
Holographic approach to low-energy weak interactions of mesons

L. Cappiello,1,2 O. Catà,3 and G. D’Ambrosio2
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We apply the double-trace formalism to incorporate nonleptonic weak interactions of mesons into

holographic models of the strong interactions. We focus our attention upon �S ¼ 1 nonleptonic kaon

decays. By working with a Yang-Mills–Chern-Simons 5-dimensional action, we explicitly show how, at

low energies, one recovers the �S ¼ 1weak chiral Lagrangian for both the anomalous and nonanomalous

sectors. We provide definite predictions for the low-energy coefficients in terms of the AdS metric and

argue that the double-trace formalism is a 5-dimensional avatar of the Weak Deformation Model

introduced long ago by Ecker et al. As a significant phenomenological application, we reassess the

K ! 3� decays in the light of the holographic model. Previous models found a fine-tuned cancellation of

resonance exchange in these decays, which was both conceptually puzzling and quantitatively in

disagreement with experimental results. The holographic model we build is an illustrative counterexample

showing that the cancellation encountered in the literature is not generic but a model-dependent statement

and that agreement with experiment can be obtained.
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I. INTRODUCTION

The AdS/CFT correspondence conjectured by
Maldacena [1] is one of the holographic dualities with
more far-reaching implications for gauge theories. The
correspondence is based on the observation that the gravi-
tational theory generated by a stack of Nc D-branes is dual
to a UðNcÞ (conformal) gauge theory living on the
D-branes. In the limit of large Nc and large ’t Hooft
coupling �s the gravitational theory can be described by
classical supergravity. Subsequent developments [2,3] pro-
vided the necessary tools to make this holographic duality
quantitative, to the point that nowadays it stands as one of
the most solid approaches to the study of strongly-coupled
theories.

The first application to the strong interactions was made
in the deconstructed model of Ref. [4], inspired in Hidden
Local Symmetry models [5]. Soon thereafter versions with
a continuum fifth dimension appeared [6,7]. There are
many features that make holographic approaches to QCD
attractive. In the first place, the AdS metric endows the
model with conformal symmetry. As a result, models
automatically exhibit the short distances of the parton
model. Moreover, the low-energy limit of the theory, i.e.,
chiral perturbation theory, is easily reached once chiral
symmetry is implemented. With these two ingredients,
the theory is guaranteed to smoothly interpolate between
long- and short-distance QCD. In order to have a particle
spectrum, conformal symmetry is broken by the introduc-
tion of an infrared boundary brane. This generates an
infinite number of narrow resonances (the Kaluza-Klein
excitations), which are interpreted as the hadronic spec-
trum. Therefore, holographic theories can be viewed as

realizations of QCD in the large-Nc limit. This viewpoint
was adopted in Ref. [8], where the phenomenology of
vector and axial-vector QCD correlators was investigated.
However, strong effects not only affect QCD correlators,

but are also present in correlators involving weak currents.
In order to obtain predictions for nonperturbative electro-
weak parameters, the previous framework should be ex-
tended to include weak interactions of hadrons. A first step
in this direction was taken in Ref. [9]. Here wewill follow a
different approach. In chiral perturbation theory [10], the
electroweak interactions are introduced as a perturbation to
the strong Lagrangian through the method of external
sources. At the holographic level there exists a prescription
to include perturbative effects in the form of multiple-trace
operators [11]. Since at low energies the weak interactions
adopt a current-current structure, it was recently suggested
[12] that electroweak effects could be incorporated in
holographic models as double-trace deformations.
In this paper we will apply the previous ideas to non-

leptonic kaon decays. These are �S ¼ 1 processes medi-
ated by the W exchange which, at energies below the W
boson mass, can be described by the effective Hamiltonian
[13]

H j�Sj¼1
eff ¼ ��Q� þ H:c:;

� ¼ �GFffiffiffi
2
p VudV

�
usC�ð�Þ; (1)

where

Q� ¼ 4ð�sL��uLÞð �uL��dLÞ � 4ð �sL��dLÞð �uL��uLÞ; (2)

is a four-quark current-current operator of the light u, d, s
quarks and C�ð�Þ is a Wilson coefficient that collects both
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the integrated degrees of freedom above the energy-scale�
as well as perturbative QCD corrections. At energies of the
order of the kaon mass, quarks and gluons hadronize and
the proper framework is chiral perturbation theory, where
one requires the bosonized version of Eq. (1).

In order to describe nonleptonic kaon decays from an
holographic perspective we will start from a strong
5-dimensional Yang-Mills–Chern-Simons action and in-
troduce Eq. (1) with the bosonized Q� as a double-trace
perturbation. We will explicitly show that at low energies
one recovers the well-known chiral Lagrangian for the
strong and �S ¼ 1 electroweak interactions, with definite
predictions for the low-energy couplings. Interestingly, the
double-trace formalism turns out to be the 5-dimensional
analog of the so-called Weak Deformation Model (WDM),
a heuristic model introduced in [14] to constrain the weak
low-energy couplings. We clarify the relation between
WDM and factorization in 4-dimensional theories by
showing that the former is a truncated version of the latter,
and discuss the difficulties to achieve full factorization in
holographic settings.

As a representative phenomenological application, we
will discuss K ! 3� decays. These modes were examined
in the past using different hadronic models [15–17]. One of
the underlying assumptions in all these models (and also in
our holographic prescription) is that (vector) resonance
exchanges are the bulk contribution to both strong and
electroweak chiral couplings. This resonance saturation
was shown to be successful for the strong sector [18]
and for many weak channels, but failed dramatically for
K ! 3� decays. Since all the existing models predicted a
vanishing resonance contribution, K ! 3� has stood out
as an unexplained exception to resonance saturation. We
show that the vanishing resonance contribution is not a
generic feature of K ! 3� but it is due to a model-
dependent accidental cancellation, which is phenomeno-
logically disfavored. Interestingly, the holographic model
does not reproduce such cancellation, better phenomeno-
logical agreement is achieved and shows that resonance
saturation is at work also for this channel.

This paper is organized as follows: In Sec. II, we will
introduce the holographic model for the strong interac-
tions. The multiple-trace formalism will be briefly dis-
cussed in Sec. III and applied to nonleptonic kaon
decays. In Sec. IV, we work out the low-energy limit of
the model and recover the chiral Lagrangian for the strong
and electroweak theories to next-to-leading order, together
with predictions for the low-energy couplings. The anoma-
lous sector, related to the Chern-Simons term, is analyzed
in Sec. V. Section VI is devoted to K ! 3� decays within
the holographic model. Conclusions are given in Sec. VII.

II. THE HOLOGRAPHIC MODEL

We will work with the model of Ref. [8], given by the
chiral invariant 5-dimensional Yang-Mills action

SYM½LM; RM� ¼ � 1

4g25

Z
d4x

Z z0

0
dz

ffiffiffi
g
p hFMN

ðLÞ FðLÞMN

þ FMN
ðRÞ FðRÞMNi: (3)

This action is leading order in the 1=Nc and 1=�s expan-
sions and therefore an appropriate starting point for a
holographic description of QCD [7,19]. In order to account
for the anomalous sector of the theory, described by parity-
odd operators, we will also consider the 5-dimensional
Chern-Simons action:

SCS½LM; RM� ¼ Nc

24�2

Z
AdS5

½!5ðLMÞ �!5ðRMÞ�; (4)

where

!5ðLMÞ ¼
�
LF2
ðLÞ �

1

2
L3FðLÞ þ 1

10
L5

�
: (5)

In the previous equations h� � �i stands for the trace over

flavor, LM ¼ La
MT

a is the SUð3ÞL gauge field, i.e., LM !
GLLMG

y
L þ iGL@MG

y
L and, accordingly, FðLÞMN ¼

@MLN � @NLM � i½LM; LN�. For the Chern-Simons form
we use the conventions FðLÞ ¼ dLþ L2 with L ¼
�iLaTa. Similar expressions hold for the right-handed
field. Their relation to vector and axial fields is VM ¼
RM þ LM and AM ¼ RM � LM. We choose the metric to
be pure AdS,

gMNdx
MdxN ¼ z�2ð���dx

�dx� � dz2Þ; (6)

where ��� ¼ Diagð1;�1;�1;�1Þ, �, � ¼ ð0; 1; 2; 3Þ and
M, N ¼ ð0; 1; 2; 3; zÞ, over a finite interval ð0; z0�. As a
result, boundary conditions for the fields have to be speci-
fied. On the UV brane the AdS/CFT correspondence
prescribes

L�ðx; 0Þ ¼ l�ðxÞ; R�ðx; 0Þ ¼ r�ðxÞ; (7)

where l�ðxÞ and r�ðxÞ are identified with the classical

4-dimensional sources coupled to the chiral currents
JL� ¼ �qL�

�qL and JR� ¼ �qR�
�qR. They transform as

l� ! gLl�g
y
L þ igL@�g

y
L (similarly for r� with the ob-

vious replacements), where gL is the restriction of GL on
the UV brane.
While conditions on the UV brane come naturally from

the holographic duality between gravity and gauge theo-
ries, the choice of boundary conditions on the IR brane is
dictated by the low-energy characteristics of the field
theory under study. In the case of QCD, the presence of
the IR brane itself guarantees that conformal invariance is
broken and generates a hadronic spectrum with an infinite
number of resonances. Chiral symmetry and its breaking
pattern can be implemented in different ways. In Ref. [8],
chiral symmetry breaking was induced entirely through the
IR boundary conditions. In order to reproduce the observed
pattern SUð3ÞL � SUð3ÞR ! SUð3ÞV it is convenient to
work with Dirichlet IR boundary conditions for the axial
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field and Neumann boundary conditions for the vector
field. In terms of the left and right chiral fields they read

L�ðx; z0Þ � R�ðx; z0Þ ¼ 0; (8)

F
z�
ðLÞðx; z0Þ þ F

z�
ðRÞðx; z0Þ ¼ 0: (9)

The previous asymmetric choice of boundary conditions
ensures that: (a) chiral symmetry is broken and thereby an
energy splitting between vector and axial resonances is
generated; (b) the Neumann boundary condition for the
vector field is gauge invariant and therefore SUð3ÞV is a
symmetry of the field theory; while (c) Dirichlet boundary
conditions break gauge invariance and lead to the appear-
ance of an axial zero-mode.

The axial zero-mode can then be interpreted as the pion
in the following way. Since the 5-dimensional fields are
massless, there is some gauge redundancy that can be
eliminated. For convenience one works in the axial gauge,
such that Lz ¼ Rz ¼ 0. This can be achieved by gauge-
transforming the 5-dimensional fields with the following
Wilson lines:

�Lðx; zÞ ¼ P exp

�
�i

Z z0

z
dz0Lzðx; z0Þ

�
;

�Rðx; zÞ ¼ P exp

�
�i

Z z0

z
dz0Rzðx; z0Þ

�
; (10)

defined such that they start at the IR brane and end at the
UV brane. Thus, �L;Rðx; z0Þ ¼ 0 by construction and the

infrared boundary conditions Eq. (8) are respected.1 In
contrast, �L;Rðx; 0Þ � 0 and the UV boundary conditions

of Eq. (7) change to the chirally-dressed expressions
[��ðx; 0Þ � ��ðxÞ]:

Lð0Þ� ðxÞ ¼ �yLðxÞ½l�ðxÞ þ i@���LðxÞ; (11)

Rð0Þ� ðxÞ ¼ �yRðxÞ½r�ðxÞ þ i@���RðxÞ: (12)

The Wilson lines satisfy ��ðxÞ ! g�ðxÞ��ðxÞhðxÞ, where
g� 2 SUð3Þ� and hðxÞ 2 SUð3ÞV . One can then eliminate
the residual dependence on hðxÞ by building the SUð3ÞL �
SUð3ÞR invariant object:

UðxÞ ¼ �RðxÞ�yLðxÞ; (13)

which is a chiral field that contains the Goldstone bosons. It

is common to work in the particular gauge �RðxÞ ¼
�yLðxÞ � uðxÞ. From here on we will adopt this gauge.
Therefore,

Lð0Þ� ðxÞ ¼ uðl� þ i@�Þuy ¼ i�� � 1
2u�;

Rð0Þ� ðxÞ ¼ uyðr� þ i@�Þu ¼ i�� þ 1
2u�; (14)

where U ¼ u2 and we have used the chiral connection ��

and the vielbein u�, defined as

�� ¼ 1
2½uyð@� � ir�Þuþ uð@� � il�Þuy�; (15)

u� ¼ i½uyð@� � ir�Þu� uð@� � il�Þuy�
¼ iuyD�Uuy ¼ �iuD�U

yu; (16)

with D�U ¼ @�U� ir�Uþ iUl�. �� and u� are

chirally-dressed vector and axial source fields, respec-

tively, i.e., Vð0Þ� ðxÞ ¼ 2i�� and Að0Þ� ðxÞ ¼ u�. In view of

what we will discuss in subsequent sections, it is conve-
nient to examine the behavior of the on-shell solutions of
Eq. (3) away from the UV boundary. Solving the equations
of motion one finds

L�ðx; zÞ ¼ Lð0Þ� ðxÞ þ Lð1Þ� ðxÞz2 þ L̂ðx; zÞ;
R�ðx; zÞ ¼ Rð0Þ� ðxÞ þ Rð1Þ� ðxÞz2 þ R̂ðx; zÞ: (17)

The first two terms in each equation are the solution of the
linearized equations of motion at zero momentum, i.e.,
they describe the zero modes of the bulk-to-boundary
propagators. The quadratic dependence on z is a direct
consequence of the conformal invariance induced by the
AdS metric. Taking into account the boundary conditions
of Eqs. (8) and (9), one can show that

Lð1Þ� ¼ �Rð1Þ� ¼ 1

2z20
u�: (18)

The last terms in Eqs. (17) encode the contributions of the
Kaluza-Klein tower of massive resonances, which can be
found by solving the equations of motion for nonzero
momentum. We will not give their explicit expressions.
For our purposes it will suffice to note that their contribu-
tion starts at Oðp3; z3Þ.

III. EFFECTIVE WEAK HAMILTONIAN AS A
DOUBLE-TRACE DEFORMATION OF

HOLOGRAPHIC QCD

In this section we will briefly summarize the discussion
of Ref. [11] for multiple-trace operators to later on apply it
to the electroweak theory.

A. Multiple-trace operators in AdS/CFT

Let us consider a generic field 	ðx; zÞ in AdS space.
Near the UV boundary, z! 0, the solution of the free
equation of motion is

	ðx; zÞ �	0ðxÞz�� þ	1ðxÞz�þ ; (19)

where �� are the roots of the equation �ð�� dþ 2pÞ ¼
m2

	, withm	 being the 5-dimensional mass of the field and

p its form degree, e.g., p ¼ 0 for scalars and p ¼ 1 for
vectors. If we choose �þ >��, then 	0ðxÞ is the leading
coefficient while	1ðxÞ is subleading. The evaluation of the

1Notice that Eq. (9) is trivially satisfied due to gauge
invariance.
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5-dimensional action with the field 	ðx; zÞ on-shell leaves
a UV boundary term, which according to the AdS/CFT
prescription for correlators [2,3]

expðiS5½	0ðxÞ�Þ ¼
�
exp

�
i
Z

d4xsðxÞOðxÞ
��

QCD4

; (20)

is identified with the generating functional of the
4-dimensional theory in the presence of an external
(classical) source sðxÞ coupled to the single-trace operator
OðxÞ (with conformal dimension ��). Quite generically,
one finds that

W ¼
Z

d4xsðxÞOðxÞ �
Z

d4x	0ðxÞ	1ðxÞ: (21)

The previous prescription allows one to identify 	0ðxÞ and
	1ðxÞ as, respectively, the source and the one-point func-
tion for the operator OðxÞ. More formally, one can write2

	0ðxÞ ¼ sðxÞ ¼ 
W


	1

; (22)

	1ðxÞ ¼ hOðxÞis ¼ 
W


	0

; (23)

which explicitly shows that 	0ðxÞ and 	1ðxÞ are canoni-
cally conjugated quantities.

Strictly speaking, the identification (23) can be fully
exploited only after the IR behavior of the solution has
been fixed, either by the requirement of normalizability, in
the pure AdS case, or by suitable IR boundary conditions in
QCD-like models. Once this is done, 	1ðxÞ can be related
to 	0ðxÞ through

	1ðxÞ ¼
Z

d4x0Gðx; x0Þ	0ðxÞ; (24)

and accordingly,

W ¼
Z

d4xd4x0sðxÞGðx; x0Þsðx0Þ; (25)

where Gðx; x0Þ is the two-point function in coordinate
space. In other words, once IR boundary conditions are
imposed the z-dependent factor builds the bulk-to-
boundary propagator.

So far the discussion has been restricted to single-trace
operators OðxÞ. Perturbations due to multiple-trace opera-
tors will generate a functionalW½O� no longer linear inO.
The prescription outlined in [11] is to identify the sources
for this more general case by imposing that the canonical
relations of Eqs. (22) and (23) remain valid for arbitrary
W½O�. Therefore,

	0ðxÞ ¼ 
W½O�

O

��������O!	1ðxÞ
: (26)

For our purposes we will be interested in double-trace
perturbations of the form W½O� ¼ W0½O� þ �1W1½O2�
and therefore the previous prescription will imply the
(infinitesimal) canonical transformation generated by
W1½O�:

hOðxÞis¼	1ðxÞ; sðxÞ¼	0ðxÞþ�1

W1½O�

O

��������O!	ð1ÞðxÞ
:

(27)

B. Double-trace formalism for the weak interactions

Let us now apply the general procedure outlined previ-
ously to introduce weak sources in the holographic model
of Sec. II. Let us first determine the chiral currents. For that
we only need to consider W0½JL�; JR��, which can be

easily found to be

W0½JL�;JR��¼� 1

2g25
lim
z!0

Z
d4x

�
L�

1

z
@zL

�þR�

1

z
@zR

�

�
:

(28)

Plugging Eq. (17) into the previous expression, one

finds that W0½JL�; JR�� �
R
d4x���hLð0Þ� ðxÞLð1Þ� ðxÞ þ

Rð0Þ� ðxÞRð1Þ� ðxÞi, which complies with Eq. (21). Matching
it to the general formW0½JL�; JR�� ¼

R
d4xhl�ðxÞJL�ðxÞþ

r�ðxÞJR�ðxÞi one can extract the chiral currents as the

derivatives over the source fields. Proceeding this way,
one finds

hJL�ðxÞil� ¼ �
f2�
2
uyu�u ¼ �i f

2
�

2
UyD�U; (29)

hJR�ðxÞil� ¼
f2�
2
uu�u

y ¼ i
f2�
2
UD�U

y: (30)

As expected, the previous expressions correspond to the
bosonized chiral currents of the Oðp2Þ strong chiral

Lagrangian, where we have identified f� ¼
ffiffiffi
2
p ðg5z0Þ�1.

Incidentally, notice that the chiral dressing of the fields
L�ðxÞ and R�ðxÞ carries over to the current operators. We
stress that the previous expressions refer to one-point
functions of 4-dimensional operators with external (chiral)
sources turned on. Obviously, they are nonvanishing even
when the external sources are turned off. In that case, they
are vacuum expectation values of S�SB induced by the IR
boundary conditions.
Let us now consider the addition of electroweak�S ¼ 1

nonleptonic operators. As we discussed in the Intro-
duction, at energy-scales �QCD & � & mW the effective

Hamiltonian is proportional to a single operator, Q�.
Therefore, the effective action on the UV boundary will
take the form W½JL�; JR�� ¼ W0½JL�; JR�� þ �W1½JL��,

2Depending on the field under consideration, the expressions
above may need to be regularized. In that case, one should
replace W ! W þWc, where Wc contains operators acting as
counterterms. In this paper we will be dealing with vector fields,
for which no such regularization is needed.

L. CAPPIELLO, O. CATÀ, AND G. D’AMBROSIO PHYSICAL REVIEW D 85, 015003 (2012)

015003-4



with � defined in Eq. (1) and W1½JL�� proportional to the

chiral realization of Q�. The resulting operators transform
under the gauge group as ð8L; 1RÞ and ð27L; 1RÞ, which
correspond, respectively, to �I ¼ 1=2 and �I ¼ 3=2 tran-
sitions. It turns out that phenomenologically the octet
operators are enhanced, a circumstance known as the�I ¼
1=2 rule. Thus, to a very good approximation, the boson-
ization of Q� amounts to the replacement3

Q� ! h�6JL�J
�
L i � h�6JL�ihJ�L i; (31)

and, as a result, W1½JL�� is given by

W1½JL�� ¼ �8
Z

d4xfh�6JL�J
�
L i � h�6JL�ihJ�L ig; (32)

where �8 is a chiral coupling that accounts for nonpertur-
bative effects below �QCD.

Direct application of Eqs. (27) results in the following
shift in the left-handed sources:

l� ! l� þ �

W1½JL��

JL�

¼ l� þ ��8½f�6; JL�g � 13h�6JL�i � hJL�i�6�jEq:ð29Þ
¼ l� � ��8

f2�
2
ðf�6; u

yu�ug � 13h�6u
yu�uiÞ; (33)

where in the last line we have dropped the term huyu�ui
since the chiral field is traceless.

In terms of the chirally-dressed fields at the UV bound-
ary, the shift l� ! l� þ �
lW� in Eq. (33) amounts to

Lð0Þ� ! Lð0Þ� þ �‘W� , with

‘W� ¼��8f
2
�

2
ðf�;u�g�13h�u�iÞ; ��u�6u

y; (34)

written in such a way that every object transforms in the
adjoint representation of SUð3ÞV .

Notice that the previous prescription allows one to ob-
tain the weak Lagrangian to all orders in the chiral expan-
sion (provided the action is consistently improved with
higher-order operators) through the recipe S½U; l; r� !
S½U; l; r� þ �
S½U; l; r�, where


S½U; l; r� ¼ 
S½U; l; r�

l�


lW� : (35)

Therefore, up to Oðp4Þ in the chiral expansion one needs


S½U; l; r� ¼
�

S2

l�
þ 
S4


l�
þ 
SWZW


l�

�

lW�

¼ ½J�ð1ÞL þ J�ð3ÞL þ J�WZW
L �
lW� ; (36)

where 
Si

l�
� J

�ði�1Þ
L are the associated chiral currents.

IV. LOW-ENERGY REGIME

The starting point is the 5-dimensional action in the
axial gauge Lz ¼ Rz ¼ 0, which can be expressed as

S¼� 1

4g25

Z
d4x

Z z0

0

dz

z
h�2���ð@zL�@zL�þ@zR�@zR

�Þ

þ�����ðFðLÞ��FðLÞ�þFðRÞ��FðRÞ�Þi: (37)

In order to extract the different contributions in the chiral
expansion it is convenient to decompose the fields in the
zero-mode and resonance contribution, as we did in

Eq. (17). From the expressions found for Lð0Þ� and Rð0Þ� , it
is obvious that they areOðpÞ,while the resonance pieces are
Oðp3Þ. Thus, in order to extract the leading Oðp2Þ chiral
contribution from Eq. (37) one needs to consider only the
zero-mode contributions in the first line of Eq. (37). This is
in full agreement with the expectation that the leading
pieces in the chiral Lagrangian are universal, i.e., indepen-
dent of the resonancemodel and only based on the pattern of
chiral symmetry breaking. Two comments are in order at
this point: (i) our results will be restricted to the chiral limit;
and (ii) we will limit ourselves to Oðp4Þ contributions.
Beyond that order, consistency would require to include
higher-order operators into the action.

A. Leading Oðp2Þ operators
The leading strong and electroweak chiral Lagrangians

are commonly parametrized as

S2¼
Z
d4x

f2�
4
hu�u�i; SW2 ¼

Z
d4xG8f

4
�h�u�u�i: (38)

From the holographic point of view, the quantity we have
to evaluate can be expressed as

S2¼� 1

4g25

Z
d4x

Z z0

0

dz

z
h�2���ð@zL�@zL�þ@zR�@zR

�Þi

¼� 1

2g25

Z
d4xhL�

1

z
@zL

�þR�

1

z
@zR

�ijz!0

¼� 1

g25

Z
d4xhLð0Þ� L�ð1ÞþRð0Þ� R�ð1Þi; (39)

where we have integrated by parts and used Eq. (17). The
strong Lagrangian can be readily found using the results of
Eqs. (14) and (18). The result only involves the axial
component of the fields, as it should, and one recovers
the familiar expression:

S2 ¼ 1

2g25z
2
0

Z
d4xhu�u�i: (40)

Matching to the strong part of Eq. (38) requires that f� ¼ffiffiffi
2
p ðg5z0Þ�1, which is consistent with the identification we
made when discussing the chiral currents. The leading
electroweak term can be found by shifting the fields in
Eq. (39) as

3We are neglecting CP-violating terms. If wanted, they can
always be reinstated by replacing �6 ! 1

2 ð�6 � i�7Þ and adding
the Hermitian conjugate.
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Lð0Þ� ! Lð0Þ� þ �‘W� ; Rð0Þ� ! Rð0Þ� ;

Lð1Þ� ! Lð1Þ� � �

2z20
‘W� ; Rð1Þ� ! Rð1Þ� þ �

2z20
‘W� : (41)

Notice that, according to Eq. (18), both Lð1Þ� and Rð1Þ� get
shifted. This leads to

SW2 ¼ �
�

g25z
2
0

Z
d4xhu�‘W� i þOð�2Þ

¼ ��8
f4�
2

Z
d4xh�u�u�i; (42)

which reproduces the chiral electroweak Lagrangian of
Eq. (38) once one identifies4

G8 ¼ 1

2
��8: (43)

Notice that Eq. (42) could have also been obtained in terms
of currents from the first term in Eq. (36):

SW2 ¼ �

S2

l�


lW� ¼ �
Z

d4xhJL�
lW� i

¼ ��8
f4�
4

Z
d4xhuyu�uf�6; u

yu�ugi; (44)

which can be reduced to Eq. (42).

B. Oðp4Þ operators in the chiral expansion

Using a common notation we will parameterize the full
set of operators as

L �
4 ¼

X
i

LiOi þG8f
2
�

X
j

NjOW
j ; (45)

where Oi and OW
j are strong and electroweak operators,

respectively. We have listed the relevant ones in the
Appendix.

The holographic contributions to this order can be ex-
tracted from the zero-mode piece of the fields in the second
line of Eq. (37),

S ¼ � 1

4g25

Z
d4x

Z z0

0

dz

z
�����

� hFðLÞ��FðLÞ� þ FðRÞ��FðRÞ�i: (46)

A potential contribution in the first line of Eq. (37) iden-
tically cancels because there is no mixing between the pion
and axial resonances. This means that the low-energy
couplings obtained in this model do not receive contribu-
tions from resonance exchanges, but rather should be
regarded as geometric terms. Resonance exchange effects
will only start at Oðp6Þ. This seems to be a generic feature
of using vector representations for spin-1 fields [20,21] and

contrasts with the antisymmetric tensor representation of
resonances, where vector exchange is known to start al-
ready at Oðp4Þ [18].
In order to simplify the matching with the operators

listed in the Appendix, it will be convenient to work with
the combinations F��

� ¼ F��
L � F��

R , with the field
strengths defined as FL�� ¼ @�L� � @�L� � i½L�; L��.
On the UV boundary we will adopt the notation f

��
� ¼

f
��
L � f

��
R , where the field strengths are defined accord-

ingly as fL�� ¼ @�L
ð0Þ
� � @�L

ð0Þ
� � i½Lð0Þ� ; Lð0Þ� �. Similar

expressions hold for the right-handed fields. It will also
prove convenient to write the right- and left-handed fields
as

L�ðx; zÞ ¼ �þ½Lð0Þ� þ �‘W� � þ ��R
ð0Þ
�

¼ Lð0Þ� þ ��þ‘W� þ ��u�;

R�ðx; zÞ ¼ ��½Lð0Þ� þ �‘W� � þ �þR
ð0Þ
�

¼ Rð0Þ� þ ���‘W� � ��u�; (47)

where we have defined

�� ¼ 1� �ðzÞ
2

; �ðzÞ ¼ 1� z2

z20
: (48)

It is then rather straightforward to obtain

Fþ�� ¼ fþ�� þ i

2
ð1� �2Þ½u�; u��

þ �½!W
�� þ i

�2

2
ð½‘W� ; u�� � ½‘W� ; u��Þ�; (49)

F��� ¼ �f��� þ ��½!W
�� þ i

2
ð½‘W� ; u�� � ½‘W� ; u��Þ�;

(50)

where we have defined !W
�� ¼ r�‘

W
� �r�‘

W
� and r� is

the chiral covariant derivative, r�� ¼ @� � þ½��; ��.
Equation (37) is therefore proportional to the combination

Fþ��F
��
þ þ F���F

���

¼ fþ��f
��
þ þ �2f���f

��� � 1

4
ð1� �2Þ2½u�; u��½u�; u��

þ ið1� �2Þfþ��½u�; u�� þ �f2ðf��
þ þ �2f��� Þ!W

��

þ 2i�2ðf��
þ þ f��� Þ½‘W� ; u�� þ ið1� �2Þ!W

��½u�; u��
þ �2ð�2 � 1Þ½‘W� ; u��½u�; u��g; (51)

where the first line corresponds to the Oðp4Þ strong chiral
Lagrangian, and the term in brackets contains the electro-
weak contribution.
Comparing the first line of Eq. (51) with the strong

operators listed in the Appendix one finds the following
predictions for the low-energy coefficients of the strong
sector [8]:

4It is also common to work with the parameters c2 and g8,
which are related through c2 ¼ f4�G8 ¼ �f4�g8.
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L1 ¼ 1

32g25

Z z0

0

dz

z
½1� �ðzÞ2�2; (52)

L10 ¼ � 1

4g25

Z z0

0

dz

z
½1� �ðzÞ2�; (53)

H1 ¼ � 1

8g25

Z z0

0

dz

z
½1þ �ðzÞ2�; (54)

L2 ¼ 2L1; L3 ¼ �6L1; L9 ¼ �L10: (55)

The relations connecting L1, L2, and L3 are a direct con-
sequence of the Skyrme structure of the only pure pion
term, i.e., h½u�; u��½u�; u��i, combined with the Cayley-

Hamilton relation for nf ¼ 3:

4hu�u�u�u�i þ 2hu�u�u�u�i � 2hu�u�i2 � hu�u�i2 ¼ 0:

(56)

Regarding the electroweak sector, the specific form for
‘W� yields5

!W
�� ¼ �8

f2�
2
½f�; f���g þ fr��; u�g � fr��; u�g�: (57)

Using this result and after a lengthy but straightforward
derivation, the corresponding matching of Eq. (51) to the
electroweak operators yields the following results for the
weak low-energy couplings:

N1¼� 1

4g25

Z z0

0

dz

z

�
ð1��2Þ

	
1�5

3
�2


�
;

N2¼ 1

4g25

Z z0

0

dz

z

�
ð1��2Þ

	
1þ7

3
�2


�
;

N3¼3

2
N4¼� 1

2g25

Z z0

0

dz

z
½ð1��2Þ�2�;

N14¼�2N37¼ 1

4g25

Z z0

0

dz

z
ð1þ�2Þ;

N15¼2N19¼ 1

2g25

Z z0

0

dz

z
ð1��2Þ;

N16¼2N18¼� 1

4g25

Z z0

0

dz

z
ð1�3�2Þ;

N17¼N20¼0; N25¼ 1

2g25

Z z0

0

dz

z
;

N26¼ 1

2g25

Z z0

0

dz

z
�2; N27¼� 1

8g25

Z z0

0

dz

z
ð�2�1Þ: (58)

Similar to what happened in the strong sector, the matching
of operators requires to use a Cayley-Hamilton relation for
nf ¼ 3, namely,

h�u�u�u�u�i þ 3h�u�u�u�u�i þ 2h�u�u�u�u�i
� 3h�u�u�ihu�u�i � 2h�u�ihu�u�u�i ¼ 0: (59)

C. Connection with WDM and factorization

In principle, the analysis of the Oðp4Þ terms could have
been performed in terms of the chiral currents by consid-
ering Eq. (36), in a way analogous to what we did for the
Oðp2Þ. Thus, the strong and weak chiral operators could
have also been obtained from

S4 ¼ 
S4

r�

rð0Þ� þ 
S4

l�
½lð0Þ� þ �
lW� �

¼
Z

d4x½hJð3ÞL�l
�ð0Þ þ Jð3ÞR�r

�ð0Þi þ �hJð3ÞL�
l
�Wi�: (60)

In practice, however, the determination of Jð3ÞL� and Jð3ÞR� turns

out to be involved, and it is preferable to shift the strong
Lagrangian as we did in the previous section. Equation (60)
is however useful from a formal standpoint. For instance,
one readily sees that, as a consequence of the induced shift
in the left-handed sources, there will be a direct relation
between the strong and weak low-energy couplings.
Different strategies have been previously considered in

the literature to relate the weak couplings to the strong
ones. The reason is that while chiral symmetry predicts the
form of the strong and weak operators, experimental in-
formation is too scarce to constrain all the low-energy
couplings. In order to be predictive, an extra mechanism
has to be invoked. The most prominent approaches
considered so far were the Factorization Model (FM)
[22] and the Weak Deformation Model (WDM) [14]. The
FM assumes that the weak current-current operators are, to
a very good approximation, a product of color-singlet
currents, i.e.,

LFM �
Z

d4x

�
�6


S


l�


S


l�

�

¼
Z

d4x

�
�6

�

S2

l�
þ 
S4


l�
þ � � �

��

S2

l�
þ 
S4


l�
þ � � �

��

¼
Z

d4x

�
�6

�

S2

l�


S2

l�
þ

�

S2

l�


S4

l�
þ 
S4


l�


S2

l�

�

þ
�

S2

l�


S6

l�
þ 
S4


l�


S4

l�
þ 
S6


l�


S2

l�

�
þ � � �

��
: (61)

Corrections to the previous expression appear as gluon
exchanges between the currents. The FM therefore as-
sumes that they are a subleading effect.
On the other hand, the WDM is based on the heuristic

observation that the Oðp2Þ weak Lagrangian can be ob-
tained from the strong one by the substitution rule

u� ! u� þG8f
2
�

�
fu�;�g � 2

3
�hu��i13

�
: (62)

5Terms proportional to the identity matrix in !W
�� give vanish-

ing contributions to Eq. (51) and are therefore omitted.
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The corresponding transformation of the chiral connection
is achieved by requiring that the deformation is purely left-
handed. This entails that

�� ! �� þ i

2
G8f

2
�

�
fu�;�g � 2

3
�hu��i13

�
; (63)

such that the right-handed combination �� � i
2u� is left

unchanged.
It is instructive at this point to examine the relation

between the holographic model (HEW), WDM and FM.
On the one hand, one can easily check that the induced
shift of left-handed sources in HEW can be written in terms
of vector and axial sources as

Vð0Þ� ¼ 2i�� þ �‘W� ; Að0Þ� ¼ u� � �‘W� : (64)

Using Eq. (34) for ‘W� , together with G8 ¼ ��8=2, one

concludes that the holographic deformation is equivalent
to the WDM for � ¼ 3

2 . On the other hand, the double-trace

formalism we have employed assumes that the weak cur-
rents are color singlets, and therefore there has to be also a
connection with FM. Actually, one can show that

LHEW � 1

2

Z
d4x

�

S


l�
‘W�

�

¼ 1

2

Z
d4x

�	

S2

l�
þ 
S4


l�
þ 
S6


l�
þ � � �



‘W�

�

¼
Z

d4x

�
�6

�

S2

l�


S2

l�
þ 1

2

�

S2

l�


S4

l�
þ 
S4


l�


S2

l�

�

þ 1

2

�

S2

l�


S6

l�
þ 
S6


l�


S2

l�

�
þ � � �

��
; (65)

where in the last line we have used that ‘W� ¼ f�6;

S2

l�
g.

Direct comparison with Eq. (61) shows that FM and HEW
are equivalent to leading order, while at subleading order
they differ only by a numerical factor. Beyond that order,
HEW has missing terms.

It is instructive to compare our previous result with the
statement made in Ref. [16], namely, that WDM and FM
are equivalent up to Oðp4Þ, if one corrects for a fudge
factor 1

2 . We observe that Eq. (65) indeed complies with

this statement. However, it would be more accurate to state
that WDM is a truncated version of factorization. The same

applies to HEW. This can be easily seen if we let ‘W� ¼
f�6;


S2

l�
þ 
S4


l�
g. Then one can readily see that the fudge

factor between both models is no longer needed. Only
now one can claim that WDM and factorization are equiva-
lent up to Oðp4Þ. By induction one can conclude that both
models will be equivalent only when the sources contain
the resummed chiral current, i.e., ‘W� ¼ f�6;


S

l�
g. In the

conclusions we will comment on the possibility of enhanc-
ing the chiral current this way in HEW.

Strictly speaking, the previous connections between
models are only valid if the �-term in Eqs. (62) and (63)
is ignored. We already discussed that WDM and HEW are
equivalent for the particular value � ¼ 3

2 . The �-term is

proportional to the identity and therefore related to the
presence (or absence) of singlet sources. In the absence
of singlet sources, consistency in the WDM requires that
� ¼ 1, but � is left undetermined once singlet sources are
allowed in. Therefore, HEW is equivalent to WDM up to
terms involving singlet sources. On the other hand, in
Ref. [16] it was shown that the above-mentioned equiva-
lence between WDM and FM at Oðp4Þ persisted in the
presence of singlet sources only if � ¼ 3

2 .

At Oðp4Þ, one can show that the �-term is only relevant
in the parity-odd sector (see next section). Therefore, the
weak couplings we found in Eq. (58) are �-blind and as a
result they can be shown to satisfy the WDM relations
reported in [16]:

N1 ¼ � 40

3
L1 þ 2

3
L9; N2 ¼ � 56

3
L1 þ 10

3
L9;

N3 ¼ 16L1 � 2L9; N4 ¼ 32

3
L1 � 4

3
L9;

N14 ¼ �2H1; N15 ¼ 2L9; N16 ¼ �2L9 � 2H1;

N17 ¼ 0; N18 ¼ �L9 �H1; (66)

which we complement with

N19 ¼ L9; N20 ¼ 0; N25 ¼ L9 � 2H1;

N26 ¼ �L9 � 2H1; N27 ¼ 1

2
L9; N37 ¼ H1: (67)

Since we are working in the strict large-Nc limit, the
previous relations are blind to the scale-dependence of
the chiral couplings. However, we want to remark that
for those weak couplings only sensitive to vector and
axial-vector exchange, i.e.,N14–18,N25,N27, andN37, there
is exact matching of the anomalous dimensions.6 The
matching breaks down whenever a scalar contribution is
expected. This breakdown is not surprising because we are
not including scalars in our model. Thus, we conclude that
the relations above involving only vector exchange are
stable under renormalization and should be regarded ac-
cordingly as predictions valid to all orders in the chiral
expansion.

V. THE ANOMALOUS SECTOR

As pointed out in [24], anomalous 4-dimensional pro-
cesses can be fully reproduced from the 5-dimensional
Chern-Simons term. The procedure outlined in the previous

6The renormalization of the chiral couplings can be found in
Ref. [23] (strong sector) and in Ref. [16] (weak sector).
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sections can be straightforwardly generalized to the odd-
parity sector of the theory. From a 5-dimensional point of
view, one has to add the Chern-Simons form to the
5-dimensional action. Its expression for chiral theories is

SCS ¼ Nc

24�2

Z
AdS5

½!5ðLMÞ �!5ðRMÞ�; (68)

where

!5ðLÞ ¼
�
LF2
ðLÞ �

1

2
L3FðLÞ þ 1

10
L5

�
;

FðLÞ ¼ dLþ L2: (69)

Recall that the multiple-trace deformation only affects the
source terms, i.e., it is localized on the UV brane. In general
the left- and right-handed fields contain a source and a
resonance term. However, in order to obtain the Oðp4Þ
weak chiral operators one only needs to consider the source
terms. With source terms the weak deformation and the
integration over the fifth dimension commute. Thus, in
order to obtain the weak odd-parity operators we just need
to shift the left-handed sources in the resulting four-
dimensional action, which is nothing but the gauged
Wess-Zumino-Witten (WZW) action. In the following we
will give some details of the calculation.

In Sec II, we used the gauge freedom of the LM and RM

fields to eliminate their fifth components through a chiral
rotation, namely,

L�
Mðx; zÞ ¼ �yLðx; zÞ½LMðx; zÞ þ i@M��Lðx; zÞ;

R�
Mðx; zÞ ¼ �yRðx; zÞ½RMðx; zÞ þ i@M��Rðx; zÞ;

(70)

�L;Rðx; zÞ being the Wilson lines defined in Eq. (10).

Contrary to the Yang-Mills term, the Chern-Simons term
is not gauge invariant and it changes instead to

SCS ¼ Nc

24�2

�Z
M5

�
!5ðL�Þ � 1

10
hðd�L�

y
LÞ5i

�

�
Z
@M5

�4ð�;LÞ
�
� ðL$ RÞ; (71)

where � ¼ duyu, (L$ R) stands for the replacements
ðL;L�;�Þ ! ðR;R�;�u�uyÞ and �4 is the Bardeen
counterterm

�4ð�;BÞ¼�1

2

�
�ðBFBþFBBÞ��B3�1

2
�B�B��3B

�
:

(72)

While the second term in (71) is a genuine 5-dimensional
object, !5 can be integrated over the fifth dimension.
Combining the integrated !5 with �4, the Chern-Simons
term can be shown to lead to the gauged WZW action:

SCS ¼ � iNc

48�2

�Z
d4x"���hW½U; l; r� �W½1; l; r�i���

� i

5

Z
AdS5

h�5i
�
; (73)

where � ¼ UydU ¼ i�Mdx
M and

W½U;l;r����

¼ l�l�l�r̂þ1

4
l�r̂�l�r̂� i��l�r̂�l

� i��l�l�lþ1

2
��l���l�����r̂�l

� i������lþ i@�l�l�r̂þ iðd@�r�Þl�r̂
þ��ðd@�r�Þlþ��l�@�lþ��@�l�l�ðl$ rÞ; (74)

where now (l$ r) stands for ðl�; ��Þ ! ðr�;�Uy��UÞ.
In Eq. (74) above we have absorbed the chiral field UðxÞ
using the shorthand notation X̂� ! UyX�U for all right-

handed fields. If we now apply the usual shift in the left-
handed sources this will result in W½U; l; r� !
W½U; l; r� þ ��½U; l; r�, where the generated �½U; l; r�
piece will contain the weak odd-parity operators. Notice
that the shift also affects the term W½1; l; r�, and accord-
ingly a term like �½1; l; r� is also generated. However, this
piece only contains source terms and therefore will only
contribute as contact terms. The expression for�½U; l; r� is
given by

�½U; l; r���� ¼ ‘W� l�l�r̂ þ l�‘
W
� l�r̂ þ l�l�‘

W
� r̂ þ ‘W� r̂�l�r̂ � i��‘

W
� r̂�l � i��l�r̂�‘

W
 � i��‘

W
� l�l

� i��l�‘
W
� l � i��l�l�‘

W
 þ ��‘

W
� ��l � ����r̂�‘

W
 � i������‘

W
 þ i@�‘

W
� l�r̂ þ i@�l�‘

W
� r̂

þ iðd@�r�Þ‘W� r̂ þ ��ðd@�r�Þ‘W þ ��‘
W
� @�l þ ��l�@�‘

W
 þ ��@�‘

W
� l þ��@�l�‘

W
 � r̂�r̂�r̂�‘

W


� i��r̂�‘
W
� r̂ þ����‘

W
� r̂ � iðd@�r�Þr̂�‘W � i@�‘

W
� r̂�l � i@�l�r̂�‘

W
 þ��@�‘

W
� r̂: (75)

Matching the previous expression to the weak odd-parity
operators listed in the Appendix can be eventually
achieved using the explicit expression for ‘W� and the
useful relation u� ¼ r̂� � l� þ i��. Alternatively, one
could use Eq. (36) in terms of the anomalous current.
This turns out to be the shortest path to obtain the odd-
parity operators. The reason is that, contrary to the even-

parity operators, the topological structure of the WZW
term allows to compute the associated current in a very
compact way as the 3-form:7

7We are omitting the contact terms coming from W½1; l; r�
which, as we argued before, are irrelevant for our discussion.
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JLan ¼ SWZW



 


l
¼ � Nc

48�2

	
iðLÞ3 þ

�
L; FðLÞ þ 1

2
F̂ðRÞ

�

;

(76)

where L ¼ iUyDU. The weak chiral operators follow
from SðWÞ4 ¼ hJLan
lWi, and it is a rather straightforward
exercise to conclude that

N28 ¼ 2

3
N30 ¼ 2N31 ¼ Nc

48�2
;

N29 ¼ N32

2
¼ N33

2
¼ N34 ¼ Nc

192�2
:

(77)

Because of the topological nature of the Chern-Simons
term the previous expressions do not depend on the details
of an underlying theory of hadrons. Most of the relations
were first found in [25] in the study of radiative kaon
decays in the factorization limit and later derived from
more general arguments [26]. However, the overall nor-
malization of the Ni found above within HEW differs from
the factorization predictions by the usual 1=2 factor we
discussed in the previous section. Additionally, we want to
note that this agreement is highly nontrivial: the relations
in the first line above depend crucially on the choice � ¼ 3

2 ,
which, as we showed in the previous section, is a genuine
prediction of both HEW and FM.

VI. THE ROLE OF VECTOR
MESONS IN K ! 3� DECAYS

We have already discussed that one of the underlying
assumptions in our holographic treatment of the weak
interactions is that vector resonance exchange is the domi-
nant contribution to both strong and weak chiral couplings.
This assumption was shown to work extremely well for the
strong sector [18] and for many weak-interacting pro-
cesses. A singular exception wasK ! 3� decays: different
hadronic models based on VMD [15–17] found that not
only vector meson exchange was not dominant, but turned
out to vanish. The fact that different models reached the
same conclusion was taken as evidence that vector meson
saturation was failing in those particular channels. This
however posed a two-fold puzzle: first, what made
K ! 3� decays so exceptional remained unexplained;
and second, without the vector contributions, theoretical
predictions were hard to reconcile with experimental data.
In this section we will show that the cancellation found in
VMD models was accidental and based on a predicted
relation between strong low-energy couplings Li not sup-
ported by phenomenology. In contrast, the corresponding
relation between Li in the holographic model does comply
with phenomenology. This alone yields a nonvanishing
vector exchange contribution to K ! 3� quite in good
agreement with experiment.

Let us parametrize the K ! 3� amplitudes, following
Ref. [27], as8

MðKL ! �þ���0Þ ¼ �1 � �1uþ ð�1 þ �1Þu2

þ 1

3
ð�1 � �1Þv2;

MðKL ! �0�0�0Þ ¼ �3�1 � �1ð3u2 þ v2Þ;
MðKþ ! �þ�þ��Þ ¼ 2�1 þ �1uþ ð2�1 � �1Þu2

þ 1

3
ð2�1 þ �1Þv2;

MðKþ ! �þ�0�0Þ ¼ ��1 þ �1u� ð�1 þ �1Þu2

� 1

3
ð�1 � �1Þv2; (78)

where

u ¼ s3 � s0
m2

�

; v ¼ s1 � s2
m2

�

; si ¼ ðpK � p�i
Þ2;

s0 ¼ 1

3

X3
i¼1

si: (79)

The amplitudes have been computed up to Oðp4Þ in ChPT
[27], giving the results

�1 ¼ �ð0Þ1 �
2g8

27fKf�
m4

Kfðk1 � k2Þ þ 24L1g;

�1 ¼ �ð0Þ1 �
g8

9fKf�
m2

�m
2
Kfðk3 � 2k1Þ � 24L2g;

�1 ¼ � g8
6fKf�

m4
�fk2 � 24L1g;

�1 ¼ � g8
6fKf�

m4
�fk3 � 24L2g; (80)

where L1 ¼ L2 þ 3L2 ¼ 2L1 þ 2L2 þ L3 come from di-
agrams containing strong amplitudes with weak external
vertices, while k1 ¼ 9ð�N5 þ 2N7 � 2N8 � N9Þ, k2 ¼
3ðN1 þ N2 þ 2N3Þ, and k3 ¼ 3ðN1 þ N2 � N3Þ collect
the direct weak terms. The vector meson exchange contri-
butions to ki within the factorization model were computed
in [15] and later extended to the scalar sector [16]. On
general grounds, k1 only receives contributions from scalar
mesons, while k2 and k3 also include vectors. It was already
pointed out in [14] that strong cancellations between the
strong and weak contributions are to be expected. However,
one of the puzzles of the factorization model in K ! 3�
was the apparent failure of vector meson dominance: the
vector contributions to k2 and k3 identically cancelled, in
contradiction with fits to experimental data [27,28].
Here we will reexamine this issue from the holographic

electroweak model. One can show that in both the WDM
and the holographic approach the vector contributions
satisfy

8For consistency we are only retaining the dominant octet
contributions.
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k2 ¼ 24L1; k3 ¼ 24

	
L2 þ 3

4
L9



: (81)

Using Eqs. (55) one can further show that L1 ¼ 0 and
L2 ¼ L3. This results come from the Skyrme structure of
the Oðp4Þ Lagrangian and again it is common to both the
WDM and the holographic model. This means that �V

1 ¼
�1 ¼ 0 while �1, �1 � ðk3 � 24L3Þ.

One can now compare the previous predictions with the
latest experimental results [29,30]. On the one hand, �1 has
been shown to be compatible with zero in the neutral
channel KL ! �0�0�0 [30], a result that is confirmed in
the charged channel [29]. However, final state interactions
are sizeable enough to preclude solid conclusions: in the
neutral channel there are large uncertainties associated
with rescattering effects [31], while the charged channel
is very sensitive to cusp effects [32].

On the other hand, �1 and even �1 seem to be distinctly
different from zero. Fits to experimental data suggest that
k3 � 5� 10�9, with an error difficult to determine but
roughly estimated around 30%. In models with VMD
[15–17], L3 ¼ � 3

4L9 and therefore Eq. (81) yields k3 ¼
0, implying that vector contributions come entirely from
strong vertices. As mentioned above, this result not only
contradicts the fits but introduces a conceptual hurdle.
However, in the holographic model L3 ¼ � 11

24L9 and

hence k3 � 3� 10�9. This not only stands in better agree-
ment with experiment (it corresponds to a 50% enhance-
ment on both�1 and �1) but, since k3 � 0, it shows that the
cancellation found in the literature was not generic but a
model-dependent artifact of VMD models. Actually, we
want to emphasize that the holographic prediction between
L3 and L9 turns out to be much closer to the accepted
phenomenological values [18] than the VMD one. In other
words, a better determination of the strong couplings in
Eq. (81) naturally brings a nonvanishing vector meson
contribution to K ! 3� decays, such that predictions get
closer to the experimental values.

VII. CONCLUSIONS

In this paper we have applied the formalism of multiple-
trace operators in holography to incorporate weak-
interacting phenomena to a Yang-Mills–Chern-Simons
holographic action. In this model, the pion field is realized
in a nonlinear way, thereby allowing a direct connection
with chiral perturbation theory. This connection is worked
out in detail by deriving the chiral Lagrangian for the
strong and electroweak sectors up to next-to-leading order
in the chiral expansion. Definite predictions for the low-
energy couplings are given, both for the even- and odd-
parity sectors. The former follow from the Yang-Mills term
while the latter stem from the Chern-Simons action.

One of the interesting consequences of the double-trace
formalism is that the strong and weak chiral couplings are
related [cf. Eqs. (66), (67), and (77)]. In physical terms, this

means that the underlying physical assumption of the
model is that the effects that saturate the strong chiral
couplings are also responsible for the weak chiral cou-
plings. Since holographic models are models of hadronic
resonances, we are implicitly assuming that all low-energy
couplings are determined by resonance saturation, i.e., that
pure weak short-distance effects are negligible. However,
resonance effects only influence low-energy couplings
starting at Oðp6Þ. At Oðp4Þ the chiral couplings arise
purely as geometric terms, i.e., five-dimensional integrals
in terms of the AdS metric alone.
The results of the model are then used to reexamine the

K ! 3� decays. Our conclusion is that the claim made in
the past by different groups that vector meson dominance
fails there is not generic. Rather, the cancellations pre-
dicted by different hadronic models turn out to be based
on a constraint between the strong chiral couplings L3 and
L9 that is not supported by phenomenology. In contrast, the
holographic model gives a nonzero vector meson contri-
bution precisely because the constraints in the strong sector
are in much better agreement with phenomenology. In
summary, the puzzling vector exchange cancellation in
K ! 3� turns out to be a model-dependent fine-tuning
artifact. Beyond the phenomenological impact that this
might have (most of the parameters are poorly determined
because of strong final state interactions) we believe that it
settles a conceptual issue.
Another interesting aspect of the holographic prescrip-

tion adopted in this work is that HEW can be viewed as the
five-dimensional analog of the heuristic WDM model in-
troduced in Ref. [14] (up to singlet source terms).
Schematically,

LHEW � 1

2

Z
d4x

�	

S2

l�
þ 
S4


l�
þ 
S6


l�
þ � � �



‘W�

�
;


Si

l�
¼ Jði�1ÞL� ; (82)

where Jði�1ÞL� are the strong currents in the chiral expansion.

Notice that this equivalence between WDM and HEW is

highly nontrivial: in the WDM, Jði�1ÞL� is taken from the

strong chiral Lagrangian, while ‘W� is determined from a

heuristic prescription. In the HEW, Jði�1ÞL� comes from the

bulk action, while ‘W� comes from a double-trace perturba-

tion on the UV boundary.
We have shown that both models are a truncated version

of factorization. In principle, factorization could be recov-
ered order by order if the left-handed shift is extended

beyond the leading term as ‘W� ¼ f�6;

S2

l� þ 
S4


l� þ � � �g.
The way this is achieved differs for each model: in
WDM one needs to provide an ad hoc shift in the u� and

�� fields for each order in the chiral expansion. On the

holographic side, following the prescription for double-
trace operators, both the currents and left-handed sources
should acquire extra pieces
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hJL�ðxÞil� ¼

W0½JL�; JR��


l�ðxÞ ¼ Jð1ÞL�ðxÞ þ Jð3ÞL�ðxÞ þ . . . ;

(83)

l�! l�þ�

W1½JL��


J
�
L

¼ l�þ�‘W�ð1Þþ�‘W�ð3Þþ . . . (84)

However, since the boundary action is entirely given by the
(universal) Oðp2Þ pion terms, the left-handed sources are

shifted only with the associated Jð1ÞL� chiral current. This

seems to be a characteristic of the double-trace formalism.
To illustrate this point, consider the generalized action

S5 ¼
Z

d4x
Z z0

0
dz

ffiffiffi
g
p h�2F

2 þ �3F
3 þ �4F

4 þ . . .i;
(85)

where the first piece is the Yang-Mills term, and the higher-
order operators allow to go beyondOðp4Þ. Notice however
that those extra bulk operators cannot contribute to
Eq. (83). To see this, consider the boundary action, which
will be modified to

W0½JL�; JR�� �
Z

d4xhLð0Þ� ðxÞLð1Þ� ðxÞ
� ½��� þ �3ðzÞF�� þ . . .�ijz!0: (86)

It can be shown that the coefficient �3ðzÞ � �3z
2 and

therefore vanishes. Positive powers of z will generically
appear as metric factors associated with higher-order op-
erators. Thus, no NLO contributions can be generated in
Eqs. (83) and (84). We suspect that this conclusion goes
beyond the double-trace prescription and is a generic built-
in feature of holographic models of QCD.
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APPENDIX

We will define the operators entering the Oðp4Þ chiral
Lagrangian as

L �
4 ¼

X
i

LiOi þG8f
2
�

X
j

NjOW
j ; (A1)

where the first term collects the strong sector and the
second the weak sector, including both odd- and even-
parity operators. For the strong sector we will use the
original basis of Ref. [23]:

O1 ¼ hu�u�i2; O2 ¼ hu�u�i2;
O3 ¼ hu�u�u�u�i; O9 ¼ �ihf��

þ u�u�i;
O10 ¼ 1

4
hfþ��f

��
þ � f���f

��� i;

O11 ¼ 1

2
hfþ��f

��
þ þ f���f

��� i; (A2)

where we identify L11 � H1. Notice that we are only
including those operators which generate the low-energy
dynamics of vector and axial-vector modes, and disregard-
ing scalar and pseudoscalar effects.
Concerning the electroweak sector, we will adopt the

basis employed in [16]:

OW
1 ¼ h�u�u�u�u�i; OW

28 ¼ i����h�u�ihu�u�ui;
OW

2 ¼ h�u�u�u�u�i; OW
29 ¼ ����h�½f��

þ � f��� ; u�u�i;
OW

3 ¼ h�u�u�ihu�u�i; OW
30 ¼ ����h�u�ihf�þ u�i;

OW
4 ¼ h�u�ihu�u�u�i; OW

31 ¼ ����h�u�ihf�� u�i;
OW

14 ¼ ih�ffþ��; u
�u�gi; OW

32 ¼ i����hr̂��½f�þ ; u��i;
OW

15 ¼ ih�u�fþ��u
�i; OW

33 ¼ i����hr̂��½f�� ; u��i;
OW

16 ¼ ih�ff���; u
�u�gi; OW

34 ¼ ����h�½f��
þ þ f��� ; u�u�i;

OW
17 ¼ ih�u�f���u

�i; OW
35 ¼ i����h�½f�þ ; f��� �i;

OW
18 ¼ h�ðfþ��f

��
þ � f���f

��� Þi;
OW

27 ¼ h�ð2fþ��f
��
þ � ffþ��; f

��� gi;
OW

37 ¼ h�ðfþ�� þ fþ��Þðf��
þ þ f��� Þi;

(A3)

where the left-hand (right-hand) side collects the even-parity (odd-parity) operators and the definition r̂�� ¼ r��þ
i
2 ½u�;�� has been used.
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