Z [18], so these SUSY breaking

2Low-scale technicolor has been previously studied, motivated
by large N technicolor theories [15]. However, as previously
noted these theories have serious problems with the precision
electroweak fit.

3The use of SUSY conformal fixed points to get walking
behavior of flavor couplings has been previously considered in
Ref. [16].
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terms perturb R away from its fixed point value. Since the
fixed point is IR attractive, the SUSY breaking perturba-
tions scale away in the IR. On the other hand, D terms for
the gauge superfields X, ~X, and Y are unsuppressed in the
IR because the coupling of gauge fields in the IR is simply
determined by group theory. Scalar mass-squared terms
proportional to symmetry generators therefore scale in
the IR just like in a free field theory. Detailed elaboration
of these arguments can be found in Ref. [17].

This means that the only soft SUSY breaking in the
strong sector that is naturally at the TeV scale is scalar
mass-squared terms proportional to anomaly-free flavor
generators. There are always directions in field space
where the energy due to such mass-squared terms is nega-
tive. The ground state will then have a large VEV along
such a direction, in which case conformal symmetry in the
strong sector is broken well above the TeV scale.4 For
example, a soft mass proportional to ‘‘baryon number’’

[BðQÞ ¼ �Bð ~QÞ ¼ 1] will result in a runaway direction

with either Q � 0, ~Q ¼ 0 or Q ¼ 0, ~Q � 0 depending on
the sign of the mass-squared term.

Generalizing from SUSY QCD, we see that what we
would like is a strong conformal theory with an anomaly-
free flavor generator X such that all of the flat directions
have the same sign of the X charge. A scalar mass-squared
term proportional to X can then stabilize the vacuum at
small field values. Note that this condition is never satisfied
in theories with a charge conjugation invariance (such as
SUSY QCD). In such theories the best we can hope for is
that all flat directions have X ¼ 0, in which case a more
subtle analysis is required to determine whether the ground
state is near the origin of field space.

We can lift dangerous flat directions by introducing
additional perturbative couplings. For example, we can
lift the B � 0 flat directions in the example above by
gauging Uð1ÞB. However, as long as the Uð1ÞB gauge
coupling is weak, this will stabilize the VEV at a large
value because the VEV goes to infinity as the Uð1ÞB gauge
coupling goes to zero. Such a model will have more than
one scale, and will not give a strongly coupled model with
a single scale that we are seeking.

B. A viable model

We now construct a working model in which the run-
away directions in the strong sector are lifted. The detailed
model will be described below, but we start by briefly
outlining the basic mechanism. The strong sector is a
SUð2Þ gauge theory with 4 flavors, with superpotential

couplings to elementary Higgs fields H and additional
singlet fields S of the form

W � ð�HH þ �SSÞ��: (2.2)

The effect of these terms is that the flat directions of the
strong sector are replaced by flat directions of the H and S
fields, so the problem is now to lift these flat directions.
The ‘‘meson’’ operator �� has dimension 3

2 , so the �

couplings have dimension þ 1
2 . We will want all of the �

couplings to become strong near the TeV scale where
SUSY is broken in the strong sector. This is a coincidence
problem precisely analogous to the ‘‘� problem’’ of the
MSSM. We will show below (in Sec. II D) that we can
explain this coincidence using a generalization of the
Giudice-Masiero mechanism for the � term. Now the
idea is that the couplings �S become strong at a scale �0
somewhat above the weak scale, while the coupling �H is
still weak. Below this scale, the theory quickly flows to a
new fixed point where S is a strong operator. In this new
conformal field theory , a universal positive soft mass for S
is suppressed by a large anomalous dimension, but if the
scale �0 is not too far from the TeV scale this effect can be
small, and there can be a positive soft mass at the TeV scale
to stabilize the strong sector.
We now give a detailed description of the model. It is

based on a strong SUð2ÞSC gauge theory with 4 flavors,
which has a strong conformal fixed point as discussed
above. The anomaly-free global symmetry group is

SUð2Þ1 � SUð2Þ2 � SUð2Þ3 � SUð2Þ4 �Uð1ÞR: (2.3)

The embedding of the electroweak gauge group in this
global symmetry will be described below. The strongly
interacting fields transform as

�1 � ð2; 2; 1; 1; 1Þ1=2; �2 � ð2; 1; 2; 1; 1Þ1=2;
�3 � ð2; 1; 1; 2; 1Þ1=2; �4 � ð2; 1; 1; 1; 2Þ1=2:

(2.4)

The electroweak gauge group is embedded in the global
symmetry by taking the SUð2ÞW �Uð1ÞY generators acting
on the fields �i to be

Ta ¼ 1

2

�a

0

0

0

0BBBBB@
1CCCCCA;

Y ¼ 1

2

0

��3

�3

��3

0BBBBB@
1CCCCCA:

(2.5)

The fields�3;4 will not play a role in breaking electroweak

symmetry. We could define e.g. Y ¼ diagð0;��3; 0; 0Þ, but
then the model has physical states with fractional charge
that we want to avoid.

4SUSY breaking may be communicated to the visible sector at
a scale as low as 10 TeV. If we assume that the soft masses at
10 TeV are the same order of magnitude in the MSSM and the
strong sector, and that the anomalous dimensions that suppress
the soft terms in the strong sector are numerically small, we may
get a viable model. We will not pursue this possibility here.
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The fields transform as

�i � U�iV
T
i ; i ¼ 1; . . . ; 4; (2.6)

where U 2 SUð2ÞSC, Vi 2 SUð2Þi. The SUð2ÞSC gauge
invariant holomorphic operators are the meson fields

Mij ¼ �T
i ��j: (2.7)

These are 2� 2 matrices, transforming under SUð2Þi �
SUð2Þj as

Mij �
� ð2; 2Þ for i � j;
1 for i ¼ j:

(2.8)

In addition to the techniquarks Eq. (2.4), the model
contains SUð2ÞSC singlet fields Sij transforming under the

global symmetries like the meson fields Mij above. The

theory has a superpotential

W ¼X
i;j

�ijSij�
T
i ��j: (2.9)

The couplings �ij have dimension 1
2 , i.e. they are relevant

couplings. We assume that there is no large hierarchy
between the �ij, so they all get strong at roughly the

same scale ��.
Seiberg duality tells us that below the scale �� the

theory flows to a new strong fixed point. In the ‘‘electric’’
description presented here, this fixed point is one where
the couplings �ij flow to strong fixed point values. The

dual ‘‘magnetic’’ description has gauge group SUð2Þ eSC and

dual quark fields ~�i � ð2; 2Þ under SUð2Þ eSC � SUð2Þi, as
well as the meson fields Mij as separate degrees of free-

dom. This theory has a superpotential

~W ¼ X
i;j

ð�ijSijMij þMij
~�i

~�jÞ: (2.10)

The first term arises from Eq. (2.9) and the second is
dynamically generated. In this description the singlets
get a mass with the meson fields, and we can integrate
them out to get a SUð2Þ eSC gauge theory with 8 flavors and

no superpotential. This is precisely the argument used to
show that the dual of a Seiberg dual is the original theory,
except that the couplings �ij are here allowed to violate

the flavor symmetries. This theory has a strongly coupled
IR attractive fixed point, which shows that the theory
flows to a new fixed point below the scale where the
couplings �ij become strong.

The theory below the scale �� is pure SUSY QCD,
in which universal scalar mass-squared terms are sup-
pressed. However, above the scale �� universal soft
mass-squared terms for S are not suppressed, and are
therefore unsuppressed at the scale ��. If the scale �� is
not too far above the TeV scale, these soft mass terms can
break SUSY near the TeV scale in the strong sector. The
effects of a universal scalar mass-squared term in the dual

description of the strong sector below the scale �� are
discussed in an Appendix.
In addition to scalar mass-squared terms, we can have

A terms for the superpotential couplings Eq. (2.10). In
superspace these can be parametrized by terms

�L ¼
Z

d4�ðA�2 þ H:c:ÞSyS (2.11)

which are not suppressed by the strong dynamics above
the scale ��. For �� � TeV these can also be important at
the TeV scale.
Having �� � TeV requires a coincidence of scales be-

tween the supersymmetric relevant couplings �ij and the

SUSY breaking scale. As discussed above, this is similar
to the � problem, and we will present an explanation of
it using a generalization of the Giudice-Masiero mecha-
nism below.
We have thus succeeded in constructing a strong super-

conformal theory where all flat directions are lifted by soft
SUSY breaking. The conformal symmetry is therefore
broken by the soft SUSY breaking in the strong sector at
the scale MSUSY. SUSY breaking gives mass to all scalars,
but unbroken chiral symmetries mean that technifermions
are still massless. It is therefore very plausible that this
theory confines and spontaneously breaks the chiral
symmetries, like QCD or technicolor.
We now discuss the symmetry breaking and vacuum

alignment in this model. A useful starting point is to choose
the couplings �ij and the soft SUSY breaking terms to

respect the full SUð8Þ global symmetry of the SUð2ÞSC
gauge theory. We do this by assuming universal couplings
�ij and a universal positive mass-squared for the singlets in

the UV. The Uð1ÞR symmetry is broken by A terms of the
same form as the superpotential Eq. (2.10). In the dual
description the dual techniquarks have no superpotential
interactions. (When we include Yukawa couplings they
will have perturbative superpotential couplings with ordi-
nary quark and lepton superfields.) The techniscalars all
get masses, but masses for the technifermions are forbid-
den by the SUð8Þ chiral symmetry. A technigaugino mass
is allowed because Uð1ÞR is broken. We expect that the
strong nonsupersymmetric gauge dynamics generates a
fermion condensate

h�A�Bi ¼ �h�B�Ai; (2.12)

where A, B are SUð8Þ indices. This spontaneously breaks
SUð8Þ ! Spð8Þ, giving rise to 27 Nambu-Goldstone
bosons (NGBs).
Now we turn on additional terms that explicitly break

the SUð8Þ global symmetry down to

SUð2ÞL � SUð2ÞR �Uð1Þ ~Y; (2.13)

with generators
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TLa ¼ 1

2

�a
0

0
0

0BBB@
1CCCA;

TRa ¼ 1

2

0
��Ta

0
0

0BBB@
1CCCA;

(2.14)

and

~Y ¼ 1

2

0
0

�3
��3

0BBB@
1CCCA: (2.15)

This explicit breaking is accomplished by nonuniversal
couplings �ij, and nonuniversal soft masses for the Sij
and the �i. We assume that this breaking is maximal, so
that there is no larger approximate global symmetry. This
assumption is made just for simplicity, and it is also natural
in this framework to have additional approximate global
symmetries leading to pseudo-Nambu-Goldstone bosons
that can have interesting phenomenological implications.

This explicit SUð8Þ breaking determines the alignment
of the fermion condensate. We assume that

h�A�Bi ¼
0 a12

�a12 0
0 b12

�b12 0

0BBB@
1CCCA; (2.16)

which breaks

SUð2ÞL � SUð2ÞR ! SUð2Þdiag; (2.17)

and preservesUð1Þ ~Y . This breaks electroweak symmetry in
the desired pattern, with no pseudo-Nambu-Goldstone
bosons.

We now describe how this theory generates masses for
quarks and leptons. Note that S12 has the electroweak
quantum numbers of 2 Higgs doublets. We can therefore
write conventional Yukawa couplings

�W ¼ yuðQucÞðS12Þu þ ydðQdcÞðS12Þd þ yeðLecÞðS12Þd:
(2.18)

Above the scale where the couplings �ij become strong,

S12 is a conventional weakly coupled field with dimension
1, so the Yukawa couplings run as in the MSSM. Below
the scale where the couplings �ij become strong, we use

the dual description where we integrate out Sij and the

meson fields Mij, and we obtain the superpotential

�W ¼ 1

�12

½ðyuÞijQiu
c
jð ~�1

~�2Þu þ ðydÞijQid
c
jð ~�1

~�2Þd
þ ðyeÞijLie

c
jð ~�1

~�2Þd�: (2.19)

Note that these interactions have minimal flavor violating
structure inherited from the Yukawa couplings Eq. (2.18).

The operators ~� ~� have dimension 3
2 in the new fixed

point, so we have, e.g.,

mt � ytð��Þv
�
TeV

��

�
1=2

: (2.20)

We see that the quark masses have a mild suppression even
if �� > TeV.

C. A model with a light Higgs

As we have described it, this models has no light
Higgs field below the SUSY breaking scale. Since S12
contains the MSSM Higgs fields, it is easy to modify the
theory to have a light Higgs: we simply choose the cou-
pling �12 to be smaller than the others. We assume that the
other couplings �ij have the same order of magnitude, and

get strong at a single scale �� * TeV.
In the electric description of the theory, the strong

Yukawa couplings �ij approach a strong fixed point, while

�12 remains weak. In the dual magnetic description the
strong �ij turn into mass terms of order ��, while �12 is a

smaller mass term. After integrating out the masses of
order ��, the dual superpotential is

~W ¼ �12S12M12 þM12
~�1

~�2: (2.21)

In this description there is an additional light SUð2ÞSC
singlet fieldM12, but it has a strong superpotential coupling
to the dual techniquarks, and should be viewed as part of
the strong sector. In either description, assuming that �12 is
small at the SUSY breaking scale, it will give rise to a weak
coupling of the elementary Higgs fields in S12 to the strong
dynamics. This strong dynamics can still have the symme-
try structure described above, and it is equally plausible
that it is spontaneously broken in the same pattern. This is
all we need for the low-energy dynamics we are trying to
achieve.

D. Coincidence problem

We now discuss the coincidence between the SUSY
breaking scale and the scale where the couplings �ij be-

come strong. We describe how this can happen in an
extension of the Giudice-Masiero mechanism [6]. We
assume that SUSY is broken in a hidden sector at high
scales, and is communicated to the visible sector by higher-
dimension operators. The hidden sector contains a gauge
singlet superfield X with hFXi � 0, and higher-dimension
interactions that connect the hidden and the visible sector
are suppressed by a scale M. We then write all possible
higher-dimension operators coupling X to the visible
sector fields, e.g.,
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�Leff �
Z

d2�
1

M
XW�W� þ H:c:

þ
Z

d4�

�
1

M
ðX þ XyÞQyQþ 1

M2
XyXQyQ

�
þ
Z

d4�

�
1

M
XyHuHd þ 1

M2
XyXHuHd þ H:c:

�
:

(2.22)

These terms generate, respectively, gaugino masses, A
terms, scalar mass terms, the � term, and the B� term,
all of order

MSUSY � hFXi
M

: (2.23)

Note also that the soft terms in the MSSM and the strong
sector are generated at the same scale in this mechanism.
One well-motivated choice is to takeM of order the Planck
scale, in which case one must also take into account
supergravity corrections, but they do not change this result
[13]. The main shortcoming of this mechanism is that it
does not address the SUSY flavor problem, which is why
the soft masses are flavor diagonal. On the other hand,
models that address the SUSY flavor problem require
significant complications to solve the � problem, and it
is not obvious which is preferred.

In the model above, the couplings �ij have mass dimen-

sion 1
2 , so the problem is to naturally generate �ij �

M1=2
SUSY. This occurs naturally if the hidden sector contains

a field Y with

hYi � hFXi1=2; hFYihFXi1=2MSUSY: (2.24)

The couplings �ij can then be generated by

�W ¼ cij

M1=2
YSij�i�j: (2.25)

The second condition in Eq. (2.24) is required to ensure
that this does not generate large A terms. For example,
Ref. [6] shows that a hidden sector with superpotential

W ¼ �X þ 1

M
Y4 (2.26)

has the desired features, even if supergravity effects are
included. In this model � sets the scale of the VEVs. The
fact that Y and not X couples to the operator Sij�i�j can

be enforced by symmetries, e.g. discrete R symmetries.
This requires only a modest generalization of the hidden
sector, and we believe it is natural in the aesthetic as well as
the technical sense.

E. Discrete symmetries

We now discuss the discrete symmetries of the strong
sector described above. Because the theory is based on a
SUð2Þ gauge group, there is no spacetime parity symmetry.
CP is still a good symmetry (assuming that the soft SUSY

breaking parameters are real). As discussed above, the
theory has a SUð8Þ flavor group that is explicitly broken
down to SUð2ÞL � SUð2ÞR �Uð1Þ ~Y . The SUð8Þ symmetry
includes transformations that interchange the techniquarks
charged under SUð2ÞL and SUð2ÞR, but these are broken by
(for example) different soft masses for the L and R tech-
niscalars. The scale of confinement and chiral symmetry
breaking is given by these same SUSY breaking masses
(assuming there is no hierarchy among them), so in general
there is no approximate symmetry that interchanges
SUð2ÞL and SUð2ÞR.
This means that the hadronic states of the strong sector

are classified by their quantum numbers under the custo-
dial SUð2Þ (‘‘isospin’’) and CP only. This has phenome-
nological implications for the heavy resonances at the TeV
scale. The 3 Nambu-Goldstone bosons � that arise from
the symmetry breaking pattern SUð2ÞL � SUð2ÞR !
SUð2Þ have scattering amplitudes that grow with energy,
and on general grounds we expect this to be unitarized by
strong resonances at the TeV scale. Because there is no
parity symmetry, these resonances can decay to ��� as
well as ��. When we couple this theory to the standard
model, the longitudinal W will have an admixture of
the � fields, and so the strong resonances can decay to
WWW as well as WW. This can provide an interesting
signal of this class of models that distinguish it from
conventional technicolor models.
The absence of a parity symmetry is very general in the

class of theories we are considering. In any gauge theory,
scalars belonging to different irreducible multiplets will in
general have different masses, and there will be no discrete
symmetry interchanging them. In a non-SUSY technicolor
theory, the only relevant terms that can break symmetries
of this kind are mass terms. Mass terms for SUð2ÞL and
SUð2ÞR fermions are allowed only in theories based on
the Spð2NcÞ strong gauge groups [including SUð2Þ]. A
non-SUSY example without parity is therefore minimal
conformal technicolor based on an SUð2Þ strong gauge
group with fermion mass terms at the TeV scale [19].

III. INDUCED ELECTROWEAK
SYMMETRY BREAKING

We now consider the effective theory below the scale of
confinement and chiral symmetry breaking in the strong
sector. This theory controls the most prominent features of
the phenomenology of these models, and depends only on a
few qualitative features of the strong sector. We start with
the case where the elementary Higgs fields are weakly
coupled to the strong sector and are therefore present as
light fields in the effective theory.

A. Low-energy effective theory of the strong sector

We first enumerate the assumptions about the strong
sector that define the low-energy theory that describes
the phenomenology. We assume that the strong sector has
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a SUð2ÞL � SUð2ÞR global symmetry that is spontaneously
broken down to SUð2ÞV with order parameter f. The
SUð2ÞL � SUð2ÞR symmetry is then weakly gauged by
SUð2ÞW �Uð1ÞY in the standard way (see previous sec-
tion), so that the electroweak gauge group is broken down
to Uð1ÞEM with an approximate custodial symmmetry. The
low-energy theory of the strong sector then has 3 Nambu-
Goldstone bosons with decay constant f. The effective
theory breaks down at the scale �� 4�f, which we
identify with the scale of confinement and chiral symmetry
breaking in the strong sector [14]. We assume that f is
somewhat smaller than what is required to explain the W
and Z masses, e.g. f ’ 100 GeV. In this case, the scale
�� TeV is still larger than the W and Z masses, so it
makes sense to describe electroweak symmetry breaking
within the effective theory below the scale �.

We assume that the strong sector is coupled to the
Higgs fields of the MSSM by Yukawa couplings of the
form

�L ¼ �uHu�
y
u þ �dHd�

y
d ; (3.1)

where�u;d are scalar operators with the same electroweak

quantum numbers as Hu;d. To keep track of the custodial

symmetry in the strong sector, we define the 2� 2matrices

� ¼ �d �u

� �
; (3.2)

transforming as

� � L�Ry: (3.3)

We assume that � is an order parameter for electroweak
symmetry breaking, i.e.

h�i / 12: (3.4)

Similarly, we define

H ¼ Hd Hu

� �
; � ¼ �d 0

0 �u

� �
; (3.5)

transforming as

H � LH ~Ry; � � ~R�Ry; (3.6)

where ~R is a SUð2Þ ~R transformation. Gauged Uð1ÞY
transformations correspond to

R ¼ ~R ¼ e�i��3=2: (3.7)

In particular, the spurion � is gauge invariant. This implies
that

H � � LðH�ÞRy; �y� � Rð�y�ÞRy (3.8)

are spurions that can break custodial symmetry of the
strong sector in the effective theory.

The SUð2ÞL � SUð2ÞR symmetry is nonlinearly realized
by fields �ðxÞ 2 SUð2Þ transforming as

� ¼ e2i�=f � L�Ry: (3.9)

The kinetic term and leading interaction term for these
fields are contained in the effective coupling

�Leff ¼ f2

4
trðD��yD��Þ þ H:c: (3.10)

To define the terms arising from the couplings Eq. (3.1)
to the elementary Higgs fields we define the normalization
of the couplings �u;d. As discussed in the previous section,

these are relevant interactions above the scale �, and are
therefore naturally viewed as dimensionful. In order to
discuss their effects in the low-energy theory, we find it
most convenient to make them dimensionless by multi-
plying by appropriate powers of�. This is a measure of the
dimensionless strength of these couplings at the scale �
where we match onto the low-energy effective theory. We
then scale these couplings so that �u;d � 4� corresponds to

strong coupling at the scale �. This is the normalization
appropriate to dimensionless Yukawa couplings.
We now consider the terms with no derivatives, i.e. the

potential terms. Expanding in powers of the elementary
Higgs fields, we have

Veff ¼ �4

16�2

�
c1
�

trðH��yÞ þ H:c:þOððH�=�Þ2Þ
�
:

(3.11)

The size of these terms can be understood from the fact that
they become strong at the scale � in the limit H ! f,
� ! 4�. This implies that the dimensionless couplings in
Eq. (3.11) are order 1.
We focus on the predictive scenario whereH�=� 	 1.

The expansion is then in powers of

� ¼ v�

�
¼ 1

�

�uvu 0
0 �dvd

� �
: (3.12)

In order to stabilize the Higgs VEV at this value, we need
the soft masses for the Higgs fields to satisfy

m2
H � �2

16�2
�2: (3.13)

We assume that m2
Hu
, m2

Hd
> 0 so that the VEVs for the

Higgs fields are induced by the linear term in Eq. (3.11).
Neglecting quartic terms and the B� terms in the Higgs
potential, minimizing the potential gives

m2
H � �

4�

f

v
�2 � �

f2

v2
�: (3.14)

This is consistent with Eq. (3.13) provided � 	 1. The
parameter space of this scenario will be explored in detail
below, including the boundary of the region where the
expansion is under theoretical control. An example of a
viable choice of parameters to keep in mind is

f¼100GeV; tan	¼10; mh¼120GeV; (3.15)

which corresponds to vu ¼ 224 GeV, vd ¼ 22 GeV, and
�u=4�� 0:03.
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B. The scalar sector

We now consider the scalar sector of the effective theory,
including all mixing effects. This sector depends on 6
couplings: the soft masses m2

Hu
, m2

Hd
, B�, the scale f,

and the effective couplings in Eq. (3.11)

�u;d ¼ c1�
3

16�2
�u;d: (3.16)

We can redefine the fields to make �u;d > 0. The sign of

B� is then physically meaningful. Because the VEV v is
measured, the scalar sector has 5 parameters, which we can
take to be, e.g.,

tan	; f;m2
Hu
; m2

Hd
; B�: (3.17)

We parametrize the scalar fields as

Hu ¼
Hþ

u
1ffiffi
2

p ðvu þ h0u � iA0
uÞ

 !
;

Hd ¼
1ffiffi
2

p ðvd þ h0d þ iA0
dÞ

H�
d

 !
;

(3.18)

and

� ¼ 1ffiffiffi
2

p �0=
ffiffiffi
2

p
�þ

�� ��0=
ffiffiffi
2

p
 !

: (3.19)

We define fields perpendicular to the eaten Goldstones by

A0
d

A0
u

�0

0B@
1CA ¼ U

A0
h

A0
�

G0

0B@
1CA; H�

d

H�
u

��

0@ 1A ¼ U
H�

h

H�
�

G�

0@ 1A; (3.20)

where

U ¼
s	 �c
c	 �s
c	
c	 c
s	 s
s	
0 s
 �c


0B@
1CA; (3.21)

with

tan	 ¼ vu

vd

; tan
 ¼ vh

f
; vh ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
u þ v2

d

q
:

(3.22)

The Goldstone modes G0, G� are massless eigenstates
orthogonal to the other modes, so we have 2� 2 mass
matrices for the CP even, CP odd neutral, and CP odd
charged scalars. For theCP even scalars, the mass matrix is

M2
h0u;h

0
u
¼ m2

Hu
þ 2m2

Zðs2	 � 1
4Þs2
; (3.23)

M2
h0u;h

0
d

¼ �B��m2
Zs	c	s

2

; (3.24)

M2
h0
d
;h0

d

¼ m2
Hd

þ 2m2
Zðc2	 � 1

4Þs2
: (3.25)

For the CP odd neutral scalars, we have

M2
Ah;Ah

¼ m2
Hu
c2	 þm2

Hd
s2	 þ 2B�s	c	

� 1
2m

2
Zðs2	 � c2	Þ2s2
; (3.26)

M2
Ah;A�

¼ 1

c

½ðm2

Hu
�m2

Hd
Þs	c	 þ B�ðs2	 � c2	Þ

�m2
Zðs2	 � c2	Þs2
Þ�; (3.27)

M2
A�;A�

¼ 1

c2


�
m2

Hu
s2	 þm2

Hd
c2	 � 2B�s	c	

þ 1

2
m2

Zðs2	 � c2	Þs2

�
: (3.28)

For the charged scalars we have

M2
H�

h
;H


�
¼ M2

Ah;Ah
; (3.29)

M2
H�

h
;H


�
¼ 1

c

½ðm2

Hu
�m2

Hd
Þs	c	 þ B�ðs2	 � c2	Þ

þm2
Zs	c	ðs2	 � c2	Þs2
Þ�; (3.30)

M2
H�

� ;H


�
¼ M2

A�;A�
: (3.31)

We define the mass eigenstates by

h0

H0

� �
¼ cos� sin�

� sin� cos�

� �
hu
hd

� �
; (3.32)

A0
1

A0
2

� �
¼ cos�A sin�A

� sin�A cos�A

� �
A0
h

A0
�

� �
; (3.33)

H�
1

H�
2

� �
¼ cos�H sin�H

� sin�H cos�H

� �
H�

h

H�
�

� �
; (3.34)

where

tan2� ¼
2M2

h0uh
0
d

M2
h0uh

0
u
�M2

h0
d
h0
d

; (3.35)

etc.
We can understand the qualitative features of the scalar

spectrum by considering a simplified limit where B� ¼ 0
and we neglect the quartic interactions which give rise to
the terms proportional to m2

Z in the mass matrices. In this
limit, h0u;d are mass eigenstates with mass mHu;d

, and the

masses of the CP-odd scalars are (for f 	 v)

m2
A0
1

¼ mH�
1
¼ m2

Hu
m2

Hd

m2
Hu
s2	 þm2

Hd
c2	

; (3.36)

m2
A0
2

¼ mH�
2
¼ 1

c2

ðm2

Hu
s2	 þm2

Hd
c2	Þ; (3.37)

with mixing angle
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�A;H ¼ � m2
Hu

�m2
Hd

m2
Hu
s2	 þm2

Hd
c2	

s	c	c
 � f

v
: (3.38)

We see that for c
 ¼ f=v 	 1 the CP odd mass eigen-
states A0

1 and H�
1 are dominantly elementary Higgs parti-

cles. The states A0
2,H

�
2 have masses�v=f times larger and

are dominantly PNGBs from the strong sector. The mixing
between these two sets of states is of order f=v. Using
c
� f=v and the equation for v [see Eq. (3.14)], we see
that the condition that the heavy fields have masses below
the scale � is equivalent to the condition � 	 1.

Some spectra including the full potential effects are
illustrated in Figs. 1 and 2. The low-energy expansion
breaks down when the heavy scalars have mass of order
�, indicated by the upper grey shaded region. For light
charged Higgs scalars, there is a constraint from b ! s

that is indicated by the lower pink shaded region (see e.g.
[20]). Here we have neglected possible destructive inter-
ference from Higgsino contributions that may weaken
the bound. We see that this constraint prefers somewhat
heavier h0 masses, but does not rule out much of the
parameter space.

The couplings of these fields to standard model states are
straightforward to work out using the formulas above. The
qualitative features are that the new heavy states A0

2 and

H�
2 mix with the light Higgs fields at order f=v. These

fields will therefore couple most strongly to the heaviest
standard model particles, but with a strength suppressed
by Oðf=vÞ compared to the lighter MSSM Higgs fields
with the same quantum numbers.

C. Precision electroweak fit

We now discuss the precision fit for the case of induced
electroweak symmetry breaking. The only couplings of the
strong sector to the MSSM are via electroweak gauge
couplings and Higgs couplings. The most important elec-
troweak corrections are therefore the oblique corrections
parametrized by the electroweak parameters S and T, and
the corrections to the Z �bb vertex.
We begin with the S parameter. The physics above

the confinement scale � in the strong sector gives rise to
a UV contribution to the S parameter that can be parame-
trized by the effective Lagrangian coupling

�Leff ¼ gg0

16�
SUV trð�yW3

���B
��Þ: (3.39)

The first point to make is that the strong sector need
not have either a large number of technicolors NTC or
technidoublets NTD, which would enhance the S para-
meter. Traditional technicolor models generally require
both NTC and NTD to be large to be embedded into ex-
tended technicolor. Since the quark and lepton masses arise
from elementary Higgs fields, there is no reason for these
parameters to be large. For example, the theory in Sec. II
has NTC ¼ 2 and NTD ¼ 1.
The size of the UV contribution to the S parameter is

very uncertain. Naive dimensional analysis (NDA) [14]
tells us that

SUV � 1

�
: (3.40)
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FIG. 1 (color online). Left panel: Masses (in GeV) for the light CP even Higgs h0. Right panel: Masses for the heavy CP even Higgs
H0. The model has f ¼ 100 GeV, tan	 ¼ 5, and B� ¼ 0, so all masses are a function of �u;d normalized so that c1 ¼ 1 in Eq. (3.11).
The upper grey shaded region is where the perturbative expansion breaks down, and the lower pink region is where the charged Higgs
contribution to b ! s
 comes into tension with experiment.
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This is the same estimate as in technicolor theories, even
though f < v in this theory. There is no suppression
by powers of f=v because we are in the regime where
�� 4�f � mW . In the effective theory below the
scale �, S is a dimensionless quantity that is independent
of the scale f. In terms of a resonance saturation picture,
SUV � f2=m2

� where m� is the resonance mass; since

m� � f, the result is independent of f.

The S parameter in traditional technicolor theories can
be estimated by scaling fromQCD. Using large-Nc scaling,
one obtains [21]

SUVðQCDÞ ’ 0:25
NTC

3
NTD: (3.41)

Note that this is consistent with the NDA estimate
Eq. (3.40). But Eq. (3.41) is better than an order of magni-
tude estimate only if the spectrum and couplings at the
strong scale � are similar to QCD. However, the present
theory is supersymmetric and conformal above the scale�,
and there is no reason to believe that this is the case. In
fact, it has been argued that theories that are conformal
above the scale� have a significantly reduced S parameter
[22]. There is also some support for a smaller S parameter
from lattice simulations. A recent lattice simulation with
Nc ¼ 3, Nf ¼ 6 found that the S parameter per electro-

weak doublet is reduced compared to QCD by a factor
between 0.3 and 0.6 [23]. This theory is not conformal, but
this at least emphasizes the large uncertainty in the S
parameter from strongly coupled electroweak symmetry
breaking sectors.

Our theoretical understanding of the S parameter in
strongly coupled theories is very poor. For example,

there is no rigorous theoretical understanding of even
the sign of the S parameter in QCD, where many rig-
orous inequalities are known [24]. Data tells us that
S > 0 in QCD, and Weinberg sum rules relate this to
basic features of the hadron spectrum. In QCD, the S
parameter can be well approximated by the contributions
from the � and a1 vector resonances, and the positivity
of S follows from the fact that ma1 >m�. However, the

present theory has no parity symmetry and there is no
symmetry distinction between the analogs of the � and
a1. If vector meson dominance holds in the present
theory, the sign of S will depend on whether the cou-
plings of the lightest resonance are more like the � or
the a1. The breaking of parity symmetry depends on the
SUSY breaking masses, so the UV contribution to S will
change by Oð100%Þ as these parameters are varied. It is
very plausible that there are choices of parameters where
it is significantly reduced, perhaps even negative. On the
other hand, 5D anti-de Sitter models can be interpreted
as ‘‘holographic’’ descriptions of large-N conformal
field theories, and in these theories S is positive when-
ever it is calculable [25]. In perturbation theory, S is
generally positive unless special representations and
couplings are chosen [26]. Perhaps these are hints that
nature prefers S > 0.
In this paper, we will use the QCD value for the UV

contribution to the S parameter as a benchmark, allowing
us to make plots and gauge the impact of precision elec-
troweak data on this model. As argued above, this is a
conservative benchmark. We will see that we can get a
good precision electroweak fit even with these assump-
tions, which means that precision electroweak data is not a
strong constraint on this class of models.
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FIG. 2 (color online). Left panel: Masses (in GeV) for light CP odd Higgs particles. Solid lines denote A0
1, dotted lines denote H�

1 .
Right panel: Likewise for A0

2 and H�
2 . The shaded regions are as in Fig. 1.
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There is an additional contribution to the S parameter
coming from states below the scale �, the Nambu-
Goldstone bosons in the strong sector and the elementary
Higgs fields. These mix at order f=v, but given the large
uncertainties in UV contribution, we will give the result
neglecting these effects. For large tan	, electroweak
symmetry breaking is dominated by Hu, while Hd is
decoupled, and we obtain

SIR ’ 1

12�

24ln m2
h

m2
h;ref

þ ln
�2

m2
�

35: (3.42)

The first term is the standard model Higgs contribution,
while the second is the contribution from the composite
pseudo-Nambu-Goldstone bosons in the strong sector. The
first contribution is suppressed for light Higgs masses as
usual, while the second is suppressed compared to conven-
tional technicolor theories because the � fields are heavy.
This means that the IR contribution to the S parameter is
significantly reduced compared to ordinary technicolor.

We now turn to the T parameter. The couplings �u;d in

Eq. (3.1) violate custodial SUð2Þ for �uvu � �dvd, so the
T parameter depends on adjustable parameters. This can
help give a good precision electroweak fit, as we will see.

In order to contribute to the T parameter, we need a
spurion transforming as an isospin 2 representation of
custodial SUð2Þ. The spurions �y� and H� are both
isospin 1 [see Eq. (3.6)], so the leading contribution to
the T parameter is quadratic in these spurions. The spurion
�y� always comes from diagrams with a loop of elemen-
tary Higgs fields, so we have

L eff � �4

16�2
F

 
D�

�
;
�y�
16�2

;
H�

�

!
; (3.43)

where F is an order-1 function of dimensionless argu-
ments. From this we see that the largest contribution to
the T parameter from the couplings �u;d comes from

couplings such as

�Leff ¼ cT
16�2

½trðH�D��
yÞ�2; (3.44)

where cT � 1. This gives

�m2
W ¼ �m2

W� � �m2
W3

� g2f2

4
ð�u � �dÞ2; (3.45)

or

�TUV ¼ ��1 �m
2
W

m2
W

� ��1ð�u � �dÞ2; (3.46)

where the expansion parameters �u;d are defined in

Eq. (3.12). For the values used above, we find �T � 0:3,
which is just the right size to get a good precision electro-
weak fit (see below).

There is another UV contribution to the T parameter in
the strong sector coming from Uð1ÞY loops that is of order

�T ��1=4�. This should be regarded as an additional
uncertainty on the size of the T parameter in these models.
This contribution is sufficiently small that it does not
affect our conclusions below.
There are also IR contributions to the T parameter from

states below the scale �. The largest contribution comes
from the light Higgs. For large tan	 this is mainly the
excitation from Hu and we have simply

�TIR ¼ � 3

16�cos2�W
ln

m2
h

m2
h;ref

: (3.47)

The mass eigenstates ðA0
1; H

�
1 Þ and ðA0

2; H
�
2 Þ form approxi-

mately degenerate custodial SUð2Þ multiplets, and we will
neglect their contribution to the T parameter. Note that
there is already a large uncertainty in the T parameter
because we only know the order of magnitude of the
effective coupling cT in Eq. (3.44).
To give some idea of the prospects for a precision

electroweak fit, we plot these estimates in Fig. 3. We
assume that the UV contribution to the S parameter is
given by the QCD value Eq. (3.41) and the UV contribution
to the T parameter is given by the right-hand side of
Eq. (3.46). We assume that the UV contribution to the T
parameter is positive, as suggested by perturbation theory.
With these assumptions, the plot shows the values of S
and T for light Higgs masses of 120 and 350 GeV. For
each Higgs mass there is a line of values corresponding
to different values of custodial SUð2Þ violation from
the couplings �u;d. The curves are not entirely in the T

0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4
0.3

0.2

0.1

0

0.1

0.2

0.3

0.4

S

T

FIG. 3 (color online). Electroweak fit for f ¼ 100 GeV,
tan	 ¼ 5, B� ¼ 0. The inner (outer) ellipse is the 95% (99%)
confidence level allowed region for a reference Higgs mass of
120 GeV [28]. The dotted blue (dashed red) line corresponds to a
light Higgs mass of 120 (350) GeV in the model of Sec. III. The
dot-dashed black line corresponds to the model of Sec. IV. As
discussed in the text, there are large uncertainties in these curves;
in particular, it is plausible that the S parameter is significantly
smaller. The assumptions that go into these curves are described
in the text.
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direction because the masses of the heavy PNGB fields
depend on these couplings, so changing these couplings
gives a contribution to S as well as T. For values of the light
Higgs mass above 350 GeV the expansion is not under
theoretical control because �u becomes too large. The net
result is that a positive contribution to the T parameter can
give a good precision electroweak fit under these assump-
tions, in the region where the theory is under theoretical
control. There is a large theoretical uncertainty in the
predictions for S and T, so the plots cannot be taken too
literally, and our conclusion is that precision electroweak
data does not strongly constrain these models given our
present knowledge. In fact, the only way that precision
electroweak can rule out these models is if either the S
parameter is much larger than expected, or the UV con-
tributions to the T parameter are negative. Neither of these
is expected.

Finally, we consider Z ! �bb. the strong sector couples
weakly to the elementary Higgs fields, which have the
Yukawa couplings to the top and bottom quarks. This
means that any correction to gZ �bb from the strong sector
must be suppressed by y2t as well as �

2
u;d. We write the third

generation Yukawa couplings as

�L ¼ QT
L�H yQc

R þ H:c:; (3.48)

where H is defined in Eq. (3.5) and

QL¼ tL
bL

� �
; Qc

R¼ bcR
tcR

� �
; y¼ yb 0

0 yt

� �
: (3.49)

The leading correction to Z ! �bb comes from effective
interactions of the form

�Leff � 1

ð4�Þ4 Q
y
L �
�QL trðiD���y

yy�y�yÞ: (3.50)

This gives a correction

�gZ �bb

gZ �bb

� y2t
16�2

�2
u

16�2
� y2t

16�2

�
mh

4�v

�
4
�
v

f

�
6
: (3.51)

The standard model agrees with the measured value at
the level of 0.25%, which gives the constraint (for mh ’
120 GeV)

v < 5:6f: (3.52)

This is easily satisfied given the other constraints we have
already considered above.

D. Collider phenomenology

We now discuss the collider phenomenology of this
model, focusing on the LHC. This theory has SUSY broken
at the TeV scale, so it has the standard SUSY signals
resulting from pair production of strongly interacting
superpartners followed by cascade decays. This work

focuses on electroweak symmetry breaking, and does not
prefer any particular pattern of masses for the MSSM
superpartners.
In addition to the standard SUSY signals, this model

extends the MSSM Higgs sector with a custodial SUð2Þ
triplet of PNGBs, which mix with the CP odd Higgs fields
of the MSSM. The heavy mass eigenstates A0

2 and H�
2 are

dominantly from the strong sector, with Oðf=vÞ mixing
with the light MSSM Higgs fields. The A0

2 can be directly
produced via gluon-gluon fusion through a top quark loop,
with a cross section of order f2=v2 times the standard
model cross section. FormA0

2
¼ 500 GeV this cross section

is of order 10 fb at the LHC. The A0
2 has potential decay

modes A0
2 ! h0Z and A0

2 ! A0
1h

0 followed by either

A0
1 ! �tt or Zh0. As we have seen above, we can get a

good precision electroweak fit for large values of the h0

mass, so we can have either h0 ! �bb or WW=ZZ. There
are many possible final states to investigate, but the
common feature is a high multiplicity of heavy standard
model particles.
We can also produce heavy hadrons from the strong

sector. These are expected to be at the scale 4�f� TeV.
They can be produced via vector boson fusion (for reso-
nances of spin 0, 1, or 2), or by mixing with the W and Z
(for spin 1). NDA tells us that the couplings of such a
resonance � are

L eff � ð@�Þ2 þ�2�2 þ g

4�
�2�W þ g2

4�
��WW þ � � � :

(3.53)

This is the same coupling as in traditional technicolor
theories, but with a reduced strong scale �. The mixing
of spin-1 resonances with theW and Z is therefore of order
g=4�, so we have production of neutral spin-1 resonances
with a cross section suppressed by g2=16�2 compared to a
sequential Z0 of the same mass. Production via vector
boson fusion is also possible.
These heavy resonances will generally decay to 2-body

final states involving strong particles, i.e. they will pair
produce A0

2 and H�
2 . The decays of the A0

2 have been

discussed above. The dominant decays of the heavy
charged Higgs fields are expected to be H�

2 ! W�h0
and H�

2 ! A0
1W

�. The light charged Higgs fields can

decay via Hþ
1 ! �bt or Wþh0. We see that this opens up

even more final states with even higher multiplicity of
heavy standard model particles.
It should be clear from this discussion that the phenome-

nology is very rich and exciting. We will leave detailed
investigation of LHC signals to future work.

IV. STRONG ELECTROWEAK
SYMMETRY BREAKING

We now consider another scenario for electroweak
symmetry breaking where there are no elementary Higgs

SUPERCONFORMAL TECHNICOLOR: MODELS AND . . . PHYSICAL REVIEW D 85, 015018 (2012)

015018-13



fields below the TeV scale. The theory at the TeV scale
consists of the MSSM without the Higgs fields, plus a
strong conformal sector. SUSY breaking at the TeV scale
gives masses to the MSSM superpartners, and triggers
confinement and chiral symmetry breaking in the strong
sector, breaking electroweak symmetry. Quark and lepton
masses arise from interactions between the strong sector
and the quarks and leptons.

As described above, this scenario is very similar to
conformal technicolor. The main difficulties in construct-
ing a realistic model of conformal technicolor are con-
structing a mechanism to generate the top quark mass
without flavor-changing neutral currents, and the precision
electroweak tests. The presence of SUSY broken at the
TeV scale greatly alleviates both of these problems, as we
will discuss below. The absence of a light Higgs of course
means that the SUSY Higgs mass problem is absent, which
is the main motivation for this model.

A. Flavor

We first discuss the origin of the quark and lepton
masses. The strong sector is assumed to contain chiral
superfield operators Ou;d with the quantum numbers of

the MSSM Higgs fields. These have Yukawa-type cou-
plings with the quark and leptons superfields that generate
fermion masses. In any interacting conformal theory the
operators Ou;d have dimension d > 1, so the Yukawa

interactions are irrelevant interactions. (In the model
described in Sec. II, d ¼ 3

2 .) The general danger in confor-

mal technicolor is thatOy
u;dOu;d has dimension<4, so that

there is a relevant singlet operator. But this operator is not
invariant under SUSY, and is therefore protected from
large UV contributions. This is just a restatement of the
well-known fact that scalar mass terms are forbidden by
SUSY, even for fields with d ¼ 1.

The Yukawa coupling responsible for the top quark
mass gets strong at a scale �t that is quite low, even for
small values of d. (For d ¼ 3

2 ,�t � 600 TeV.) At or below

the scale �t we need a theory that generates these inter-
actions without generating additional interactions that
lead to large flavor-changing neutral currents. These can
be generated by exchange of elementary scalars with the
quantum numbers of Higgs doublets [5]. These scalar
fields have ordinary Yukawa couplings with quarks and
leptons, and therefore have minimal flavor violation. (Of
course, because the theory is supersymmetric at the TeV
scale we still have to address the SUSY flavor problem
associated with squark and slepton masses and A terms.)
For �t � TeV, getting a sufficiently large top mass re-
quires that these scalars have large couplings to the top
quark, the strong sector, or both [6].

An alternative is to have �t � TeV. This is very natural
in the present class of models: the elementary Higgs scalars
can have positive mass-squared terms of order the TeV
scale, and generate the required couplings at this scale. The

couplings of the elementary Higgs fields to the strong
sector are generally relevant interactions, and so one
must explain why these interactions are important at the
SUSY breaking scale. This is similar to the problem of
explaining why the � term of the MSSM is of order the
SUSY breaking scale, and in the model of Sec. II we give a
solution based on a generalization of the Giudice-Masiero
mechanism. If we normalize the Higgs coupling to the
strong sector at the TeV scale like a dimensionless
Yukawa coupling yTC, we have

mt � ytyTCv: (4.1)

We see that this requires neither the top quark Yukawa
coupling nor the coupling of the Higgs to the strong sector
to be strong.

B. Precision electroweak fit

We now turn to the precision electroweak fit. Many
of the comments made in Sec. III C apply to this case as
well, so we will be brief.
We begin with the S parameter. The strong sector need

not have large N, and so the contributions to the S parame-
ter from this sector are not large to begin with. In addition,
there are good reasons to think that the UV contribution
to the S parameter may be significantly reduced compared
to the QCD value. This is suggested by recent lattice
calculations [23], and there are theoretical arguments that
this occurs in theories that are conformal above the TeV
scale [22]. The IR contribution to the S parameter is as in
technicolor:

SIR ¼ 1

12�
ln

�2

m2
h;ref

; (4.2)

where �� 4�v� 3 TeV.
We now discuss the T parameter. The couplings of the

elementary scalars to the strong sector that generate quark
and lepton masses in general violate custodial symmetry,
and give an additional contribution to the T parameter. We
assume that this contribution is positive (as suggested by
perturbation theory), in which case it can help with the
precision electroweak fit. There is no limit to how large
this contribution can be, since the couplings of the Higgs
fields to the strong sector can naturally be strong at the TeV
scale. This requires a reduced value for the top quark
Yukawa coupling; see Eq. (4.1). On the other hand, it is
natural for custodial symmetry to be an approximate
symmetry of this sector, so these contributions to the T
parameter need not be large.
The upshot is that the T parameter is an adjustable

parameter in this model. This is illustrated in Fig. 3. Here
we have simply assumed the QCD value for the UV con-
tribution to the S parameter together with an arbitrary
positive T contribution. To get a good precision electro-
weak fit, the UV contribution to S must be reduced com-
pared to the QCD value, but a factor of 2 is more than
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sufficient. This is clearly within the uncertainties (see the
discussion in Sec. III C), and we conclude that precision
electroweak is not a strong constraint on these models
given our present state of knowledge.

Finally, we discuss Z ! �bb. In this model, the strong
sector couples directly to the top and bottom quarks, so
the leading correction to Z ! �bb comes from effective
interactions of the form

�Leff � 1

�2
trðD��yy

y�yÞQy
L


�QL þ H:c:; (4.3)

where y is defined in Eq. (3.49). This gives

�gZ �bb

gZ �bb

� y2t
16�2

: (4.4)

The standard model agrees with the measured value at the
level of 0.25%, and this contribution is about the same size.
We conclude that this correction is at the level of the
measured precision, but there is no direct conflict.

C. Phenomenology

Below the scale �� 4�v� 3 TeV the light states in
this model include the usual MSSM superpartners, minus
the Higgs and Higgsino fields. The absence of the Higgsino
fields simplifies the chargino and neutralino sectors of the
theory. In particular, the lightest neutralino is a mixture of
the Bino and theWino. Their mixing is suppressed because
the Higgs fields are heavy, so the only neutralino thermal
dark matter candidate is a light Bino, requiring slepton
masses right near the experimental limits [27]. There are of
course many other possibilities for dark matter in super-
symmetric theories.

We now turn to the LHC phenomenology of this model.
In addition to the standard SUSY signals, this theory has a
strong electroweak symmetry breaking sector at the TeV
scale. The minimal model has a strong sector with a
SUð2ÞL � SUð2ÞR symmetry broken down to the diagonal
SUð2Þ. Nonminimal symmetry breaking patterns with ad-
ditional PNGBs are also possible, but are not discussed
here. An important difference from traditional technicolor
models is that the strong sector generally does not have an
approximate parity symmetry that interchanges SUð2ÞL �
SUð2ÞR. This arises because the technisquarks charged
under SUð2ÞL and SUð2ÞR need not have the same masses.
Since these masses determine the confinement scale, this
breaking of parity is unsuppressed at this scale. This
implies that the resonances that unitarize WW scattering
can generally decay to WWW as well as WW.

V. CONCLUSIONS

This work has begun the exploration of models in which
SUSY breaking triggers confinement and chiral symmetry
breaking in a strong sector at the TeV scale. This is very
generic in SUSY gauge theories with a strong conformal

fixed point, since soft SUSY breaking in the strong sector
also breaks conformal invariance softly. This generates
masses for all scalars in the strong sector, while fermion
masses are generally protected by chiral symmetries. Since
the gauge coupling is strong at all scales, this very plau-
sibly leads to confinement and chiral symmetry breaking
at the SUSY breaking scale.
We have considered models in which the strong dy-

namics breaks electroweak symmetry, in two different
limits. In one limit the strong sector induces large VEVs
in elementary Higgs fields, while in the other the strong
dynamics is solely responsible for electroweak symmetry
breaking. Both of these scenarios can have a good preci-
sion electroweak fit thanks to an adjustable T parameter
arising from the elementary Higgs couplings to the strong
sector. Both have no problems generating the large top
quark mass without additional flavor-changing interac-
tions. Both scenarios share the usual SUSY flavor prob-
lem with the MSSM, which may be solved using one of
the many mechanisms in the literature. The important
point is that the presence of the strong dynamics does
not give rise to any additional flavor problem. Unlike the
MSSM, gauge coupling unification is no longer a predic-
tion of the models described here, since the strong sector
affects the evolution of the SUð2ÞW �Uð1ÞY gauge cou-
plings but not SUð3ÞC. Unification can be accommodated
with additional matter fields, which however have no
other apparent motivation in this framework. The phe-
nomenology of these scenarios is rich and deserves further
study. We also believe that further theoretical investiga-
tion of the combination of SUSY breaking and strong
dynamics will be fruitful.
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APPENDIX: SINGLET SOFT MASSES

We now discuss the effect of a universal soft SUSY
breaking mass for the singlets Sij in the model of

Sec. II B. The terms in the UV Lagrangian involving S
can be written

L ¼
Z
d4�ZSS

y
ijSijþ

�Z
d2��ijSij�i�jþH:c:

�
: (A1)

The universal soft mass can be parametrized by a nonzero
D component for ZS:

ZS � 1þDS�
4; (A2)

where DS �M2
SUSY 	 �2�. We can think of ZS as a gauge

field for a Uð1ÞS gauge symmetry under which
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Sij�ei�Sij; ��e�i��; ZS�eið���yÞZS; (A3)

where � is a chiral superfield gauge transformation
parameter. The fact that � � 0 breaks the Uð1Þ gauge
symmetry explicitly, but this breaking is soft in the UV
theory. Another important symmetry is a Uð1ÞR symmetry
with charges

Rð�Þ ¼ 1
2; RðSÞ ¼ 1: (A4)

Now consider this theory below the scale �� where the
couplings � become strong. The question is then how does
the spurion ZS appear in the low-energy effective theory?
The low-energy degrees of freedom are the dual techni-

quarks ~� which carry no Uð1ÞS charge. The dependence
on ZS is therefore via the Uð1ÞS gauge invariant
quantities

� ¼ �y�
ZS

; (A5)

S� ¼ �D2D� lnZS: (A6)

� is proportional to the physically normalized super-
potential coupling strength, while S� is the Uð1ÞS gauge
field strength. These contain SUSY breaking

�� �2ð1þ �4DSÞ; (A7)

S� � ��DS; (A8)

and therefore parametrize the SUSY breaking arising
from the S soft mass in the low-energy theory. For
example, the effective theory contains the terms

�Leff �
Z

d4�� ~�y ~�: (A9)

This gives a universal soft mass for the dual techniquarks.

Since the operator ~�y ~� has dimension >2, this operator
becomes important at a scale parametrically belowMSUSY.

There can be terms in the effective Lagrangian propor-
tional to strong operators that are not singlets, which are
not required to be irrelevant operators. These all involve
the spurion S� since � is a singlet under all symmetries.
It is easily checked that there are no allowed F terms
involving S� allowed by Uð1ÞR symmetry. We can
systematically enumerate all D terms involving S�. An
example isZ

d4�S�O� ¼ DS � �D2D�O�j�¼0: (A10)

Unitarity requires dimðO�Þ> 3
2 , so the operator on the

right-hand side must have dimension > 3
2 þ 3

2 ¼ 3. Since

the theory is strongly coupled, we expect this inequality
to be violated by Oð1Þ. Matching at the scale �� and
running down, we see that dimensionless strength of this
SUSY breaking is

� 	
�
DS

�2�

�
2
�
E

��

��2
: (A11)

This gets strong at a scale

E 	 M2
SUSY

��
	 MSUSY: (A12)

Similarly, we have

Z
d4�D�S�O ¼ DS �D2 �D2Oj�¼0 ) dim>3; (A13)

Z
d4�S�S�O ¼ D2

S � �D2Oj�¼0 ) dim>2; (A14)

Z
d4�S�ðSyÞ _�O� _� ¼ D2

S �D� �D _�O� _�j�¼0 ) dim>4;

(A15)

Z
d4�S�S�ðSyÞ _�O _� ¼ D3

S � �D _�O _�j�¼0 ) dim>2;

(A16)

Z
d4�jS�S�j2O ¼ D4

SOj�¼0 ) dim>2: (A17)

In Eqs. (A13)–(A17) we used the unitarity constraint on
the dimension of operators, while in Eq. (A17) we used
the fact that O is a R ¼ 0 operator, and therefore the
operator

R
d4�O is an allowed term in the Lagrangian, so

O must have dimension >2. All of these terms become
important at scales parametrically below MSUSY. Terms
with additional derivatives are even more suppressed. We
conclude that all possible SUSY breaking terms in the low-
energy theory are suppressed compared to MSUSY.
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