
Heavy quark momentum diffusion coefficient from lattice QCD

Debasish Banerjee,* Saumen Datta,† and Rajiv Gavai‡

Department of Theoretical Physics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India

Pushan Majumdar§

Department of Theoretical Physics, Indian Association for the Cultivation of Science, Kolkata 700032, India
(Received 13 October 2011; published 31 January 2012)

The momentum diffusion coefficient for heavy quarks is studied in a deconfined gluon plasma in the

static approximation by investigating a correlation function of the color electric field using Monte Carlo

techniques. The diffusion coefficient is extracted from the long-distance behavior of such a correlator. For

temperatures Tc < T & 2Tc, our nonperturbative estimate of the diffusion coefficient is found to be very

different from the leading-order perturbation theory and is in the right ballpark to explain the heavy quark

flow seen by the PHENIX Collaboration at the RHIC experiment.

DOI: 10.1103/PhysRevD.85.014510 PACS numbers: 11.15.Ha, 12.38.Mh, 25.75.�q

I. INTRODUCTION

The charm and the bottom quarks are very important
tools in our quest to understand the nature of the quark-
gluon plasma created in the relativistic heavy ion collision
experiments. Since the masses of both of them are much
larger than the temperatures attained in the RHIC experi-
ment, and in the LHC, one expects these quarks to be
produced largely in the early preequilibrated state of the
collision, and thus provide a window to look into the early
stages of the fireball. Furthermore, perturbative arguments
suggest that the energy-loss mechanism for energetic
heavy quarks in medium should be different from that of
the light quarks. A comparative study of the energy loss for
the heavy and light quark jets therefore leads to crucial
insights into the way the quark-gluon plasma interacts.

For light quark jets, gluon radiation (‘‘bremsstrahlung’’)
is expected to be the leading mechanism for energy loss in
medium [1]. It has been argued that gluon bremsstrahlung
is suppressed for jets of heavy quarks [2], and collisional
energy loss may be the dominant mechanism for thermal-
ization of not-too-energetic heavy quark jets [3,4]. Since
collision with a thermal quark does not change the energy
of a heavy quark substantially, one would expect that the
thermalization time of the heavy quarks is much larger than
that of the light quarks. As most of the elliptic flow is
developed early, the azimuthal anisotropy parameter, v2, of
the hadrons with heavy quarks can be expected to be much
less than that of the light hadrons.

Interesting predictions follow from these simple, weak
coupling-based intuitions, which can be, and have been,
checked in the RHIC experiments. One expects a mass
ordering of the elliptic flow: vh

2 � vD
2 � vB

2 . Here, h, D,
B refer to the light hadrons, mesons of the D family (one

charm and one light quark) and those in the B family (one
bottom and one light quark). The nuclear suppression
factor, RAA, is also expected to show a hierarchy: Rh

AA �
RD
AA � RB

AA. Experimentally, on the other hand, it was

found that the heavy flavor mesons show a large elliptic
flow, vD

2 & vh
2 , and a strong nuclear suppression, RD

AA *
Rh
AA; the nuclear suppression being comparable to that of

�0 for pT > 2 GeV [5,6].
Even if the kinetic energy of the heavy quark is OðTÞ,

where T is the temperature of the fireball, its momentum
will be much larger than the temperature. It is, therefore,
changed very little in a single collision, and successive
collisions can be treated as uncorrelated. Based on this
picture, a Langevin description of the motion of the heavy
quark in the medium has been proposed [3,4,7]. v2, the
elliptic flow parameter, can then be calculated in terms of
the diffusion coefficient of the heavy quark in the medium.
The diffusion coefficient has been calculated in perturba-
tion theory [3,7]. While the experimental results for the
elliptic flow of the charmed mesons and its pT dependence
seem to be well-described by this formalism for moderate
pT & 2 GeV, the value of the diffusion coefficient needed
to explain the experimental data is found to be at least an
order of magnitude lower than the leading order (LO)
perturbation theory (PT) result [6,8] Furthermore, the LO
PT value itself leads to heavy flavor flow which falls way
short of the data. The contribution of the next-to-leading
order (NLO) in perturbation theory has been calculated
recently [10]. Although, it was found to change the LO
result by a large factor at temperatures & 2Tc, this should
perhaps be taken as an indication of the inadequacy of
perturbation theory in obtaining a reliable estimate for the
diffusion coefficient in the temperature range of interest.
A nonperturbative estimate of the diffusion coefficient,

D, in QCD is, therefore, essential to understand the heavy
quark flow in the Langevin formalism. Lattice QCD, to-
gether with numerical Monte Carlo techniques, provides
the only way of doing first-principle nonperturbative
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calculations in the quark-gluon plasma. Unfortunately,
such calculations are done in Euclidean space, and extract-
ing a real time object like the diffusion coefficient requires
an analytic continuation, which is extremely difficult.
However, estimation of various transport coefficients
have already been attempted, with varying degrees of
success [11]. In order to estimate the heavy quark diffusion
coefficient, one can study the correlator of the heavy quark
current, �Q�iQ. Early attempts to extract D this way
showed that the correlator has very little sensitivity to D
[12]. Preliminary results of a calculation of D extracted
from the �Q�iQ correlator, using much finer lattices than
were used before, have been presented recently in the
temperature range between 1:5–3Tc for a gluon plasma
by Ding, et al. [13]. They do find a value which is much
lower than the LO PT result and in the right ballpark to
explain the experimental heavy quark flow.

Two of the difficulties in extracting the diffusion coef-
ficient from the �Q�iQ correlator are: i) the behavior of the
structure of the spectral function near the!� 2mQ regime

can affect the structure at low !, and ii) the diffusion
coefficient is obtained from the width of the narrow trans-
port peak at ! ! 0, which is difficult to extract. In the
infinitely heavy quark limit, another approach to the diffu-
sion coefficient has been suggested in Refs. [14,15]. In this
static limit, the propagation of heavy quarks is replaced by
Wilson lines, and the formalism of Ref. [3] reduces to the
evaluation of retarded correlator of electric fields con-
nected by Wilson lines [14]. In Ref. [14], this formalism
was used to calculate the diffusion coefficient for theN ¼
4 SUðNc ! 1Þ gauge theory, using the AdS/CFT corre-
spondence. A parametric dependence on coupling very
different from weak coupling perturbation theory was ob-
tained. On the other hand, for the pure SU(3) gauge theory,
a leading order perturbative calculation of this correlator
led to a negative value for the diffusion coefficient at
moderate temperatures [16].

The formalism outlined in Ref. [15] is suitable for
Monte Carlo calculation on the lattice. As we outline in
the next section, this involves the calculation of Matsubara
correlators of color electric field operators and extracting
the low frequency part of the spectral function from it. Of
course, the usual problems of extraction of the spectral
function from the Matsubara correlator mean that calcula-
tion of the diffusion coefficient remains a highly nontrivial
task. A first attempt to calculate the diffusion coefficient
from the electric field correlator leads to very large values of
the diffusion coefficient, close to the perturbation theory
value [17]. Preliminary results from a recent calculation
[18], on the other hand, gavevalues in the temperature range
1:5–3Tc close to the experimental results.

In this work, we use the formalism of Refs. [14,15] to
calculate the diffusion coefficient of the deconfined
gluonic plasma in a moderate temperature range, Tc <
T & 2Tc. The aim is to understand whether a small diffu-

sion coefficient, as found in the analysis of the experimen-
tal data [6], is consistent with QCD. The plan of the paper
is as follows. In the next section, we outline the formalism.
In Sec. III, we explain the operators and the algorithm.
Sec. IV has our results. A discussion of the results, includ-
ing their connection with experiments, is contained in
Sec. V. Some details of Secs. III and IV are relegated to
the Appendices A and B.

II. FORMALISM

In this section, we outline the formalism of Refs. [14,15]
in more detail. We first sketch the arguments leading to the
Langevin formalism and then discuss the quantum field
theoretic calculation of suitable correlation functions. This
discussion closely follows Refs. [3,14,15]. Then we dis-
cuss the issues related to the extraction of the diffusion
coefficient from the Matsubara correlator.
It is easy to see why the motion of a quark much heavier

than the system temperature can be described in the
Langevin formalism. If the kinetic energy is �T, then

the momentum, � ffiffiffiffiffiffiffiffi
MT

p
, is not changed substantially in

individual collisions with thermal gluons and quarks,
which can only lead to a momentum transfer �T.
Therefore, the motion of the heavy quark is similar to a
Brownian motion, and the force on it can be written as the
sum of a drag term and a ‘‘white noise,’’ corresponding to
uncorrelated random collisions:

dpi

dt
¼��Dpiþ�iðtÞ; h�iðtÞ�jðt0Þi¼��ij�ðt� t0Þ: (1)

From Eq. (1) the momentum diffusion coefficient, �, can
be obtained from the correlation of the force term:

� ¼ 1

3

Z 1

�1
dt
X
i

h�iðtÞ�ið0Þi: (2)

The drag coefficient, �D, can be connected to the diffusion
coefficient using standard fluctuation-dissipation relations
[19]:

�D ¼ �

2MT
: (3)

Here, M is the heavy quark mass.
To have a field theoretic generalization of Eq. (2), one

first introduces the conserved current for the heavy quark
number density, J�ð ~x; tÞ ¼ �c ð ~x; tÞ��c ð ~x; tÞ, where c is
the heavy quark field operator. The force acting on the
heavy quark is given by MdJi=dt, and so Eq. (2) general-
izes to

� ¼ 1

3
lim
!!0

�
lim
M!1

M2

T�00

Z 1

�1
dtei!ðt�t0Þ

�
Z

d3x

�
1

2

�
dJið ~x; tÞ

dt
;
dJið~0; t0Þ

dt0

���
; (4)

where �00 is the spatial integral of the density correlator,
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Z
d3xhJ0ð ~x; tÞJ0ð~0; tÞi ¼ T�00; (5)

and is directly proportional to the number density for a
system of nonrelativistic quarks.

Since we are working in the heavy quark limit, the force
term and the number density term are easy to infer:

M
dJi

dt
¼ f	yEi	� 
yEi
g; J0 ¼ 	y	þ 
y
; (6)

where 	 and 
 are the two-component heavy quark and
antiquark field operators, respectively, and Ei is the color
electric field. In leading-order expansion in 1=M, only the
electric field contributes to the force term.

With the substitution of Eq. (6), the real time correlator
in Eq. (4) can be calculated as the analytical continuation
of the Matsubara correlator,

GEð�Þ ¼ � 1

3

X3
i¼1

lim
M!1

1

T�00

Z
d3xhf	yEi	� 
yEi
g

� ð�; ~xÞf	yEi	� 
yEi
gð0; ~0Þi� (7)

The spectral function, �ð!Þ, for the force term is con-
nected to GEð�Þ by the integral equation [19]:

GEð�Þ ¼
Z 1

0

d!

�
�ð!Þ cosh!ð�� 1

2TÞ
sinh!

2T

� (8)

The momentum diffusion coefficient, Eq. (4), is then given
by

� ¼ lim
!!0

2T

!
�ð!Þ� (9)

Since we are working in the limit of infinitely heavy
quarks, the expression (7) simplifies considerably. The
heavy quark correlators give a static color field, besides
an exponential suppression factor coming from the heavy

quark mass: h
að�; ~xÞ
yb ð0; ~0Þi¼�3ð ~xÞUabð�;0Þexpð�M�Þ,
where Uabð�; 0Þ is the timelike gauge connection, and the
delta function comes because the infinitely heavy quark
does not move spatially. The exponential factor cancels
with a similar factor from �00, resulting in a rather simple
expression for the infinitely heavy quarks:

GLat
E ð�Þ¼� 1

3L

X3
i¼1

hRealtr½Uð;�ÞEið�; ~0ÞUð�;0ÞEið0; ~0Þ�i;

(10)

where L ¼ trUð; 0Þ is the Polyakov loop. Once again,
intuitively it is easy to understand Eq. (10): for the infinitely
heavy quarks, all that the force-force correlator gives is the
correlator of color electric fields, connected throughWilson
lines, and normalized by the Polyakov loop.

In order to connect GLat
E ð�Þ measured on the lattice to

physical correlator of electric fields, we need to multiply
by a renormalization factor:

GEð�Þ ¼ ZðaÞGLat
E ð�Þ; (11)

where ZðaÞ ¼ Z2
E is the lattice-spacing-dependent renor-

malization factor for the electric field correlator. A non-
perturbative evaluation of the electric field operator used
here is not available. However, the renormalization factor
is expected to be dominated by the self-energy correction,
which can be taken into account by a tadpole correction
[20]. In fact, with other discretizations of the electric field
operator, it has been found that the tadpole factor gives a
very close approximation to the nonperturbative renormal-
ization factor [21]. Here, we use the tadpole factor to
renormalize the electric field.
The extraction of �ð!Þ from GEð�Þ using Eq. (8) is an

extremely difficult problem. In general, the kernel in
Eq. (8) will have zero modes on a discrete lattice, making
the inversion problem ill-defined. In the ideal case, one
may be able to impose some reasonably general conditions
on �ð!Þ and be able to make the problem invertible.
However, in situations like ours, where GEð�Þ is measured
only on Oð10Þ data points with errors, the problem of
extraction of �ð!Þ becomes a completely ill-posed prob-
lem without any further input.
For some problems, a Bayesian analysis, with prior

information in the form of perturbative results, has been
useful. In general, though, a stable application of these
techniques requires both a very large number of points in
the � direction and very accurate data for GEð�Þ. For the
kind of extended objects we are considering, wrapping the
lattice in the Euclidean time direction, it is very difficult to
obtain both together, as the error on the correlators grows
with the number of points in the � direction.
Parameterizing �ð!Þ in terms of a small number of

parameters, therefore, seems to be a simple way to make
the inversion problem well-posed. In our case, the leading-
order perturbative form of the spectral function �b!3.
Also in the ! ! 0 regime, we need �ð!Þ � �! to get a
physical value of the diffusion constant using Eq. (9). The
calculation of Ref. [14] got �ð!Þ ¼ c! for the N ¼ 4
supersymmetric Yang-Mills theory. Motivated by this, we
use a simple ansatz for the spectral function,

�1ð!Þ ¼ a!�ð!��Þ þ b!3: (12)

We do not include any running in b, which is proportional
to �s in the leading order. This approach is similar in spirit
to that used in Ref. [22] to calculate electrical conductivity.
Note that the NLO PT calculation of Eq. (10) leads to a
negative value of �, and, in general, seems to deviate more
from the lattice correlators than the LO result. So, we use
the LO form for the high-! part.
On the other hand, in the calculation with classical

lattice gauge theory [23], the spectral function of the color
electric field was found to have the behavior

�ð!Þ � c tanh
!

2
for !a � 1:
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So, to cross-check the dependence on our assumption, we
also use a second fit form,

�2ð!Þ ¼ c tanh
!

2
�ð!��Þ þ b!3: (13)

In practice, we use these postulated forms for �ð!Þ to
evaluate GEð�Þ and fit it to the long-distance correlation
function measured on the lattice. At large!, of course, this
form is not valid, and a complicated form, that takes into
account the effect of the lattice Brillouin zones, will have
to be considered. We tried using the free-lattice spectral
function instead of the !3 term in Eq. (12). However, that
did not improve the fit quality and, in particular, did not
seem to capture the very-short-distance behavior of the
data any better. So, in this work, we restrict ourselves to
the large-distance regime in our fits and expect that in this
regime, our simple form will suffice for a first estimate of
the diffusion coefficient.

III. NUMERICAL DETAILS

For the lattice evaluation of the correlatorGEð�Þ, we first
need to choose a discretization of the electric field.
Following Ref. [15], we choose the discretization

Eið ~x; �Þ ¼ Uið ~x; �ÞU4ð ~xþ î; �Þ �U4ð ~x; �ÞUið ~xþ 4̂Þ;
which is a direct latticization of the relation Ei ¼ ½D0; Di�.
As Ref. [15] suggests, this form of the discretization of the
electric field is expected to be less ultraviolet sensitive than
the more common discretization in terms of the plaquette
variable.

The numerator of Eq. (10) can then be written as

Gi
E;numð�Þ ¼ Cið�þ 1Þ þ Cið�� 1Þ � 2Cið�Þ;

Cið�Þ ¼ Yt�1

x4¼0

U4ðx4Þ �UiðtÞ �
Ytþ��1

x4¼t

U4ðx4Þ

� Uy
i ðtþ �Þ � Y�1

x4¼tþ�

U4ðx4Þ:

(14)

The evaluation ofCið�Þ, Eq. (14), is known to be difficult
for large � because the signal-to-noise ratio decays expo-
nentially. The multilevel algorithm [24] was indeed
devised to take care of such problems. We adapted it for
calculation of the electric field correlation functions. The
lattice is divided into several sublattices. The expectation
value of the correlation functions are first calculated in
each sublattice by averaging over a large number of sweeps
in that sublattice while keeping the boundary fixed. A
single measurement is obtained by multiplying the inter-
mediate expectation values appropriately. The number of
sublattices and the number of sublattice averagings were
tuned for the various sets, so as to get correlators with a
percent level accuracy. An explicit example is shown in
Fig. 1, which illustrates the calculation of Gi

E;numð4Þ on a

Nt ¼ 12 lattice with four sublattices, each with a thickness
of three lattice spacings. It is important to note that one

needs to store all the intermediate sublattice averages
separately before they can be multiplied at the end of the
update of the whole lattice to construct the correlation
functions. This imposes memory constraints for simulating
large lattices.
The advantage of the multilevel algorithm can be seen

from the following estimate: for  ¼ 6:9, Nt ¼ 20 and
Ns ¼ 36, the correlator for � ¼ 3a, GEð3Þ has the value
of 1:317ð2Þ � 10�2 from 350 multilevel measurements.
The multilevel algorithm takes about 800 minutes to yield
a single measurement on an Intel Xeon CPU processor
with a speed of 2.5 GHz. For the same correlator, the
standard method, using an updating with a combination
of overrelaxation and heat bath steps, led to a value
1:2ð2Þ � 10�2 for a run time of about 8500 minutes on
the same machine. Using the usual 1=

ffiffi
t

p
dependence of the

error on run time, the multilevel algorithm is seen to be
about 300 times more efficient than the standard algorithm
for GEð3Þ for this lattice. The efficiency of the multilevel
algorithm increases significantly for larger values of �. A
similar comparison forGEð10Þ gives a factor of about 2000
(order of magnitude larger) relative efficiency for the mul-
tilevel algorithm. Thus, use of the multilevel scheme is
indispensable for calculations at the larger values of � [25],
since these are required to be known with high precision
for the extraction of the diffusion coefficient.
To get the results for various temperatures and volumes,

we ran our simulations at a number of bare couplings with
Nt ¼ 12–24 and Ns=Nt ¼ 2–4, for temperatures from just
above Tc to 3Tc. A reliable extraction of the diffusion
coefficient was possible, however, only for lattices with
N� � 20. A list of such lattices used by us is given in
Table I below. To obtain the temperature scale, we follow
the strategy outlined in Ref. [26].We calculate�V at each
from the plaquette value. This is translated to a temperature
scale at N� ¼ 8 using the information of cðN� ¼ 8Þ [27]
and a two-loop scaling formulawith a fitted correction [28].
Temperatures for other N� are easily calculated from the

1 2 3 4 5 6 7 8 9 1110 12 1

FIG. 1 (color online). Illustrating the use of the multilevel
algorithm for the calculation of Gi

E;numð4Þ on a Nt ¼ 12 lattice.

TABLE I. List of lattices on which diffusion coefficients were
extracted, and the temperatures.

 6.76 6.80 6.90 7.192 7.255

N� 20 20 20 24 20

T=Tc 1.04 1.09 1.24 1.5 1.96
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N� ¼ 8 temperature scale. The complete list of the lattice
sizes, , and the corresponding temperature are shown in
Table II, which also shows the parameters used in themulti-
level algorithm for each .

IV. RESULTS

In order to calculate �, we calculated the electric field
correlators, Eq. (10), for all the sets in Table II. From the
correlatorsGEð�Þ, � can be calculated using Eq. (9). Use of
the multilevel algorithm allowed us to get correlators at a
few-percent-level accuracy. In fact, we got <2–3% accu-
racy in all correlators except the two most central points of
the  ¼ 7:192, 1:5Tc set. Figure 2 shows GEð�Þ for this
data set.
In order to get the momentum diffusion coefficient, �,

we use the ansatz Eq. (12) for �ð!Þ and fit the Euclidean
correlator using Eq. (8). It was not feasible to do a three-
parameter fit: the parameters � and � are strongly corre-
lated. For a large range of �, we can get very similar fit
qualities. Instead, we fix � and get an estimate of � by
doing a two-parameter fit. We discuss this further below
and in Appendix B.
For the fit, �2 minimization was carried out with the full

covariance matrix included in the definition of �2. We
typically obtained acceptable fits to the correlators for �a
in the range ½Nt=4; Nt=2�, with �2=d:o:f � 1. At shorter
distances, lattice artifacts start contributing, and the simple
form of Eq. (12) does not work well. Also, using the
leading order lattice correlator instead of the continuum
form did not improve the quality of the fit. We, therefore,
restrict ourselves to the long-distance part of the correlator.
In order to get a feel for the relative contributions of the

different parts of the spectral function to the correlator, in
Fig. 2, we show the correlators constructed from different
parts of �ð!Þ separately. We take the best-fit form of
Eq. (12) to the N� ¼ 24, 1:5Tc data set, for � ¼ 3T. The
contributions to the total correlation function from the !3

part of �ð!Þ and that from the diffusive part, the first term
in Eq. (12), are calculated separately using Eq. (8). In
Fig. 2, we have called these parts ‘‘LOC’’ and ‘‘DIFF,’’
respectively, and the correlator reconstructed from the

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0.1  0.2  0.3  0.4  0.5

τT

β=7.192, Nt=24, 1.5 Tc

GE(τ)/LOC

DIFF/LOC

100

101

102

103

104

105

 0.1  0.2  0.3  0.4  0.5

G
E
(τ

)/
T

4

τT

β=7.192, Ns=48, Nt=24, 1.5 Tc

Fit

LOC
DIFF

FIG. 2 (color online). (Left) GEð�Þ for one of our lattice sets, at  ¼ 7:192 and N� ¼ 24, corresponding to T ¼ 1:5Tc. Also shown is
the best fit to the form Eq. (12) with � ¼ 3T and contributions of the different terms in the fit. LOC corresponds to the correlator
constructed from the b!3 term in Eq. (12) and DIFF is the diffusive part of the correlator, constructed from the first term in Eq. (12).
(Right) The same information shown differently; the measured correlator, the best-fit curve, and the diffusive part of the correlator are
shown normalized to the leading-order contribution.

TABLE II. Details of the lattices used in the calculation. Also
given are the parameters for the multilevel algorithm for each
set.

 Nt Ns T=Tc # sublattice # update # conf

6.4 12

24 1.07 3 2000 190

36 3 2000 200

48 6 200 180

6.65 12

24 1.50 6 200 400

36 6 200 260

48 6 200 180

6.65 16
36 1.12 4 2000 250

48 4 2000 215

6.76 20 48 1.04 5 4000 170

6.80 20 48 1.09 5 3000 150

6.9

12
36 2.07 6 200 220

48 6 200 188

16
36 1.55 4 2000 230

48 4 2000 200

20
36 1.24 5 2000 350

48 5 2000 96

7.192

12 48 3.0 3 2000 210

16 48 2.25 4 2000 200

24

48 1.5 4 2000 450

56 4 2000 50

56 4 4000 45

7.255 20 48 1.96 5 2000 194

7.457 16 48 3.0 4 2000 140
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fitted spectral function has been called ‘‘Fit.’’ The correla-
tor is seen to be dominated by the contribution from the
b!3 term over the whole range of distance. However, the
diffusion term has a substantial contribution near the center
of the lattice. In Fig. 2, it contributes nearly 20% at �T ¼
0:5. This is seen more clearly in the right-hand panel of
Fig. 2, where the total correlator, the best fit, and the
diffusive part are shown normalized by the leading-order
correlator. Since the relative contribution of the diffusive
part falls rapidly at shorter distances, it is difficult to get
reliable estimates of �, with the usual assorted tests like
stability with small change in fit range, for our smaller
lattices withN� ¼ 12 and 16. So, in what follows, we quote
fit results for � only for our finer lattices, withN� ¼ 20 and
24 (Table I).

For these lattices, we obtained stable fits for the central
part of the correlator, with �2=d:o:f � 1 in all cases. We
did a fully correlated fit by including the inverse of the full
covariance matrix in the �2 function to be minimized,
whenever such a �2 function was well-behaved. That
turned out to be the case in all sets except the one at the
highest temperature, the  ¼ 7:255 set in Table I. In this
case, we used an uncorrelated fit for our best estimate. The
difference between the correlated and the uncorrelated fit
was included in the systematic error. Our results for �=T3

at various temperatures, using the ansatz Eq. (12) and� ¼
3T, are shown in Fig. 3. The statistical error, shown by the
solid (red) band, is obtained from a jackknife analysis.

The choice of� ¼ 3T for the central value was based on
the fact that in all the sets, with� ¼ 3T, the diffusion-term
contribution to the spectral function, a! in Eq. (12), is
numerically close to the large ! term, b!3, when the
diffusion term sets in (i.e., at ! ¼ �). Admittedly, this
choice is somewhat arbitrary. In fact, the main source of
uncertainty in our fit estimate, shown by the dashed (green)
band in Fig. 3, is �. To estimate the possible error intro-
duced through our central value of� ¼ 3T, we varied� in

the range ½2T;1Þ. We also did the same exercise with the
alternate fit form in Eq. (13). The details of the fit results
for Eqs. (12) and (13) and various � are given in
Appendix B. Quite often, the fit value for these variations
comes outside the statistical error band of Fig. 3. A system-
atic uncertainty band is therefore introduced, of sufficient
size so as to include the central-fit values for all these
variations.
For the correlation functions of gluonic observables,

major finite volume effects have been observed if the spatial
size of the lattice is so small that some of the spatial
directions get deconfined; on the other hand, at least for
spatial correlation functions, finite size effects are small
when the transverse directions are not deconfined [29]. To
avoid large finite size effects, we choose lattices such that
the spatial directions are confined. Since the electric field
correlator also has contribution from the low-! part, it
could be more sensitive to finite volume effects. However,
as we discuss in Appendix B, the correlation functions do
not show any significant finite volume effect even when
LT � 2. Therefore, we do not expect large finite size cor-
rections to our results obtained from lattices with LT � 2.
It is instructive to look at the relative contribution of the

diffusive part to the total correlator at different distances.
In the left panel of Fig. 4, we show the correlator coming
from the diffusive part of the fitted spectral function,
normalized by the leading-order part, for all the lattices
of Table I. The notation is similar to that used in Fig. 2,
except here, we show the 1� band and not the best-fit
value. At all temperatures, except the one at the highest
temperature, the diffusive part is seen to reach about 5%
level by �T � 0:3. Note that the accuracy of our correlator
is better than this. Also, no significant trend of temperature
dependence is seen in this figure. This is, of course, trans-
lated to the lack of significant temperature dependence of
�=T3 in this temperature regime (Fig. 3).
b, the coefficient of the!3 term in �ð!Þ, is also of some

interest. In perturbation theory, the leading order spectral
function is

�LOð!Þ ¼ 8�s

9
!3: (15)

To get an idea of the strength of the coupling at these
temperatures, we use Eq. (15) and the fit coefficient b,
Eq. (12), for a nonperturbative estimate of�s. The estimate
of �s obtained this way is shown in Fig. 4. If GEð�Þ is the
properly normalized current, then the NLO calculation of

Ref. [16] can be used to connect this �s to �MS
s ð�Þ. It is

interesting to note that the coupling is rather small, about
1=4 near Tc and going down to �0:18 at 2Tc. This is in
rough agreement with a similar measurement in Ref. [22]
from fit to vector-current correlators, and other, more de-
tailed calculations of �s at such temperatures from static
observables [30].
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FIG. 3 (color online). The momentum diffusion coefficient, �,
in units of T3, shown as a function of temperature in the
temperature range Tc < T 	 2Tc. The error bars with the solid
red line show the jackknifed error. The dashed green error bars
are an estimate of the size of the various systematic uncertain-
ties, as discussed in the text.
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In order to present our calculation in the context of
RHIC, it seems convenient to use the Einstein relation
between the diffusion coefficient, D, and �,

D ¼ T

M�D

¼ 2T2

�
: (16)

In Eq. (16), �D is the drag constant. In Fig. 5, we
show the diffusion coefficient in the temperature range
Tc & T & 2Tc, obtained using Eq. (16). The solid (red)
error bar is the statistical error from a jackknife analysis.
The bigger error bars show the range of values covered by
the different systematics analyzed in Table III.

Two points are worth noting in this figure. First, the
nonperturbative value of the diffusion coefficient is rather
small in the temperature range considered. In the next
section, we discuss in more detail the comparison with
perturbation theory, but the diffusion coefficient shown
here is nearly an order of magnitude smaller than the
leading-order perturbation theory. Second, there is no
strong temperature dependence, at least in the temperature
range Tc 	 T 	 1:5Tc.

V. DISCUSSION

In this work, we studied the momentum diffusion coef-
ficient, �, of heavy quarks in a gluonic plasma. As men-
tioned in Sec. I, the large elliptic flow of the heavy flavor
mesons, seen in the PHENIX experiment at RHIC, seems
to be well explained in a Langevin framework, if � is large.
Perturbation theory seems to be unstable for this quantity
in the temperature regime of interest for RHIC physics, and
the leading-order PT prediction is at least an order of
magnitude too small to explain the experimental data.
Our aim in this work was to calculate the momentum
diffusion coefficient nonperturbatively and to see if the
deviation from perturbation theory is of the size required
to explain the experimental data.
Using the formalism of Refs. [14,15], we calculated �

from the correlator of Ea, the electric field operator. From
the Matsubara correlator of the electric field, � was calcu-
lated through Eq. (9) using the ansatz for �ð!Þ, Eq. (12). In
order to compare our results with the perturbative calcu-
lation of [3] and experiments [6], we used Eq. (16) to get
the diffusion constant, D. The diffusion coefficient so
obtained is found to be considerably smaller than the LO
PT estimate [3]. For high temperatures such that mD=T �
1, the leading-order estimate of DT is [3]

DT ¼ 36�

CFg
4

�
Nc

�
ln
2T

mD

þ 1

2
� �E þ � 0ð2Þ

�ð2Þ
	

þ Nf

2

�
ln
4T

mD

þ 1

2
� �E þ � 0ð2Þ

�ð2Þ
	��1

; (17)

where CF ¼ ðN2
c � 1Þ=2Nc is the color Casimir, and Nf is

the number of flavors of thermal quarks. At very high
temperatures, DT diverges as 1=�2

S. As one comes down

in temperature, Eq. (17) is not reliable anymore, and one
needs to use the complete leading-order estimate. To get
this, we use Eq. (11) of [3], with �sð3TÞ determined using
the plaquette measurement [31] and mD taken from lattice

measurements [30]. For example, at 1:5Tc, �
MS
S ð3TÞ 


0:23, and mD=T 
 2:345, leading to DT ’ 14. A similar
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FIG. 4 (color online). (Left) The relative contribution of the diffusive part (DIFF) to the total correlator, compared to that of the
leading order part (LOC), shown as a function of �T, for our different data sets. (Right) �s, defined through the scheme that the
coefficient of the !3 term in �ð!Þ is 8�s=9.
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FIG. 5 (color online). The diffusion coefficient, plotted as DT,
in the temperature range �ðTc; 2TcÞ. The error bars with solid
red lines show the statistical error. The dashed green error bars
are an estimate of the size of the various systematic uncertain-
ties, as discussed in Appendix B.
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calculation at 2:25Tc and 3Tc yields DT ’ 18:5 and 21,
respectively, for the gluon plasma. A comparison with
Fig. 5 reveals that this is almost an order of magnitude
larger than the nonperturbative result for the gluon plasma.

Interestingly, while Eq. (17) seems to have a strong
dependence on Nf, on putting values for the different

quantities, the Nf ¼ 2 results are numerically not very

different at similar values of T=Tc. The NLO contribution
to the diffusion constant has also been calculated in per-
turbation theory. At similar temperatures, with �S � 0:2,
this gives the DT � 8:4=ð2�Þ for Nf ¼ 3 [10]. While a

similar reduction for Nf ¼ 0 will bring the NLO PT result

much closer to the nonperturbative estimate, it is rather
disconcerting to find that the NLO result differs by almost
an order of magnitude from the LO result. Indeed, one
clearly will have to resort to calculations of higher orders/
resummations before taking the perturbative estimates
seriously.

As already mentioned, there have been other attempts to
calculate the diffusion coefficient using lattice gauge the-
ory, so far only in the gluon plasma. In Ref. [13], prelimi-
nary results for an extraction of the diffusion coefficient
from the vector current correlator �c�ic was presented. The
value of DT found at 1:5Tc was considerably smaller than
LO PT and is smaller than our results at that temperature,
though consistent within systematics. Reference [17] has
also attempted extracting �=T3 from the electric field
correlator, Eq. (7), but with considerably different analysis
strategy. This calculation, which was concentrated mostly
on considerably higher temperatures, found a very small
value of �=T3, which does not agree with ours in the
temperatures where we overlap. On the other hand, a
very recent calculation [18], which also focuses mostly at
higher temperatures, is in much better agreement with ours
in the temperature range of overlap.

The heavy quark diffusion coefficient has also been
calculated in a very different theory, the N ¼ 4 super-
symmetric Yang-Mills theory at large ’t Hooft coupling
�tH ¼ �SNc, using AdS/CFT correspondence [14,32]. In
fact, a large part of the formalism used by us was
introduced in Ref. [14]. For the N ¼ 4 supersymmetric
Yang-Mills theory forNc ! 1 and large �tH, Ref. [14] gets

DT ’ 0:9

2�

�
1:5

�tH

	
1=2

: (18)

Note that the dependence ofD on the coupling in Eq. (18) is
parametrically different from that in Eq. (17). Of course,
this theory is very different from QCD in many respects.
Moreover, it exploits crucially symmetries which QCD
does not have. However, to get a feel for what kind of
value such a functional dependence would give, one can
somewhat arbitrarily put parameters relevant for QCD in
Eq. (18). SettingNc ¼ 3 and �S ¼ 0:23, one obtainsDT ’
0:2 from Eq. (18), which is lower than, but in the same
ballpark as, our estimate.

Our results are for quenched QCD, i.e., there are only
thermal gluons but no thermal quarks in our fireball. So a
comparison with experimental results needs to be done
with care. A conservative approach would be to say that
comparison of the results in Fig. 5 with the perturbative
results for quenched QCD give us an indication of how
much the nonperturbative results can change from the
perturbative results in the deconfined plasma at moderate
temperatures<2Tc. Even then, the results are most encour-
aging since they indicate that the nonperturbative estimate
for DT can easily be an order of magnitude lower than LO
PT, bringing it tantalizingly close to values required to
explain the v2 data.
In a bit more optimistic fashion, one can hope that our

results, as plotted in Fig. 5, will be even quantitatively
close to a similar figure in full QCD when it is computed.
The reason for such a hope is that dimensionless ratios of
various quantities are known to scale nicely between
quenched and full QCD if plotted as function of T=Tc.
Also, the LO PT result, Eq. (17), shows such a trend. In this
spirit, in Fig. 6, we compare the lattice results with the
experimental data. The lattice results seem to be a little
above the best-fit value for PHENIX, though reasonably
close within our large systematics. Interestingly, our lattice
results seem to show very little temperature dependence in
the temperature regime studied here. For comparison, we
also show in the same plot the leading order PT result for
quenched QCD (see estimate below Eq. (17), which is, of
course, very far from both the nonperturbative result and
the experimental value.
The most straightforward direction for possible refine-

ment of our calculation is, of course, to go to finer and
bigger lattices. A nonperturbative calculation of the renor-
malization constant will also be of great help in accurate
quantitative prediction. The nontrivial next step would be
the inclusion of the light thermal quarks in the calculation.
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FIG. 6 (color online). The diffusion coefficient of Fig. 5,
shown here as 2�DT, in the temperature range Tc < T < 2Tc.
Also shown is the range preferred by the v2 measured by
PHENIX [6]. The band is obtained from a comparison of
Fig. 40 of Ref. [6] and Fig. 4 of [3]. The LO PT value at
1:5Tc [3] is also shown.
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The multilevel algorithm cannot be directly used in that
case, because of the nonlocality of the quark determinant.
It would be an interesting challenge to come up with better
ways to obtain similarly precise results even in the full
QCD case.
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APPENDIX A: LIST OF LATTICES,
AND DETAILS OF THE ALGORITHM

Here, we list the lattices used in our calculations and
parameters for the multilevel calculation. The parameters
for the multilevel calculation are also given. The last three
columns correspond to the number of sublattices the lattice
was divided in, the number of sublattice averaging between
measurements (‘‘# update’’), and the number of measure-
ments of each correlation function (‘‘# conf’’).

APPENDIX B: DETAILS OF VARIOUS
SYSTEMATICS DISCUSSED IN SEC. IV

In this section, we discuss in some detail some of the
systematic uncertainties mentioned in Sec. IV.

(i) Uncertainties in the ansatz for the spectral function:
In Sec. II, we have discussed the ansatz for the
spectral function used by us to get the diffusion
coefficient. As we have discussed there, we have
no first-principle handle on the form, and have
used forms for the low-! part motivated by other
studies. In particular, we have introduced a cutoff in
Eqs. (12) and (13). As we discussed in Sec. IV, the
quality of the fit is rather insensitive to�: as we vary
�, we get a different best-fit value for �, but for a
range of�, the �2 does not change appreciably. This
is probably an example of the zero-mode solutions
we discussed in Sec. II. We illustrate this in Fig. 7,
for the ( ¼ 7:192, 1:5Tc) set. In the figure, the
contribution of the diffusive part of the correlator is
shown for the best-fit parameters at various �. The
corresponding values of �, shown in Table III, vary

substantially as � is varied; however, the total con-
tribution of the diffusive part to the correlator hardly
changes as we change � from 2T to 4T.
Of course, the cutoffs in Eqs. (12) and (13) are an
approximation: one does not expect discreet jumps
in �ð!Þ. It is not unreasonable to expect, however,
that changing the sharp cutoff with a smooth one will
not change things significantly and that the flat di-
rection we encounter is of more general origin. For
the purpose of this work, we take the conservative
approach of letting � vary between ½2T;1Þ and
include the values of � thus obtained in the system-
atic uncertainty band. We consider this range to be
conservative because for �< 2T, plugging back the
fit solution to construct �ð!Þ, we get a large jump at
! ¼ �, since at this value, a! in Eq. (12) is much
bigger than b!3. In order to quote a central value for
the fits, we investigated for what value of
�a!� b!3 for ! ¼ �. For all the sets of Table I,
this happens around �� 3T. Therefore, we use this
value of � to quote the central value. Admittedly,
this criterion is arbitrary, and the green band in
Figs. 3 and 5 is probably the more robust object.
In Table III we also repeat this exercise of varying�
for the fit form �2ð!Þ. When the fit values obtained
are outside the systematic band, the band is extended
to include them.

(ii) Fit range and fit quality dependence: For the fit
values quoted in Table B, we have used the range
�min to N�=2, where �min is the smallest � for which
we got a good�2, and the �2 is defined using the full
covariance matrix. In all sets except one, we could
get a good �2 with �min � N�=4, and increasing
�min slightly did not change the fit value signifi-
cantly. The set where we could not get such a
stability with �min was the set at  ¼ 7:255. In
this case only, the uncorrelated �2, i.e., the diagonal
covariance matrix in the definition of �2, allowed
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FIG. 7 (color online). The change in the relative contribution
of the diffusive part of the  ¼ 7:192, 1:5Tc data set, as we
change � in Eq. (12). The notation is same as Fig. 2.
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such stability. So for this set, we used the uncorre-
lated fit value for our central estimate. The
difference between the uncorrelated and the corre-
lated best fits is then taken as an additional source of
systematic uncertainty in this case. In fact, the sys-
tematic uncertainty band for this set in Fig. 3 is
dominated by this contribution.

(iii) Finite volume effect: We explored finite volume
effects by looking at LT ¼ 2–4 on some of our
coarser lattices, and smaller variations of LT in two
of our finer lattices. At the correlation function
level itself, no statistically significant finite volume
effect could be seen once LT � 2. To make this
statement quantitative, we do a �2 comparison of
the long distance part of the correlator, which
should be the most sensitive to finite volume ef-
fects. For the correlator calculated on two lattices at
the same  and N� but different Ns, we construct
the quantity

�2=d:o:f: ¼ 1

N�=4

XN�=2

�¼ðN�=4Þþ1

jG1ð�Þ �G2ð�Þjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1ð�Þ2 þ �2ð�Þ2

p �

For the different sets in Table II, this quantity is
listed below.

 Nt (LTj1, LTj2) �2=d:o:f:

6.4 12 (2, 4) 0.34

6.65
12 (2, 4) 0.75

16 (2.25, 3) 1.12

6.9

12 (3, 4) 0.24

16 (2.25, 3) 0.51

20 (1.8, 2.4) 1.58

7.192 24 (2, 2.33) 0.29

Here, the third column shows the LT values of the lattices
whose correlators are being compared. At the level of

accuracy of our correlators, we do not see any significant
finite volume effect for LT ¼ 2. So we believe our results,
calculated on admittedly small lattices, will not be severely
affected by finite volume effects. Even for the LT ¼ 1:8 set
at  ¼ 6:9, N� ¼ 20, where the correlator does show a
statistically significant effect, Table III reveals that the
error in � due to finite volume effect is smaller than our
other systematics.
(iv) Renormalization factor: The lattice correlator is

multiplied by a renormalization factor, Eq. (11),
to get GEð�Þ. Clearly, an error in ZE will affect �
multiplicatively. As we discussed in Sec. II, in the
absence of a nonperturbative evaluation of the re-
normalization factor, we have used the tadpole
factor, which takes into account the quadratic
self-energy correction of the gluon lines, to renor-
malize GLat

E .
A perturbative renormalization factor, using heavy
quark effective theory, has been calculated in
Ref. [18]. Below, we tabulate the two renormaliza-
tion factors for the different lattice spacings we
have:

 ¼ 6.76 6.80 6.9 7.192 7.255

T=Tc ¼ 1.04 1.09 1.24 1.5 1.96

Ztad 1.230 1.232 1.226 1.210 1.207

ZHQET 0.831 0.832 0.834 0.841 0.842

Over the temperature range of interest to us, there is a near-
constant factor 1.43–1.48 between the two renormalization
schemes. We do not include such a factor in our band of
systematics, since it is easy to convert our results to the
ZHQET factor. We note that while this indicates a rather
large reduction in � of order 30–32%, it will not change our
qualitative conclusions.

TABLE III. Fit form dependence of �=T3.

T=Tc  Nt Ns �1ð!Þ �2ð!Þ
� ¼ � ¼

2T 3T 4T 1 2T 3T 4T 1
1.04 6.76 20 48 3:6� 0:6 2:6� 0:4 2:1� 0:4 1:55� 0:26 4:0� 0:7 3:0� 0:5 2:6� 0:4 2:2� 0:4
1.09 6.80 20 48 2:8� 0:4 2:0� 0:3 1:6� 0:2 1:23� 0:17 3:1� 0:4 2:4� 0:3 2:06� 0:29 1:77� 0:24
1.24 6.90 20 48 3:5� 0:7 2:5� 0:5 2:0� 0:4 1:5� 0:3 3:8� 0:8 2:9� 0:6 2:5� 0:5 2:2� 0:4

36 3:5� 0:6 2:5� 0:4 2:1� 0:3 1:5� 0:3 3:8� 0:6 2:9� 0:5 2:6� 0:4 2:2� 0:4
1.50 7.192 24 48 3:8� 0:2 2:75� 0:16 2:22� 0:13 1:75� 0:10 4:18� 0:24 3:19� 0:18 2:80� 0:16 2:45� 0:14
1.96 7.255 20 48 1:8� 0:7 1:3� 0:5 1:0� 0:4 0:81� 0:33 1:9� 0:8 1:5� 0:6 1:3� 0:5 1:14� 0:46
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